Two Dynamic Programming Methodologies in Very Large Scale Neighborhood Search Applied to the Traveling Salesman Problem

Özlem Ergun
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30339
e-mail: oergun@isye.gatech.edu

James B. Orlin
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139
e-mail: jorlin@mit.edu
Abstract:

We provide two different neighborhood construction techniques for creating exponentially large neighborhoods that are searchable in polynomial time using dynamic programming. We illustrate both of these approaches on very large scale neighborhood search techniques for the traveling salesman problem. Our approaches unify previously known results and offer schemas for generating additional exponential neighborhoods that are searchable in polynomial time. The first approach is to define the neighborhood recursively. In this approach, the dynamic programming recursion is a natural consequence of the recursion that defines the neighborhood. In particular, we show how to create the pyramidal tour neighborhood, the twisted sequences neighborhood, and dynasearch neighborhoods using this approach.

In the second approach, we consider the standard dynamic program to solve the TSP. We then obtain exponentially large neighborhoods by selecting a polynomially bounded number of states, and restricting the dynamic program to those states only. We show how the Balas and Simonetti neighborhood and the insertion dynasearch neighborhood can be viewed in this manner. We also show that one of the dynasearch neighborhoods can be derived directly from the 2-exchange neighborhood using this approach.

Subject classifications:

Traveling Salesman: Very large scale neighborhood search for the TSP.

Heuristics: Very large scale neighborhood search for the TSP.

Dynamic Programming: Two DP methodologies for heuristic search for the TSP.
Section 1. Introduction

Neighborhood search is a practical method for efficiently finding “good” solutions to hard combinatorial optimization problems. Let $P = \min \{cx : x \in D\}$ be an instance of an optimization problem with cost vector c and feasible set D. Given a feasible solution x' in D, a neighborhood search algorithm has an associated neighborhood function N which identifies a subset, $N(x)$, of D as the “neighbors” of x under N.

A local search algorithm follows the following basic scheme. Start with a current feasible solution, say x, and iteratively replace the current solution with a neighbor y of the current solution with lower objective value. Continue until there is no neighbor with improved objective value, at which point the current solution is called locally optimal. There is a large literature on local search as well as extensions of local search including simulated annealing and tabu search. For an excellent reference on local search in combinatorial optimization, see Aarts and Lenstra (1997).

In very large-scale neighborhood (VLSN) search, the number of solutions in a neighborhood is very large (often exponential) with respect to the size of the input. As a rule of thumb, one expects to find better locally optimal solutions assuming that one can search a larger neighborhood efficiently. Unfortunately, for many very large neighborhoods, the search time may be much larger. There are a variety of techniques for efficiently searching neighborhoods in VLSN search. One general approach that has been successful in searching exponentially large neighborhoods in polynomial time has been dynamic programming. See Ahuja et al. (2002), Gutin, Yeo, and Zverovitch (2002), and Deineko and Woeginger (2000) for surveys on these techniques, including a number of papers on VLSN search that employ dynamic programming.

Here, we present two different approaches for developing exponentially large neighborhoods that are searchable in polynomial time using dynamic programming. In so doing, we offer frameworks that encompass many of the existing results in the literature, as well as offer general methodologies for creating new neighborhoods that are searchable in polynomial time.

In the first approach, we consider instances in which a neighborhood is recursively defined. For the examples we provide, these neighborhoods can be efficiently searched via the dynamic programs that are naturally induced by the recursions. We illustrate this approach on pyramidal tours, as developed by Sarvanov and Doroshko (1981), on twisted neighborhoods as defined by Aurenheimer (1988) and described for VLSN search by Deineko and Woeginger (2000), and for dynasearch neighborhoods as introduced by Potts and van de Velde (1995). The properties of recursively defined neighborhoods are often easily established using mathematical induction. We describe the use of recursion in defining neighborhoods in detail in Sections 3 and 4.

The second approach starts with the standard dynamic program to solve a combinatorial optimization problem and restricts attention to a polynomially large subset V of states of the dynamic programming state space. When $|V|$ is polynomially bounded in the size of the input, the time to solve the dynamic program is also polynomial. In Sections 5 and 6, we give examples in which $|V|$ is polynomially bounded, and solving the dynamic programming recursion over V is equivalent, in a technical sense that we will make clear, to searching an exponentially large neighborhood. We illustrate this approach on dynasearch neighborhoods and extensions as well as on the Balas-Simonetti neighborhood.
The approach in our paper differs from the rollout approach of using dynamic programming for heuristics (see, Bertsekas, Tsitsiklis, C. Wu. 1997) in that our approach explicitly searches a well defined neighborhood, whereas their approach uses dynamic programming combined with heuristic search to find a good solution for a combinatorial optimization problem.

The results in this paper present unifying views of dynamic programming algorithms for searching neighborhoods for the traveling salesman problem. We note that Deineko and Woeginger (2000) presented permutation trees as a unifying concept for dynamic programming methods for searching exponentially large TSP neighborhoods. Some of the exponential neighborhoods we survey are not representable as permutation trees (such as the twisted sequences neighborhood and the Balas-Simonetti neighborhood), and concurrently there are other exponential neighborhoods that are naturally represented in terms of permutation trees that are not as easily represented within our framework. So, neither framework subsumes the other.

We view the contributions of this paper as follows:

1. We provide two alternative unifying frameworks for using dynamic programming for the TSP for very large scale neighborhood search: recursively defined neighborhoods and dynamic programming restrictions.
2. We provide basic theory for working with restricted dynamic programs. In particular, we show how to associate a neighborhood with each restriction of the canonical dynamic program for the TSP.
3. We provide a method of using a dynamic programming recursion to transform a neighborhood N into a possibly larger neighborhood N' that is called the “dynamic programming expansion” of N. In the case of the 2-exchange neighborhood, the dynamic programming expansion is exponentially large, but can be searched in polynomial time.
4. Often the description of a recursively defined neighborhood is both compact and elegant.

We believe that the constructs in this paper will help to open up new lines for future research.

1. We expect that similar frameworks can be applied for other combinatorial optimization problems as well when there is a dynamic program that is much more efficient than complete enumeration.
2. Our constructs suggest the possibility of automating searching a number of exponentially sized neighborhoods. In particular, if a neighborhood can be recursively defined, perhaps one can automatically derive the dynamic programming recursion from the recursive definitions for the neighborhood.

Usually, the measure of a neighborhood search technique for a combinatorial optimization problem is how it performs in practice. In our case, several neighborhoods discussed in this paper have already been empirically tested by other researchers, including the dynasearch neighborhoods (Potts and van de Velde 1995 and Congram 2000), variants of pyramidal tours neighborhoods (Carlier and P. Villon 1990), and the Balas-Simonetti neighborhood (Balas and Simonetti 2001), all with some success for the TSP. Dynasearch neighborhoods have been applied with success on other combinatorial optimization problems as well (Agarwal et al. 2003, Congram, Potts, and van de Velde 2002, Ergun, Orlin, and Steele-Feldman 2002).
Nevertheless, we believe that the value of the methodologies in this paper should ultimately be judged on three criteria: First, will they lead to newly discovered neighborhood search techniques that are effective for some combinatorial optimization problems? Second, will they be the first step in a process that ultimately results in software that helps users to design neighborhood search techniques? Third, will they lead to further developments in the theory of VLSN search? There is already a partial affirmative answer to the second and third questions in the work of Bompadre and Orlin [2004] for using context free grammars to describe very large neighborhoods.

In Section 2 of this paper, we present additional background as well as our notation and definitions. In Sections 3, 4, 5, and 6, we present techniques for constructing exponentially large neighborhoods that are searchable in polynomial time using dynamic programming. In Section 7, we present a summary and conclusions.

Section 2. Definitions and Background for the TSP

In this section we offer definitions and background for the Traveling Salesman Problem (TSP).

The Traveling Salesman Problem

The traveling salesman problem tries to find the minimum distance tour on \(n \) cities that are labeled 1, 2, \ldots, \(n \). Let the distance from city \(i \) to city \(j \) be \(c(i, j) \). We represent a tour using a permutation \(T \in S_n \), where \(S_n \) denotes the set of all permutations of \(\{1, 2, \ldots, n\} \). The permutation \(T = T(1), \ldots, T(n) \) refers to the tour in which the first city visited is \(T(1) \), the next city visited is \(T(2) \), and so on. The cost of the tour \(T \) is denoted as \(c(T) = \sum_{i=1}^{n-1} c(T(i), T(i+1)) \).

If \(i \leq j \), we let \([i, j]\) be shorthand for the sequence \(\langle i, i+1, \ldots, j \rangle \). If \(i > j \), then \([i, j] = \emptyset\).

The subset obtained from subset \(S \) of cities by deleting all cities in \(S' \) will be denoted as \(S \setminus S' \). We abbreviate \(S \setminus \{i\} \) as \(S \setminus i \).

If \(S \) is a subset or sequence of cities, then \(\max(S) \) denotes the maximum index of a city of \(S \), and \(\min(S) \) denotes the minimum index of a city of \(S \).

As per Deineko and Woeginger (2000), if \(A \) is a sequence of cities, and \(B \) is a different sequence of cities with no city in common with \(A \), then \(A \star B \) is the sequence obtained by concatenating \(A \) with \(B \). For example, \(\langle 3, 1, 7 \rangle \star \langle 2, 6, 4 \rangle = \langle 3, 1, 7, 2, 6, 4 \rangle \).

