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Given the number of times in which an unknown event has
happened and failed: Required the chance that the probability of
its happening in a single trial lies between any two degrees of
probability that can be named.




Bayes (1763)

Problem:

Given the number of times in which an unknown event has
happened and failed: Required the chance that the probability of
its happening in a single trial lies between any two degrees of
probability that can be named.

Thomas Bayes (1702-1761), from “History of Life Insurance” by
Terence ODonnell, 1936.
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Bayes’ Rule and Bayes’ Theorem

Bayes’ Rule

Let Hq, Ho, ..., H, be set of mutually exclusive events partitioning
sample space. Thus, P(H;) + ---+ P(H,) = 1. Let A can happen
under any of H; with known probabilities P(A|H;). Then,

P(A|H;)P(H;)

P(Hi|A) = =50,

where P(A) = P(A|H,)P(H,) +---+ P(A|H,)P(H,).

Vidakovic (GaTech) (R)Evolution in Statistics May 19, 2015 4 /35



Bayes’ Rule and Bayes’ Theorem

Bayes’ Rule

Let Hq, Ho, ..., H, be set of mutually exclusive events partitioning
sample space. Thus, P(H;) + ---+ P(H,) = 1. Let A can happen
under any of H; with known probabilities P(A|H;). Then,

P(A|H;)P(H;)

P(Hi|A) = =50,

where P(A) = P(A|H,)P(H,) +---+ P(A|H,)P(H,).

Learning by Bayes’ Rule
P(A|H;)

x P(H;)
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N = 1,000,000 coins, 999,999 fair and 1 “two-headed.” A coin is
selected at random, flipped n times and in all flips it falls heads
up. What is the probability that the two-headed coin was
selected?




Two-headed Coin

N = 1,000,000 coins, 999,999 fair and 1 “two-headed.” A coin is
selected at random, flipped n times and in all flips it falls heads
up. What is the probability that the two-headed coin was
selected?

Posterior probability of a 2H coin
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Sensitivity, Specificity, and Relatives

Casscells et al. (1978) to 60 students and staff at an
elite med school

If a test to detect a disease whose prevalence is 1/1000 has a false
positive rate of 5%, [and true positive rate of 100%], what is the
chance that a person found to have a positive result actually has
the disease, assuming you know nothing about the person’s
symptoms or signs?

Definitions

D = Disease present, D¢ = Disease not present, + = Test
positive, — = Test Negative.

P(+|D) = Sensitivity, P(—|D¢) = Specificity, P(D|+) = Positive
predictive value (PPV), P(D¢|—) = NPV
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If a test to detect a disease whose prevalence is 1/1000 has a false
positive rate of 5%, [and true positive rate of 100%], what is the
chance that a person found to have a positive result actually has
the disease, assuming you know nothing about the person’s
symptoms or signs?

The answer to this problem is approximately 2%. Casscells et al.
found that only 11 participants gave this answer. The most
frequent response was 95%, presumably on the supposition that,
because the error rate of the test is 5%, it must get 95% of results
correct.

P(+|D°) = 0.05, P(—| D) = 0.95, P(+|D) = 1, P(—|D) = 0.

<

_ PHID)P(D) _ P(+|D)P(D) —
P(Dl+) = P(+)  P(+ID)P(D)+P(+[De)P(D)

1% 0.001/(1 x 0.001 4 0.05 x 0.999) = 0.0196
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Bayes” Theorem

With Bayes’ Rule and Inverse Probabilities of Events, no
Philosophical Disagreements!

Bayesian — Frequentist Philosophical Disagreement

Disagreements are in the nature of model parameters and use of
conditioning.

e Frequentists/Classical Statisticians: Parameters are fixed
numbers, Inference involves optimization.

e Bayesian Statisticians: Parameters are random variables,
Inference involves integration.

