Options Concepts Homework III
ISyE 4803C (Fall 06)

1. Consider a family of call options on a non-dividend paying stock, each option being identical except for its strike price. The value of the call with strike price K is denoted by $C(K)$. Prove the following two general relations using arbitrage arguments:

(a) If $K_2 > K_1$, then
\[K_2 - K_1 \geq C(K_1) - C(K_2). \]

(b) If $K_3 > K_2 > K_1$, then
\[C(K_2) \leq \left(\frac{K_3 - K_2}{K_3 - K_1} \right) C(K_1) + \left(\frac{K_2 - K_1}{K_3 - K_1} \right) C(K_3). \]

2. Let S_t denote the price of a non-dividend paying stock. The price process of S follows a binomial lattice with $u = 1.5$ and $d = 0.9$. $R = 1.1$ and $S_0 = 100$. Let $C(T, K)$ denote a European call option on S with a maturity of T years and strike price of K.

(a) Determine the time 0 price of $C(2, 80)$.
(b) Determine the time 0 price of $C(2, 110)$.
(c) Determine the cost of the portfolio of $6C(2, 80) + 3C(2, 110)$.

3. Consider the two-period real estate option of Exam I. Let P_t denote the price of a one-unit condominium at time t.

(a) The value of this real estate option is provided in the solutions to Exam I. Compare it to your answer to Question 2(c) above.
(b) Let $V_2(P_2)$ denote the final payoffs of this option. Write a formula for $V_2(P_2)$. Here, $P_2 \in [0, \infty)$.
(c) Graphically depict the function $V_2(\cdot)$ (i.e. label the x-axis P_2 and y-axis $V_2(\cdot)$). Here, $P_2 \in [0, \infty)$.
(d) Use (c) to establish your answer to (a).

4. Consider a non-dividend paying stock S whose price process follows a binomial lattice with $u = 2$ and $d = 0.5$. $R = 1.25$ and $S_0 = 4$. Define
\[Y_t := \sum_{k=0}^{t} S_k, \quad t = 0, 1, 2, 3 \]

to be the sum of the stock prices between times zero and t. Consider a (European) Asian call option that expires at time three and has a strike price $K = 4$; that is, its payoff at time three is
\[\max \left\{ \frac{Y_3}{4} - 4, 0 \right\}. \]
Table 1: A stochastic volatility, random interest rate model (Problem 5)

<table>
<thead>
<tr>
<th></th>
<th>$t = 0$</th>
<th>$t = 1$</th>
<th>$t = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>4, $r_0 = 25%$</td>
<td>$S_1(U) = 8, r_1(U) = 25%$</td>
<td>$S_2(UU) = 12$</td>
</tr>
<tr>
<td></td>
<td>$S_1(D) = 2, r_1(D) = 50%$</td>
<td>$S_2(UD) = S_2(DU) = 8$</td>
<td>$S_2(DD) = 2$</td>
</tr>
</tbody>
</table>

This is like a European call option, except the payoff of the option is based on the average stock price rather than the final stock price. Let $V_t(s, y)$ denote the price of this option at time n if $S_t = s$ and $Y_t = y$. In particular,

$$V_3(s, y) = \max\{y/4 - 4, 0\}.$$

(a) Develop an algorithm for computing V_t recursively. In particular, write a formula for V_t in terms of V_{t+1}.

(b) Apply the algorithm developed in (a) to compute $V_0(4, 4)$, the price of the Asian option at time zero.

(c) Provide a formula for $\delta_t(s, y)$, the number of shares of stock that should be held by the replicating portfolio at time t if $S_t = s$ and $Y_t = y$.

5. In this problem we consider a two-period, stochastic volatility, random interest rate model. The stock prices and interest rates are provided in Table 1. Consider the European option whose final payoffs are $V_2 = \max\{S_2 - 7, 0\}$. Determine the value of this option at times 0 and 1.

6. We consider the Complexico infinite horizon mining problem when the profit flow $c(x, z)$ is given by $(x - z)z$ instead of $gz - 500z^2/x$. Let d denote the one-period discount factor. Let $V(x)$ denote the optimal value function, and let $z(x)$ denote the optimal production quantity.

(a) Write down the Bellman equation for $V(x)$ using the principle of optimality.

(b) Explain why $V(x)$ cannot be linear.

(c) Determine $V(x)$ when $d = 0$.

(d) Use the method of successive approximations to determine the functional form of $V(x)$ and $z(x)$.

(e) Given the functional form for $V(x)$, determine the exact value function and optimal policy by finding the fixed point. (This involves solving an algebraic equation.)