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Abstract

This work extends our research on motion coordination of free-range vehicular systems

based on concepts and results borrowed from resource allocation systems (RAS) theory,

to vehicular systems with limited communication range among the vehicles. Similar to

the earlier work, the employed model assumes the tessellation of the motion plane into

cells, which are allocated to the traveling vehicles in a controlled manner that ensures

collision-free and live motion. On the other hand, the limited communication range of

the vehicles implies that full synchronization of their access to the considered cells is not

possible any more, and yields new challenges for the deployed supervisory control policies.

To enable the development of supervisory policies capable of providing the necessary partial

synchronization of the cell allocation, we modify the structure of the adopted tessellation

by allowing the concurrent occupation of a cell by up to two vehicles at a time, instead

of only one, that was assumed earlier. This modification renders polynomially computable

the relevant maximally permissive cell allocation policy, and it enables the implementation

of this policy in the form of a distributed protocol that is feasible in the context of the

communication constraints that are considered in this work.

Keywords: Intelligent vehicular systems, motion liveness, motion safety, multi-agent sys-

tems, supervisory control, decentralized control, deadlock avoidance.



1 Introduction

The problem addressed in this paper concerns the traffic coordination for a fleet of vehicles that

are moving concurrently in a finite area, so that (i) there are no collisions among these vehicles,

and (ii) each vehicle reaches its destination in finite time. The second of these two requirements

is of a teleological nature, and it defines a notion of “liveness” for the vehicle motion. On the

other hand, the first requirement is clearly motivated by safety concerns. Yet, in this work

we will differentiate the terms “safe” and “safety” from the notions of collision freedom and

avoidance, since, by following some standard literature, we will need to use these two terms for

concepts and properties that relate more directly to the notion of liveness discussed above.

It can be generally argued that the establishment of collision-free and live vehicle motion is a

problem well-recognized in the existing literature, and it has been studied for a number of traffic

systems. In the prevailing approaches, each vehicle is abstracted to a “mobile agent”, and its

dynamics is described with models whose state evolves in continuous time. Some representative

works of this line of research can be found in [18, 3, 25, 14, 11, 13, 8] while a higher-level but

more comprehensive description of the pursued methods can be found in [12]. However, as

remarked in [18], while many of these works will guarantee collision freedom, very few of them

have actually considered the issue of motion liveness. And the few works that have addressed the

problem of liveness might suffer either from an inability to provide formal liveness guarantees,

or from scalability problems, due to the continuous-time nature of the underlying modeling.

Hence, more recently, and in an effort to address these computational and analytical chal-

lenges, the relevant research community has pursued the analysis and control of the considered

traffic systems through representations borrowed from the burgeoning field of hybrid dynam-

ical systems. Under this paradigm, the overall motion control problem is “decomposed” to a

number of subproblems that concern the system operation under different configurations – or

“modalities” – while a higher-level coordinator ensures that the system transitions among these

modalities generate a global behavior that is in line with the posed specifications and take place

in a stable and seamless manner. Typically, the control subproblem that pertains to each of

the aforementioned modalities is of a more “local”, and therefore, simpler nature. On the other

hand, the more “global” problem of the higher-level coordination is dealt through pertinent

abstractions that retain the information that is essential for the formal analysis and verification

of the sought properties, and for the synthesis of the necessary control logic, while concealing

all the operational details that might be irrelevant to that level of decision making. In this way,

the underlying problem complexity is effectively addressed in a “divide & conquer” manner.

Some indicative examples of such lines of work are those presented in [2, 5], while a more com-

prehensive exposition of the state-of-art of hybrid-system-based methods for the design, formal

verification and the control of many contemporary applications, including vehicular systems
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similar to those considered in this work, can be found in [1].

In line with the developments discussed in the previous paragraph, in [20] we proposed

a hybrid control scheme that establishes collision-free and live motion of free-range vehicular

systems through the tesselation of the motion area into a number of cells. These cells are

treated as “resources” that must be acquired by the traveling vehicles in order to execute

their designated trips. Collision freedom of the vehicle motion is ensured by preventing the

simultaneous occupation of any given cell by more than one vehicle. On the other hand,

establishing the liveness of the vehicle motion necessitates the coordination of the cell allocation

to the contesting vehicles, in a way that ensures that all vehicles are able to access the requested

cells and complete their motion. Hence, under the hybrid control scheme of [20], the original

(continuous) paths that specify the target motion for each vehicle are segmented into a number

of sub-paths, with each sub-path being defined by a particular cell occupation pattern by the

traveling vehicle. The faithful and successful execution of any given sub-path by a traveling

vehicle is the task of a local controller that is possessed by the vehicle itself and drives its

continuous motion. On the other hand, in [20], the control function that coordinates the cell

allocation to the contesting vehicles is supported by an external controller that communicates

asynchronously with the traveling vehicles, receiving requests by them to advance on their

next sub-path and granting the corresponding permissions. The synthesis of the necessary

control logic for this central coordinator leverages concepts and results from the area of liveness-

enforcing supervision of resource allocation systems (RAS) [19]. More specifically, in [20], the

resulting resource allocation problem is solved by an adaptation of Banker’s algorithm [7] that

establishes an efficient trade-off between operational flexibility for the underlying traffic and

computational tractability for the necessary control logic.

In this paper, we seek to adapt the control paradigm of [20] so that it applies to free-

range vehicular systems with limited communication capabilities. In the operational regime

considered in this paper, vehicles can communicate only locally, within the range of a few cells

centered around their current location, and therefore, the assumption of a central controller

that monitors and controls the entire cell allocation is not plausible any more. Hence, in this

new regime, vehicles must coordinate the allocation of the contested cells at a more local basis,

while eliciting from the surrounding vehicles additional information that might be necessary in

order to ensure collision-free motion and to assess the liveness retention of any contemplated

allocation. This information must be captured by means of a communication protocol that

propagates a series of inquiries to the vehicles occupying surrounding cells that are critical for

assessing the liveness retention of the attempted allocation and the collision freedom of the

resultant motion, and returns the obtained responses to the inquiring vehicle. The design and

validation of such a communication protocol adds an entirely new level of complexity to the

control problem under consideration, and it is the main focus of this work.
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More specifically, in the presented work, the design and deployment of the communication

protocol outlined in the previous paragraph is supported through the redefinition of the tes-

selation and the induced resource allocation scheme that were employed in [20]. Some key

elements of the new resource allocation model are defined by the requirements that (i) a cell

must be specified large enough to support collision-free travel of up to two vehicles in it, and

that (ii) the generated (continuous) paths must be such that the vehicle does not occupy more

than two cells at a time, except for some transient phases that correspond to the initiation and

termination of the vehicle motion. In the next section, we shall show that under the aforestated

conditions, the entire trip of any given vehicle can be decomposed to a number of sub-paths

that correspond to the traversal of each of the consecutive cells that define the vehicle route

from its origin to its destination, and that the local cell traffic generated by these sub-paths

is effectively controllable for collision avoidance and liveness by results already available in the

literature. Subsequently, the rest of the paper will focus on the higher-level problem of coordi-

nating the cell access among the contesting vehicles, introducing formally the new, distributed

control scheme, establishing its capabilities, and detailing the various functions and protocols

that are necessary for its effective deployment. To the best of our knowledge, this is the first set

of results to provide a (non-trivial) complete, provably correct solution to the combined problem

of collision avoidance and liveness-enforcement in free-range vehicular systems, that further-

more remains scalable with respect to the underlying fleet size and admits a natural distributed

implementation across the traveling vehicles.

