
Solving the Traveling Salesman Problem with a ParallelBranch-and-Bound Algorithm on a 1024 Processor NetworkS.Tsch�oke, M.R�acke, R. L�uling, B.MonienDepartment of Mathematics and Computer ScienceUniversity of PaderbornGermanye-mail : sts@uni-paderborn.deAbstractThis paper is the �rst to present a parallelization of a higly e�cient best-�rst branch-and-boundalgorithm to solve large symmetric traveling saleman problems on a massively parallel computercontaining 1024 processors. The underlying sequential branch &bound algorithm is based on 1-treerelaxation introduced by Held and Karp (Lagrangean approach) and improved by Volgenant andJonker.The parallelization of the branch& bound algorithm is fully distributed. Every processor performsthe same sequential algorithm but on a di�erent part of the solution tree. To distribute subproblemsamong the processors we use a new direct-neighbor dynamic load-balancing strategy. The generalprinciple can be applied to all other branch-and-bound algorithms leading to an \automatic" paral-lelization.At present we can e�ciently solve traveling salesman problems up to a size of 318 cities on networksof up to 1024 transputers. On hard problems we achieve an almost linear speedup.Keywords: Combinatorial Optimization; Distributed Algorithms; Dynamic Load-Balancing;Parallel Branch-and-Bound; Symmetric Traveling Salesman Problem (STSP)1 IntroductionThe e�cient solution of large combinatorial optimization problems is highly important for many appli-cations in the �eld of science and engineering. One example for these problems is the placement androuting problem in the design of VLSI systems. Using todays technology and algorithmic methods, itis not possible to give optimal solutions for these problems. Therefore heuristic solution are computedusing local search methods like simulated annealing [11] or genetic algorithms [21].Many other problems from the areas of operations research and arti�cial intelligence can also bede�ned as combinatorial optimization problems. Among these is the traveling salesman problem. Tosolve such problems, an integer solution vector has to be found that respects some �nite set of constraintsand minimizes/maximizes a given function. 1



The symmetric traveling salesman problem has been intensively studied in the past. Optimal solutionsare computed by methods like branch &bound and branch& cut. In general branch & cut [4] lead to moree�cient algorithms than branch&bound but these methods are normaly tailored to a speci�c problem.Any e�cient parallelization would also be speci�c to the traveling salesman problem, since the sequentialcut algorithm based on polyhedral theory has to be parallelized to achieve high e�ciency.Our aim is to use e�cient methods for the traveling salesman problem but to provide a paralleliza-tion that is also usable for other problems. Therefore we choose the traveling salesman problem as abenchmark.The name branch& bound describes a large class of search techniques. Among these are depth-�rstbranch&bound and best-�rst branch&bound. Depth-�rst branch&bound performs a depth �rst searchthrough the solution space and cuts o� a branch whenever its bound is worse than the best solution foundup to that time. Best-�rst branch &bound always branches a subproblem with minimal bound. Thistechnique leads to very good computational performance, but it has to pay for this with large storagerequirements. We will therefore use a best-�rst algorithm for the solution of the traveling salesmanproblem.We use the method of 1-tree relaxation introduced by Held and Karp [6, 7] which was re�ned byseveral authors. These re�nements were compared by Balas and Toth in [14]. It was found that theimprovements of Volgenant and Jonker [28, 29, 30] lead in general to the best results. Therefore we useideas of their branch and bound algorithms.This algorithm was shown to be very e�cient. In fact, the parallilization of a trivial branch & boundprocedure is very simple. Achieving saturation of larger networks becomes increasingly complex whenhighly e�cient algorithms are used to perform the branch & bound operations. This is because theresulting search tree becomes smaller and it is therefore much harder to keep all processors busy duringruntime.The implementation of branch&bound on a shared memory system is straight forward, since eachprocessor has direct access to the global heap. The simulation of global memory on a distributed memorysystem for the solution of branch&bound problems was described in [17]. This technique is only useful inspecial cases or for small numbers of processors and leads in general to communication bottlenecks. Onlyif the computation time for one branching step is much larger than the communication time to transferone load unit, bottlenecks can be avoided.The distributed implementation of branch&bound was studied by several authors. Some of this workcan be found in [1, 8, 10, 12, 17, 18, 19, 24, 27, 31, 32]. Distributed implementations of branch&boundsolving the traveling salesman problem can be found in [24, 5]. Most of these work is done on smallernetworks using branch and bound algorithms which are not as e�cient as the ones described in [14].Therefore only relatively small instances of the traveling salesman problem could be solved using thesealgorithms .Our parallelization of this algorithm is fully distributed. The communication between processors isdone solely by message passing on a �xed interconnection network. There is no global or shared memorybetween processors. Every processor has its own local heap and performs a sequential branch&bound2



