Solutions to Homework 2

1) We have the optimality equations as
\[V^*(s_1) = \max \{ 1 + 2V^*(s_1), 2V^*(s_2) \} \]

\[V^*(s_2) = 2 + 2V^*(s_2) \implies V^*(s_2) = \frac{2}{1-\gamma} \]

Thus, \(\alpha_1 \) to be the optimal action in state \(s_1 \), we need

\[1 + 2V^*(s_1) \geq \frac{2\gamma}{1-\gamma} \quad \text{in which case} \quad V^*(s_1) = \frac{1}{1-\gamma} \]

Therefore, we need

\[1 + \frac{2\gamma}{1-\gamma} \geq \frac{2\gamma}{1-\gamma} \implies \gamma < 0.5 \]

For \(\alpha_2 \) to be optimal in state \(s_2 \), we need

\[1 + 2V^*(s_1) \leq \frac{2\gamma}{1-\gamma} \quad \text{in which case} \quad V^*(s_1) = \frac{2\gamma}{1-\gamma} \]

Thus, we need

\[1 + \frac{2\gamma^2}{1-\gamma} \leq \frac{2\gamma}{1-\gamma} \text{ which implies that } \gamma \geq 0.5 \]

2) Let \(f \) and \(g \) be two superadditive functions. Then

\[f(x^+, y^+) + f(x^-, y^-) > f(x^+, y^-) + f(x^-, y^+) \quad \text{and} \]

\[g(x^+, y^+) + g(x^-, y^-) > g(x^+, y^-) + g(x^-, y^+) \]

It is clear from the above inequalities that

\[f(x^+, y^+) + g(x^+, y^+) + f(x^-, y^-) + g(x^-, y^-) > f(x^+, y^-) + g(x^+, y^-) + f(x^-, y^+) + g(x^-, y^+) \]

which completes the proof.
3. Let \(x^+ \geq x^- \) and select \(y \geq f(x^+) \). From the definition of \(f \), we have

\[
g(x^+, f(x^+)) - g(x^+, f(x^-)) \geq 0.
\]

Since \(g \) is subadditive,

\[
g(x^+, f(x^+)) + g(x^-, f(x^-)) \leq g(x^+, f(x^+)) + g(x^+, f(x^-)) \quad \text{which implies that}
\]

\[
g(x^+, f(x^-)) - g(x^+, f(x^-)) \leq g(x^+, f(x^-)) - g(x^+, f(x^-)).
\]

Thus, \(g(x^+, f(x^-)) - g(x^+, f(x^-)) \geq 0 \) for all \(y \geq f(x^-) \).

But since \(g(x^+, f(x^+)) \geq g(x^+, f(x^-)) \) we must have \(g(x^+) \leq f(x) \).

4. We will first do an induction on \(S \) and then an induction on \(A \).

Since \(g(s+1, a+1) + g(s, a) \geq g(s+1, a) + g(s, a+1) \), we have

\[
g(s+2, a+2) + g(s+1, a) \geq g(s+2, a+1) + g(s+1, a+1)
\]

for \(n = 1 \). Now assume that

\[
g(s+n-1, a+1) + g(s, a) \geq g(s+n, a+1) + g(s+n-1, a).
\] \((1) \)

But we also know that

\[
g(s+n, a+1) + g(s+n-1, a) \geq g(s+n, a+1) + g(s+n, a).
\] \((2) \)

Summing up \((1) \) and \((2) \) yields

\[
g(s+n, a+1) + g(s, a) \geq g(s+n, a+1) + g(s+n, a) \quad \text{for} \quad n \geq 1.
\] \((3) \)

Now assume that \(g(s+n, a+m+1) + g(s, a) \geq g(s, a+m+1) + g(s+n, a) \). We know that

\[
g(s+n, a+m) + g(s, a+m+1) \geq g(s, a+m) + g(s+n, a+m-1)
\]

Adding these two inequalities, we have

\[
g(s+n, a+m) + g(s, a) \geq g(s, a+m) + g(s+n, a) \quad \text{and} \quad n \geq 1 \text{ and } m \geq 1.
\]