The detailed organization of the remaining part of this document is as follows: Section 2

introduces the free-range vehicular systems of interest in this work, describes the proposed

hybrid control framework by defining the various control sub-problems to be addressed in

it, and also it outlines a set of solutions for the “lower-level / local” control subproblems

of this hybrid framework by building upon a set of results in the current literature. Section 3

characterizes formally the cell allocation function taking place in the considered traffic systems

as a new RAS model, to be called the FREE-RANGE*-2-RAS model, and it employs this

characterization towards a formal definition of the notions of liveness and liveness enforcement

for these systems. It also presents a series of analytical results that facilitate the development

of a distributed liveness-enforcing supervisor (LES). The detailed design of such a supervisor

is considered in Section 4. Special emphasis is placed on the communication protocol that is

necessary for decentralized implementation. This section also establishes the correctness of the

proposed control scheme with respect to the posed problem, and it demonstrates the dynamics of

this scheme and its supporting communication protocol through illustrative examples. Finally,

Section 5 concludes the paper and provides some directions for future work. Closing this

introductory section, we notice, for completeness, that a preliminary version of the presented

results, without the detailed specification of the proposed protocol and many of the proofs of
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Sections 3 and 4, was presented in [23].

2 The considered vehicular system and the overall structure of

the proposed control scheme

We consider a set of autonomous vehicles that move in a finite planar area A ⊂ R2. Each

vehicle is represented by a disk of radius ρ, and its motion is specified and controlled by

specifying and controlling the path to be followed by the center of the aforementioned disk;

the latter is typically defined in some parametric form: xc = xc(t), yc = yc(t), t ∈ [0, T ]. For

greater specificity, in the subsequent developments it is further assumed that, in terms of their

motion capabilities, the vehicles act as “unicycles”, possibly observing additional nonholonomic

constraints that are frequently associated with the motion of this entity [17]; however, our

results extend to other motion dynamics, like the “rear-drive car” dynamics analyzed in [17].

We also assume that the vehicles are familiar with their operational environment and they

have the capability to localize themselves in it, e.g., through a combination of measurements

that are obtained by an inertial measurement unit (IMU) and a GPS unit [9]. Finally, vehicles

can communicate directly with each other, but only within a limited range. This range must

support the communication requirements of the proposed control framework, and a lower bound

for it will be determined by the detailed specification and analysis of the functionality of this

framework.

From a higher, operational standpoint, the tasks / missions assigned to each vehicle can be

perceived as trip requests between an origin and a destination point that are located in motion

area A. It is assumed that the vehicles stay off the system before they start their travel, and

that they are retired from the system upon reaching their destination. However, during their

concurrent motion in the system, the vehicles share the available space, and in order to avoid

collisions, their motion profiles must be determined through some coordinating control logic.

Similar to [20], this coordination will be achieved through a hybrid control scheme that is based

on the tessellation of the motion plane into a number of areas, called “cells”.

More specifically, in the proposed control scheme, the motion area is tesselated through

a grid of horizontal and vertical lines centered at the origin of the coordinate system (x, y).

The resulting set of cells is denoted by W = {w[i, j] : i ∈ {−I, . . . ,−1, 0, 1, . . . , I}, j ∈
{−J, . . . ,−1, 0, 1, . . . , J}}, where −I, I, −J , and J are taken large enough to encompass the

entire (finite) area A, that supports the vehicle motion. For reasons that will be revealed in the

following, we request that the cell edges are of a length d ≥ 4ρ. Finally, given a point (x, y) ∈ A
and a cell w[i, j], we define

(x, y) ∈ w[i, j]⇐⇒ (i− 1) · d ≤ x ≤ i · d ∧ (j − 1) · d ≤ y ≤ j · d (1)
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Figure 1: The tesselation of the motion area considered in this work, the induced mapping

W(·), and the resulting segmentation of the considered vehicle routes into stages (i.e., maximal

segments of constant cell occupation).

We shall say that a vehicle (with its disk) centered at (xc, yc) occupies cell w[i, j] if and only

if (iff ) there exists (x, y) ∈ w[i, j] with ||(x, y)− (xc, yc)|| ≤ ρ, where || · || denotes the Euclidean

norm. This definition induces a further mapping, W, from the motion area, A, to the powerset

of W , 2W , that maps to any point (x, y) ∈ A, the cell subset W(x, y) ∈ 2W consisting of the

cells occupied by a vehicle centered at (x, y). A graphical illustration of this mapping W is

given in Figure 1. In this figure, the adopted tessellation is defined by the grid of the solid

horizontal and vertical lines, and the vehicle is depicted by the grey disk in it. It is not hard to

notice that a vehicle can occupy from one cell to four neighboring cells at a time. The number

of cells occupied by a vehicle is effectively determined by the relative positioning of its center

point (xc, yc) with respect to another partitioning of the motion plane, that is induced by the

original tessellation scheme and the vehicle geometry. In Figure 1, this induced partitioning is

defined by the depicted dashed lines.1

As discussed in the introductory section, the proposed control paradigm tries to establish

collision-free and live motion for the system vehicles, by controlling the vehicle access to the

various cells that are established by the tesselation of the motion area described in the pre-

vious paragraphs. In particular, it is enforced that a cell cannot be occupied by any more

than two vehicles at any point in time. On the other hand, vehicle trips are specified as a

sequence of cells to be traversed by the traveling vehicle while advancing from its origin to its

destination. In face of the aforementioned restriction for the cell occupancy, the cells defining

a vehicle trip can be perceived as “resources” that must be acquired and released by the ve-

hicle for the execution of the corresponding part of its trip. In the case of the example path

depicted in Figure 1, the cell sequence that defines the corresponding trip has the following

1An analytical characterization of this partitioning can be found in [20]; we forego the relevant details due to

space limitations.
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form: w[0, 0], w[0, 1], w[1, 1], w[2, 1].