Parameter 6: Elicit prior 7(), update to the posterior after
observing experimental results.
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Prior —— Posterior

Likelihood x Prior
Marginal

Bayes” Theorem: Posterior =




Ingredients in Bayesian Inference

Prior —— Posterior

Likelihood x Prior
Marginal

Bayes’ Theorem: Posterior =

e Prior - subjective part of the model

e Likelihood - incorporates experimental data/observations,
conditional on data

e Marginal (Prior Predictive) - normalizing constant (“a trouble
maker”)

The only coherent way of combining the experimental data and
prior information is via the Bayes’ Theorem.
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e Prior - elicited, conjugate, objective, non-informative, reference,
automatic, optimistic/pesimistic, clinical, ...

Posterior Distribution: Ultimate Summary

e Inference conceptually natural and simple.

e Location of the posterior (mean, median, mode) — Bayes’
estimators of a parameter.

e Credible sets (Bayesian counterparts of confidence intervals)
obtained by percentiles of the posterior.

e Testing hypothesis done by comparing posterior probabilities of
competing hypotheses.

»
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Example: Ten Coin Flips — No Heads Up

We are interested in estimating parameter p, probability that
possibly biased coin falls heads up.
e Experiment: n = 10 flips, X = 0 heads observed.

With a Frequentist Hat

e If you are frequentist, only the experiment matters, the estimate
ofpisp=X/n=0/10=0. [

With a Bayesian Hat

e For a Bayesian, the likelihood is conditional on X = 0, and
since it is Binomial, it is proportional to p%(1 — p)!°.

e Under uniform prior the posterior is proportional to

p°(1 — p)'® x 1 which is a un-normalized Beta distribution with
parameters 1 and 11. The Bayes estimator of p is 1/(14+11)=
1/12, a more reasonable estimator than the frequentist’s 0.
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The Likelihood Principle

All information about experiment is in the likelihood. A Bayesian
inference is based on data observed and not on data that
could possibly be observed, or on the manner in which the
sampling was conducted.

Example: (Jimmie Savage, 1962, Purdue Symposium)

Suppose a coin is flipped 12 times and 9 heads and 3 tails are
obtained. Let p be the probability of heads.

We are interested in testing whether the coin is fair against the
alternative that it is more likely to come heads up, or

Hy:p=1/2 vs. Hy:p>1/2

The p-value for this test is the probability that one observes 9 or
more heads if the coin is fair (under Hy).

o
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Savage’s Example Cont’d

Consider two scenarios:

Scenario A

Suppose that the number of flips n = 12 was decided a priori.
Then the number of heads X is binomial and under Hy (fair coin)
the p-value is 0.0730. At a 5% significance level Hy is not rejected

Scenario B

Suppose that the flipping is carried out until 3 tails have
appeared. Then, under Hj, the number of heads Y is a negative
binomial and the p-value is 0.0327. At a 5% significance level Hy
is rejected.

Thus, two clasical tests recommend opposite actions for the same
data simply because of how the sampling was conducted.

o
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For a Bayesian — No Difference

In both (A) and (B) the likelihood is proportional to p(1 — p)3,
and for a fixed prior on p there is no difference in any Bayesian
inference.

Edwards et al. (1963)

“...the rules governing when data collection stops are irrelevant
to data interpretation. It is entirely appropriate to collect data
until a point has been proven or disproven, or until the data
collector runs out of time, money, or patience.”
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Lack of Reproducibility

The reliability of results from observational studies has been
called into question many times in the recent past, with several
analyses showing that well over half of the reported findings are
subsequently refuted (JNCI, 2007).