Notation for Neighborhoods for the Traveling Salesman Problem

An neighborhood \(N(T) \) for tour \(T \) is a collection of tours, that is \(N(T) \subset S_n \). Consider the tour \(T' = \langle 1, 2, \ldots, n \rangle \), which is also the identity permutation. Any neighborhood of \(T' \) can be extended to a neighborhood of any other tour \(T \in S_n \) as follows. If \(\sigma \in N(T') \), then the tour \(T \circ \sigma = \langle \sigma(T(1)), \sigma(T(2)), \ldots, \sigma(T(n)) \rangle \in N(T) \). Mathematically, \(T \circ \sigma \) is the permutation obtained by
composing T and σ. If we let $f_r(i, j) = c(T(i), T(j))$, then the cost of the tour $T \circ \sigma$ is $f_r(\sigma(n), \sigma(1)) + \sum_{i=1}^{n-1} f_r(\sigma(i), \sigma(i+1))$, which is the usual formula for the cost of σ except that c is replace by f_r.

In subsequent sections, we assume that the initial tour is $T^I = \langle 1, \ldots, n \rangle$, and we provide dynamic programs for determining the minimum distance neighbor of T^I. However, if one wants to search $N(T)$ instead, then it suffices to replace c by f_r in the recursions.

In general, we are treating neighborhoods for different sized TSPs. Sometimes, when the number of cities n is permitted to vary, we let N_n denote the neighborhood set for problems with n cities. In the case that the number of cities is obvious from context, we drop the index, and denote the neighborhood set as N. We assume that the identity permutation $T^I \in N_n$, that is $\langle 1, 2, \ldots, n \rangle \in N_n$ for all n.

All of our recursions define both tours as well as sequences of fewer than n cities. We let N^* refer to all sequences and tours defined by the recursion, and we let $N = N^* \cap S_n$ denote the neighborhood. We will refer to the set N^* as a superneighborhood.

Section 3. Recursively Defined Neighborhoods

In this section, we discuss recursive definitions as part of VLSN search for the TSP. In particular, we will provide recursive definitions for well-known exponentially sized neighborhoods together with dynamic programs based on the recursions for searching these neighborhoods efficiently. We illustrate our approach on one of the dynasearch neighborhoods as well as some “relatives” of this neighborhood, the pyramidal tour neighborhood, and the twisted sequences neighborhood.

As above, we will let N denote a neighborhood, and let N^* denote all sequences created by the recursions in the construction of N. In each case, rather than present a dynamic program, we will create an equivalent state space graph. Our objective in so doing is to make explicit a very clear connection between the recursion that defines the neighborhood and the resulting dynamic program.

To illustrate our recursion-based approach, we first consider a recursion for generating the neighborhood S_n, that is the neighborhood of all tours. The superneighborhood N^* that we generate will consist of all sequences of cities in which the first city is 1.

The Held and Karp (1962) dynamic program for the TSP can be viewed as being based on the following recursion:

<table>
<thead>
<tr>
<th>The Complete Neighborhood N_{TSP} for the TSP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $1 \in N_{TSP}^*$.</td>
</tr>
<tr>
<td>2. If $A \in N_{TSP}^$ and $k \notin A$, then $A \star k \in N_{TSP}^$.</td>
</tr>
<tr>
<td>3. $N_{TSP} = N_{TSP}^* \cap S_n$.</td>
</tr>
</tbody>
</table>

The state space graph corresponding to the dynamic program for the TSP can be obtained as follows. It includes a node for each state of the dynamic program as well as a special destination node t.
State Space Graph $G_{TSP} = (V_{TSP}, E_{TSP})$.

1. $\langle \{1\}, 1 \rangle \in V_{TSP}$ and $t \in V_{TSP}$.
2. If $(S, j) \in V_{TSP}$, and if $k \not\in S$, then $(S \cup \{k\}, k) \in V_{TSP}$, and there is an arc from (S, j) to $(S \cup \{k\}, k)$ in E_{TSP} with cost $c(j, k)$.
3. If $(S, j) \in V_{TSP}$ and if $|S| = n$, then there is an arc from (S, j) to t with cost $c(j, 1)$.

Let $g_{TSP}(S, j)$ denote the optimal value for state $(S, j) \in V_{TSP}$ in the Held and Karp dynamic program for the TSP. Then $g_{TSP}(S, j)$ is the shortest length of a sequence A whose initial city is 1, whose terminal city is j, and such that A includes all of the cities of S.

The following are well known properties of the state space graph and its relation to the Held and Karp dynamic program DP_{TSP}.

1. The shortest path from node $\langle \{1\}, 1 \rangle \in V_{TSP}$ to node (S, j) has length $g_{TSP}(S, j)$.
2. Any shortest path from node $\langle \{1\}, 1 \rangle \in V_{TSP}$ to node t corresponds to a minimum length tour. If we let (S_i, j_i) denote the j-th node of V_{TSP} on the shortest path, then the shortest length tour is $\langle i_1, \ldots, i_h \rangle$.

Properties 1 and 2 above extend to the other dynamic programming state space graphs as defined in this section and the next.

The Independent Compounded 2-Exchange Neighborhood: Dynasearch

We next present a class of exponentially sized neighborhoods developed in Potts and van de Velde (1995), Congram (2000) and Congram, Potts, and van de Velde (2002) that is obtained from the 2-exchange neighborhood by compounding sets of independent 2-exchanges.

We let $h(i, j)$ be the cost associated with sequence $[i, j] = \langle i, i+1, \ldots, j \rangle$. Thus $h(i, j) = \sum_{k=1}^{j-1} c(k, k+1)$.

One can first compute $h(1, j)$ and $h(j, n)$ for all j in $O(n)$ steps. Subsequently computing $h(i, j) = h(1, n) - h(j+1, n) - h(1, i-1)$ takes $O(1)$ additional steps.

Recall that for $i \leq j$, $Rev[i, j]$ denote the sequence $\langle j, j-1, \ldots, i \rangle$. We let $RevMove[i, j]$ be the move that reverses the orders of cities in positions i to j. For example, if we apply $RevMove[i, j]$ to the identity permutation T', we obtain $\langle 1, \ldots, i-1 \rangle \star Rev[i, j] \star \langle j+1, \ldots, n \rangle$. If we apply $RevMove[3, 4]$ to $\langle 1, 5, 2, 3, 4 \rangle$, we would obtain $\langle 1, 5, 3, 2, 4 \rangle$.

A 2-exchange of a tour T is a permutation obtained from T by the operation $RevMove[i, j]$ for some $i < j$. Equivalently, the 2-exchange of the tour $\langle 1, \ldots, n \rangle$ can be viewed as breaking edges $(i - 1, i)$ and $(j, j+1)$ and adding edges $(i - 1, j)$ and $(i, j+1)$. We say that two 2-exchanges $RevMove[i_1, j_1]$ and $RevMove[i_2, j_2]$ are independent if $j_1 < i_2 - 1$ or $j_2 < i_1 - 1$. If $j_1 < i_2$ or $j_2 < i_1$, we say that the two 2-exchanges are weakly independent. Potts and van de Velde (1995), and Congram, Potts, and van de Velde (2002) introduced neighborhoods based on compounding (or applying) independent moves under the name “dynasearch”, a term which we use here as well. We refer to the neighborhood obtained from T' by compounding independent 2-exchanges as the 2-exchange dynasearch neighborhood. We refer to the neighborhood obtained by compounding weakly independent 2-exchanges as the weak 2-exchange dynasearch neighborhood.
Exponential neighborhoods based on compounding moves were designed and computationally tested on classes of single and parallel machine scheduling and vehicle routing problems as well as the traveling salesman problem and the linear ordering problem (Agarwal et al. 2003, Congram 2000, Congram, Potts, and van de Velde 2002, Ergun 2001, Ergun, Orlin, and Steele-Feldman 2002).

The size of the compounded independent moves neighborhood is $\Omega(1.7548^n)$, as may be computed from a simple recursion. See Congram (2000) and Ergun (2001) for derivations.

The dynasearch neighborhoods can be searched in $O(n^2)$ by dynamic programs as in Potts and van de Velde (1995), Congram (2000), Congram, Potts, and van de Velde (2002), and by network flows techniques as in Agarwal et al. (2003), Ergun (2001), Ergun, Orlin, and Steele-Feldman (2002) as well as by the approach given in this section.

The approach developed here to define the neighborhood is different from the approach developed in the original papers on dynasearch; however, the dynamic programming recursions developed here are very similar.

The 2-Exchange Dynasearch Neighborhood N_{DS} for the TSP.

1. $1 \in N_{DS}^*$.
2. If $A \in N_{DS}^*$ and $\max(A) = i < n$, then
 a. $A \star i+1 \in N_{DS}^*$, and
 b. $A \star \text{Rev}[i+1,j-1] \star j \in N_{DS}^*$ for $i+3 \leq j \leq n$, and
 c. $A \star \text{Rev}[i+1,n] \in N_{DS}^*$.
3. $N_{DS} = N_{DS}^* \cap S_n$.

The state space graph for the dynasearch neighborhood is constructed in a similar manner to the graph G_{TSP}.

State Space Graph $G_{DS} = (V_{DS}, E_{DS})$.

1. $({1}, 1) \in V_{DS}$ and $t \in V_{DS}$.
2. Suppose that $(S, i) \in V_{DS}$, and $i < n$. Then
 a. $(S \cup \{i+1\}, i+1) \in V_{DS}$, and there is an arc from (S, i) to $(S \cup \{i+1\}, i+1)$ in E_{DS} with cost $c(i, i+1)$,
 b. for $i+3 \leq j \leq n$, $(S \cup \{i+1, \ldots, j\}, j) \in V_{DS}$, and there is an arc from (S, i) to $(S \cup \{i+1, \ldots, j\}, j)$ in E_{DS} with cost $c(i, j-1) + \sum_{j=1}^{i+1} c(i+1, j)$,
 c. $(\{1, \ldots, n\}, i+1) \in V_{DS}$, and there is an arc from (S, i) to $(\{1, 2, \ldots, n\}, i+1)$ in E_{DS} with a cost of $c(i, n) + h(i+1, n)$.
3. If $(S, j) \in V_{DS}$ and if $|S| = n$, there is an arc from (S, j) to t with cost $c(j, 1)$.

