Facets for Two-Dimensional Mixed Integer Infinite Group Problem

Santanu S. Dey, Jean-Philippe P. Richard

School of Industrial Engineering,
Purdue University.

INFORMS 2006.
Motivation

- Generation of **strong cutting planes** will help solve general MIPs faster.
- All know group based cutting planes using a single constraint to derive cut.
- We present first know strong cuts that use **two constraints**.
- We hope these will be stronger since they use information from two constraints concurrently.
Outline

1. Infinite Group Relaxation
 - Introduction

2. Tools to Prove Facets
 - Subadditivity
 - Interval Lemma
 - Homomorphism

3. Facet-defining Inequalities
 - Family - I
 - Family - II

4. Conclusion
Standard IP:

\[Ax = b \quad x \in \mathbb{Z}_+ , \]

where \(A \in \mathbb{R}^{m \times n} \), \(b \in \mathbb{R}^{m \times 1} \).

Relaxation step 1: Consider each row modulo 1.

\[\sum_{i=1}^{n} (A_{ij}(mod 1)) x_i \equiv b_j (mod 1) \quad \forall 1 \leq j \leq m \tag{1} \]

Rewrite in Group Space: \(\sum_{i=1}^{n} (a_i) x_i = r \)

Each \(a_i \) belongs to the group \(I^m = \{ x \in \mathbb{R}^m | 0 \leq x_i < 1 \quad \forall 1 \leq i \leq m \} \).

Note that \(a_i = (A_{i1}(mod 1), \ldots, A_{im}(mod 1)) \).

Relaxation step 2: Introduce new variables.

\[\sum_{a \in I^m} ax(a) = r \tag{2} \]
Definition: Group Problem and Valid Inequalities

Definition (Integer Group Problem \(PI(r, m)\), Johnson 1974)

For \(r \in I^m\) and \(r \neq o\), the group problem \(PI(r, m)\) is the set of functions \(t : I^m \rightarrow \mathbb{R}\) such that

1. \(\sum_{u \in I^m} ut(u) = r, \ r \in I^m\),
2. \(t(u)\) is a non-negative integer for \(u \in I^m\),
3. \(t\) has a finite support, i.e., \(t(u) > 0\) for a finite subset of \(I^m\).

Definition (Valid Inequality, Johnson 1974)

A function \(\phi : I^m \rightarrow \mathbb{R}_+\) is defined as a valid inequality for \(PI(r, m)\) if \(\phi(o) = 0, \ \phi(r) = 1\) and \(\sum_{u \in I^m} \phi(u)t(u) \geq 1, \ \forall \ t \in PI(r, m)\).
Piecewise Linear Functions

Definition

ϕ is piecewise linear, i.e. l^2 can be decomposed into finitely many polytopes with non-empty interiors P_1, \ldots, P_k, such that

$$\phi(u) = \alpha_t^T u + \beta_t, \ \forall u \in P_t,$$

where $\alpha_t \in \mathbb{R}^{2 \times 1}$, $\beta_t \in \mathbb{R}$ $\forall t = \{1, 2, \ldots, k\}$.
Step to Prove Function Represents Facet-defining Inequality

1. Prove function is subadditive, i.e., $\phi(u) + \phi(v) \geq \phi(u + v)$
 $\forall u, v \in I^2$.
 - Develop methods to efficiently prove a function is subadditive over I^2.

2. Prove function is minimal (un-dominated). This is easy to do.
 (Gomory and Johnson Theorem 1972).

3. Define an additive equality as $\phi(u) + \phi(v) = \phi(u + v)$. Let $E(\phi)$ be the set of all additive equalities. Then if the ϕ is the only function that satisfies all the equalities $E(\phi)$, then ϕ is a facet.
 - Prove a result called Interval Lemma in two dimension. This result is used to prove $E(\phi)$ is unique.
 - Prove a homomorphism result to generate new facets from older ones.
Checking subadditivity for Functions Defined on l^2

Theorem (Checking Subadditivity)

Let ϕ be a continuous, piecewise linear and nonnegative function on l^2. Then ϕ is subadditive iff

$$\phi(v_1) + \phi(v_2) \geq \phi(v_1 + v_2) \quad \forall v_1, v_2 \in V(\phi) \cup V'(\phi)$$ \hspace{1cm} (3)

$$\phi(v_1) + \phi(v_3 - v_1) \geq \phi(v_3) \quad \forall v_1, v_3 \in V(\phi) \cup V'(\phi)$$ \hspace{1cm} (4)

$$\phi(v_1) + \phi(e_2) \geq \phi(e_3) \quad \text{where } e_2 \in q_2, e_3 \in q_3, v_1 + e_2 = e_3,$$

$$\forall v_1 \in V(\phi) \cup V'(\phi), \quad \forall q_2, q_3 \in Q(\phi) \hspace{1cm} (5)$$

$$\phi(e_1) + \phi(e_2) \geq \phi(v_3) \quad \text{where } e_1 \in q_1, e_2 \in q_2, e_1 + e_2 = v_3,$$

$$\forall v_3 \in V(\phi) \cup V'(\phi), \quad \forall q_1, q_2 \in Q(\phi) \hspace{1cm} (6)$$

Furthermore, if e_2 and e_3 (resp. e_1 and e_2) belong to identical or parallel edges, then (5) (resp. (6)) is redundant.
Discussion on Subadditivity Result
Interval lemma in Two Dimensions

- Interval Lemma is a key tool used to prove that a function is facet-defining by Gomory and Johnson [2003].
- The following a generalization we introduced in two dimensions.