The specification of the vehicle trips by a sequence of cells, as discussed in the previous

paragraph, has a number of fundamental implications for the dynamics of the generated traffic

and for the control function that must be imposed upon this traffic in order to ensure collision

freedom and liveness. For a start, the reader should notice that the specification of the vehicle

trips by a sequence of cells further implies that, with the exception of the motion-initiating

and terminating phases, a vehicle cannot occupy more than two cells at a time during its

entire trip. In particular, the overall trip decomposes into a series of stages where the vehicle

initially idles in its current cell trying to secure access to the next cell in its route, and as

soon as this access is secured, it crosses the boundary between the two cells in a way that

it does not occupy any further cell during this crossing, and subsequently it advances within

this new cell up to a point where it will have to wait until it gets access to the subsequent

cell. The boundaries that define and restrict the motion are induced by the mapping W(·)
that was discussed above. In Figure 1, the observation of these boundaries by the depicted

route is manifested by the fact that this route stays clear of the square regions around the cell

corners that are defined by: (id − ρ, jd + ρ), (id + ρ, jd + ρ), (id − ρ, jd − ρ), (id − ρ, jd + ρ),

for i ∈ {−I, . . . ,−1, 0, 1, . . . , I}, j ∈ {−J, . . . ,−1, 0, 1, . . . , J}}. On the other hand, since we

want to retain the vehicle capability to access any point in the motion area, we allow the origin

and the destination of any given trip to lie anywhere in this area, and we augment the vehicle

trips with two additional stages that correspond to the initiation and termination of the vehicle

motion. These stages are handled as “special events” by the proposed control framework, in a

way that is described in the next paragraph.

The stage-based decomposition of the vehicle trips discussed above, defines also the path-

planning and the corresponding motion control problem that must be addressed by each vehicle

as it executes any of these stages. As explained above, with the potential exception of the initi-

ation and termination stages, any other stage of the vehicle trip corresponds to its advancement

from a “boundary” location in its current cell to another “boundary” location in its next cell,

where it will have to negotiate its access to the subsequent cell. Furthermore, this advancement

must be performed in a way that (i) restricts the vehicle cell occupancy to its current and the

next acquired cell only, and (ii) avoids collision with any other vehicles that might be present in

these two cells. We also remind the reader that the spatial boundaries that enforce the above

restrictions are defined with respect to the partitioning of the motion area that is induced by

mappingW(·). Then, it can easily be checked that under the assumption that the cell dimension

d is at least equal to 4ρ, there exist feasible paths able to support the simultaneous traversal of

a cell by two vehicles moving between any pair of the cell edges. Furthermore, setting d ≥ 4ρ

(i) enables two vehicles occupying any given cell to rest side by side on the same cell boundary

while contesting their access to the same next cell, and (ii) ensures that two vehicles advancing
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between a pair of cells, but in opposite directions, can cross each other. It is also easy to see

that the paths to be followed by the traveling vehicles during their traversal of any given cell

can be defined smooth enough so that they can be approximated to any degree of accuracy by

the assumed vehicle dynamics; in particular, such an accurate path following can be achieved

by appropriately controlling the vehicle speed (“slowing down” these vehicles) [16]. One can

envision a variety of possible ways that these paths can be specified and coordinated among

the different vehicles, but space limitations do not allow an expansive treatment of this topic in

this work. Furthermore, under the assumptions for the vehicle dynamics and their localization

capabilities that were discussed in the opening paragraph of this section, and the additional

assumption that any pair of vehicles can communicate directly when located in the vicinity

of two neighboring cells, the aforestated control problem of the vehicle navigation across any

given cell can be addressed by results in the existing literature; a particular methodology for

dynamic path planning and collision avoidance that fits perfectly the above problem specifi-

cation is that presented in [4]. This method allows a set of vehicles with “unicycle”-type of

dynamics to reach their destination while avoiding collisions among themselves and observing

additional constraints that are imposed upon their motion, by combining the steering method

of dipolar navigation functions [24] with model predictive control [15]. In fact, the same method

can address the local coordination problem that corresponds to the motion initiation or termi-

nation phase of any given vehicle. The higher-level objective of such a stage will be to enable

the corresponding vehicle that initiates or terminates its motion, to reach its target location

within its current cell, while any neighboring vehicles must reposition themselves within their

current cells so that they “clear” the way for the former vehicle.2

Having described the vehicle dynamics and the control problem that coordinates the vehicle

motion during any single stage of their overall trip, in the rest of this document we shift

attention to the higher-level problem of coordinating the vehicle transition across their different

stages, and we detail the necessary protocols that will effect this coordination. We start in the

next section, by abstracting and analyzing this coordination problem as a resource allocation

problem, using concepts and results from the resource allocation system theory [19]. The

theoretical developments of the next section will provide the formal basis for the specification

and the analysis of the sought protocols in Section 4.

3 The FREE-RANGE*-RAS and an analysis of the correspond-

ing “state safety” problem

In this section, we introduce the FREE-RANGE*-2-RAS, that will formally model the resource

allocation dynamics taking place in the considered traffic system, and will also provide the

2The requirement that d ≥ 4ρ is sufficient for ensuring the feasibility of this maneuvering.
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basis for the specification of the proposed control logic and communication protocol. We start,

however, with the introduction of the more general RAS class of FREE-RANGE*-RAS. This

class is formally defined by the quadruple Φ = (R, C,P,D), where: 1) R is the set of the

system “resources”, and corresponds to the set of cells defined by the imposed tessellation.

2) C : R → Z+ is the “resource capacity function”, that determines the maximal number of

vehicles that can occupy a particular cell at a time. 3) P = {P1, . . . , Pn} is the set of “processes”

that abstract the transitions of the system vehicles through the cells that define their routes. In

particular, each process Pi, i = 1, . . . , n, consists of Ξi1,Ξi2, . . . ,Ξil(i) consecutive “processing

stages”, that represent the motion of vehicle Ai while traversing each of its route cells. 4)

D : Ξ = {Ξij | i = 1, . . . , n; j = 1, . . . , l(i)} → R is the “resource allocation function” specifying

the cells that are occupied by the vehicles at the various stages of their motion process. For

the sake of simplicity, in the sequel we shall use interchangeably the notation Dij and D(Ξij).

The FREE-RANGE*-k-RAS, where k ∈ Z+, is obtained from the FREE-RANGE*-RAS

with the additional restriction that C(R) = k, ∀k. Furthermore, the behavioral dynamics of

FREE-RANGE*-RAS can be represented by a Deterministic Finite State Automaton (DFSA)

(c.f. [10]), that is defined next.

