Lecture 1. Introduction

• What is this course about?
• Logistics
• Questionnaire
Where you have seen “statistics”?

• Application fields of statistics
 – sports (movie “Money Ball”)
 – stock market/finance
 – weather forecast
 – machine learning/computer/internet
 – politics
 – biology/medicine
What are statistical methods?
Question 1: what is the true value?

• Digital thermometer takes measurements
• Measurements subject to a random error additive to the true value
• If you take 5 measurements, and obtain a sequence of numbers

\[98.2 \quad 98.6 \quad 97.4 \quad 98.2 \quad 97.9 \quad 98.9\]

then what the true temperature is likely to be?

• Voltage of power line, chemical concentration ...

point estimator
Question 2: true or false?

- Apple production line produces a batch of 12 MacBook airs
- a technician claims: a common part - battery, in these MacBooks are entirely defective
- quality test shows that 6 out of 12 MacBooks are defective
- technician said: true of false?

hypothesis test
Question 3: what interval the true value might be in?

- for the same digital thermometer example

- if instead of asking “what is the most likely true temperature”

- we ask “what is a range [a, b], such that the true temperature is most likely to be within”

confidence interval
Question 4: design of experiment

• Color blindness appears in 1% of the people in a certain population.

• How large must a sale be if the population of its containing a color-blind person is to be .95 or more?

how to design experiments
Why engineers care about experiments/measurements

Northeast blackout of 2003 is a widespread power outage in the northeastern US

classified as

deteriorating condition of the system [in the Ohio part].

change-point:
deteriorating condition of the power system (e.g., break-down of power line)

detect the change-point in real-time may prevent large-scale blackout
<table>
<thead>
<tr>
<th>applications</th>
<th>solar flare detection</th>
<th>power network monitoring</th>
<th>traffic monitoring</th>
<th>RFID supply chain management</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensors</td>
<td>each pixel can be viewed as one sensor.</td>
<td>smart meters</td>
<td>traffic sensors</td>
<td>RFID tags</td>
</tr>
<tr>
<td># sensors</td>
<td>(\sim 60,000) pixels</td>
<td>(\sim 10^5) in a subset</td>
<td>(\sim 25,000) in California</td>
<td>millions</td>
</tr>
</tbody>
</table>

kk.org, wikipedia, ubiu.co.kr, sensysnetworks.com, P. Varaiya
Measurements with uncertainty

truth/nature
• model the uncertainty: probabilistic model, distribution functions

• make inference about truth: point estimation, hypothesis test, confidence interval
more generally:

- make inference about two samples, and multiple groups of samples
- interpret input-response: linear regression
 - example: how voltage and current are related

\[V = RI + n \]
Course will cover

- Review of probability theory and random variables (2027)
- Descriptive statistics
- Statistical estimation and sampling distributions
- Statistical confidence intervals of a single population
- Test of hypothesis of a single population
- Comparing two populations
- The analysis of variance
- Simple linear regression
- Multiple linear regression
Textbook

Prof. Yao Xie, ISyE 2028, Basic Statistical Methods, Georgia Tech
Course Logistics

- Instructor: Prof. Yao Xie, Office: Groseclose 339, Email: yao.xie@isye.gatech.edu
- Instructor office hour: M 4:30-5:30pm, Groseclose 339
- Schedule: MW, 8:05-9:25pm, Instr Center 209
- TA: Caglar Caglayan, Office: Main Building 321, Email: ccaglayan6@mail.gatech.edu
- TA office hour: W 12:00-1:00pm, Office: Main Building 321
- Homework: out M after class, due next W in class
- Grading: Class Attendance 3%, Submitting Teaching Evaluation 2%, Homework - 15%, Computer Example 1 - 10%, Computer Exam 2 - 10%, Midterm 1 - 15%, Midterm 2 - 15%, Final - 30%
- Midterms: 9/23, 11/4 in class
- Computer Exams: 10/21, 11/13 in class
- Final: 12/11 8-10:50am, in classroom