
Rasch and IRT Models: A Case Study

Item response models may be used to model the responses of subjects to a number of questions or test
items. An item response model with one parameter for item difficulty is known as a Rasch model.
Georg Rasch (1901-1980), a Danish statistician, gave an axiomatic derivation of the model in the
1960s. We will be using a conditional (fixed-effects) logit model to illustrate the model, however,
Rasch’s derivation used a different approach, but one that turns out to be equivalent to the fixed-
effects logit. Rasch models are one of the dominant models for binary items (e.g., success/failure on
test items) in psychometrics.

Suppose n students are taking a test consisting of k true/false questions. In the Rasch model the
log odds of subject i giving a correct response to item j may be modeled using a one-parameter logistic
model

yij ∼ Ber(pij),

logit(pij) = αi − δj, 1 ≤ i ≤ n, 1 ≤ j ≤ k, (1)

where pij is the probability of subject i answering the item j correctly, αi represent the ability of the
subject i, and δj represent the difficulty of the item j. Observed yij is a scoring – has value 1 if the
answer is correct, and 0 if the answer is wrong.

In terms of probability

P (yij = 1) = logit−1(αi − δj) =
exp{αi − δj}

1 + exp{αi − δj}
.

Figure 1: Georg William Rasch (1901-1980), Danish Statistician.

The failure of an item to fit the model can be traced to two main sources. One is that the model is
too simple. It takes account of only one item characteristic – item easiness. This model assumes that
all items have the same discrimination, and that the effect of guessing is negligible. Parameters for
discrimination and guessing can be included in a more general model. However, their inclusion makes
the application of the model to actual measurement involved.
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The model (1) is not identifiable because a common constant can be added to all the abilities αi

and all the difficulties δj , and the predictions of the model will remain the same,

αi − δj = αi + c− (δj + c) = α′

i − δ′j.

The probabilities depend only on the difference of the ability and difficulty parameters, but not on
their individual locations.

Figure 2: Test

From the standpoint of classical logistic regression, this nonidentifiability is a simple case of
collinearity and can be resolved by several ways. For example, by constraining the parameters (i)
setting α1 = 0 (that is, using the person #1 as a baseline), (ii) by setting δ1 = 0 (so that the first item
is the comparison point), (iii) constraining

∑
i αi to 0, or (iv) constraining

∑
j δj to 0.

A common Bayesian model for (1) assigns normal priors to the ability and difficulty parameters:

αi ∼ N (µα, τα), i = 1, . . . , n

δj ∼ N (µδ, τδ), j = 1, . . . , k.

The priors for these parameters are assigned hyperpriors and estimated conditional on the data. This
is also referred to as a partial pooling or hierarchical approach (remember the concept of “borrowing
strength” in hierarchical models). The model is nonidentifiable for the reasons mentioned above: this
time, it is µα and µδ that are not identifiable, because a constant can be added to each without changing
the predictions. Bayesian analysis can proceed with or without the model parameters being identified,
since identification is a property of a likelihood. Priors do not really “solve” identification problems,
except in the degenerate case of a point-mass spike priors (i.e., parameter restrictions by any other
means), however, they could place the estimators in the range where classical restricted estimators
would fall. The simplest way to identify (in this Bayesian-vague way) this hierarchical model is set µα

to 0 (or to set µδ to 0, but probably not both due to their relationship in the likelihood).

model Rasch

{

for (i in 1:n)

{ for (j in 1:k)

{ y[i,j] ~ dbern(p[i,j])

logit(p[i,j]) <- alpha[i] - delta[j]

# or p[i,j] <- (exp(alpha[i] - delta[j])/(1+exp(alpha[i] - delta[j])))
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}

alpha[i] ~ dnorm(0,tau.alpha)

}

for (j in 1:k)

{

delta[j] ~ dnorm(mu.delta, tau.delta)

}

tau.alpha ~ dnorm(0, 0.001) I(0,)

mu.delta ~ dnorm(0, 0.001)

tau.delta ~ dnorm(0, 0.001) I(0,)

var.alpha <- 1/tau.alpha

var.delta <- 1/tau.delta

}

#data

list(n=162,k=33, y=structure(.Data=

c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,0,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,0,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,

0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,1,1,1,1,1,1,1,1,0,1,0,

... 156 lines deleted ....