Definition 1 The DFSA G(Φ) = (Σ, E,Γ, f, σ0,ΣM ) abstracting the feasible dynamics of a

FREE-RANGE*-RAS Φ = (R, C,P, D) is defined as follows:

1. The state set Σ consists of all vectors σ = [σ1, σ2, . . . , σn] ∈ Zn such that: (a) ∀i ∈
{1, . . . , n}, 0 ≤ σi ≤ l(i) + 1, and (b) ∀R ∈ R, a(σ,R) = |{σi | Di,σi = R}| ≤ C(R). Each

component σi of σ indicates the current stage of process Pi. In particular, σi = 0 indicates

that process Pi has not been initiated yet, while σi = l(i) + 1 indicates that process Pi has

been completed (and retired from the motion plane). For each R ∈ R, a(σ,R) indicates the

number of units of resource R that are allocated in state σ (or, equivalently, the number

of processes that hold R in state σ).

2. The event set E = {eij | i = 1, . . . , n; j = 1, . . . , l(i) + 1}, where for every i = 1, . . . , n:

(a) the event ei1 represents the initiation of process Pi by the allocation of the resource

Di1; (b) the events eij, j = 2, . . . , l(i), represent the advancement of process Pi from

processing stage Ξi,j−1 to processing stage Ξij through the corresponding adjustment of its

resource allocation; and (c) the event ei,l(i)+1 represents the termination of process Pi and

the release of the currently held resource Di,l(i).

3. For each pair (σ, eij), the state transition function f returns the new state σ′ = f(σ, eij),

whose components σ′k, k = 1, . . . , n, are given by

σ′k =

{
σk + 1 if k = i ∧ 1 ≤ j ≤ l(i) + 1 ∧ σk = j − 1

σk otherwise
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4. Function f is defined for a pair (σ, e) iff e ∈ Γ(σ), where the set of active events Γ(σ) is

defined by Γ(σ) ≡ {e ∈ E : σ′ = f(σ, e) ∈ Σ}.

5. The initial state σ0 = 0, which corresponds to the situation where no process has been

initiated, and therefore, all the system resources are free.

6. The set of marked states ΣM is the singleton {σM = [l(1) + 1, . . . , l(n) + 1]}, and it

expresses the requirement for complete process runs.

The reader should notice that the combination of items (1) and (4) of Definition 1 ensures

that, in the considered RAS dynamics, no cell is over-allocated with respect to its capacity.

In the sequel, we will use the expression “state σ′ is (resp., is not) reachable from state σ” to

describe the fact that there exists (resp., there does not exist) a feasible sequence of events that

drives the automaton from state σ to state σ′. In particular, a state σ ∈ Σ that is reachable from

the initial state σ0 will be simply characterized as reachable. The next definition introduces

some fundamental concepts that are necessary for reasoning about the liveness of the considered

traffic systems:

Definition 2 Consider a FREE-RANGE*-RAS specified by a quadruple Φ = (R, C,P, D), and

a state σ ∈ Σ of the corresponding DFSA G(Φ).

1. A process instance executing stage Ξij is dead in state σd ∈ Σ iff function f(σ, ei,j+1) is

not defined for any state σ reachable from σd, i.e., the process can never advance to its

next stage.

2. State σ is characterized as safe iff the marked state σM is reachable from state σ.3

3. The RAS state safety problem is the decision problem that, upon input Φ and σ, addresses

the question of whether or not state σ of RAS Φ is safe.

Clearly, a process instance will never become dead if it runs alone in the system. Its progress

can only be impaired by the presence of other processes, and the direct reason for that is the

formation of a deadlock, i.e., the development of a set of processes such that each of them in order

to advance to its next stage requests a resource unit that is currently held by some other process

in the set. In this paper, rather than detecting deadlocks, we will focus on testing whether or not

a state transition caused by the advancement of a process to its next state renders this process

dead. This will allow us to develop a distributed liveness-enforcing supervisory control policy

3As noticed in the introductory section, in the context of this work “(state) safety” is a concept that pertains

to the liveness of the resource allocation function; this term has been employed extensively in the relevant RAS

literature, and therefore, we decided to maintain it in spite of the fact that in the context of the coordination of

vehicle systems, safety typically implies collision avoidance.
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Figure 2: Graphical representation of an example state in FREE-RANGE*-2-RAS. The upper

part of the figure depicts the distribution of the vehicles as well as the direction of their motion

in state σ, and the lower part shows the corresponding graph F (σ).

for vehicular systems with limited communication range. The proposed approach is based on

[22] and requires depicting state σ in the form of a resource allocation graph F (σ) = (V,H).

Definition 3 Consider the DFSA G(Φ) that models the resource allocation dynamics of a

FREE-RANGE*-RAS Φ. The resource allocation graph representing a state σ of G(Φ) is a

graph F (σ) = (V,H) such that:

• The set of vertices is defined by the extended set of resources V = R∪ {R∞}, where R∞

is a dummy resource of infinite capacity.

• The set of edges H is defined by the set of active processes P ′, i.e., the set of processes

Pi ∈ P that in state σ execute a stage Ξij s.t. j ∈ {1, . . . , l(i)}. In particular, the edge

(corresponding to process) Pi goes from vertex R ∈ R to vertex R′ ∈ R iff, at state σ,

process Pi has been allocated resource R and for its next stage it requires resource R′.

Edge Pi goes from vertex R ∈ R to vertex R∞ if, at state σ, process Pi executes its last

stage,4 Ξi,l(i).

An example of the state representation in the form of a resource allocation graph is given

in Figure 2. Also, in the sequel, for any resource R ∈ R, we shall use the notation Suc(R;σ) to

denote the (not necessarily immediate) successors of R in graph F (σ). Then, using the above

introduced concepts, we can establish the following property for FREE-RANGE*-RAS.

4Here, as well as in the sequel, by ‘last stage’ of process Pi we understand Ξi,l(i), i.e., the last active stage of

Pi.
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Property 1 Consider a FREE-RANGE*-RAS specified by the quadruple Φ =< R, C,P, D >,

a state σ ∈ Σ of the corresponding DFSA G(Φ), and its graphical representation F (σ) = (V,H).

Then, a process Pi ∈ H executing stage Ξij is not dead iff in graph F (σ) there exists a path

p = 〈R1, R2, . . . , Rlp〉, lp > 1, from resource R1 = D(Ξij) to a resource Rlp ∈ R ∪ {R∞} that

has a free unit of capacity, and edge (R1, R2) corresponds to the advancement of process Pi from

stage Ξij to its next stage.

Proof: To prove Property 1, assume first that the specified path p exists. Then, there exists

a feasible sequence of events s = elp−1 , . . . , e1 such that event ek, k = 1, . . . , lp−1 corresponds to

a transition of a process instance executing stage Ξk with D(Ξk) = Rk to its next stage. Since

Ξ1 = Ξij , the considered process instance is not dead. To prove the reverse implication, assume

that the required path p does not exist; i.e., each resource that can be reached by a path p

starting with edge (Dij , Di,j+1) is fully allocated. The latter implies that the dummy resource

R∞ is not an element of any such path p. Hence, no process instance executing any stage on

a resource that is reachable by the considered paths p can ever leave the system or advance to

its next stage. Consequently, there exists no state σ′ reachable from σ that enables event eij ,

and so process Pi is dead in σ. �

The next property is a technical result that will be very useful in many of the subsequent

developments.