As before, an optimal tour in N_{DS} can be obtained by finding the shortest path in G_{DS} from node $({1}, 1)$ to node t.
Theorem 1. The set \(N_{DS} = N_{DS}^{*} \cap S_n \) is the 2-exchange dynasearch neighborhood. The corresponding state space graph has \(O(n) \) nodes and \(O(n^2) \) edges. The time to find a minimum distance neighbor is \(O(n^2) \).

Proof. Suppose first that \(\sigma \) is in the 2-exchange dynasearch neighborhood and that \(\sigma \) is obtained by \(k \) independent two exchanges. We prove the result by induction on \(k \). If \(k = 0 \), then \(\sigma = [1, n] \in N_{DS} \).

Suppose instead that the compounded independent 2-exchanges to obtain \(\sigma \) are \(RevMove[i_{2j-1}, i_{2j}] \) for \(j = 1 \) to \(k \) for some \(k \geq 1 \), and where indices are in increasing order. Then

\[
\sigma = [1, i_1 - 1] \ast Rev[i_1, i_2] \ast [i_2 + 1, i_3 - 1] \ast Rev[i_3, i_4] \ast [i_4 + 1, i_5 - 1] \ast \ldots \ast Rev[i_{2k-1}, i_{2k}] \ast [i_{2k} + 1, n].
\]

Recall that \([i, j] = \emptyset \) for \(i > j \).

It is easy to see that \(\sigma \) can be obtained by the recursion for \(N_{DS} \) by starting with city 1, and at each application of Step 2 in the construction of \(\sigma \), concatenating a single node or else concatenating \(Rev[i_{2j-1}, i_{2j}] \ast i_{2j} + 1 \) for some \(j \), or else appending \(Rev[i_{2k+1}, i_{2k}] \) if \(i_{2k} = n \).

Conversely if \(\sigma \in N_{DS} \), then for some \(k \)

\[
\sigma = [1, i_1 - 1] \ast Rev[i_1, i_2] \ast [i_2 + 1, i_3 - 1] \ast Rev[i_3, i_4] \ast [i_4 + 1, i_5 - 1] \ast \ldots \ast Rev[i_{2k-1}, i_{2k}] \ast [i_{2k} + 1, n].
\]

In this case, \(\sigma \) is obtained by compounding \(RevMove[i_{2j-1}, i_{2j}] \) for \(j = 1 \) to \(k \), and thus \(\sigma \) is in the 2-exchange dynasearch neighborhood.

Let \(V' = \{(1, \ldots, j, j) : j = 1 \to n\} \cup \{(1, \ldots, n, j) : j = 2 \to n-1\} \). We now claim that \(V_{DS} = V' \).

We first note that it is easily established that \(V' \subseteq V_{DS} \). We next assume that \((S, i) \in V_{DS} \), and we will show that \((S, i) \in V' \). Suppose \(|S| > 1 \), and it was created by applying Step 2 to some state \((S', i') \). Moreover, \(|S'| < |S| \), and so we assume inductively that \((S', i') \in V' \), and so \(S' = \{1, \ldots, i'\} \). It is easily verified that if 2a, or 2b or 2c is applied to \((S', i') \), the resulting state \((S, i) \in V' \), thus showing that \(V_{DS} \subseteq V' \). It also follows that each state \((S, j) \) can be represented in \(O(1) \) space by the pair \((i, j) \) where \(S = \{1, \ldots, i\} \).

Thus \(|V_{DS}| = O(n) \) and \(|E_{DS}| = O(n^2) \), and the time to create \(G_{DS} \) is \(O(n^2) \) since we can compute \(h(i, j) \) in \(O(1) \) steps after an initial pre-computation. The running time to find the shortest path from node \(\{1\}, 1 \) to node \(t \) is \(O(n^2) \) since \(G_{DS} \) is acyclic, completing the proof. (See, for example, Ahuja, Magnanti, and Orlin (1993) for information about shortest path algorithms.)

In the proof, we commented on the storage space of a state. This storage is important because in creating \(G_{DS} \) or any other state-space graph, we need to know whether a node \((S, j) \) derived from rule 2 is already present in the graph. If it is already present, we need to be able to identify it in \(O(1) \) steps. For each of the neighborhoods considered in this paper, except the Held-Karp dynamic program, one can store each state in \(O(1) \) space, and identify its presence in \(O(1) \) time.
The Weak Independent 2-exchange Dynasearch Neighborhood

In this subsection, we base dynasearch on the relaxed concept of weak independence in order to develop a larger neighborhood that is also searchable in polynomial time.

The Weak 2-Exchange Dynasearch Neighborhood N_{WDS} for the TSP

1. $1 \in N^*_{WDS}$.
2. If $A \in N^*_{WDS}$ and $\max(A) = i$, then $A \star Rev[i+1,j] \in N^*_{WDS}$ for $i+1 \leq j \leq n$.
3. $N_{WDS} = N^*_{WDS} \cap S_\sigma$.

This neighborhood is more straightforward to define than the dynasearch neighborhood, as is its state space graph.

The State Space Graph $G_{WDS} = (V_{WDS}, E_{WDS})$:

1. $({1}, 1) \in V_{WDS}$.
2. Suppose $(S, k) \in V_{WDS}$ and let $\max(S) = i < n$. Then for each j with $i < j \leq n$, $(S \cup \{i+1, \ldots, j\}, i+1) \in V_{WDS}$, and there is an arc from (S, k) to $(S \cup \{i+1, \ldots, j\}, i+1)$ in E_{WDS} with cost $c(k,j) + h(i+1,j)$.
3. If $(S,j) \in V_{WDS}$ and if $|S| = n$, there is an arc from (S,j) to i with cost $c(j, 1)$.

Theorem 2. The set $N_{WDS} = N^*_{WDS} \cap S_\sigma$ is the weak 2-exchange dynasearch neighborhood. The corresponding state space graph G_{WDS} has $O(n^3)$ nodes and $O(n^3)$ edges. The time to find a minimum distance neighbor is $O(n^3)$.

Proof. We first show that the weak 2-exchange dynasearch neighborhood is contained in N_{WDS}.

Suppose that σ can be obtained by compounding weakly independent 2-exchanges. By permitting null operations such as $RevMove[i, i]$, σ can be obtained by performing $RevMove[i_{2j-1}, i_{2j}]$ for $j = 1$ to k, where (1) $i_1 = i_2 = 1$, (2) $i_{2k} = n$, and (3) $i_{2j+1} = i_{2j} + 1$ for $j = 1$ to $k - 1$. It follows that σ can be obtained by starting with 1, and concatenating $Rev[i_{2j-1}, i_{2j}]$ for $j = 2$ to k, and thus $\sigma \in N_{WDS}$. Conversely, if $\sigma \in N_{WDS}$ and can be obtained by starting with 1 and concatenating a sequence of reversals, then it is clear that σ can be obtained by compounding weakly independent 2-exchanges.

We next claim that for any state (S,j) with $\max(S) = i$, it follows that $S = \{1, \ldots, i\}$. The claim is clearly true if $i = 1$, and it follows directly by induction because of Step 2 of the construction of G_{WDS}. Moreover, the state $(\{1, \ldots, i\}, j)$ is obtainable for $2 \leq j \leq i$ by starting with $\{1, \ldots, i-1\}, i-1$ and then applying Step 2 of the construction of G_{WDS}. The only state (S,j) with $j = 1$ is $(\{1\}, 1)$. We conclude that

$$V_{WDS} = \{(\{1, \ldots, i\}, k) : 1 \leq k \leq i \leq n\}.$$

Thus there are $O(n^3)$ nodes, and $O(n)$ arcs emanating from each by the construction in Step 2 of G_{WDS}, leading to $O(n^3)$ arcs. The time to create G_{WDS} is $O(n^3)$ since we can compute $h(i,j)$ in $O(1)$ steps after an initial pre-computation of $h(1,j)$ for $j = 1$ to n, and we can create each arc in $O(1)$ step assuming that we store $\max(S)$ for each state (S,j). The running time to find the shortest path from node 1 to all other nodes is $O(n^3)$ since we are solving the shortest path problem on an acyclic graph. This completes the proof. ♦
Other Dynasearch Neighborhoods.

The results of the previous sections on dynasearch applied to independent and weakly independent 2-exchanges can be extended to other neighborhoods as well. For example, let $\text{Insert}[i, j] = [i+1, j] \star i$, and let $\text{InsertMove}[i, j]$ be the move that takes the city in position i and inserts it directly after city j. For example, if we apply $\text{InsertMove}[i, j]$ for $1 < i < j < n$ to the tour $\langle 1, \ldots, n \rangle$, we obtain the sequence $[1, i-1] \star \text{Insert}[i, j] \star [j+1, n]$. Similarly, we can define $\text{Swap}[i, j] = j \star [i+1, j-1] \star i$, and we can define $\text{SwapMove}[i, j]$ to be the move that swaps the cities in positions i and j of a tour. The insert neighborhood is the neighborhood of $\langle 1, \ldots, n \rangle$ obtained by permitting at most one InsertMove, and the swap neighborhood is obtained by permitting at most one SwapMove. We let the composite neighborhood be the neighborhood obtained by permitting at most one 2-exchange or InsertMove or SwapMove.