0,1,1,1,1,0,0,1,1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,

0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,

1,0,0,0,1,0,1,1,1,1,1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

), .Dim=c(162,33)))

#initial values

list(delta=c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2),

tau.alpha = 0.5, tau.delta=0.5, mu.alpha=0)

mean sd MC_error val2.5pc median val97.5pc start sample

alpha[1] 3.907 0.774 0.01728 2.548 3.843 5.575 501 2500

alpha[2] 1.45 0.4141 0.01097 0.6703 1.447 2.305 501 2500

alpha[3] 0.1096 0.385 0.01109 -0.6411 0.1078 0.8749 501 2500

alpha[4] 2.006 0.4738 0.01146 1.09 1.997 2.979 501 2500

...

alpha[159] -0.6511 0.4173 0.01011 -1.523 -0.6473 0.1385 501 2500

alpha[160] 0.543 0.3886 0.0105 -0.2339 0.5378 1.313 501 2500

alpha[161] -1.599 0.4832 0.01135 -2.586 -1.583 -0.680 501 2500

alpha[162] -0.0371 0.4012 0.01153 -0.8194 -0.0364 0.7583 501 2500

delta[1] 0.9355 0.2273 0.008836 0.4836 0.9393 1.385 501 2500

delta[2] 0.5556 0.2165 0.008035 0.1311 0.556 0.9749 501 2500

delta[3] 0.2443 0.2224 0.008775 -0.2008 0.2396 0.684 501 2500

delta[4] 1.428 0.2378 0.009084 0.971 1.427 1.89 501 2500

...
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delta[30] -0.4043 0.2141 0.008461 -0.8185 -0.4013 0.01447 501 2500

delta[31] 0.3747 0.215 0.008428 -0.03354 0.3738 0.7909 501 2500

delta[32] -0.8829 0.2142 0.008372 -1.32 -0.8804 -0.4746 501 2500

delta[33] 0.7065 0.2145 0.007964 0.3084 0.702 1.142 501 2500

2 Parameter IRT Model (2PLM)

The Rasch model can be generalized to 2-parameter item-response model, known as 2PLM, by allowing
the slope of the logistic regression to vary by item:

yij ∼ Ber(pij),

logit(pij) = γj(αi − δj), 1 ≤ i ≤ n, 1 ≤ j ≤ k, (2)

Figure 3: Example of an yij

In the model (3), parameter γj is called the discrimination of item j: if γj = 0, then the item does
not discriminate at all, and P (yij = 1) = 0.5 for any person, whereas high values of γj correspond to
a strong relation between ability and the probability of getting a correct response. Negative values of
γj correspond to items where low-ability persons do better. Such items typically represent mistakes in
the construction of the test since test designers generally try to create questions with a high positive
discrimination value.

The addition of the discrimination parameter induces a new invariance problem. Model (3) has a
so called multiplicative aliasing. This arises when multiplying the γj by a constant and dividing the
αi − δj by that same constant.

This indeterminacy can be resolved constraining the αi’s to have mean 0 and standard deviation 1
or, in Bayesian context, by giving the αi’s a fixed prior distribution, for example N (0, 1).

model 2-parameter IR

{

for (i in 1:n)

{ for (j in 1:k)

{ y[i,j] ~ dbern(p[i,j])

logit(p[i,j]) <- gamma[j] * ( alpha[i] - delta[j] )
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}

alpha[i] ~ dnorm(0,1)

}

for (j in 1:k)

{

delta[j] ~ dnorm(mu.delta, tau.delta)

gamma[j] ~ dnorm(mu.gamma, tau.gamma)

}

mu.gamma ~ dnorm(0, 0.001)

tau.gamma ~ dnorm(0, 0.001) I(0,)

mu.delta ~ dnorm(0, 0.001)

tau.delta ~ dnorm(0, 0.001) I(0,)

var.gamma <- 1/tau.gamma

var.delta <- 1/tau.delta

}

3 Parameter IRT Model (3PLM)

The 3LPM model is given by

yij ∼ Ber(pij),

pij = cj + (1− cj)
exp{γj(αi − δj)}

1 + exp{γj(αi − δj)}
, 1 ≤ i ≤ n, 1 ≤ j ≤ k. (3)

The c parameter is commonly called the guessing parameter or lower asymptote parameter, because it
indicates the probability of responding positively for examinees having very low α.

The more general IRT model is a diffuse polytomous model where each question has m categories
of response, with m > 2. In this case the probability related to each category depends on item and
person parameter as in the other case and also on the category thresholds.

Further Reading

There are many papers in fields different than education where Rasch-type models are appropriate:
manufacturing and industry ( conforming/non-conforming products ), medicine and health systems
(healthy/non-healthy), psychology (conscientiousness or cognitive ability/oposite ), genetics, etc.
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