
Chapter 19
Bayesian Inference Using Gibbs Sampling –
BUGS Project

Beware: MCMC sampling can be dangerous!

– Disclaimer in WinBUGS User Manual

WHAT IS COVERED IN THIS CHAPTER

• Where to find WinBUGS, How to Install, Resources
• Step-by-step Example
• Built-in Functions and Common Distributions in BUGS
• MATBUGS: A MATLAB Interface to BUGS

19.1 Introduction

BUGS is a freely available software for constructing and evaluating
Bayesian statistical models using simulation approaches based on the
Markov chain Monte Carlo methodology.

BUGS and WinBUGS are distributed freely and are the result of many
years of development by a team of statisticians and programmers at the
Medical Research Council Biostatistics Unit in Cambridge, UK (BUGS and
WinBUGS), and by a team at the University of Helsinki, Finland (Open-
BUGS); see the project pages http://www.mrc-bsu.cam.ac.uk/software/bugs/
and http://www.openbugs.net.
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944 19 Bayesian Inference Using Gibbs Sampling – BUGS Project

Models are represented by a flexible language, and there is also a graph-
ical feature, doodlebugs, that allows users to specify their models as di-
rected graphs. For complex models doodlebugs can be very useful (Lunn
et al., 2000). As of May 2017, the latest versions are WinBUGS 1.4.3 and
OpenBUGS 3.2.3. A comprehensive overview of WinBUGS programming
and applications can be found in Congdon (2005, 2006, 2010, 2014), Lunn
et al. (2013), and Ntzoufras (2009).

19.2 Step-by-Step Session

We start this brief tutorial on WinBUGS with a simple regression example.
Consider the model

yi|μi,τ ∼ N (μi,τ), i = 1, . . . ,n,
μi = α + β(xi − x),

α ∼ N (0,10−4),

β ∼ N (0,10−4),
τ ∼ Ga(0.001,0.001).

The normal distribution is parameterized by a precision parameter τ that
is the reciprocal of the variance, τ = 1/σ2. Natural priors for precision pa-
rameters are gamma, and small values of the precision reflect the flatness
(noninformativeness) of the priors. Assume that (x,y) pairs (1,1), (2,3),
(3,3), (4,3), and (5,5) are observed.

Estimators in classical, least-squares regression of y on x − x are given
in the following MATLAB output:

y = [1 3 3 3 5]’; %response

xx = [1 2 3 4 5]’;

X = [ones(size(xx)) xx-mean(xx)];

[b.b,b.int,res.res,res.int,stats] = regress(y,X);

b.b’

% 3.0000 0.8000

stats

% 0.8000 12.0000 0.0405 0.5333

Thus, the estimators are α̂ = y = 3, β̂ = 0.8, and τ̂ = 1/σ̂2 = 1/0.5333= 1.875.
What about Bayesian estimators? We will find the estimators by MCMC

simulation, as empirical means of the simulated posterior distributions. As-
sume that the initial parameter values are α0 = 0.1, β0 = 0.6, and τ = 1. Start
WinBUGS and input the following code in [File > New]:

# A simple regression

model{
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(a) (b)

Fig. 19.1 (a) Opening WinBUGS front end with a simple regression task. The simple
regression program is opened or typed in. (b) The front end after selecting Specification
from the Model menu.

for (i in 1:N) {

Y[i] ~ dnorm(mu[i],tau)

mu[i] <- alpha + beta * (x[i] - x.bar)

}

x.bar <- mean(x[])

alpha ~ dnorm(0, 0.0001)

beta ~ dnorm(0, 0.0001)

tau ~ dgamma(0.001, 0.001)

sigma <- 1.0/sqrt(tau)

}

#-----------------------------

DATA

list(N=5, x=c(1,2,3,4,5), Y=c(1,3,3,3,5))

#-----------------------------

INITS

list(alpha = 0.1, beta = 0.6, tau = 1)

Next, make sure that the cursor is somewhere within the scope of
“model,” that is, somewhere between the first open and the last closed
curly bracket. Go to the Model menu and open Specification. The Specifi-
cation Tool window will pop out (Fig. 19.1b). Next, press check model in
the Specification Tool window. If the model is correct, the response on the
lower left border of the window should be: model is syntactically correct
(Fig. 19.2a). Next, data are read in. Highlight the “list” statement in the data
part of your code (Fig. 19.2b). In the Specification Tool window, select load
data. If the data are in the correct format, you should receive a response
in the lower left corner of the WinBUGS window: data loaded (Fig. 19.3a).
You will need to compile your model in order to activate the inits buttons.