The NIH funded randomized clinical trials to follow up exciting
results from 20 observational studies. Only 1 replicated.

v

Bayer Healthcare reviewed 67 in-house attempts at replicating the
findings in published research. Less than 1/4 were viewed as
having been essentially replicated. Over 2/3 had major
inconsistencies leading to project termination (Wadman, 2013).

v

Amgen publication shows that findings from only 6 out of 53
landmark papers can be replicated by company scientists.

v
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John P. A. Toannidis, JAMA, 2005, 218-228: Five of 6 highly cited
nonrandomized studies were contradicted or had found stronger
effects than were established by later studies.

v

[oannidis looked at the 49 most famous medical publications from
1990-2003 resulting from randomized trials; 45 claimed successful

intervention.

e 7 (16%) were contradicted by subsequent studies

e 7 others (16%) had found effects that were stronger than those

of subsequent studies

e 20 (44%) were replicated

50% phase IIT drug trial failure rates are now being reported
30% of phase III drug trial successes fail to replicate
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Why?

e Publication bias

e Significant rewards for positive results with little or no penalty
for refuted studies

e Use of egregiously bad statistics. [e.g., If A, B are treatments and C
control, A=C & B#C = A+# B/

e Stochastic biases (dependencies, confounding, oversimplified
models)

e Failure to properly account for multiple testing.

e Fallacies of p-values
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Multiplicity in Testing

Basic research is like shooting an arrow in the air and, where it
lands, painting a target, Homer Adkins.

... With widely-used methods, Peter Austin, Ph.D.,(Institute for
Clinical Evaluative Sciences in Toronto) found that Leos were
(significantly) more likely to have gastrointestinal bleeding, while

Sagittarians were (significantly) more likely be hospitalized for a
broken arm...[Tuma (2007), JNCI 99, 664-668]
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p-Values

Fisher (1926)

If one in twenty does not seem high enough odds, we may, if we
prefer it, draw the line at one in fifty (the 2 percent point), or one
in a hundred (the 1 percent point). Personally, the writer prefers
to set a low standard of significance at the 5 percent point, and
ignore entirely all results which fail to reach this level. A
scientific fact should be regarded as experimentally established
only if a properly designed experiment rarely fails to give this
level of significance.

Matthews (1998)

The plain fact is that 70 years ago Ronald Fisher gave scientists a
mathematical machine for turning baloney into breakthroughs,
and flukes into funding. It is time to pull the plug.

v
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p-values are not error probabilities

A survey reported by Jim Berger

What would you conclude if a properly conducted, randomized
clinical trial of a treatment was reported to have resulted in a
beneficial response (p < 0.05)7

1. Having obtained the observed response, the chances are less
than 5% that the therapy is not effective.

2. The chances are less than 5% of not having obtained the
observed response if the therapy is effective.

3. The chances are less than 5% of having obtained the observed
response if the therapy is not effective.

4. None of the above.

The (most) correct answer is 3

The question was given to 24 physicians. Half answered
incorrectly; all had difficulty distinguishing the subtle differences.

Vidakovic (GaTech) (R)Evolution in Statistics May 19, 2015 20 / 35



The chances are less than 5% of having obtained the observed
response or any more extreme response if the therapy is not
effective.

[s accounting for possible not observed data fair?

A hypothesis, that may be true, may be rejected because it has
not predicted observable results that have not occurred.
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NIH Workshop on Reproducibility and Rigor of
Research, June 2014

@ Rigorous statistical analysis (journals have to have a
mechanism to check for statistical accuracy in addition to the
regular review process)

@ Transparency in Reporting (Standards. Replicates, Statistics,
Randomization, Blinding, Power Analysis,
Inclusion-Exclusion Criteria)

@ Data and Material Sharing (must be made available, if
ethically appropriate)

e Consideration of Refutations (Journals obliged to publish
refutations, subject to usual standards of quality)

o Establishing Best Practices Guidelines ( e.g., precise
description of reagents, cell lines, antibodies, animals, etc.)

v
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FDA 2010 Guidelines (for medical devices)

e Valuable prior information is often available for medical devices
because of their mechanism of action and evolutionary
development.

e Correctly employed Bayesian approaches may be less
burdensome.

e Often the use of prior information may alleviate the need for a
larger sized trial.

e When an adaptive Bayesian model is applicable, the size of a
trial can be reduced by stopping early when conditions warrant.
e The Bayesian approach can sometimes obtain an exact analysis
when the frequentist analysis is approximate or too difficult.

e Bayesian approaches to multiplicity problems (multiple
endpoints and testing of multiple subgroups) may be
advantageous.