algorithms on this heap. If a processor computes a new solution of the problem, it is broadcasted to allprocessors in the network.Since subproblems are generated and consumed dynamically, it is necessary to use a distributeddynamic load balancing algorithm to distribute the workload equally through the processor network. Weuse a technique that is based on a workload balancing between neighbored processors which leads to aglobal balancing in the whole network.We achieved the following results:� Using our load balancing algorithm we have shown that it is possible to saturate networks of up to1024 processors if the workload is large enough.� Symmetric traveling salesman problems of up to 318 cities can be solved using branch & boundapproaches in resonable time� The used principle is general applicable, which means that every sequential branch & bound algo-rithm can \automatically" be transformed into a parallel algorithm.The paper is organized as follows: A description of our branch and bound procedures solving thetraveling salesman problem is given in section 2. In section 3 we discuss some general questions concern-ing distributed load balancing and present our parallelization of branch&bound using distributed heapmanagement and dynamic load balancing. Section 4 gives the experimental results on di�erent transputernetworks. Some conclusions �nal the paper.2 The sequential Branch&Bound AlgorithmGiven a complete weighted undirected graph G = (f1; : : : ; ng; E) and a costmatrix C on G. A tour is acircle in Gwhich visits each vertex exactly once. The symmetric traveling salesman problem (STSP) is theproblem to �nd a tour of minimal length. In this section we shortly describe the best-�rst branch&boundprocedures we used to solve the STSP.The TSP is a well studied problem of combinatorial optimization, where many good lower and upperbounds are known. A good sequential best-�rst branch & bound algorithm consists of four di�erentparts. A method to compute lower bound (relaxation), a branching strategy, good heuristic solutions forbounding and methods to reduce the solution space. So it has to spend much e�ort on the computationof a single subproblem in the branch-and-bound procedure, but therefore the search tree can be keptas small as possible. Trying to parallelize one might think that it may be better to use less e�cientbut faster algorithms for the single task (subproblem) and taking into the bargain a larger search tree.Because if you have more tasks is it easier to saturate and balance large networks of processors. Butall our experiments show, that large TSP instances can only be solved with small search trees and goodlower bounds. So less tasks means that a e�cient load balancing is very important to guarantee thebest-�rst approach. 3



2.1 Computation of Lower BoundsAs a strong lower bound we use the 1-tree relaxation. First let us de�ne a 1-tree of the graph G asa spanning tree of the subgraph G0 = (f2; : : : ; ng; E0) together with two edges incident to vertex one.Hence a 1-tree of minimal length is a minimal spanning tree of the subgraph G0 together with the twoshortest edges incident to vertex one. The observation that every 1-tree contains exactly one circle andthat therefore a 1-tree whose verticies all have degree 2 is a tour, lead Held & Karp to the followingformulation of the STSP as a 0-1 integer program:P : min n�1Xi=1 nXj=i+1 ci;j xi;js:t A1 x = 2A2 x � b2x integerwhere the (0,1) vector x indicates the selected edges. The restrictions A2 x � b2 force x to be a 1-tree,and the restrictions A1 x = 2 force all verticies to have degree two. By examining this formulation wesee that the degree constraints are those which make the linear program hard to solve. Therefore werelax this program by eliminating the constraints A1 x = 2 and punishing violations of these constraintsby adding the term �T (A1 x � 2) to the cost function. The components of � are called the Lagrangeanmultipliers , the relaxed program P 0 is called the Lagrangean Problem:P 00 : min CTx+ �T (A1 x� 2)s:t: A2 x � b2; x integer, P 01 : min n�1Pi=1 nPj=i+1(ci;j + �i + �j)xi;j � 2 nPi=1�is:t: A2 x � b2; x integer, P 02 : min CTx+ �T (dx � 2)s:t: A2 x � b2; x integerwhere dx is a vector containing the degree of each vertex.Let � be constant, than formulation P 01 provides an easy way to compute