Property 2 Consider the DFSA G(Φ) of a FREE-RANGE*-RAS Φ, and a state σ ∈ Σ such

that (i) no process P ∈ P is dead in σ, and (ii) for some process Pi, the next state σ′ =

f(σ, ei,j+1) is defined. Then, if process Pi is not dead in state σ′, no other process is dead in

that state.

Proof: To prove Property 2, let R′ = Dij denote the resource currently allocated to

process Pi; for j = 0, R′ = R∞. Let R∗ denote the resource required for the next stage of

Pi, i.e., R∗ = Di,j+1 if j < l(i), and R∗ = R∞ otherwise. Moreover, if j < l(i) − 1, define

R′′ = Di,j+2, and let R′′ = R∞ otherwise.

Consider any process Pk 6= Pi and assume that Pk is at its r-th stage. Since Pk is not dead

in state σ, then, by Property 1, in graph F (σ) there exists a successor R of Dkr that has a free

unit. Assume now that in state σ′ process Pk is dead. This requires that in state σ′ either a)

R is no more a successor of Dkr, or b) R has no more a free unit.

The assumptions of Property 2 when combined with the definition of R′, R∗, and R′′, imply

that the only difference in the structure of graph F (σ′) with respect to graph F (σ) is that in

F (σ′) edge (R′, R∗) is replaced by edge (R∗, R′′). But then, case (a) can only happen if, in

F (σ), each path from Dkr to R includes R′. Hence, in state σ′, R′ is still a successor of Dkr,

and furthermore, it has a free unit of capacity (the unit released by the advancement of Pi).

But then, process Pk cannot be dead in σ′.
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On the other hand, since resource allocation state σ′ differs from resource allocation state

σ only in that resource R′ has one more free unit in it and resource R∗ one less free unit, case

(b) can only happen if R = R∗. However, if process Pi is not dead in σ′, then there exists a

successor of R∗ with a free unit; hence process Pk cannot be dead either.

Since in both of the two possible cases discussed above the assumption that Pk is dead

results in contradiction, the claim of Property 2 is true. �

The next property expresses the fact that in the considered RAS class, state safety is

equivalent to the absence of partial deadlock.5 The result is stated and proven in a way that

aligns with the broader developments of this section.

Property 3 Consider the DFSA G(Φ) of a FREE-RANGE*-RAS Φ such that the capacity of

each resource R satisfies C(R) > 1. Then, a reachable state σ of G(Φ) is safe iff no process is

dead in σ.

Proof: By Definition 2, state σ is safe iff the marked state σM (i.e., the RAS state when

each process has finished its run) is reachable from state σ. Clearly, if there exists a dead process

in σ, then σ is not safe. Thus, to prove Property 3, it is sufficient to show that: for any state

σ 6= σM such that no process is dead, (*) there exists an event e such that function σ′ = f(σ, e)

is defined and there is no dead process in state σ′ (since, then, the repetitive invocation of this

result a finite number of times, further implies the existence of an event sequence leading from

σ to σM ). To establish this last result, consider the DFSA G(Φ) described in the assumptions

of Property 3 and its set of active events Γ(σ). Since no process is dead in σ, and σ 6= σM ,

set Γ(σ) is not empty. There are only two possible cases of σ: a) no event in Γ(σ) renders

any process dead in state σ′, and b) there exists event ei,j+1 that renders process Pi dead in

σ′. In case (a), claim (*) is clearly true. For case (b) we shall show that there must exist

another process Pk that remains not dead when advancing to its next stage, and therefore, by

Property 2, there will be no dead process in the state σ′ that results from this advancement.

Let R′ = Dij , R
∗ = Di,j+1 and R′′ = Di,j+2 (i.e., R′, R∗ and R′′ denote respectively the

resources held by process Pi in states σ and σ′ and also the resource requested by it in σ′).

Consider the subgraph G of F (σ′) that is induced by the node subset {R′′} ∪ Suc(R′′;σ′). The

specification of G, combined with the fact that process Pi is dead in σ′, imply that G must

contain at least one strongly connected component, G′, with all the nodes of G′ corresponding

to resources that are allocated to capacity. Hence, R′ and R∞ are not nodes of G′. On the

other hand, G′ must contain the node corresponding to resource R∗, since otherwise, it would

also be present in F (σ) (we remind the reader that the only resources that have their allocation

5We emphasize that this equivalence between state safety and the absence of partial deadlock does not hold

true, in general. Examples of deadlock-free and yet unsafe RAS states in the context of the considered application

are provided in [20].
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altered during the transition from σ to σ′ are resources R′ and R∗). But then, state σ would

not be free of dead processes (all the processes allocated to resources in G′ would be dead).

Since R∗ belongs to G′, it is filled to capacity in σ′, and since C(R∗) > 1, there must exist at

least one process Pl that holds a unit of it in state σ. Furthermore, Pl must be dead in σ′ since,

otherwise, process Pi would not be dead, either (the developments of the previous paragraph

imply that, in F (σ′), the resources reachable from Pl are also reachable from Pi). The deadness

of Pl in σ′ implies the existence of another strongly connected subgraph of F (σ′), G′′, such

that (i) all the nodes of G′′ belong to Suc(R∗;σ′); (ii) they correspond to resources allocated to

capacity (and therefore R′ is not one of them); while (iii) R∗ is one of the nodes of G′′.
Hence, there must exist a process Pk 6= Pi that in state σ′ is allocated some resource R of

G′′ and it requests resource R∗ for its advancement. Clearly, this request is also present in state

σ and its satisfaction constitutes a feasible event of σ. Furthermore, since G′′ manifests the

deadness of the process Pl, there must be a path π in F (σ) leading from R∗ to R. The presence

of path π in σ further implies that advancing process Pk instead of process Pi will lead to a

state σ′′ in which process Pl is not dead. But then, process Pk is also not dead (since, reasoning

as in the case of the advancement of process Pi above, if Pk were dead, resource R∗ should

belong in a subgraph G′′′ of F (σ′′) consisting of nodes corresponding to resources allocated to

capacity to dead processes). �

Next we leverage the results of Properties 1–3 in order to articulate the safety conditions

that will define the logics of the sought supervisor.

Theorem 1 In FREE-RANGE*-RAS with C(R) > 1, ∀R, allocation of the available resource

R∗ to process Pi executing stage Ξj in a safe state σ and with D(Ξj) = R′, leads to a safe state

σ′ iff any of the following statements holds true in state σ (or, equivalently, in graph F (σ)):

1. j + 1 = l(i), i.e., the next stage of Pi is its last one.

