Optimal order sizing for the newsvendor model with discrete demand

Spyros Reveliotis

Consider a newsvendor problem with unit overage cost \(c_o \), unit shortage cost \(c_s \), and the demand taking the discrete values \(D_i \), for \(i \in \{1,2,\ldots,n\} \), with corresponding probabilities \(p_i \) (the results hold even if \(n = \infty \)). Also, let \(TC(Q) \) denote the expected total cost resulting from some order size \(Q \).

In this document we shall show that an optimal selection for the order size \(Q \) is provided by the smallest demand level \(D_i \) such that \(\text{Prob}(D \leq D_i) \equiv \sum_{k=1}^{i} p_k \) is greater than or equal to the problem critical ratio \(c_s/(c_s + c_o) \).

We shall establish this result in two steps: First we show that there is no advantage in selecting an order size \(Q \) that does not coincide with one of the discrete levels of the demand. Once we have narrowed down the choices of \(Q \) as stated above, then, we shall prove the main result.

Lemma 1 Consider an order size \(Q \) that belongs in some open interval \((D_i, D_{i+1})\), i.e., \(Q \) is strictly between the demand levels \(D_i \) and \(D_{i+1} \). Then,

\[
TC(Q) \geq \min\{TC(D_i), TC(D_{i+1})\}.
\]

Proof: Since \(Q \in (D_i, D_{i+1}) \), we can write \(Q = D_i + \alpha \), where \(0 < \alpha < D_{i+1} - D_i \). Also, we set \(\beta = D_{i+1} - (D_i + \alpha) \). From the above definitions, it is also clear that \(\beta > 0 \). Furthermore, we can express \(TC(Q) \) as follows:

\[
TC(Q) = c_o \sum_{k=1}^{i} p_k (Q - D_k) + c_s \sum_{k=i+1}^{n} p_k (D_k - Q)
\]

\[
= c_o \sum_{k=1}^{i} p_k (D_i + \alpha - D_k) + c_s \sum_{k=i+1}^{n} p_k (D_k - D_i - \alpha)
\]

\[
= c_o \sum_{k=1}^{i} p_k (D_i - D_k) + c_o \sum_{k=1}^{i} p_k \alpha
\]

\[
+ c_s \sum_{k=i+1}^{n} p_k (D_k - D_i) - c_s \sum_{k=i+1}^{n} p_k \alpha
\]

We also have:

\[
TC(D_i) = c_o \sum_{k=1}^{i} p_k (D_i - D_k) + c_s \sum_{k=i+1}^{n} p_k (D_k - D_i)
\]

1
From Eqs 1 and 2, we have:

\[TC(Q) - TC(D_i) = \alpha [c_o \sum_{k=1}^{i} p_k - c_s \sum_{k=i+1}^{n} p_k] \]

(3)

So, if \([c_o \sum_{k=1}^{i} p_k - c_s \sum_{k=i+1}^{n} p_k] \geq 0\), we have \(TC(Q) \geq TC(D_i) \), and the lemma holds true.

In the opposite case (i.e., if \([c_o \sum_{k=1}^{i} p_k - c_s \sum_{k=i+1}^{n} p_k] < 0\)), consider \(TC(D_{i+1}) \). We have:

\[TC(D_{i+1}) = c_o \sum_{k=1}^{i} p_k (D_{i+1} - D_k) + c_s \sum_{k=i+1}^{n} p_k (D_k - D_{i+1}) \]

(4)

Also, from Eqs 1 and 4:

\[
\begin{align*}
TC(Q) - TC(D_{i+1}) &= c_o \sum_{k=1}^{i} p_k (D_i - D_{i+1}) + c_o \sum_{k=1}^{i} p_k \alpha \\
&\quad - c_s \sum_{k=i+1}^{n} p_k \alpha - c_s \sum_{k=i+1}^{n} p_k (D_i - D_{i+1}) \\
&= c_o \sum_{k=1}^{i} p_k (D_i + \alpha - D_{i+1}) \\
&\quad - c_s \sum_{k=i+1}^{n} p_k (D_i + \alpha - D_{i+1}) \\
&= -c_o \sum_{k=1}^{i} p_k \beta + c_s \sum_{k=i+1}^{n} p_k \beta \\
&= -\beta [c_o \sum_{k=1}^{i} p_k - c_s \sum_{k=i+1}^{n} p_k] > 0
\end{align*}
\]

(5)

The last inequality in Eq. 5 results from the working hypothesis that \([c_o \sum_{k=1}^{i} p_k - c_s \sum_{k=i+1}^{n} p_k] < 0\). Eq. 5 implies that in this second case \(TC(Q) > TC(D_{i+1}) \), and once again, Lemma 1 is true. Furthermore, since the two considered cases for the sign of the difference \(TC(Q) - TC(D_i) \) exhaust all the possibilities, Lemma 1 must hold true. □

Next we state and prove the main result of this document.

Theorem 1 In the considered newsvendor problem, an optimal selection for the order size \(Q \) is the smallest demand level \(D_i \) such that

\[\text{Prob}(D \leq D_i) \equiv \sum_{k=1}^{i} p_k \geq \frac{c_s}{c_s + c_o}. \]
Proof: From Lemma 1, we know that we can restrict our search for an optimal selection of Q over the set of the discrete demand levels D_i, $i = 1, 2, \ldots, n$. Next, we consider the difference $TC(D_{i+1}) - TC(D_i)$. From Eqs 2 and 4, we have:

$$
TC(D_{i+1}) - TC(D_i) = c_o \sum_{k=1}^{i} p_k (D_{i+1} - D_k) + c_s \sum_{k=i+1}^{n} p_k (D_k - D_{i+1})
$$

$$
- c_o \sum_{k=1}^{i} p_k (D_i - D_k) - c_s \sum_{k=i+1}^{n} p_k (D_k - D_i)
$$

$$
= c_o \sum_{k=1}^{i} p_k (D_{i+1} - D_i) - c_s \sum_{k=i+1}^{n} p_k (D_{i+1} - D_i)
$$

$$
= (D_{i+1} - D_i) \left[c_o \sum_{k=1}^{i} p_k - c_s \sum_{k=i+1}^{n} p_k \right]
$$

(6)

Eq. 6 further implies that

$$
TC(D_{i+1}) - TC(D_i) < 0 \iff c_o \sum_{k=1}^{i} p_k - c_s \sum_{k=i+1}^{n} p_k < 0
$$

$$
\iff \frac{\sum_{k=1}^{i} p_k}{\sum_{k=i+1}^{n} p_k} < \frac{c_s}{c_o}
$$

$$
\iff \frac{\sum_{k=1}^{i} p_k}{\sum_{k=1}^{i} p_k + \sum_{k=i+1}^{n} p_k} < \frac{c_s}{c_s + c_o}
$$

$$
\iff \sum_{k=1}^{i} p_k < \frac{c_s}{c_s + c_o}
$$

(7)

In the last derivation of Eq. 7 we have taken into consideration the fact that $\sum_{k=1}^{i} p_k + \sum_{k=i+1}^{n} p_k = \sum_{k=1}^{n} p_k = 1.0$. In plain terms, Eq. 7 implies that the expected total cost can decrease as we go from some demand level D_i to the next level D_{i+1} if and only if $\sum_{k=1}^{i} p_k < \frac{c_s}{c_s + c_o}$. Hence, we can stop as soon as we reach a demand level D_j such that $\sum_{k=1}^{j} p_k \geq \frac{c_s}{c_s + c_o}$. At that point, we set $Q = D_j$. □