a solution of P 0. We only haveto compute a minimal 1-tree according to a changed cost matrix.Let x be a feasible solution for P , then x is also feasible for P 0 and furthermore for every vector �the inequality C 0(x) � C(x) holds. Hence every solution for P 0 gives a lower bound for the length of theoptimal tour. The quality of this lower bound depends highly on the choice of the Lagrangean multipliers�. Let us write this as L(�). To compute a high lower bound we employ the subgradient method to �nda vector � maximizing L(�) .As described in [15], a subgradient at point �0 is de�ned to be a vector t such that for all � 2 R :L(�) � L(�0) + (� � �0) t. The signi�cance of a subgradient t is that the half-space f�j(� � �0)T t � 0gcontains all solutions whose cost values are larger than the cost at �0. Thus, any subgradient points to a4



direction of ascent of L(�) at �0. The idea of the subgradient method is to choose a subgradient at thecurrent solution �0, and to walk along it a su�ciently small step such that L(�) still increases. Let �be constant and x be a vector that achieves the minimum in P 0, then formulation P 02 provides the easilycomputable subgradient (dx�2), i.e. walking into a direction where vertices whith one edge or with morethan 2 edges are punished. The size � of the step taken in the direction of this subgradient is choosenheuristically, and is not constant during the computation of a lower bound.So the computation of a lower bound means computing a series of minimal spanning trees with Prime'sand Kruskal's algorithm (which of them performs better and is choosen depends on the number of avail-iable edges). The quality of the lower bound LB of a subproblem SP is determined by two heuristicallychoosen parameters (subgradient step size �(i) and the maximal number of 1-tree computed during thesubgradient loop max:tree). We have seen that we have to make longer subgradient iterations in thebeginning of the branch & bound especially while computing the initial lower bound. We choose max:treein O(n) (5n) to get a good initial lower bound and in general (n=5). In the parallel case we have to payfor a good initial lower bound with idle times in the begining. But in our experiments we see that thisstrategy was always superior to a worse initial lower bound and less idle time.SP = node of the search tree (subproblem)initialize �0i := 0wmax := 0repeatT := minimum 1-tree T of SP according to the costs (ci;j + �i + �j)w� := cost of Tif ( w� > wmax)wmax := w��max := �Tmax := T�i+1 := �i + �(i) (dx � 2)i := i+ 1until (i > max:tree)LB(SP ) := wmax ;lower bound of the subproblem2.2 Branching StrategyTypically, a branching-strategy successively partitions the current set of feasible solutions into subsets(in our case into disjoint subsets) and calculates a lower bound on the cost of solutions in each subset.The branching hopefully improves the lower bounds for each of the newly created subproblems, but anincrease cannot be guaranteed.In case of the traveling salesman problem partioning is usually accomplished by requiring and for-bidding certain edges, so that each subset is characterized by a set R of required edges and a set F offorbidden edges. A derived subproblem SPR;F represents the set of all 1-trees TR;F which includes theedges of R and excludes the edges of F . Then the weight wTR;F (�) of the minimal 1-tree of TR;F is alower bound LB(SPR;F )on the cost of any tour for the derived subproblem SPR;F . The lower bound5



function as described before is executed on every node of the search tree.In case of the symmetric TSP two simple rules are used to extend these sets of required and forbiddenedges.(a) if two edges incident to a node are required, all other edges incident to this node can be forbidden.(b) if there are no more than two not forbidden edges incident to a node both edges are required.In their branching scheme, Volgenant & Jonker [28] select a node n of the current best 1-tree withdegree greater than two. Because of rule (a) there are always at least two non-required edges in this1-tree incident to node n, say e1 and e2. Now branching partitions a subproblem SPR;F into disjointsubproblems SP1, SP2 and SP3 with:SP1 = SP1(R [ fe1; e2g; F )SP2 = SP2(R [ fe1g; F [ fe2g)SP3 = SP3(R;F [ fe1g)If node n is already incident to a required edge we know subset SP1 to be infeasible. This leads to abranching into two subsets. Hence, the degree of the searchtree varies between degree three and two.The closer the current lower bound is to the optimal solution, the more edges are required and the morenodes of the search tree have degree two. To select the node n and the edges e1 and e2 we use a heuristicbased on ideas of Volgenant & Jonkers [28].1. Choose node n to be on the subtour of the current best 1-tree (a 1-tree always consists of a cycleand some branches).2. If possible take n to be incident to a required edge in order to prefer branching with degree two.3. If there is still a choice