We can define independent and weakly independent InsertMoves, SwapMoves, and composite moves as before and modify the dynasearch and the weak dynasearch neighborhoods accordingly. In general, one would expect the dynasearch neighborhood to require $O(n^2)$ time to search, and the weak dynasearch neighborhood would require $O(n^3)$ time. However, the weak insertion dynasearch neighborhood can be searched even more efficiently when it is formulated with dynamic programming restrictions as we will see in Section 5.

Section 4. Other Recursively Defined Neighborhoods

In this section, we consider recursive ways for defining pyramidal tours and the twisted sequences neighborhood.

In the dynasearch neighborhood of Section 3 as well as in the standard dynamic program for the traveling salesman problem, every single tour began with the city 1, and the state (S, j) referred to tours that started with city 1, ended with city j, and visited all of the cities in S. In this section, we no longer assume that the initial city in a sequence is city 1. Rather, we let (i, S, j) refer to sequences A such that the first city in A is i, the last city in A is j, and A includes all of the cities in S.

The Pyramidal Tours Neighborhood

The pyramidal tours neighborhood for the TSP was first introduced by Sarvanov and Doroshko (1981). We say that a sequence A (which is not necessarily a tour) is pyramidal if it consists of cities $\{i, i+1, \ldots, n\}$ for some $i \geq 1$, and if the cities in A increase in index to city n, and then decrease in index. For example, if $n = 7$, then $\langle 4, 7, 6, 5, 3 \rangle$ is pyramidal.

The pyramidal neighborhood consists of all pyramidal tours. For example, if $n = 7$, then the tour $\langle 3, 4, 7, 6, 5, 2, 1 \rangle$ is in the pyramidal neighborhood. Our definition differs slightly from the usual definition of pyramidal tour in that we do not require the first city to be city 1; that is, city 1 may be the last city instead. Thus, our definition includes all the usual pyramidal tours as well as their reversals. We use this slightly non-standard definition in order to simplify the description of the recursion, but it would be easy to use the original definition as well. The size of the pyramidal neighborhood is 2^3.

Note that the edges $(1, 2)$ and $(n-1, n)$ of the original tour belong to all of its neighbors. This is a drawback in using the pyramidal tour neighborhood in practice. To circumvent this drawback, Carlier
and Villon (1990) consider all \(n \) rotations associated with a given tour, and search the pyramidal neighborhoods of each of these rotations. The size of this composite neighborhood is \(\theta(n^2) \) and it can be searched in \(O(n^3) \) time by a dynamic program described in Carlier and Villon (1990) or using \(n \) iterations of a shortest path algorithm on an appropriately created auxiliary graph (see Ahuja et al. (2002) for details), or using the \(n \) iterations of the procedure listed below.

We now present a recursion which defines the pyramidal neighborhood, as well as its corresponding state space graph.

The Pyramidal Tours Neighborhood \(N_{PT} \) for the TSP.
1. \(n \in N^*_{PT} \).
2. If \(A \in N^*_{PT} \) and \(\min(A) = i \), then
 a. \(A \star i-1 \in N^*_{PT} \) and
 b. \(i-1 \star A \in N^*_{PT} \).
3. \(P_{TN} = N^*_{PT} \cap S_n \).

The State Space Graph \(G_{PT} = (V_{PT}, E_{PT}) \).
1. \((n, \{n\}, n) \in V_{PT} \).
2. Suppose \((j, S, k) \in V_{PT} \), and let \(\min(S) = i > 1 \). Then
 a. \((j, S \cup \{i-1\}, i-1) \in V_{PT} \) and there is an arc from \((j, S, k) \) to \((j, S \cup \{i-1\}, i-1) \) in \(E_{PT} \) with a cost of \(c(k, i-1) \).
 b. \((i-1, S \cup \{i-1\}, k) \in V_{PT} \) and there is an arc from \((j, S, k) \) to \((i-1, S \cup \{i-1\}, k) \) in \(E_{PT} \) with a cost of \(c(i-1, j) \).
3. If \((j, S, k) \in V_{PT} \) and if \(|S| = n \), there is an arc from \((j, S, k) \) to \(t \) with cost \(c(k, j) \).

Theorem 3. The superneighborhood \(N^*_{PT} \) consists of all pyramidal sequences, and the neighborhood \(P_{TN} \) is the pyramidal tour neighborhood. The corresponding state space graph \(G_{PT} \) has \(O(n^2) \) nodes and \(O(n^2) \) edges. The time to find a minimum distance neighbor is \(O(n^2) \).

Proof. We first claim that for \(A \in N^*_{PT} \), \(A \) is pyramidal. It is true if \(|A| = 1 \), since in that case \(A = \langle n \rangle \).

We now consider \(A' \) and assume inductively that the claim is true for all sequences with fewer cities than \(A' \). The sequence \(A' \) is created in Step 2 of the recursion, and either (i) \(A' = A \star i-1 \) or (ii) \(A' = i-1 \star A \), where \(A \in N^*_{PT} \) and \(\min(A) = i \). By inductive hypothesis \(A \) is pyramidal and thus \(A \) consists of cities \(\{i, \ldots, n\} \), and the sequence in \(A \) increases in index to city \(n \) and then decreases in index. It follows that \(A' \) is also pyramidal.

We next establish that every pyramidal sequence is in \(N^*_{PT} \). So suppose that \(A \) is pyramidal, and let \(A_j \) be \(A \) as restricted to cities \(\{j, j+1, \ldots, n\} \). Since \(A \) is pyramidal, it follows that \(A_j \) is also pyramidal for each \(j \).

We assume inductively that \(A_{j+1} \in N^*_{PT} \) for some \(j < n \). It is easily verified that \(A_j = j \star A_{j+1} \) or else \(A_j = A_{j+1} \star j \). It follows that \(A_j \in N^*_{PT} \), completing the proof of the first sentence of the theorem.
We now establish that the state space graph has \(O(n^2) \) nodes. Suppose that \((i, S, j)\) is a state. Then \(S = \{k, k+1, \ldots, n\} \) for some \(k \) and \(k = i \) or \(j \). It follows that there are \(O(n) \) different sets for \(S \) and \(O(n) \) ways that the pair \((i, j)\) can be chosen for a specified set. And for each state \((i, S, j)\), the state can be represented by the triple \((i, \min(S), j)\), which takes \(O(1) \) space, and can be recognized in \(O(1) \) time.

Because the nodes \((i, S, j)\) and \((j, S, i)\) for \(S = \{i, i+1, \ldots, n\} \) both have two arcs emanating, we conclude that \(|E_{pt}| = \Omega(n^2) \), and \(G_{pt} \) can be created in \(O(n^2) \) time. Moreover, the optimal tour in \(N_{pt} \) is induced by the shortest path from node \((n, \{n\}, n)\) to node \(t \), which can be obtained in \(O(n^2) \) steps, completing the proof.

\[\blacklozenge \]

The Twisted Sequences Neighborhood

We once again consider 2-exchanges, each of which is denoted by an operation \(\text{RevMove}[i, j] \) for some \(i \) and \(j \) with \(1 < i < j \leq n \). Let \(R \) be an ordered set of 2-exchanges on a tour on \(n \) cities. For example, suppose that \(n = 9 \), and \(R = \{\text{RevMove}[3, 5], \text{RevMove}[2, 7], \text{RevMove}[4, 6]\} \). Applying the operations in \(R \) is to carry out the reversals in the order that they appear in \(R \). For example, applying \(\text{RevMove}[3, 5] \) to \(A_0 = \langle 1, 2, 3, 4, 5, 6, 7, 8, 9 \rangle \) would lead to the sequence \(A_1 = \langle 1, 2, 5, 4, 3, 6, 7, 8, 9 \rangle \). Applying \(\text{RevMove}[2, 7] \) to \(A_1 \) would lead to the sequence \(A_2 = \langle 1, 7, 6, 3, 4, 5, 2, 8, 9 \rangle \) since it reverses the positions of the elements currently in positions 2 to 7. Applying \(\text{RevMove}[4, 6] \) to \(A_2 \) leads to the sequence \(A_3 = \langle 1, 7, 6, 5, 4, 3, 2, 8, 9 \rangle \).

We say that one reversal \(\text{RevMove}[j_1, k_1] \) is contained in \(\text{RevMove}[j_2, k_2] \) if \([j_1, k_1] \subseteq [j_2, k_2]\). We say that a subset \(S \) of cities is consecutive if \(S = \{i, i+1, \ldots, j\} \) for some \(1 \leq i \leq j \leq n \).

Aurenhammer (1988) defined twisted sequences in the context of sorting of data. We provide a definition that Aurenhammer shows is equivalent to his original definition (modulo he specified the operations slightly differently). We say that a sequence \(A \) on a consecutive set \(A = \{i, i+1 \ldots, j\} \) of cities is a twisted sequence if it can be obtained by carrying out a sequence \(R \) of 2-exchanges on the permutation \(\langle i, i+1 \ldots, j \rangle \) such that the following two properties hold:

TS Property 1. Each 2-exchange \(\text{RevMove}(k, l) \) of \(R \) is contained in \([i, j]\).

TS Property 2. If \(\text{RevMove}(k, l) \) precedes \(\text{RevMove}(k', l') \) in \(R \), then either the two moves are weakly independent or else, \(\text{RevMove}(k, l) \) is contained in \(\text{RevMove}(k', l') \).

For a sequence \(R \) of 2-exchanges satisfying the two TS Properties, the same tour is obtained regardless of the order in which the moves in \(R \) are carried out. However, we shall assume that they are carried out in the order they appear in \(R \).

This definition is equivalent to the definition given by Aurenhammer in the case that the sequence consists of all cities in \(\{1, 2, \ldots, n\} \). We note that the sequence \(A_3 \) obtained from \(R \) above is a twisted sequence because \(A_3 \) can be obtained by a single reversal even though \(R \) does not satisfies the properties 1 and 2 above.

