Name

Please be neat and show all your work so that I can give you partial credit. GOOD LUCK.

Question 1
Question 2
Question 3
Question 4
Total
1. a. (10) Show that the period of a state in an irreducible Markov chain with \(N \) states is less than or equal to \(N \).

b. (10) Show that there are no null recurrent states in a Markov chain with finite state space.

c. (10) Show that not all states in a Markov chain with finite state space are transient.
2. (25) Let X_n be the sum of the first n outcomes of tossing of a six sided fair die repeatedly in an independent fashion. Compute

$$\lim_{n \to \infty} P\{X_n \text{ is divisible by } 7\}.$$
3. a. (10) Consider an ordinary renewal process \(\{N(t) : t \geq 0\} \) with inter-renewal time distribution \(F \). Compute \(E[(N(t))^2] \).

b. (15) Now suppose that \(\{N(t) : t \geq 0\} \) is a delayed renewal process. Let \(G \) be the distribution of \(X_1 \) and let \(F \) denote the distribution of \(X_n, n \geq 2 \). Compute \(E[(N(t))^2] \).
4. a. (10) Let \(\{(X_n, R_n, C_n) : n \geq 1\} \) be a sequence of independent identically distributed random variables, with \(X_n \) being non-negative for all \(n \geq 1 \). Let \(\{Z_1(t) : t \geq 0\} \) be the renewal reward process generated by \(\{(X_n, R_n) : n \geq 1\} \) and let \(\{Z_2(t) : t \geq 0\} \) be the renewal reward process generated by \(\{(X_n, C_n) : n \geq 1\} \). Suppose \(E[X_1] < \infty, E[R_1] < \infty \) and \(E[C_1] < \infty \). Compute

\[
\lim_{t \to \infty} \frac{Z_1(t)}{Z_2(t)}.
\]

b. (10) Let \(X \) be a non-negative random variable with distribution function \(F \) and let \(X_e \) be the random variable with distribution function \(F_e \) where \(F_e(x) = \int_0^x (1 - F(y))dy/E[X] \). Thus, \(X_e \) has the equilibrium distribution. Obtain an expression for \(E[X_e^r] \) for \(r > 0 \) in terms of the moments of \(X \).