e Bayesian methods allow for great flexibility in dealing with
missing data.

v
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FDA 2010 Recommendations

In the context of clinical trials, an unlimited look at the
accumulated data when sampling is of a sequential nature will not
affect the inference. In the frequentist approach, interim data
analyses affect type I errors. The ability to stop a clinical trial
early is important from the moral and economic viewpoints.
Trials should be stopped early due to both futility, to save
resources or stop an ineffective treatment, and superiority, to
provide patients with the best possible treatments as fast as
possible.
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Bayesian Handling of Multiplicity and
Significance Testing

Multiplicity

Bayesian treatment of multiplicity in testing is ONLY via the
prior and is separated from the model/likelihood structure. (In
multiple testing for significant gene expressions, if the chip has
10000 genes, each starts with prior probability of 1/10000 of being
expressed ).

In GWAS (Genome Wide Association Studies) Wellcome Trust
Case Control Consortium proposed a stringent cutoff of

a < 5 x 1077 partially based on Bayesian considerations.
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Significance Tests

Bayes’ Factors:

Posterior Odds in Favor of H; = Prior Odds in Favor of H; %

Bayes’ Factor
P(H,|data)

P(H,)

P(Hy|data)

P(Hy)

X BlO

Table: Treatment of Hy according to log-Bayes’ factor values: Jeffreys’

Scale (Jeffreys, 1961, p. 432)

Value (Log 10)

Value (Natural Log)

0 <logjg Bio(z) < 0.5
0.5 < logyg Bio(z) <1
1 < logjg Bio(z) < 1.5
1.5 < logjg Bio(z) < 2

logig Big(x) > 2

poor
substantial
strong

very strong

decisive
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MCMC Revolution

® Why Isn’t Everyone a Bayesian? ... Brad Efron in American
Statistician (1986)

m Instead of finding the posterior, simulate from it.

m Metropolis et al. (1953), Hastings (1970), Geman & Geman
(1984), Tanner & Wong (1987), Gelfand & Smith (1990),... =
Independence in simulated data not critical since Ergodic
Theorem for MC holds:

m I[f 6; are sampled from a MC with stationary distribution 7,
then for any function A

w — E h(0), a.s.

B Various strategies to construct MC with where the stationary
distribution is the posterior m: Metropolis-Hastings, Gibbs

Sampler,. ...
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BUGS: Bayesian analysis Using Gibs Sampling

m A prototype was demonstrated at the 4th Valencia Bayesian
meeting in 1991. Only with Gibbs updater.

B The range of other updating methods (Metropolis & family,
Slice Sampling, etc) were added after 1996 when the project
moved from MRC Cambridge to Imperial College.

® In the mid-1990s WinBUGS, a standalone version of the
software was created.

® WinBUGS written in Component Pascal, within Oberon’s
Rapid Application Development environment known as BlackBox
Component Builder (http://www.oberon.ch/blackbox.html)
[*.odc (oberon document)]

m In 2004 Andrew Thomas started an open-source version of the
software at the University of Helsinki.

m At CDC OpenBUGS 3.2.1 was approved on 6/9/2011
(requestor Antonio Vieira) and WinBUGS 1.4.3 on 7/15/2011
(requestor Elizabeth Zell).
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Tamofixen and BC 1/5

28 OpenBUGS (= [ s

—
File Edit Attributes Tools Info Model Inference Doodle Map PKBugs PKHelp Text Window Examples Manuals Help

) screcurrence E=8EcE

| »

0
BuGs BC Recurrence Meta-Analysis

In 14 trials the effect of tamofixen on BC recurrence was meta analyzed.

rT=c( 55, 137,505, 62, 99, 50, 185,186,148,25,223,183,2,129),
nT=c( 97, 282,927,123,239,130,311,303,325,79,344,937,2,434),
rC=c( 67, 187,590, 74,118, 49, 200,187,178,38,224,185,0,159),
nC=c(100, 306,915,140,236,107,319,307,325,86,350,936,8,449)

Three different scales LOR, LRR and ARD are considered. A hypothetical
new frial probabilities of RR exceeding 1 are found under the three scales
for effect assessment (uncomment desired scale in the code).