Theorem (Interval Lemma in Two Dimensions)

Let U and V be closed sets in \mathbb{R}^2. Let g be a real-valued function defined over U, V and $U + V$. Assume that

1. U is star-shaped with respect to the origin, and U has a non-empty interior.
2. V is path connected.
3. $g(u) + g(v) = g(u + v), \forall u \in U, \forall v \in V$.
4. $\sum_{i \in S} g(u_i) = g(\sum_{i \in S} u_i) \forall u_i \in U$ such that $\sum_{i \in S} u_i \in U$ and $\forall S$ with $|S| \leq 3$.
5. $g(u) \geq 0, \forall u \in U$.

Then g is a linear function with the same gradient in U, V and $U + V$.
Creating New Facets

Definition (λ Homomorphism)

The homomorphism $\lambda : I^2 \to I^2$ is defined as $\lambda(x, y) = (\lambda_1 x (mod 1), \lambda_2 y (mod 1))$, where λ_1, λ_2 are positive integers.

Theorem (Homomorphism Theorem)

ϕ is facet-defining with respect to right-hand-side r iff $\phi \circ \lambda$ is facet-defining with respect to right-hand-side v, where $\lambda(v) = r$.
Family 1: Constraint Aggregation

Construction

Given ζ a piecewise linear and continuous valid inequality for one dimensional integer infinite group problem $PI(c, 1)$, we construct the function τ for $PI(r, 2)$ with right-hand-side $r \equiv (f_1, f_2)$ where $\lambda_1 f_1 + \lambda_2 f_2 = c$ as $\tau(x, y) = \zeta(\lambda_1 x + \lambda_2 y)(mod 1)$, and $\lambda_1, \lambda_2 \in \mathbb{Z}$ and are not both zero.

Theorem (Aggregation Theorem)

τ is facet-defining for $PI(r, 2)$ iff ζ is facet-defining for 1DIIIGP.
Theorem (Two Gradient Theorem)

Any continuous piecewise linear two-gradient facet of Pl(r,2) can be derived from a facet of Pl(r',1) using Construction 1.

Some observations:

➢ Gives a complete characterization of continuous functions with only two gradients.

➢ All two slope functions for 1DIIGP are facet-defining [Gomory and Johnson 1972, 2003]. This is a two-dimensional analog for a similar result for the one dimensional infinite group problem.
Family 2: Three-Gradient Facet

Construction

We divide l^2 into five polytopes R_1, R_2, R_3, R_4, R_5 as shown in figure.

We construct ψ to be the only continuous piecewise linear function with $\psi(f_1, f_2) = 1$ and $\psi(0, 0) = 0$, whose gradients in R_2 and R_4 are equal and whose gradients in R_3 and R_5 are equal.

Theorem

ψ is facet-defining for $PI(r, 2)$.
Three-Gradient Functions Yield Facets of IPs

Example

Consider the set of nonnegative integer solutions to

\[
\begin{bmatrix}
8 \\
0
\end{bmatrix}x_1 + \begin{bmatrix}
2 \\
0
\end{bmatrix}x_2 + \begin{bmatrix}
1 \\
7
\end{bmatrix}x_3 + \begin{bmatrix}
5 \\
2
\end{bmatrix}x_4 + \begin{bmatrix}
6 \\
3
\end{bmatrix}x_5 + \begin{bmatrix}
4 \\
1
\end{bmatrix}x_6 + \begin{bmatrix}
0 \\
8
\end{bmatrix}x_7 = \begin{bmatrix}
12 \\
12
\end{bmatrix}
\]

where \(x_i \in \mathbb{Z}_+ \ \forall i \in \{1, \ldots, 7\} \). This system has 3 feasible solutions:

\{0 0 1 1 1 0 0\}, \{0 1 0 2 0 0 1\} and

\{0 1 0 0 1 1 1\}. Now consider the constraints divided by 8.

Observations

1. The three-gradient inequality \(\psi \) is generates a facet of the feasible region of the IP.
2. The GMIC generates a different facet of this problem.
Using result from Johnson [1974] cuts for integer infinite groups can be extended to mixed integer infinite group problems.

Proposition

Among all the facets of one-dimensional mixed integer infinite group problem (1DMIIGP), the coefficients of continuous variables are strongest in GMIC.

Proposition

The coefficients for continuous variables of the three-gradient inequality ψ are not dominated by GMIC based on the single constraint.

Figure: Three-gradient not dominated by GMIC
Presented Tools for proving facet-defining tools for the two-dimensional group problem.

Presented two-families of first known facets of two-dimensional group problem.

These new families have interesting generate stronger coefficients for continuous variable.
Thank You.