2. Allocation of resource R∗ to process Pi does not fill R∗ to capacity.

3. Resource R∗ contains a process at its last stage.

4. If j < l(i)− 1, the resource R′′ = Di,j+2 has a free unit or it contains a process at its last

stage.

5. R′′ = R′.

6. Resource R′ is a successor of R∗ or of R′′.

7. There exists a successor R 6= R∗ of R′′ that has a free unit or it contains a process at its

last stage.
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8. There exists a successor R of R∗ that has a free unit or it contains a process at its last

stage.

Proof: By Property 3, to prove this theorem, it is sufficient to show that no process is

dead in state σ′ iff any of the conditions (1–8) holds. Furthermore, under the assumptions

of Theorem 1, Property 2 asserts that there will be no dead processes in state σ′ as long as

the advanced process Pi is not dead in σ′. Hence, to prove the sufficiency part of Theorem 1,

it suffices to show that any of the conditions (1-8) will imply that process Pi is not dead in

σ′. For conditions (1), (4), (5) and (7) this implication is immediate, when taking also into

consideration Property 1. For condition (2), (3), (6) and (8), notice that according to the

argument developed in the proof of Property 3, the deadness of Pi in σ′ would imply that R∗ is

part of a strongly connected component of F (σ′) consisting of nodes corresponding to resources

allocated to capacity. But it is easy to see that all these four conditions negate the development

of the aforementioned structure.

To prove the necessity part of Theorem 1, we will show that if none of conditions (1–8) holds

then process Pi must be dead in σ′. Indeed, it can be easily checked that if none of conditions

(1–8) holds, the resource set R′′ ∪ Suc(R′′;σ′) will consist of resources filled to capacity with

processes requesting some other resource in this set. But then, Property 1 implies that process

Pi is dead. �

We close the developments of this section with some complexity considerations regarding

the tests proposed in Theorem 1.

Theorem 2 The evaluation of conditions (1–8) of Theorem 1 can be performed in time O(|P|),
where |P| denotes the number of active processes in the underlying DFSA G(Φ). 6

Proof: Clearly, conditions (1–5) of Theorem 1 can be assessed in time O(1). Regarding

conditions (6–8), we first notice that the only part of the graph F (σ) that is relevant for the

assessment of these conditions is the subgraph F ′(σ) determined by the resources allocated

to the various processes, the resources that constitute immediate requests for these processes,

and the edges that represent the posed requests. Clearly, the size of F ′(σ) is O(|P|), and

furthermore, under pertinent storage of the necessary information, the time that is required for

the construction of F ′(σ) is also O(|P|). Once F ′(σ) has been constructed, the computation of

the successor sets of R∗ and R′′ can be performed in linear time with respect to the graph size

[6], which further implies that conditions (5–7) can be assessed in O(|P|). �

In the next section, we discuss how the above results can facilitate the deployment of a

liveness-enforcing supervisor (LES) for the vehicular systems considered in this work that is

maximally permissive and can be implemented in a distributed manner.

6We remind the reader that in the considered application context, the active RAS processes abstract the

running vehicle trips, and therefore, |P| is practically bounded by the fleet size.
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4 Distributed implementation of the maximally permissive LES

4.1 Some assumptions and stipulations for the proposed control framework

The developments of the previous section have established that under the resource allocation

dynamics induced by the tesselation scheme of Section 2 and formalized through the automaton

of Definition 1, the advancement of a vehicle Ai from its currently held cell R′ to the next

requested cell R∗ is admissible iff (i) cell R∗ is currently allocated to less than two vehicles and

(ii) at least one of the eight conditions of Theorem 1 holds true. In the subsequent discussion,

condition (i) defines a notion of feasibility (w.r.t. the considered resource allocation policy) for

the contemplated vehicle advancements. On the other hand, condition (ii) defines the notion

of safety for these advancements (i.e., the preservation of the liveness of the underlying traffic).

In the context of the distributed control scheme to be presented in this section, vehicle Ai

needs to resolve the two issues of feasibility and safety for any contemplated advancement to

a next cell through a communication protocol that will enable it to collect all the necessary

information while leveraging the communication capabilities and the information that is pos-

sessed by the other vehicles. If the outcome of this communication reveals that the aforestated

two conditions are satisfied, vehicle Ai will allocate R∗ to itself and it will advance to that cell,

eventually releasing its current cell R′. If, on the other hand, it is found that some of these two

conditions is violated, vehicle Ai will go into a waiting mode and attempt its advancement at

a later time. For the reasons to be explained in the sequel, this time is randomly selected from

an exponential distribution with some rate λ.

Next, we present a series of assumptions and stipulations that provide further specificity to

the operational scheme that is outlined in the previous paragraph.

1. Each vehicle Ai has only knowledge of its own local state s(Ai), that includes the pa-

rameters characterizing the state of the vehicle in, both, the continuous and the DFSA

model that characterizes the cell allocation. The information about the state of any other

vehicle, Aj , can be obtained by querying Aj , that replies with the information reflecting

its state at the time of handling the query.

2. A vehicle can query directly only the vehicles that are currently within its communication

range. The structure of the considered protocol requires that this communication range

is no less than
√

4(d+ ρ)2 + (d− 2ρ)2. To obtain information from beyond this area,

the query must be propagated from less to more distant vehicles. The communication

protocol that facilitates this interaction must ensure that each query is handled in finite

time.

The last part of Assumption 2 above ensures that a query initiated by a vehicle Ai will

be resolved in finite time. This resolution implies that either (i) vehicle Ai has obtained an
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explicit response to its question, or (ii) it has inferred a response through the observation of

the overall communication process initiated by this query, or (iii) it was not able to obtain a

definite response to the question underlying its query, and therefore, it will have to repeat the

query at a subsequent time.

Furthermore, as explained in the opening part of this section, the queries introduced in

Assumption 2 above intend to help a vehicle to assess whether a contemplated cell advance-

ment is admissible or not. But the potential communication latency that is suggested by this

assumption, when combined with the asynchronous operation of the proposed control scheme,

further imply that by the time vehicle Ai receives some information about the state of some

other vehicle Aj , the state of vehicle Aj might have actually changed. Clearly, the safety as-

sessment employed by the proposed allocation policy must be robust to such changes. We will

demonstrate in the sequel that the LES determined by Theorem 1, and implemented by the

proposed control scheme, satisfies this requirement.

An issue that arises by the asynchronous operation of the system vehicles, and needs par-

ticular attention in the proposed control framework, concerns the resolution of the potential

conflict between two (or even a larger number of) vehicles that try to simultaneously resolve the

safety of the allocation of the same cell R to themselves. In the context of centrally coordinated

resource allocation, this issue is immediately resolved by the serialization of the decision-making

process that results from the vehicle interaction with the central coordinator. In the considered

operational scheme, this conflict must be explicitly addressed by the proposed control scheme.