Aurenhammer showed that the twisted sequences neighborhood contains at least \(\Omega(2^n) \) and at most \(O(c^n) \) tours for some constant \(c \). Deineko and Woeginger (2000) claimed that the twisted sequences neighborhoods contains \(O(6^n) \) tours. They also presented a dynamic program which finds the best tour in
the twisted sequences neighborhood in $O(n^7)$ time. Congram (2000) proved that the size of the neighborhood grows asymptotically $(3 + \sqrt{3})^n$. In particular, it is $\Omega(5.8284^n)$ and $O(5.8285^n)$.

We now present a recursion which defines the twisted sequences neighborhood.

<table>
<thead>
<tr>
<th>The Twisted Sequences Neighborhood N_{TS} for the TSP.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $j \in N_{TS}^*$ for each $j = 1$ to n.</td>
</tr>
<tr>
<td>2. If $A \in N_{TS}^$, $B \in N_{TS}^$, and $\max(A) = \min(B) - 1$, then $A \star B \in N_{TS}^$ and $\text{Rev}(A \star B) \in N_{TS}^$.</td>
</tr>
<tr>
<td>3. $N_{TS} = N_{TS}^* \cap S_n$.</td>
</tr>
</tbody>
</table>

Before presenting the state space graph for the twisted sequences neighborhood, we establish that N_{TS}^* is the set of all twisted sequences, and N_{TS} is the twisted sequences neighborhood.

Theorem 4. The superneighborhood N_{TS}^* consists of all twisted sequences, and the neighborhood N_{TS} is the twisted sequences neighborhood.

Proof. We first note for any sequence $A \in N_{TS}^*$, the set of cities in A is consecutive. This is easily established via induction on the number of operations needed to create A. We also observe that by Rule 2 in the creation of N_{TS}^*, if $A \in N_{TS}^*$, then $\text{Rev}(A) \in N_{TS}^*$.

We next claim that if $A' \in N_{TS}^*$, then A' is a twisted subsequence. The claim is clearly true if $A' = \langle j \rangle$ for some j. We assume inductively that the claim is true for sets $A \in N_{TS}^*$ with $|A| < |A'|$. By construction, $A' = A \star B$ or else $A' = \text{Rev}(A \star B)$, where $A \in N_{TS}^*$ is defined on cities $\{i, \ldots, j\}$ for some i and j, and $B \in N_{TS}^*$ is defined on cities $\{j+1, \ldots, k\}$. By inductive hypothesis, there are sets of 2-exchanges R_A and R_B that satisfies TS Properties 1 and 2, and which applied to $\langle i, \ldots, k \rangle$ yields A and B. Then A' is either obtained from $R = R_A, R_B$ or else it is obtained from $R' = R_A, R_B, \text{RevMove}(i, k)$. This completes the proof of the first claim.

We next claim that every twisted sequence is in N_{TS}^*. To see this, let A' be a twisted sequence on $\{i, i+1, \ldots, j\}$, and let R be the set of 2-exchanges satisfying TS Properties 1 and 2, and which when applied to $\langle i, \ldots, j \rangle$ yields A'. If A' can be obtained in multiple such ways via 2-exchanges, let R be the set with the smallest number of 2-exchanges that generates A'.

We inductively assume that the claim is true for all twisted sequences with fewer cities than A'. We also assume inductively that the claim is true for all twisted sequences A with the same number of cities as A' but with fewer 2-exchanges needed to generate A.

We consider two cases. In the first case, we assume that there is no 2-exchange that changes the position of city i. In this case, if we apply the reversals in R to $\langle i+1, \ldots, j \rangle$, we obtain $A' \setminus i$, that is, we obtain the subsequence obtained from A by deleting city i. By inductive hypothesis $A' \setminus i \in N_{TS}^*$, and by Rule 2, $A' = i \star A' \setminus i \in N_{TS}^*$. So, if no 2-exchange contains i, then $A' \in N_{TS}^*$.

14
We now assume that there is a reversal that contains \(i \), and let \(\text{RevMove}(i, k) \) be the last such reversal in \(R \). We now consider the subcase that \(k = j \). In this case, the reversal \(\text{Rev}(A) \) of sequence \(A' \) is obtained from \(\{i, \ldots, j\} \) by applying the 2-exchanges in \(R' = R \setminus \text{RevMove}(i, j) \). Since \(|R'| < |R| \), by inductive hypothesis \(\text{Rev}(A') \in N'_{TS} \), and so \(A' \in N^*_{TS} \).

In the remaining subcase \(k < j \). By \(TS \) Property 2, the set \(R \) may be partitioned into two sets \(R_1 \) and \(R_2 \) where each 2-exchange of \(R_1 \) is contained in \(\{i, \ldots, k\} \), and each 2-exchange of \(R_2 \) is contained in \(\{k+1, \ldots, j\} \). We assume that the order of the 2-exchanges in \(R_1 \) and \(R_2 \) are consistent with their ordering in \(R \). Let \(A \) be generated by \(R_1 \) and let \(B \) be generated by \(R_2 \). By inductive hypothesis, \(A \in N^*_{TS} \) and \(B \in N^*_{TS} \). Moreover, \(A' = A \star B \). It follows from Rule 2 that \(A' \in N^*_{TS} \).

We now provide the nodes of the state space graph for twisted sequences, and show that the resulting dynamic program solves twisted sequences in \(O(n^3) \) time, which is the same bound obtained by Deineko and Woeginger (2000). We do not create the state space graph in its entirety since the optimal solution to the dynamic program does not correspond in a simple way to the shortest path in the state space graph.

We let \(g_{TS}(i, S, j) \) be the minimum cost of a twisted sequence starting at city \(i \), ending at city \(j \), and passing through each city of \(S \).

The Feasible States \(V_{TS} \) and the Dynamic Programming Recursion \(DP_{TS} \).

1. \((j, \{j\}, j) \in V_{TS} \) for each \(j = 1 \) to \(n \).
 \(g_{TS}(j, \{j\}, j) = 0 \) for each \(j \).
2. Suppose \((i_1, S_1, j_1) \in V_{TS} \) and \((i_2, S_2, j_2) \in V_{TS} \) and \(\max(S_1) = \min(S_2) - 1 \).
 Then \((i_1, S_1 \cup S_2, j_1) \in V_{TS} \) and \((j_2, S_1 \cup S_2, i_1) \in V_{TS} \).
3. For each consecutive subset \(S = \{k_1, \ldots, k_2\} \) of cities, and for every pair \(i_1 \) and \(j_2 \) cities of \(S \) with \(i_1 < j_2 \),
 \(g_{TS}(i_1, S, j_2) = g_{TS}(j_2, S, i_1) = \min_{k_1 \leq i_2 \leq k_3 \text{ and } k_3 + 1 \leq j_1 \leq k_2} g_{TS}(i_1, \{k_1, \ldots, k_3\}, i_2) + g_{TS}(j_1, \{k_3+1, \ldots, k_2\}, j_2) + c(i_2, j_1) \).
4. The min cost of a tour in \(N_{TS} \) is \(\min \{g_{TS}(i, S, j) + c(j, i) : |S| = n, \text{ and } i, j \in \{1, \ldots, n\}\} \).

Theorem 5. The dynamic program \(DP_{TS} \) finds the optimal twisted sequence in the neighborhood \(N_{TS} \) in \(O(n^3) \) time.

Proof. The number of states in the state graph is \(O(n^3) \) since each state is of the form \((i, S, j) \) where \(S \) is consecutive and \(i \) and \(j \) are cities in \(S \). If one looks at the minimization in Rule 3 of the dynamic programming recursion, one sees that one needs to minimize over choices of \(k_3, i_2 \) and \(j_1 \), which results in \(O(n^3) \) time to determine \(g(i, S, j) \). Thus the running time is \(O(n^3) \).

The running time matches the one developed by Deineko and Woeginger (2000), and the dynamic program is essentially the same.

We observe that there are times that the natural recursive way to define a neighborhood does not always lead to an efficient dynamic program. For example, Gutin [1984] and Sarvanov and Doroshko [1981] independently developed the “assign neighborhood.” Its natural recursive description is as follows:
The Assign Neighborhood \(N_{AS} \) for the TSP.

1. \(1 \in N_{AS}^* \).
2. If \(A \in N_{AS}^* \) and if \(|A| = 2k\), then \(A \notimes 2k+1 \in N_{AS}^* \).
3. If \(A \in N_{AS}^* \) and if \(j \not\in A \), and if \(|A| \) is odd, then \(A \otimes j \in N_{AS}^* \).
4. \(N_{AS} = N_{AS}^* \cap S_n \).

The natural DP recursion for searching the Assign neighborhood would include more than \(\binom{n}{n/2} \) distinct states, and would thus take exponential time. However, the neighborhood can be searched efficiently using an assignment algorithm, which in turn can be solved as \(n \) distinct dynamic programs.

For the neighborhoods discussed in Sections 3 and 4, Table 1 summarizes the number of nodes in the state spaces and the complexity of searching each neighborhood using the given dynamic programming formulations.

| Neighborhood | \(|V|\) | Search Complexity |
|--------------|-------|------------------|
| \(N_{DS} \) | \(O(n) \) | \(O(n^2) \) |
| \(N_{WDS} \) | \(O(n^3) \) | \(O(n^3) \) |
| \(N_{PT} \) | \(O(n^3) \) | \(O(n^3) \) |
| \(N_{TS} \) | \(O(n^7) \) | \(O(n^7) \) |

Table 1. Summary of the state space sizes and search complexity for the Dynasearch, Weak Independent 2-exchange Dynasearch, Pyramidal Tours, and Twisted Sequences neighborhoods.

Section 5. Optimization over DP Restrictions.