Select compile in the Specification Tool window. The response should
be: model compiled (Fig. 19.3b), and the load inits and gen inits but-
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(a) (b)

Fig. 19.2 (a) After selecting check model, if the syntax is correct, the response is model
is syntactically correct. (b) Highlighting the list in the data prior to reading data in.

(a) (b)

Fig. 19.3 WinBUGS’ responses to (a) load data and (b) compile in the model specification
tool.

tons become active. Finally, highlight the “list” statement in the initials
part of your code, and in the Specification Tool window, select load inits
(Fig. 19.4a). The response should be: model is initialized (Fig. 19.4b), and
this completes the reading in of the model. If the response is initial values
loaded but this or another chain contains uninitialized variables, click
on the gen inits button. The response should be: initial values generated,
model initialized.

Now you are ready to burn in some simulations and at the same time
check if the program works. Recall that burning in the Markov chain model
is necessary for the chain to “forget” the initialized parameter values. In



19.2 Step-by-Step Session 947

(a) (b)

Fig. 19.4 (a) Highlighting the list to initialize the model. (b) WinBUGS confirms that
the model (in fact a Markov chain) is initialized.

the Model menu, choose Update... and open Update Tool to check if your
model updates (Fig. 19.5a).

From the Inference menu, open Samples.... A window titled Sample
Monitor Tool will pop out (Fig. 19.5b). In the node subwindow, input the
names of the variables you want to monitor. In this case, the variables are
alpha, beta, and tau. If you correctly input the variable name, the set button
becomes active and you should set the variable. Do this for all three vari-
ables of interest. In fact, sigma as a transformation of tau is available to be
set as well.

(a) (b)

Fig. 19.5 WinBUGS’ response to (a) Update... tool from the Model menu and (b) Sam-
ples... from the Inference menu.
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Now choose alpha from the subwindow in Sample Monitor Tool. All
of the buttons (clear, set, trace, history, density, stats, coda, quantiles, bgr
diag, auto cor) are now active. Return to Update Tool and select the desired
number of simulations, say 100,000, in the updates subwindow. Press the
update button (Fig. 19.6a).

Return to Sample Monitor Tool and check trace for the part of the MC
trace for α, history for the complete trace, density for a density estimator of
α, etc. For example, pressing the stats button will produce something like
the following table:

mean sd MC error val2.5pc median val97.5pc start sample

alpha 2.996 0.5583 0.001742 1.941 2.998 4.041 1001 100000

The mean 2.996 is the Bayes estimator, as the mean from the sample from
the posterior for α. There are two precision outputs, sd and MC error. The for-
mer is an estimator of the standard deviation of the posterior and can be
improved by increasing the sample size but not the number of simulations.
The latter is the simulation error and can be improved by additional sim-
ulations. The 95% credible set (1.941, 4.041) is determined by val2.5pc and
val97.5pc, which are the 0.025 and 0.975 (empirical) quantiles from the pos-
terior. The empirical median of the posterior is given by median. The outputs
start and sample show the starting index for the simulations (after burn-in)
and the available number of simulations.

(a) (b)

Fig. 19.6 (a) Select the simulation size and update. (b) After the simulation is done, check
the stats node.