Parmigianni, G. (2002). Modeling in Medical Decision Practice, Wiley, p. 127
Congdon, P. (2010). Applied Bayesian Hierarchical Methods, Wiley, p. 115

saved
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Tamofixen and BC 2/5

[ screcurrence o | @] =]

model { for (j in 1:J) {
rT[i]~dbin(pT[],nT[]);
rC[j] ~ dbin(pC[i],nC[i1);
pC[j] ~ dbeta(a.C,b.C);
effect[j] ~ dnorm(mu.effect,tau.effect)}
# alternative scales
# log OR scale
for (j in 1:J) {logit(pT[j]) <- logit(pC[j])+ effect[j]}
logit(pT.new) <- logit(pC.new)+effect.new
#log RR scale
# for (j in 1:J) {log(pT[]) <- log(pCIil)+min(effect[i],-log(pCL1))}
# log(pT.new) <- log(pC.new)+effect.new
# absolute risk difference scale
# for (j in 1:J) {pT[j] <- pC[j]+min(max(effect[j],-pC[i1),(1-pC[il))}
# pT.new <- pC.new+effect.new
# predictive relative risk (all models)
effect.new ~ dnorm(mu.effect,tau.effect); pC.new ~ dbeta(a.C,b.C);
RRnew <- pT.new/pC.new; RRnew.above.1 <- step(RRnew-1)
# hyperpriors
a.C ~ dunif(1,100); b.C ~ dunif(1,100)
mu.effect ~ dnorm(0,0.001); tau.effect ~ dgamma(1,0.001)}

< 1 »

I
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Tamofixen and BC 3/5

@ BCrecurrence o | (= ‘ 3

Data

list(J=14,

rT=c( 55,137,505,62,99,50,185,186,148,25,223,183,2,129),
nT=c( 97,282,927,123,239,130,311,303,325,79,344,937,2,434),
rC=c( 67,187,590,74,118,49,200,187,178,38,224,185,0,159),
nC=c(100,306,915,140,236,107,319,307,325,86,350,936,8,449) )

Inits
list(mu.effect=0,tau.effect=1,a.C=1,b.C=1)
list(mu.effect=-0.25,tau.effect=1,a.C=7,b.C=7)

m
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=]
mean sd MC_error val2.5pc median val97.5pc start sample
b RRnew 08863 005013 3811E4 07815 08888 09771 1001 100000
RRnew.above.10.01127 01056 5063E-4 00 0.0 00 1001 100000
mamic trace effectnew -0235 008788 817E-4 -0409  -02357 -0.08526 1001 100000
mueflect  -02351 004966 7.898E-4 03323 02352 01369 1001 100000
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Tamofixen and BC 5/5

BCrecurrence

mean sd  MC_error val2.5pc median val97.5pc
RRnew 0.8863 0.05013 3.811E-4 0.7815 0.8888 0.9771
RRnew.above.1 0.01127 0.1056 5.063E-4 0.0 0.0 0.0
effect.new -0.235 0.08788 8.171E-4 -0.4090 -0.2357 -0.05526
mu.effect -0.2351 0.04966 7.898E-4 -0.3323 -0.2352 -0.1369

;: Posterior density ‘EHEHE‘

P

RRnew sample: 100000 = [RRnew.above 1 sample: 100000

]

. i
T T T T
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Conclusions

e Both frequentist and Bayesian approaches have merrits

ex-level significance testing and Bayes’ factors are connected.
More scrutiny needed about siginificance testing using raw
p-values.

e MCMC and modern modeling/computing capabilities make
Bayesian approach feasible and attractive

e Readily available WinBUGS/OpenBUGS software allows
teaching Bayesian statistics at UG level

e Bayesian revolution: YES; All becoming Bayesians: Probably
not; Taking ecumenical point of view: YES
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