Hence, we further stipulate the following:

3. At any time point, only one vehicle can make a decision about the allocation of a particular

cell. That is, through an appropriate communication protocol, a vehicle should obtain

first the testing rights, i.e., the exclusive rights to test the possibility of the allocation of

the next-needed resource R∗ to itself.

4. During the time of calculating the decision, the vehicle having the testing rights tentatively

allocates the resource in question to itself. Depending on the obtained result, this tentative

resource allocation either turns into a stable one or it is canceled.

5. During the period of the tentative allocation of R∗ discussed in item #4 above, the vehicle

responds to queries regarding the availability of R∗ as if its allocation of R∗ was stable.

6. During its transitional phase from a cell Dij to Di,j+1, vehicle Ai responds to queries

regarding the feasibility of the allocation of cells Dij and Di,j+1 as if it is an occupant of

both cells. On the other hand, vehicle Ai responds to queries regarding the safety of the

allocation of cells Dij and Di,j+1 as if it is an occupant of cell Di,j+1 only.
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Stipulations (5) and (6) are necessary for establishing the validity of the proposed protocol;

their particular role will be revealed in the next section, that discusses the detailed protocol

specification and its dynamics.

4.2 The distributed control scheme and its supporting protocol

This section details the distributed control scheme that is deployed at the top layer of the hybrid

controllers that govern the motion of the traveling vehicles, and seeks to ensure the safety of the

resource allocation that is manifested by the vehicle advancement among the cells that define

their trips. From the discussion of the previous sections, this control layer must also handle (i)

the vehicle communication that will provide the information that is necessary for the control

function, and (ii) the supervision of the underlying motion processes; this last task involves

the authorization of the execution of the various motion segments that (de-)compose the entire

vehicle trip, and the monitoring of the completion of these segments. Figure 3 depicts the basic

functionality implemented at this layer of the control architecture that is embedded in any

single vehicle. In the depicted protocol, the vehicle operation is driven by the handle events

and handle messages control blocks, which work in parallel. The blocks denoted with bold

names realize procedures that will be explained in more detail in the sequel. Furthermore,

in the following discussion, we will use the symbols R′, R∗, and R′′ as in the statement of

Theorem 1; i.e., R′ will denote the cell occupied by vehicle Ai for the execution of its current

stage Ξij , R
∗ is the cell required by Ai for its next stage, Ξi,j+1, and R′′ is the cell required for

stage Ξi,j+2.

The progress of a vehicle Ai on its designated trip is supervised by the following control

loop:

1. Set j = 0.

2. Try to obtain the exclusive rights to attempt allocation of cell R∗, required for the next

stage, Ξi,j+1.

3. If these rights are granted, i.e., if there is no conflict with another vehicle in accessing R∗,

attempt the allocation. Otherwise, go into a random delay and repeat step (2) at the end

of this delay.

4. If the allocation succeeded, advance, by entering the cell R∗ corresponding to stage Ξi,j+1,

and de-allocating R′. If Ξi,j+1 is the last stage, complete the entire trip and deallocate R∗.

Otherwise set j := j + 1, authorize the motion segment corresponding to the transition

of cell R∗, and go to step (2) once notified that this motion segment has been completed.

5. If the allocation attempted in steps (2-3) did not succeed, go into a random delay and

repeat step (2).

18



timeout_rand

handle events
handle

messages

whois

j = 0

START

FROM
other agents

TO
other agents

Y N

reached  end of

sector Xij while

R* not allocated

entirely entered

sector Xi,j+1

is the

last sector ?

Xij

deallocate R*

complete route

EXIT

deallocate R'

R' = D(X X Xij i,j+1 i,j+2),  R* = D( ),  R'' = D( )

j = j + 1stop motion

free

moi

send_mes(*)

rec_mes(*)

set_timer_randcontinue motion

tentatively
allocate(R*)

allocate R*

deallocate R*

c1 = ?

2

1

0

test_safety(R*)

allocation
safe ?

Y

Y

N

N

c := content(R*)

messages :

conflict ?

conflict

whorests

Figure 3: The basic structure of the control logic that is implemented at the top layer of the

vehicle controller and coordinates its advancement among the various cells that define its trip.
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6. When the last cell is deallocated, exit.

Next we detail the control logic that determines the admissibility of a contemplated re-

source allocation and the communication protocol that supports the execution of this logic.

The allocation procedure is based on Theorem 1 and the communication protocol implements

the assumptions presented in the previous section. From a more physical standpoint, vehicle

communication is based on the broadcasting of various types of messages that are received and

processed by any vehicle that is located within the communication range of the broadcasting

vehicle. The protocol for handling those messages is depicted in Figure 4, and it is detailed

in the subsequent discussion. Furthermore, the structure of these messages is depicted in the

bottom-left part of Figure 4. More specifically, a message consists of the header and the message

body, where the former part includes the information on the type of the message, addressed

cell, sender cell, message creator ID, and time-stamp, and the latter contains data dependent

on the message type.

To make an allocation decision, vehicle Ai proceeds as follows:

1. Ai first checks the feasibility of the allocation, i.e., the number of vehicles that occupy

cell R∗. To this end, Ai executes procedure content(R∗) (see Figure (5a)), which sends a

message of type whois, addressed to the vehicles occupying cell R∗, and sets the timer.

A recipient of this message, say vehicle Ak, is supposed to answer it with a message of

type moi that conveys the information about its status. More specifically, the content of

this message is the pair c(moi) = (c1(moi), c2(moi)) ∈ {(1, 1), (1, 0)}, that is interpreted

as follows: c1(moi) = 1 denotes the fact that the disk of vehicle Ak overlaps with R∗;

c2(moi) = 0 represents the fact that Ak is about to leave R∗, i.e., either it has already

been allocated the cell needed for the next stage or its current stage is the last one;

finally, c2(moi) = 1 if neither of the last two conditions is true. If, while awaiting the

response, vehicle Ai receives a query whois from another vehicle that targets the same

cell R∗, Ai signals conflict and exits. The same happens when, as a response to its

own message, vehicle Ai receives message conflict from another vehicle. If no answer is

received in a specified time window, Ai assumes that cell R∗ is free, which implies that the

safety condition (2) is true, and the vehicle allocates the cell to itself. If Ai receives two

answers (i.e., the component c1=2, in the c data structure depicted in the computation

of Figure (5a)), then resource R∗ is filled to capacity and the attempted allocation fails.