In this section and in the next section, we apply dynamic programming restrictions; that is, we take the Held-Karp dynamic program for the traveling salesman problem as given by the state space graph \(G_{TSP} \) in Section 3, and solve this dynamic program as restricted to a subset \(V \subseteq V_{TSP} \). We denote the state space graph as \(G_{TSP}[V] \), which is standard graph theoretic notation for the subgraph of \(G_{TSP} \) induced by the subset \(V \) of nodes and all edges with both endpoints in \(V \). This process induces a neighborhood of the original tour, which we describe in this section. We are particularly interested in examples in which the number of states is polynomially bounded and the number of tours in the induced neighborhood is exponentially large.

There is a sizeable literature in approximate dynamic programming for hard combinatorial optimization problems that is based on dynamic programming restrictions. As with the dynamic programming restrictions of this section, approximate dynamic programming is an approach that tries to circumvent the “curse of dimensionality” by contracting the state space. Usually, in approximate dynamic programming and other forms of dynamic programming restrictions, the size of the dynamic program is decreased by simultaneously aggregating some of the states and eliminating some of the constraints. Thus, the problem solved is a relaxation of the original, rather than a restriction of the original. Typically, the solution value obtained in approximate dynamic programming is a lower bound (for minimization problems) on the optimal value, whereas in the approach we discuss in this section, the optimal solution for the neighborhood is feasible for the TSP and thus is an upper bound on the optimal value. Christofides,
Mingozi and Toth (1981) used state space reductions to derive lower bounds for the TSP, the VRP, and variants. They give several different relaxations of the states, show how these correspond to known relaxations of the original problems, and that these relaxations are equivalent to Lagrangian relaxations. Similar techniques are applied to machine scheduling problems in, Abdul-Razaq and Potts (1988), Hariri and Potts (1994), Ibaraki and Nakamura (1994), and Potts and van Wassenhove (1987).

In order to associate neighborhoods with subsets of states, we need some additional notation and definitions. For a given sequence \(A = (i_1, i_2, i_3, \ldots, i_k) \), with \(i_1 = 1 \), we let \(\text{State}(A) = (S_i, k) \), where \(S = \{i_1, i_2, \ldots, i_k\} \). For a sequence \(A = (i_1, i_2, i_3, \ldots, i_k) \), we refer to the subsequences \(A_j = (i_1, i_2, i_3, \ldots, i_k) \) for \(j = 1 \) to \(k \) as the initial subsequences of \(A \). The canonical dynamic program creates a tour \(A \) by starting with city 1 and concatenating one city at a time. With this in mind, for each tour \(A \) we let

\[
V_{TSP}(A) = \{t\} \cup \{\text{State}(A_j) : A_j = (1, \ldots, i_j) \text{ is an initial subsequence of } A \text{ for } j = 1 \text{ to } |A|\}.
\]

For a given collection \(V \subseteq V_{TSP} \), let \(N_{TSP}(V) = \{A \in S_j : V_{TSP}(A) \subseteq V\} \). In other words, \(N_{TSP}(V) \) contains all tours \(A \) such that the states needed to generate \(A \) are all in \(V \). Similarly, we let \(N_{TSP}^{*}(V) = \{A : V_{TSP}(A) \subseteq V\} \). We will soon show that \(N_{TSP}(V) \) is the neighborhood induced by solving the dynamic program on state space graph \(G_{TSP}(V) \), and \(N_{TSP}^{*}(V) \) is the corresponding superneighborhood.

In the following, for each \(A = (i_1, \ldots, i_k) \), we let \(\hat{c}(A) \) denote the cost of sequence \(A \) where \(A \) is viewed as a path; that is \(\hat{c}(A) = \sum_{j=1}^{k-1} c(i_j, i_{j+1}) \). If \(k < n \), then \(c(A) = \hat{c}(A) \). If \(A \) is a tour, then \(c(A) = \hat{c}(A) + c(i_n, i_1) \).

The following theorem shows that finding the shortest path from node \((\{1\}, 1)\) to all other nodes in \(G_{TSP}(V) \) corresponds to finding the best tour in \(N_{TSP}(V) \).

Theorem 6. Let \(V \) be any subset of states of \(V_{TSP} \). Let \((S, j)\) be any state in \(V \), and let \(g(S, j) \) be the minimum cost of a path from \((\{1\}, 1)\) to \((S, j)\) in \(G_{TSP}(V) \). Then

\[
g(S, j) = \min \{ \hat{c}(A) : \text{State}(A) = (S, j) \text{ and } A \in N_{TSP}^{*}(V) \}, \text{ and} \]

\[
g(t) = \min \{ c(A) : A \in N_{TSP}(V) \}.
\]

Proof. We first claim that \(g(S, j) = \min \{ \hat{c}(A) : \text{State}(A) = (S, j) \text{ and } A \in N_{TSP}^{*}(V) \} \). This claim is clearly true for \(|S| = 1\), since the only state of \(V_{TSP} \) with one element is \((\{1\}, 1)\). Let us assume inductively that the claim is true for any state \((S', j')\) with \(|S'| < |S|\), and suppose that \(|S| > 1\). In the restriction of the Held-Karp dynamic program for the TSP,

\[
g(S, j) = \min \{ g(S \setminus j, k) + c(k, j) : k \in S \setminus j \text{ and } (S \setminus j, k) \in V \},
\]

and thus by induction,

\[
g(S, j) = \min \{ \hat{c}(A') + c(k, j) : A' \in N_{TSP}^{*}(V) \text{ and State}(A') = (S \setminus j, k) \}.
\]
Let \(A^* \) be the set that causes the minimization in the previous relation. Since \(A^* \in N^*_{TSP}[V] \), \(\text{State}(A^*) = (S \setminus j, k) \), and \((S, j) \in V\), it follows that \(A^* \star j \in N^*_{TSP}[V] \), and thus

\[
g(S, j) = \min \{ \hat{c}(A) : \text{State}(A) = (S, j) \text{ and } A \in N^*_{TSP}[V] \}.
\]

From the above claim it also follows that \(g(t) = \min \{ \hat{c}(A) : A \in N^*_{TSP}[V] \} \). ♦

We next apply the results of Theorem 6 to the neighborhood first developed by Balas (1996), and later extended by Balas and Simonetti (2001).

The Balas-Simonetti Neighborhood

Balas (1996) considered the neighborhood consisting of all sequences \(A \) with the following properties:
1. the first city of \(A \) is city 1, and
2. there is a parameter \(K \) of the neighborhood, such that \(i \) follows \(j \) in \(A \) if \(j + K \leq i \). We consider the following equivalent formulation: If \(i \) precedes \(j \) in \(A \), then \(i < K + j \).

Balas presented a dynamic programming recursion for finding the minimum distance tour in the neighborhood that runs in \(O(K^2 2^K n) \) time, which is linear in \(n \) for fixed \(K \) and polynomial in \(n \) for \(K = O(\log n) \). The number of tours in the neighborhood is \(\Omega((k - 1)^n / e^n) \), which is exponential in \(n \) whenever \(k \) is slowly growing in \(n \). (Here, exponential means non-polynomial.)

Balas and Simonetti (2001) generalized the neighborhood to require a condition that is equivalent to the following: If \(i \) precedes \(j \) in \(A \), then \(i < K(j) + j \), where \(K(j) \) is a positive integer bounded above by \(K \). They also showed how to implement the dynamic program effectively by searching the state space graph, and they carried out extensive computational experiments. Here we show that the Balas-Simonetti neighborhood can be constructed in a very natural way using recursion. Moreover, the recursion immediately suggests an implementation very similar to the one that Balas and Simonetti applied. In the following, if \(A \) is a sequence of cities or a set, we let \(\overline{A} = \{1, \ldots, n\} \setminus A \), that is the cities not in \(A \). Upon first reading, the reader may find the recursion easier to understand by assuming that \(K(i) = K \) for all \(i' \).

The Balas-Simonetti Neighborhood \(N_{BS} \) for the TSP.

1. \(1 \in N^*_{BS} \).
2. Suppose \(A \in N^*_{BS} \) and choose \(i' \in \overline{A} \) so that \(i' + K(i') = \min \{i + K(i) : i \in \overline{A} \} \). Then for each \(j \in \overline{A} \) with \(j < i' + K(i') \), \(A \star j \in N^*_{BS} \).
3. \(N_{BS} = N^*_{BS} \cap S_A \).

State Space Graph \(G_{BS} = (V_{BS}, E_{BS}) \):

1. \((\{1\}, 1) \in V_{BS} \).
2. Suppose \((S, k) \in V_{BS} \), and choose \(i' \in \overline{S} \) so that \(i' + K(i') = \min \{i + K(i) : i \in \overline{S} \} \). Then for each \(j \in \overline{S} \) with \(j < i' + K(i') \), \((S \cup \{j\}, j) \in V_{BS} \) and there is an arc from \((S, k) \) to \((S \cup \{j\}, j) \) with cost \(c(k, j) \).
3. If \((S, j) \in V_{BS} \) and if \(|S| = n \), then there is an arc from \((S, j) \) to \(t \) with cost \(c(j, 1) \).

We next show that \(N^*_{BS} \) is the Balas-Simonetti neighborhood.
Lemma 1. The tour \(A \in N_{BS} \) if and only if whenever \(i \) precedes \(j \) in \(A \), then \(i < K(j) + j \).

Proof. Suppose \(A = \langle 1, i_2, i_3, \ldots, i_n \rangle \), and let \(A_j = \langle 1, i_2, i_3, \ldots, i_j \rangle \). Let us assume first that \(A \in N_{BS} \), and thus \(A_k \in N_{BS}^* \) for each \(k \). It follows directly from the construction of \(A_k \) in Step 2 of the \(N_{BS} \) neighborhood, that \(i_k < i_l + K(i_l) \) for all \(l > k \).