For all parameters a comparative table (Fig. 19.6b) is as follows:



19.3 Built-in Functions and Common Distributions in WinBUGS 949

mean sd MC error val2.5pc median val97.5pc start sample

alpha 2.996 0.5583 0.001742 1.941 2.998 4.041 1001 100000
beta 0.7987 0.3884 0.001205 0.06345 0.7999 1.537 1001 100000
sigma 1.014 0.7215 0.004372 0.4134 0.8266 2.765 1001 100000
tau 1.865 1.533 0.006969 0.1308 1.463 5.852 1001 100000

We recall the least squares estimators from the beginning of this session:
α̂ = 3, β̂ = 0.8, and τ̂ = 1.875, and note that their Bayesian counterparts are
very close.

Densities (smoothed histograms) and traces for all parameters are given
in Fig. 19.7.

(a) (b)

Fig. 19.7 Checking (a) density and (b) trace in the Sample Monitor Tool.

If you want to save the trace for α in a file and process it in MATLAB,
select coda, and the data window will open with an information window
as well. Keep the data window active and select Save As from the File
menu. Save the αs in alphas.txt, where it will be ready to be imported
into MATLAB. Later in this chapter we will discuss the direct interface
between WinBUGS and MATLAB called MATBUGS.

19.3 Built-in Functions and Common Distributions in
WinBUGS

This section contains two tables: one with the list of built-in functions and
another with the list of available distributions.

A first-time WinBUGS user may be disappointed by the selection of
built-in functions – the set is minimal but sufficient. The full list of distri-
butions in WinBUGS can be found in Manuals>OpenBUGS User Manual.
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Fig. 19.8 Traces of the four parameters from a simple example: (a) α, (b) β, (c) τ, and (d)
σ from WinBUGS. Data are plotted in MATLAB after being exported from WinBUGS.

WinBUGS also allows for the inclusion of distributions for which functions
are not built in. Table 19.2 provides a list of important discrete and contin-
uous distributions, with their syntax and parametrizations. WinBUGS has
the capability to define custom distributions, both as a likelihood and as a
prior, via the so-called zero-tricks (p. 353).

19.4 MATBUGS: A MATLAB Interface to WinBUGS

There is strong motivation to interface WinBUGS with MATLAB. Cutting
and pasting results from WinBUGS is cumbersome if the simulation size is
in millions or if the number of simulated parameters is large. Also, the data
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Table 19.1 Built-in functions in WinBUGS
WinBUGS code Function
abs(y) |y|
cloglog(y) ln(− ln(1− y))
cos(y) cos(y)
equals(y, z) 1 if y = z; 0 otherwise
exp(y) exp(y)
inprod(y, z) ∑i yizi
inverse(y) y−1 for symmetric positive–definite matrix y
log(y) ln(y)
logfact(y) ln(y!)
loggam(y) ln(Γ(y))
logit(y) ln(y/(1− y))
max(y, z) y if y > z; y otherwise
mean(y) n−1 ∑i yi, n = dim(y)
min(y, z) y if y < z; z otherwise
phi(y) standard normal CDF Φ(y)
pow(y, z) yz

sin(y) sin(y)
sqrt(y)

√
y

rank(v, s) number of components of v less than or equal to vs
ranked(v, s) sth smallest component of v
round(y) nearest integer to y
sd(v) standard deviation of components of y (n− 1 in denom.)
step(y) 1 if y≥ 0; 0 otherwise
sum(y) ∑i yi
trunc(y) greatest integer less than or equal to y

manipulation and graphical capabilities in WinBUGS are quite rudimentary
compared to MATLAB.

MATBUGS is a MATLAB program that communicates with WinBUGS.
The program matbugs.m was written by Kevin Murphy and his team and
can be found at: http://code.google.com/p/matbugs.

We now demonstrate how to solve Jeremy’s IQ problem in MATLAB by
calling WinBUGS. First we need to create a simple text file, say, jeremy.txt:

model{

for(i in 1 : N)

{

scores[i] ~ dnorm(theta, tau)

}

theta ~ dnorm(mu, xi)

and then run the MATLAB file:

dataStruct = struct( ...

’N’, 5, ...

’tau’,1/80,...

’xi’,1/120,...

’mu’,110,...

’scores’,[97 110 117 102 98]);
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initStruct = struct( ...