of n take the node with the smallest number of feasible edges incident to it.The idea of the heuristic is to break up the 1-tree circle and to keep the search tree small. We triedseveral other strategies with higher braching degree. But they were all not very e�cient.2.3 Computation of Upper BoundsGood upper bounds are necessary to reduce memory consumption, especially when using a best-�rstbranch & bound strategy on a network of distributed processors. In our case a subproblem, that issent through a network to a certain processor, keeps the whole information (the sets R and F and theLangragian multipliers �) to determine a lower bound on the subproblem and to branch. So we do nothave to route through the network to collect data.We use a simple but e�ective well-known heuristic to compute upper bounds suggested by Volgenant& Jonker in their algorithm. It is based on a heuristic combining a minimum 1-tree and perfect matchingdeveloped by Christo�des [2]. It can be used on every 1-tree availiable during the solution procedure and6



needs less than 1% of the computional time. A feasible tour is directly generated out of the current best1-tree.We con�ne its use to 1-trees consisting of a cycle with branches that have only nodes with degree notgreater than two. In this Cristo�des' perfect matching can be heuristically solved very simple:For each branch | with one node with degree 1, say n1, and one node on the cycle, say n3 | thereare two nodes, say n2 and n4, on the cycle connected to n3. Now we choose the cheapest way out of twoto construct a part of a tour, namely the sequence� � � � n2� n1� � � � � n3� n4� � � � or � � � � n2� n3� � � � � n1� n4� � � �.This means for the current length l of the heuristic solution while contructing a tour:l := l+minfcn1;n2� cn2;n3; cn1;n4� cn4;n3g. On this contructive solution we run the 2-opt improvementheurstic. These are not the best known heuristics, but for instances up to 300 cities we got su�cientupper bounds.2.4 Reduction of the Solution SpaceThe traveling salesman problem is a large 0-1 integer program. It is a goal of every algorithm solving 0-1integer programs to reduce the solution space if possible, i.e. to eliminate variables that can be shown tobe zero or one in every optimal solution.For the TSP this means �nding superuous edges that cannot be part of an optimal tour and �ndingindispensable edges that must be part of every optimal tour. Obviously indispensable edges may beput into the set R of required edges and the superuous edges into the set F of forbidden edges. Weimplemented two methods to increase the number of forbidden and required edges suggested by Volgenantand Jonker [29, 30]:The �rst method is the edge exchange in 1-trees [29]. The idea is that if the weight of the minimal1-tree, that results from forcing a certain edge into the 1-tree, exceeds the current upper bound, thisedges will be superuous and if the weight of the minimal 1-tree, that results from excluding a certainedge, exceeds the current upper bound, this edges is indispensible. Hence we need good upper bounds,because the better the availiable upper bound is the more edges will be identi�ed to be required or to beforbidden. The other method is the identi�cation of nonoptimal edges [30]. The fact that every optimaltour has to be 2-optimal is exploited to determine edges that cannot be contained in any optimal tour.Reduction of the solution space is very important. Even with large processor networks we were notable to solve instances over 150 cities without reduction methods.3 Parallel AlgorithmIn this section we give a description of our load balancing strategy. On distributed systems a general andproblem-independent method to parallelize best-�rst branch-and-bound methods is search tree decompo-sition. The heap with the subproblems (nodes of the search tree) has to be distributed. A load balancingalgorithm is performed on each processor in parallel to the sequential branch-and-bound algorithm. The7



load-balancer knows the local load situation and needs information from other processors in order todecide where to send the tasks.3.1 Objectives of dynamic load balancingIn general we can distinguish static and dynamic load balancing. In the case of static load balancing,which is more often referred as the mapping problem, the task is to map a static process graph to a�xed interconnection topology to minimize dilation, processor load di�erences and edge congestion. Foran overview see [20]. If the load situation of a distributed system changes dynamically by generationand consumption of load units in an unpredicatable way, it is necessary to use a dynamic load balancingstrategy which reacts on these changes of the load. The decision of load remapping can either be central-ized or distributed. Since centralized strategies are only useful for small distributed systems we suggesta new distributed dynamic load balancing strategy.A good load balancing algorithm has to achieve the following objectives:� minimize search overhead. A sequential best-�rst algorithm explores in each step the subproblemwith the minimal lower bound (�rst heap element), i.e. in a distributed system with n processors aload balancing method would be optimal if at every time every processors has one of the n subprob-lems with the best lower bound. Therefore distributed minimum computation or a centralized heapwould be necessary, which is in general too ine�cient. So a distributed algorithm will probablyproduce search overhead, i. e. the solution tree which is computed by the parallel algorithm is largerthan that of the sequential algorithm, using the same branch-and-bound algorithm.