We next assume that whenever \(i \) precedes \(j \) in \(A \), then \(i < K(j) + j \). We will claim that \(A_k \in N_{BS}^* \) for all \(k \), and thus \(A \in N_{BS} \). The claim is clearly true for \(k = 1 \), and we assume inductively that the claim is true for \(k - 1 \). By inductive hypothesis \(A_{k-1} \in N_{BS}^* \), and by our choice of \(A \), \(i_k < i_l + K(i_l) \) for all \(l > k \). It follows that \(A_k \in N_{BS}^* \), completing the proof.

The recursion for \(N_{BS} \) adds one city at a time to the end of a sequence \(A \) such that the newly added city satisfies a condition. Hence the recursion for \(N_{BS} \) is a restriction of the Held and Karp recursion for \(N_{TSP} \) and \(V_{BS} \subseteq V_{TSP} \). Furthermore, by Theorem 6 finding the shortest path from node \(\langle \{1\}, 1 \rangle \) to node \(i \) in \(G_{TSP}[V_{BS}] \) corresponds to finding the best tour in \(N_{TSP}[V_{BS}] \) which is equivalent to \(N_{BS} \).

The following lemma is proved in Balas and Simonetti for their neighborhood. We give an alternative proof here that follows from the recursive construction of \(N_{BS}^* \).

Theorem 7. Consider the Balas-Simonetti neighborhood and suppose that \(K < \log n \). Then \(|V_{BS}| = O(n K^2 2^K) \), and \(|E_{BS}| = O(n K^2 2^K) \). The time to construct \(G_{BS} \) is \(O(n K^2 2^K) \), and the time to find a minimum distance neighbor is \(O(n K^2 2^K) \).

Proof. Let \(Q_r = \{ S : (S, j) \in V_{BS} \text{ for some } j, \text{ and } r = \min(S) \} \). Then for \(1 \leq k \leq r \) it follows that \(k \in S \). For \(r + K(r) \leq k \leq n \), it follows that \(k \in S \). Thus for any \((S, j) \in Q_r \), \(S = \{1, \ldots, k - 1\} \cup S' \), where \(S' \subseteq \{r + 1, \ldots, r + K(r) - 1\} \). It follows that there are at most \(2^{K(r)} \leq 2^K \) choices for \(S' \) and thus for \(S \). In addition, there are at most \(K \) choices for \(j \), and so \(|Q_r| = O(K 2^K) \). Moreover, \(V_{BS} = \bigcup_{r=1}^{n} Q_r \), and so \(|V_{BS}| = O(n K^2 2^K) \).

We note in Step 2 in the creation of \(E_{BS} \), there are at most \(K \) edges emanating from any state \((S, j) \), and so \(|E_{BS}| = O(n K^2 2^K) \).

We next show that we can store \((S, j) \) in \(O(1) \) space for all states \((S, j) \in V_{BS} \). So suppose \((S, j) \in Q_r \). We represent \(S \) by the pair \((r, L(S)) \), where \(L(S) = \sum_{k=r-(r+1)} 2^k \). Because \(K < \log n \), it follows that \(1 \leq L(S) \leq 2^{K+1} \leq 2n \), and the pair \((r, L(S)) \) uniquely identifies and characterizes \(S \). We refer to \((r, L(S)) \) as the identifier for \(S \), and we refer to the triple \((j, r, L(S)) \) as the identifier for \((S, j) \). For any state \((S, j) \) created in Step 2 of the recursion of \(G_{BS} \), it takes \(O(K) \) time to determine the identifier. Moreover, it takes \(O(K) \) time to determine all of the arcs emanating from \((S, j) \). So, the time to create \(G_{BS} \) is \(O(n K^2 2^K) \), and the time to solve the shortest path problem is also \(O(n K^2 2^K) \).

The Weak Insertion Dynasearch Neighborhood

In this subsection we show that the weak insertion dynasearch neighborhood \(N_{WIDS} \) can be searched efficiently in \(O(n^2) \) when described with a recursion which is a restriction of the Held and Karp recursion
for \(N_{TS} \). First we provide a characterization of the weak independent insertion neighborhood, and then give the recursive description.

Lemma 2. Let \(A = \langle 1, i_2, i_3, \ldots, i_n \rangle \), and let \(A_j = \langle 1, i_2, i_3, \ldots, i_j \rangle \) for each \(j = 2 \) to \(n \). Then \(A \in \text{Weak insertion dynasearch neighborhood if and only if for each } j \), the cities of \(A_j \) are \(\{1, 2, \ldots, j+1\} \setminus k \) for some \(k \in \{2, \ldots, j+1\} \).

Proof. Suppose first that \(A \) is in the weak insertion dynasearch neighborhood. If \(A = \langle 1, 2, \ldots, n \rangle \), then the cities of \(A_j \) are \(\{1, \ldots, j\} \), and the lemma is valid. Suppose instead that \(A \neq \langle 1, 2, \ldots, n \rangle \), and let InsertMove\((r, s)\) be the last InsertMove in the creation of \(A \). We assume inductively that for \(j < r \), the cities of \(A_j \) are \(\{1, 2, \ldots, j+1\} \setminus k \) for some \(k \in \{2, \ldots, j+1\} \). Because \(A \) is formed by compounding weakly independent moves, the cities of \(A_r \) are \(\{1, 2, \ldots, r-1\} \). For \(r \leq t \leq s-1 \), the cities of \(A_t \) are \(\{1, 2, \ldots, t\} \setminus r \). Finally, for \(t > s \), the cities of \(A_t \) are \(\{1, 2, \ldots, t\} \). We have thus established the “only if” part of the lemma.

Suppose instead that for each \(j \), the cities of \(A_j \) are \(\{1, 2, \ldots, j+1\} \setminus k \) for some \(k \in \{2, \ldots, j+1\} \). Let \(S = \{r\} \) the cities of \(A_r \) are \(\{1, 2, \ldots, r\} \), and let us denote the cities in \(S \) as \(\{1, j_2, \ldots, j_k\} \). Then one can establish inductively that \(A \) can be created from InsertMove\((i_{j+1}, i_{j+1})\) for all \(s \) such that \(j_{s+1} \neq j_{s+1} \).

The Weak Insertion Dynasearch Neighborhood \(N_{WIDS} \) for the TSP

1. \(1 \in N_{WIDS}^* \)
2. Suppose that \(A \in N_{WIDS}^* \) and \(\max(A) = i \). Then
 a. \(A \star i+1 \in N_{WIDS}^* \).
 b. if \(|A| = i \), then \(A \star i+2 \in N_{WIDS}^* \).
 c. if \(|A| = i-1 \), then \(A \star j \in N_{WIDS}^* \), where \(j = \{1, \ldots, i\} \setminus A \).
3. \(N_{WIDS} = N_{WIDS}^* \cap S_r \).

State Space Graph \(G_{WIDS} = (V_{WIDS}, E_{WIDS}) \):

1. \(\{1\}, 1 \in V_{WIDS} \).
2. Suppose \((S, k) \in V_{WIDS} \) and \(\max(S) = i \). Then \(S \cup \{j, k\} \in V_{WIDS} \) where
 a. \((S \cup \{i+1\}, i+1) \in V_{WIDS} \) and there is an arc from \((S, k) \) to \((S \cup \{i+1\}, i+1) \) with cost \(c(k, i) \).
 b. if \(|S| = i \), then \((S \cup \{i+2\}, i+2) \in V_{WIDS} \) and there is an arc from \((S, k) \) to \((S \cup \{i+2\}, i+2) \) with cost \(c(k, i+2) \).
 c. if \(|S| = i-1 \), then \((S \cup \{j, k\}) \in V_{WIDS} \) for \(j = \{1, \ldots, i\} \setminus A \) and there is an arc from \((S, k) \) to \((S \cup \{j, k\}) \) with cost \(c(j, k) \).
3. If \((S, j) \in V_{BS} \) and if \(|S| = n \), then there is an arc from \((S, j) \) to \(t \) with cost \(c(j, 1) \).

Theorem 8. The neighborhood \(N_{WIDS} \) is the weak insertion dynasearch neighborhood. The corresponding state space graph \(G_{WIDS} \) has \(O(n^2) \) nodes and \(O(n^3) \) edges. The time to find a minimum distance neighbor is \(O(n^2) \).
We first state four propositions about the operations very large scale neighborhood search. Programming expansion is an interesting anomaly or whether it is potentially a useful methodology in but each of these cases has a very similar flavor to the dynasearch neighborhoods. It is too early to assess of the dynamic programming expansion of a polynomial size neighborhood creates an exponential neighborhood that is searchable in polynomial time, We have determined other cases where the dynamic programming expansion of a transform a polynomial sized neighborhood into an exponential neighborhood that is searchable in polynomial time. We have determined other cases where the dynamic programming expansion of a neighborhood can be searched in polynomial time. The primary result of this section is that the dynamic programming expansion of the 2-exchange neighborhood is the dynasearch neighborhood obtained by compounding weakly independent 2-exchanges.

We discovered the above result only after observing that for the 2-exchange neighborhood \(N_{\text{EX}} \) and for the neighborhood \(N_{\text{WIDS}} \) obtained by compounding weakly independent 2-exchanges, it is true that \(V_{\text{TSP}}[N_{\text{EX}}] = V_{\text{TSP}}[N_{\text{WIDS}}] \). Thus we learned that taking a dynamic programming expansion of a neighborhood can transform a polynomial sized neighborhood into an exponential neighborhood that is searchable in polynomial time. We have determined other cases where the dynamic programming expansion of a polynomial size neighborhood creates an exponential neighborhood that is searchable in polynomial time, but each of these cases has a very similar flavor to the dynasearch neighborhoods. It is too early to assess whether this technique of creating polynomially searchable exponential neighborhoods via dynamic programming expansion is an interesting anomaly or whether it is potentially a useful methodology in very large scale neighborhood search.