’theta’, 100 );

cd(’C:\MyBugs\matbugs\’)

[samples, stats] = matbugs(dataStruct, ...

fullfile(pwd, ’jeremy.txt’), ...

’init’, initStruct, ...

’nChains’, 1, ...

’view’, 0, ...

’nburnin’, 2000, ...

’nsamples’, 50000, ...

’thin’, 1, ...

’monitorParams’, {’theta’}, ...

’Bugdir’, ’C:/Program Files/BUGS’);

baymean = mean(samples.theta)

frmean=mean(dataStruct.scores)

figure(1)

[p, x] = ksdensity(samples.theta);

plot(x, p);

85 90 95 100 105 110 115 120 125
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 19.9 Posterior for Jeremy’s data set. Data are plotted in MATLAB after being ex-
ported from WinBUGS by MATBUGS.
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19.5 Exercises

19.1. A Coin and a Die. The following WinBUGS code simulates flips of
a coin. The outcome H is coded by 1 and T by 0. Mimic this code to
simulate rolls of a fair die.

#coin

model{

flip ~ dcat(p.coin[])

coin <- flip - 1

}

DATA

list(p.coin=c(0.5, 0.5))

#just generate initials

19.2. De Mere Paradox in WinBUGS. In Exercise 3.6 (b) we examined de
Mere’s paradox: In playing a game with three fair dice, the sum 11 was
advantageous to the sum 12.
(a) Using WinBUGS/OpenBUGS demonstrate that, in playing a game
with 300 fair dice, the sum 1111 is advantageous to the sum 1112.
(b) Which of the two sums from (a) is more advantageous if the 300 dice
are loaded, with probabilities 0.15, 0.15, 0.16, 0.2, 0.17, and 0.17, for sides
1, . . . , 6, respectively.
Hint:

part of the code...

for (i in 1:300) {

dice[i] ~ dcat(p.dice[]);

}

is1111 <- equals(sum(dice[]),1111)

is1112 <- equals(sum(dice[]),1112)

19.3. Simulating the Probability of an Interval. Consider an exponen-

tially distributed random variable X, X ∼ E
(

1
10

)
, with density f (x) =

1
10 exp{−x/10}, x > 0. Compute P(10 < X < 16) using (a) exact integra-
tion, (b) MATLAB’s expcdf, and (c) WinBUGS.

19.4. WinBUGS as a Calculator. WinBUGS can approximate definite inte-
grals, solve nonlinear equations, and even find values of definite inte-
grals over random intervals. The following WinBUGS program finds an
approximation to

∫ π
0 sin(x)dx, solves the equation y5− 2y = 0, and finds

the integral
∫ R

0 z3(1− z4)dz, where R is a beta Be(2,2) random variable.
Verify the following code and find the solution:

model{

F(x) <- sin(x)

int <- integral(F(x), 0, pi, 1.0E-6)

pi<- 3.141592659
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y0 <- solution(F(y), 1,2, 1.0E-6)

F(y) <- pow(y,5) - 2*y

zero <- pow(y0, 5)-2*y0

randint <- integral(F(z), 0, randbound, 1.0E-6)

F(z) <- pow(z,3)*(1-pow(z,4))

randbound ~ dbeta(2,2)

}

NO DATA

INITS

list(x=1, y=0, z=NA, randbound=0.5)

After model checking, one should go directly to compiling (no data to
load in) and initializing the model. There is NO need to update the
model, to go to the Inference tool, to set the variables for monitoring or to
sample. One simply goes to the Info menu and checks Node Info. In the
Node Info tool one specifies int for the approximation of an integral,
y0 for the solution of an equation, zero for checking that y0 satisfies
the equation (approximately), and randint for the value of a random
interval.

MATLAB AND WINBUGS FILES AND DATA SETS USED IN THIS CHAPTER
http://statbook.gatech.edu/Ch19.WinBUGS/

simple.m

DeMere.odc, jeremy.odc, picktrick.odc, Regression1.odc, Regression2.odc,

simulationd.odc

alpha.txt, beta.txt, sigma.txt, tau.txt
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