� minimize idle times, i.e. no processor should run out out work.� minimize communication. Every load balancing strategy has to spend time on distributing workloadand information through the network, which is not needed in the sequential case.These goals are partly contrary. Reducing search overhead implies increase of communication or you willget idle times. Reducing communication implies a more unbalanced network with search overhead andidle times. A distributed dynamic load-balancing algorithm has to adopt a middle course to get the bestspeed-up.In a parallel branch-and-bound algorithm load of a processor can be de�ned as the subproblemsgenerated during the branching and then put on the heap. To evaluate the load in a load balancingmethodwe have to de�ne a weight function w on the local heap elements of a processor. Let pi 2 fp1; : : : ; pnga processor, UB the bound of the current best solution (upper bound), LB(sp) a lower bound on asubproblem sp and Hpi = fsp1; : : : ; spkg the heap elements (subproblems) of processor pi, with 8 sp 2Hpi : LB(sp) < UB). For the TSP we de�ne the following weight functions w : fp1; : : : ; png �! N :wLB(pi) = min fLB(sp) j sp 2 Hpig (1)w#(pi) = jHpij (2)Our aim is to optimize the load balancing according to both objectives (quality wLB and quantity w#of the load). We choose wLB (�rst heap element) as a weight function for the quality of load. This is8



because in an e�cient TSP algorithm where the breadth of search tree is relatively small, you have tokeep all minimal lower bounds of the local heaps on an equal level to provide best-�rst branch-and-boundand to avoid as much search overhead as possible.When trying to keep the lower bound on an equal level, the number of load units (heap elements) oneach processor is probably not very well balanced. This implies on the one hand idle times during thecomputation when new solutions (upper bounds) are found and large parts of the heaps are bounded. Onthe other hand the memory consumption of the processor is not equal. So some processors can run outof memory while others have enough free memory. Therefore we need as a second weight function thenumber of heap elements w#. It would be also possible to de�ne one weight function for both objectives,see [18] for other weight functions, but we suggest two heap-weight function because we perform a di�erentkind of balancing on each of the weight functions.Now our load balancing strategy manages to globally keep all processors on a nearly equal levelaccording to the de�ned heap weights, although only the heapweights of neighbored processors are keptequal. For this purpose, each processor knows the heapweights wLB and w# of his neighbors in thenetwork. In case of our transputer network every processor has four neighbors. A processor sendssome subproblems to a neighbor if the quality or the quantity of its heapelements is a certain amounthigher than on its neighbors. If the local heap situation changes the neighbors will be informed. Withthis strategy we reach maximal processor saturation and minimal search overhead, while communicationoverhead and idles times are very low.3.2 Load Balancing AlgorithmDynamic distributed load balancing algorithms can be characterized by the knowledge used to decidewhen to distribute load units (decision base) and by the space in which a processor migrates such load(migration space). We can distinguish between the global and local decision base. In the �rst case aprocessor needs knowledge about the global system or nearly every processor in the network to decideabout a load migration. If a local decision base is used, a migration decision is purely based on the localsituation and that of the neighboring processors in the network. In the same way we distinguish betweena global and local migration space [19].Our algorithm uses a local decision and migration space. Local migration space seems us to be themost natural way of load balancing in large networks and dynamic load situations. This is based onour results which we gained by a comparison of di�erent known and some new load balancing strategies,described in [19, 18]. From these experiments it seems to be better to decide only about the directiona packet of workload should take in the network, instead of the exact destination processor if the localload situation is likely to change very fast.The basic principle of this algorithm is to balance the workload of a processor in a way that the heapweights wLB and w# of a processor pi and its neighbors fp1; : : : ; pkg are on a nearly equal level. Sincethe load situation varies dynamically the algorithm tries to achieve a situation in which the maximumweight di�erence maxj2f1;:::;kg j w(pi)�w(pj) j is less than a �xed �. Since we balance according to the9