We first state four propositions about the operations \(V_{\text{TSP}}[N] \) and \(N_{\text{TSP}}[V] \), each of which has a very straightforward proof which is omitted. We give a proof of the fifth proposition.
Proposition 1. For a given set \(N \subseteq S_n \), \(V_{TSP}[N] \) is the smallest subset \(V \subseteq V_{TSP} \) of states such that \(N \subseteq N_{TSP}[V] \).

Proposition 2. For a given subset \(V' \subseteq V_{TSP} \) of states, \(N_{TSP}[V'] \) is the largest subset \(N \subseteq S_n \) such that \(V_{TSP}[N] \subseteq V' \).

Proposition 3. For a given set \(N \subseteq S_n \), \(N \subseteq N_{TSP}[V_{TSP}[N]] \).

Proposition 4. For a given subset \(V \subseteq V_{TSP} \) of states, \(V_{TSP}[N_{TSP}[V]] \subseteq V \).

Proposition 5. Suppose that \(N_e \) is a neighborhood whose size is polynomially bounded in \(n \). Then one can find the best neighbor in \(N_{TSP}[V_{TSP}[N]] \) in polynomial time.

Proof. Since \(|N_e| = O(p(n)) \) for some polynomial \(p() \), it follows that \(|V_{TSP}[N]| = O(n \cdot p(n)) \), and the number of edges of the corresponding state space graph is \(O(n^2 \cdot p(n)) \). Thus, the dynamic program can be solved in \(O(n^3 \cdot p(n)) \) time.

The 2-Exchange Neighborhood and its Dynamic Programming Expansion.

Let \(N_{EX} \) denote the 2-exchange neighborhood, which can be obtained from \(\langle 1, \ldots, n \rangle \) by performing at most one operation RevMove\((i, j)\) for \(1 < i < j \leq n \). Recall that the neighborhood \(N_{WDS} \) is obtained from \(\langle 1, \ldots, n \rangle \) by permitting the compounding of weakly independent 2-exchanges that exclude city 1. Thus any element of \(N_{WDS} \) can be obtained from \(\langle 1, \ldots, n \rangle \) by performing a sequence of 0 or more operations RevMove\((i_1, i_2)\), RevMove\((i_3, i_4)\), \ldots, RevMove\((i_{2j-1}, i_{2j})\), where \(1 < i_1 < i_2 < \ldots < i_{2j} \).

Theorem 9. The neighborhood \(N_{WDS} \) obtained by compounding weakly independent 2-exchanges is the dynamic programming expansion of the 2-exchange neighborhood \(N_{EX} \); that is, \(N_{WDS} = N_{TSP}[V_{TSP}[N_{EX}]] \).

Proof. We will first establish that \(N_{WDS} \subseteq N_{TSP}[V_{TSP}[N_{EX}]] \), by proving the following claim.

Claim 1. \(V_{TSP}[N_{EX}] = V_{TSP}[N_{WDS}] \).

From Claim 1, it will follow that \(N_{TSP}[V_{TSP}[N_{WDS}]] = N_{TSP}[V_{TSP}[N_{EX}]] \), and by Proposition 3, \(N_{WDS} \subseteq N_{TSP}[V_{TSP}[N_{WDS}]] = N_{TSP}[V_{TSP}[N_{EX}]] \).

Proof of Claim 1. It is clear that \(V_{TSP}[N_{EX}] \subseteq V_{TSP}[N_{WDS}] \), and so it suffices to show that any state in \(V_{TSP}[N_{WDS}] \) is also in \(V_{TSP}[N_{EX}] \). Suppose that \((S, k) \) is a state in \(V_{TSP}[N_{WDS}] \). Then there is a sequence \(A \in N_{WDS} \) such that \(A \) is obtained by carrying out a sequence of weakly independent reversal moves. Suppose State\((A_0) = (S, k) \) for some initial subsequence \(A_0 \) of \(A \). We need to prove that \((S, k) \in V_{TSP}[N_{EX}] \). If city \(r \) is not part of any reversal, then \(S = \{1, 2, \ldots, r\} \) and State\((A_r) = (\{1, \ldots, r\}, r) \in V_{TSP}[N_{EX}] \) and the claim is true. So, we now consider the case that city \(r \) is part of a reversal, say Rev\([i, j]\). Let \(B \) be the sequence in the 2-exchange neighborhood obtained by performing only RevMove\([i, j]\), and let \(B \) consist of the first \(r \) cities of \(B \) in order. Then State\((B_r) = State(A_r) \), and so Claim 1 is true.

We will soon establish that \(N_{TSP}[V_{TSP}[N_{EX}]] \subseteq N_{WDS} \); but first we state a characterization of \(V_{TSP}[N_{EX}] \), followed by a property of \(N_{WDS} \). Both are elementary and stated without proof.
Claim 2. \(V_{TSP}[N_{EX}] = \{(S,j) : S = \{1,\ldots,k\} \cup \{(S,j) : S = \{1,\ldots,i\} \cup \{j,\ldots,k\}\} \text{ for some } i,j, \text{ and } k \text{ with } i+2 \leq j \leq k \}. \)

Claim 3. The tour \(A = \langle i_1, \ldots i_n \rangle \) is in \(N_{WDS} \) if the following is true:

1. \(i_1 = 1 \) and
2. if \(i_j > i_{j+1} \), then \(i_{j+1} = i_j - 1 \).

Let \(V = V_{TSP}[N_{EX}] \). We now prove that any tour \(A \in N_{TSP}[V] \) satisfies the properties of Claim 3, and is therefore in \(N_{WDS} \). Let \(A = \langle i_1, \ldots i_n \rangle \), and let \(A_j = \langle i_1, \ldots , i_j \rangle \) for each \(j \). It is clear that \(i_1 = 1 \) because the only state in \(V \) with one element is \((\{1\}, 1)\). Now suppose that \(i_j > i_{j+1} \). Then \(\text{State}(A_j) = (S, i_j) \in V \), and \(S = \{1,\ldots,i\} \cup \{i_j,\ldots,k\} \) for some \(i'<i_{j+1} \) and some \(k \geq i_j \). Then \(\text{State}(A_{j+1}) = \{1,\ldots,i\} \cup \{i_{j+1},\ldots,k\} \), because there is no other possible state of \(V \) that is consistent with \(A_{j+1} \) and thus \(i_{j+1} = i_j - 1 \), and \(A \) satisfies Claim 3, and is thus in \(N_{WDS} \). ♦

Section 7. Conclusions

In this paper we discussed two unifying perspectives for defining neighborhood search as applied to the traveling salesman problem.

1. We showed that several previously developed exponential neighborhoods for the traveling salesman problem that are solvable in polynomial time can be defined recursively. Furthermore, the exponential neighborhoods can be searched efficiently with the dynamic program induced from the recursion. We illustrated our approach on dynasearch neighborhoods, the pyramidal tour neighborhood, and the twisted sequences neighborhood, and the Balas-Simonetti neighborhood.

2. Given the canonical Held-Karp dynamic programming formulation for the TSP, one can obtain a neighborhood by restricting the dynamic program to a subset \(V \) of states. We explain the correspondence between the \(DP \) restriction and the neighborhood and show that the Balas-Simonetti neighborhood can easily be represented in this manner. Furthermore we show that the weak independent insertion dynasearch neighborhood can be represented and searched efficiently as a \(DP \) restriction. We also show how one may map neighborhoods to sets of states and then back to neighborhoods leading to the dynamic programming expansion of a neighborhood. In the case that the original neighborhood is the 2-exchange neighborhood, the dynamic programming extension is the neighborhood obtained by permitting compounding of weakly independent 2-exchanges.

A natural question arises as to whether it is surprising that there will be recursively defined neighborhoods? After all, dynamic programming is itself based on recursion. We answer this question with another question. If an exponential neighborhood is searchable using dynamic programming, is it true that the neighborhood can be defined recursively in a way that reveals any insight? We have no idea what the answer to this latter question is, and suspect that it is quite deep. Accordingly, we believe that the recursively defined neighborhoods that we have identified reveal something special about the exponential neighborhoods described in this paper. The simplicity of the recursive representations suggests a deeper order that needs to be captured.
One approach to capturing this deeper order is via the use of neighborhoods defined by regular and context free grammars, as carried out by Bompadre and Orlin [2004]. Perhaps other ways of drawing these results together exist as well.

The results on recursively defined neighborhoods also have other implications.

1. The neighborhoods are defined for all sequencing problems, independent of their objective function. It is not defined just for TSPs. The recursions could be of great use in solving other problems as well. In particular, there is a dynamic program for finding the best neighbor all of these neighborhoods if the original problem is the linear ordering problem.

2. Defining a neighborhood recursively turns the problem of identifying efficiently searchable neighborhoods on its head. If one wants to develop neighborhoods that are polynomially searchable using dynamic programming, it suggests that an effective approach is to develop a recursively defined neighborhood.

Another issue that was briefly touched upon in this paper was that of “automation” of the process. In particular, is there an algorithm that could take the input for the recursion, and automatically create the dynamic programming state space graph? If such an approach could be developed, it could be of substantial value in permitting the quick creation of neighborhood search algorithms. The results in this paper offer some first hints that such an automatic procedure may exist.

Acknowledgements.

Özlem Ergun was supported in part under NSF grant DMI-0238815. James B. Orlin was supported in part under ONR grant N00014-98-1-0317 and under NSF grant DMI-0217123.

References