quality (minimal lower bound) and the quantity of load on each processor we try to reach a situationwhere all processors work on subproblems with the same lower bound and all processors have an equalmemory consumption and an equal number of heap elements. A processor tries to achieve a balance withits neighbors which are four in our case. Because each processor belongs to overlapping balanced islands,this strategy leads to a balance throughout the whole network.The following parameters determine our load balancing process:� �LB : a process pi initiates a load balancing activity or participates on a load balancing activity ofits neighbor pj, only if their weights wLB (minimal lower bound on heap elememts) di�er by morethan �LB cost units.� �# : a process pi initiates a load balancing activity or participates on a load balancing activity ofits neighbor pj, only if their weights w# (number of the heap elememts) di�er by more than �#elements.� info:delay : a neighbor is informed about the new local weight situation (wLB(pi), w#(pi)), onlyif the last information was done more than info:delay time units ago.� workLB:delay, work#:delay : a workload unit (subproblem) is send to a neighbor, only if the lastwork was send to this neighbor more than work:delay time units ago.� sendLB:rate, send#:rate : the number of subproblems send to a neighbor is send:rate percentage ofthe load di�erence, i.e. 50% means that the load between the two interacting processor is expectedto be equal after sending.In case of the TSP we choose �LB = 1 to avoid as much search overhead as possible and to keepthe network very well balanced over the whole time of computation. We choose �LB = 3 (= max.degree of the search tree generated by the branching strategy) to achieve a very well balanced memorycomsumption in the whole network. This gives us the possibility to solve larger instances. to keepthe network very well balanced over the whole time of computation. The delay times of roughly theaverage computation time of a single subproblem (computing lower bounds) perform best. They are veryimportaant to avoid trashing e�ects of sending load back and forth all the time. A send#:rate of 65% ofsubproblems according to quantity of heap does best, i.e. sending more than half of the di�erence leadto a globally better balanced network. The sendLB:rate was kept constant between 1 and 3, i.e. at least1 and at most 3 subproblems were distributed in one balancing operation.On a single processor the load-balancing process is running in parallel to the branch-and-boundprocess. To describe the algorithm in detail we have to de�ne four message items. If a local branch-and-bound process is out of work it sends an (IDLE)-message to the local balancer. The message (SOLUTION)broadcasts upper bounds. (INFO) contains the heapweights wLB and w# and (WORK) a subproblem.Initially the branch-and-bound process of one processor p0 computes the initial subproblem and sendsit to the local balance process. Then the branch-and-bound processes of all processors send an (IDLE)message to their local balance process. The load-balancers are always waiting for messages from their10



branch-and-bound process or their neighboring processors. As in the sequential case the branch-and-bound process is performing the branch-and-bound loop, i.e. if not terminated it waits for a subproblem,does the braching step, computes lower bounds and sends derived subproblems which are not boundedback to the load balancer which does the heap management. After that it sends again an (IDLE)-message.Additionally to the load-balancing a distributed termination detection is done.PROC Load balancing process ()initialization()while not terminated doon receipt of a message from1: on receipt of (IDLE) from b&b-processb&b:process:idle := TRUEif not empty heap(H) thensend (WORK, get �rst subproblem(H)) to b&b-processb&b:process:idle := FALSEinform neighbors()2: on receipt of (SOLUTION, S) from b&b-processif Cost(S) < UB thenUB := Cost(S)send (SOLUTION, S) to all neighbors3: on receipt of (SOLUTION, S) from neighbor pjif Cost(S) < UB thenUB := Cost(S)send (SOLUTION, S) to all neighbors except pj4: on receipt of (WORK, subproblem) from neighbor pj or b&b-processif b&b:process:idle thensend (WORK, subproblem) to b&b-processb&b:process:idle := FALSEelseinsert into local heap (H; subproblem)� := new random permutationforeach neighbor j of pi dobalanceLB(�(j))� := new random permutationforeach neighbor j of pi dobalance#(�(j))inform neighbors()5: on receipt of (INFO, wLB, w#) from neighbor pjweightLB [pj] := wLBweight#[pj] := w#balanceLB(pj)balance#(pj)inform neighbors()6: termination detectionENDThe load-balance process has to handle �ve di�erent message events. (1) If the branch-and-boundprocess sends an (IDLE)-message, it tries to reply the subproblem with the locally minimal lower bound(�rst element), if availiable. If the local heap changes, the neighbors are informed. Rules (2) and (3)11



provide a easy way of broadcasting upper bounds.On receipt of a subproblem (4) the load-balancer replies the subproblem to the branch-and-boundprocess, if this is still idle. If not then the subproblem is inserted to the local heap and balancing with theneighbors is started according to the de�ned parameters in a random order. First balancing accordingto the lower bound is done. If the delay time is over and a processor has a better minimal lower boundthan one of its neighbor, it sends the second heap element (second lowest lower bound on the processor)to its neighbor. We found out that is is very important to keep the best subproblem for the own branch-and-bound process. This avoids the case that a branch-and-bound process gets idle and wants a newsubproblem but the best one is just on the way between the processors in some bu�ers. This strategyreduces the search overhead.After balancing according to the lower bound, the number of heap elements is probably unbalanced.To balance the heap size without disturbing the just balanced lower bound, now the element are takenfrom the end of the heap array. These subproblems have worse lower bounds, i.e. not only the numberof elements are balanced but also the subproblems of worse quality which leads to relatively equal heapafter a new solution is broadcasted and lot of worse subproblem are deleted. After the load balancingoperation all neighbors are informed of changes in the heap weights.On receipt of heapweights wLB and w# (5) from a neighbor the local weight information of this neigh-bor is updated. Than the balancing procedures are performed with this neighbor. At the end all neighborsare informed of changes in the heap weights. For details of the functions balance, inform neighbors andinitialization see the appendix.This strategy is completely problem independent and can applied to other branch-and-bound algo-rithms as well.4 ResultsThere are two goals we want to reach with parallelization. We want to gain a good speedup that means tobe nearly n times faster with n processors than with one processor, and we want to solve larger probleminstances.For speedup measurements it is very important how much time the algorithm spends on the com-putation of each node in the solution tree. The algorithm starts with one initial subproblem (the rootof the solution tree) and hence in the �rst phase of the program run there are less subproblems thanprocessors. Let us call the time from programstart to the moment when all processors are working forthe �rst time the start-up time. The e�ect which the start-up time has on the speedup, depends on therelation between the total runtime and the start-up time. For this reason only a modest speedup can begained for a problem instance which needs only a small number of subproblems to be computed.There are possibilities to avoid the idle times during the start-up phase, or to use them di�erently.One way to use this idle times is to compute upper bounds. This is signi�cant, because a good upperbound is not only important for bounding, if the upper bound is used during the computation of lower12



bounds (as it is the case for the algorithm implemented by us) it has a strong positive inuence on thecomputation of the lower bounds and hence on the number of evaluated subproblems. This way of usingthe idle times can be used in general. One way to avoid this idle times is to cluster the processors andparallelize the computation of a single subproblem. A disadvantage of this method is that it cannot beapplied to all branch &bound algorithms.Problem (4) (8) (16) (32) (64) (128) (256) (512) (1024)pr76 8,00 16,17 32,72 64,08 126,20 234,35 428,76 773,16gr120 3,32 7,03 11,40 18,03 19,61 21,50 19,61pr124 3,95 7,67 15,43 22,96 27,99 28,81 24,67bier127 3,83 7,01 9,81 11,00 12,11 11,16 11,61pr136 32,00 56,37 103,97 169,93u159 4,32 3,69 11,17 11,78 12,96 13,31 13,22rat195 8,00 15,49 28,47 60,53 89,37 138,27lin318 8,00 15,34 28,54 29,59 29,52 29,54Table 1: Speedup of TSPLIb instances on De Bruijn NetworksProblem (4) (8) (16) (32) (64) (128) (256) (512) (1024)avg70 3,81 7,49 13,41 20,55 22,63 23,14 22,98best70 3,89 7,81 14,90 26,81 42,77 56,83 57,35avg100 3,77 7,59 14,84 26,37 33,53 36,95 38,66best100 3,94 8,02 16,78 32,34 60,38 117,18 203,20avg120 3,92 7,90 15,67 31,09 58,63 101,38 154,35best120 3,96 7,94 15,80 32,15 63,37 116,79 207,29avg150 3,84 7,73 15,82 30,97 58,27 106,48 170,91 290,92 484,75best150 4,12 7,88 15,91 31,98 64,45 131,61 237,46 422,61 760,12avg250 16,00 28,11 53,55 102,15 176,83 306,17 521,54best250 16,00 30,74 61,03 119,38 219,65 398,34 651,62Table 2: Speedup of random-euclidean TSPs on De Bruijn NetworksLet us now watch our computational results. A library of symmetric traveling salesman probleminstances known from the literature was provided to us by G.Reinelt [25]. In addition to these instanceswe generated a set of random euclidean problems. We solved random euclidean problems up to a size of250 cities. The problem lin318 was the largest problem from the library, which was solved. Table 1 and2 show the speedup results on De Bruijn (diameter log n) networks. One must take into account thattraveling salesman problem instances although they have the same number of cities can di�er very muchin the e�ort which has to be spend on solving them. Instances with less then 4000 subproblems cannotsaturate a network of 1024 processors. All these instances can only gain good speed-ups up to 64 or 128processors. The computational times of hard problem as the pr86 or random 250 cities problems on thelargest network are between 200 and 800 seconds with at most 26000 subproblems.13
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0 50 100 150 200 250 300 350 400 450Fig. 1e Fig. 1fThe following �gures 1 - 3 show the solving of the pr76 instance of the TSP-Library on 256 processors(a) shows the lower bound on the processors (minimum, average and maximum) additionaly the upperbound and the optimal solution 108159 (dashed).(b) standard deviation of the lower bound of (a)(c) shows the number of subproblems during computation (minimum, average and maximum).(d) standard deviation of (c).(e) number of send messages (INFO) above (WORK)(f) standard deviation of (e) 14
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0 50 100 150 200 250 300 350 400 450Fig. 2e Fig. 2fFigure 1 shows our good load-balancing strategy with short idle times and little search overhead. Figure2 shows more idle times. Here the second weight function w# is turned o�. If we turn o� weight functionwLB instead of w# the computation is completely ine�cient, because now the load-balancer does notguaratee a best-�rst branch-and-bound strategy anymore. Appendix B shows a 3-dimensional view ofthe performance of load-balancing alogorithm. 15
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0 100 200 300 400 500 600 700Fig. 3e Fig. 3f5 ConclusionsIn this paper we presented a highly e�cient distributed algorithm, solving the symmetric traveling sales-man problem. We were able to solve instances of up to 318 cities in reasonable time. In general wecould achieve a nearly linear speedup for networks of up to 1024 processors, if the computation load washigh enough. If the workload is too small to saturate the whole network, which is often the case at thebeginning of the computation we propose to compute upper bounds by those processors who are idle in16



these phases. These upper bounds lead to a signi�cant reduction of the search space for our branch andbound procedures, since they enlarge the sets of forbidden and required edges. This technique can alsobe applied to other problems.The load balancing strategy was found to be very e�cient for the parallelization of best-�rst branch &bound algorithms, especially when using networks with short diameter as it is the case for the DeBruijnand Torus network. The used weight function of our load balancing strategy lead to equal workloaddistribution and minimal search overhead.Since the computation time for one branching step will increase using more sophisticated branch andbound algorithms, the speedup will also increase if the number of computed subproblems is constant.This implies that larger problems can be solved with increased speedup.Therefore we can conclude that the load balancing question for this problem has been solved althoughthe networks were very large.Appendix A: ProceduresPROC initialization()initialize local heap(Hpi)terminated := FALSEb&b:process:idle := FALSEUB := Cost(heuristic solution)weightLB :old := 0foreach neighbor j of pi doweightLB [j] := weight#[j] := 0last:info[j] := last:workLB[j] := last:work#[j] := 0if processor:ID = 0 thenwait for (WORK, initial:subproblem)insert into local heap(H, initial:subproblem)weightLB :old := wLB(pi) ; (= LB(initial:subproblem))ENDPROC balanceLB(j)if (weightLB [j]�wLB(pi) > �LB) thenif (timer � last:workLB[j] > workLB:delay) thenn := f(weightLB ; sendLB :rate)repeat n-timessend (WORK, get second subproblem (H)) to neighbor pjlast:workLB[j] := timerENDPROC balance#(j)if (w#(pi)� weight#[j] > �#) thenif (timer � last:work#[j] > work#:delay) thenn := (w#(pi)�weight# [j]) � send#:raterepeat n-timessend (WORK, get last subproblem (H)) to neighbor pjlast:work#[j] := timerEND 17
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Appendix B:Loadbalancing of the number of subproblems during computation of the pr76 of 17x17 torus
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