2. If vehicle Ai receives only one response – i.e., c1 = 1 and, therefore, one unit of R∗ is free

– then, Ai tentatively allocates a unit of R∗ to itself and executes procedure test safety

(see Figure 6), to test the conditions (1–8) of Theorem 1. If any of these conditions holds

true, then vehicle Ai allocates R∗ to itself in a stable manner. Otherwise, the allocation

test fails and Ai de-allocates R∗. During the period of tentative allocation of R∗, vehicle
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Figure 5: (a) Procedure content(R∗) that checks the allocation state of cell R∗ in a mutually

exclusive mode, and (b) procedure stable content(R) that returns the number of vehicles in R

that are not about to leave it (i.e., neither at their last stage nor already allocated the resource

for their next stage).

Ai responds to queries of other vehicles as if it is a stable holder of the resource. Since

conditions (1) and (5) refer to the route of vehicle Ai, they can be immediately checked

locally. Also, conditions (2) and (3) will be true or not depending on whether the value

of component c2, that was returned by the execution of procedure content(R∗), is equal

to 0 or to 1. If none of conditions (1–3) and (5) are true, vehicle Ai checks conditions

(4) and (6-8), which involve the more complicated task of assessing the existence of a cell

R 6= R∗ that is not fully occupied and lies on a path that starts from R′′ or R∗.

3. To test condition (4), vehicle Ai executes first the procedure stable content(R′′) (see

Figure (5b)). This procedure sends the message whorests to the vehicles located in cell

R′′, awaits their answer through message moi, as in the case of the query whois, and

checks the sum c2 of the values in the corresponding fields of the received responses.

If c2 < 2, i.e., if R′′ is not fully occupied or one of its occupants is about to leave,

procedure test safety sets the value safe = true and exits.7 Otherwise Ai proceeds to

7We also notice that it is the support of the procedure stable content(R′′) that sets the lower bound of the

vehicle communication range that was provided in Section 4.1. More specifically, this bound is obtained by the

need to reach a vehicle that has allocated cell R′′ to itself but it has not entered this cell yet.
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Figure 6: Procedure test safety(R∗) that establishes whether or not allocation of R∗ to vehicle

Ai is safe, according to the (transition) safety characterizations of Theorem 1
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test conditions (6–8) and sends a message of type request to cells R′′ and R∗. A recipient

of request, say vehicle Ak, initiates a recursive procedure (see Figure 4) that performs

the following operations:

(a) Checks the creator ID and time-stamp of the received message to see whether the

same request message has been received earlier through a different path. If so, it

exits.

(b) Checks the stable content, c2, of the vehicles located in cell R that is required for

the next stage of vehicle Ak.

(c) If c2 = 2 (i.e., a free unit cannot be guaranteed in cell R), Ak sends a request message

to the vehicles occupying R. Otherwise, i.e., if c2 < 2, a resource (cell) with a free

unit is found. This is communicated back to vehicle Al, that had sent the request

message to Ak, by a message of type free.

(d) As already observed in the earlier discussion, if vehicle Ai receives a request message

addressed to the holders of the contested cell R∗, it responds as if it was one of the

current holders of that cell, following steps (a-c) above. On the other hand, upon

the reception of a request message addressed to the holders of resource R′ and

pertaining to the allocation request initiated by itself, vehicle Ai infers the safety of

the contemplated allocation, setting safe = true in procedure test safety.

In the next section we provide some examples that will demonstrate and concretize the

control logic and the communication protocol that were presented in the previous paragraphs.

The correctness of this control scheme with respect to the stated objective of ensuring collision-

free and live motion for the underlying traffic system is established in Section 4.4.

4.3 Illustrative examples

To illustrate the operation of the distributed control logic and the protocol that were defined

in the previous section, let us consider the state σ of the FREE-RANGE*-2-RAS depicted in

Figure 2. For each vehicle Ai, i ∈ 1, . . . , 10, the figure shows the resource R′(i), currently

allocated to the vehicle, and the next-required resource R∗(i). The resource R′′(i) = Di,j+2, for

each vehicle Ai, is as follows: R′′(1) = R2, R
′′(2) = R4, R

′′(3) = R∞, R′′(4) = R3, R
′′(5) = R7,

R′′(6) = R6, R
′′(7) = R2, R

′′(8) = R8, R
′′(9) = R4, R

′′(10) = R∞. Also, as can be noticed in

Figure 2, for each vehicle Ai (or, equivalently, process Pi), there exists a path in graph F (σ)

that starts from the edge labeled with i and ends with a resource that has a free unit of capacity

(R7 in the case of i ∈ 1, . . . , 8, R5 for i = 9, and R10 for i = 10). Thus, by Property 1, no

process is dead in the depicted state σ, and by Property 3, state σ is safe. Since the vehicles

operate in parallel and asynchronously, there are various possible directions for the evolution
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of state σ. Below, we consider a few possible scenaria. In their description, we will use the

notation ‘Ai → Rj ’ to express the fact that vehicle Ai attempts to transition to cell Rj = R∗(i)

and tests the feasibility and safety of allocating to itself (a capacity unit of) that cell.

1) A9 → R5. To perform this test, in the main loop of its motion control procedure (c.f.

Figure 3), vehicle A9 sets R′ = R10, R
∗ = R5, R

′′ = R4, and initiates procedure content(R5) (c.f.

Figure 4(a)). Since no other vehicle attempts to allocate R5 to itself, there occurs no conflict,

and since there is no vehicle in cell R5, the query produced by send mes(whois,R5) is not

responded. Hence, procedure content eventually times out with the values c = (c1, c2) = (0, 0)

and conflict = false. This allows A9 to allocate R5 to itself and continue its motion into this

cell.

2) A4 → R2. As in the previous scenario, the considered resource is contested by vehicle A4

only, and therefore, no conflict occurs in acquiring the testing rights. However, when testing

the content of R2, vehicle A4 receives two messages of the type moi, from vehicle A2 and from

vehicle A8, both with c = (1, 1). Hence, the procedure content exits with the value c1 = 2,

indicating current unavailability of R2. This makes vehicle A4 set a timer and suspend any

further allocation attempt until the timeout, when the testing will be repeated.

3) A6 → R7, A7 → R7 and A1 → R7. In this case, each of the three vehicles attempts to

allocate to itself the same cell, which may produce a conflict when the procedure content(R7)

is executed at the same time by two or three vehicles. However, due to the random delay in

the repetition of the procedure, eventually one of the vehicles will exit content(R7) with the

values conflict = false and c1 = 1 (the latter value is set as a result of the answer moi from

A4).
8 The winning vehicle tentatively allocates R7 to itself and begins the execution of the

test safety(R7) procedure (c.f. Figure 6). Moreover, from this point on, in the case of a query

whois or whorests addressed to cell R7 by any of the other vehicles, this vehicle responds as

if it was a stable holder of resource R7, i.e., with the value c = (1, 1) sent in the message moi.

The remaining part of this scenario depends on which vehicle has been the winner of the testing

rights for R7. Let us consider the following cases:

3.1) A6 → R7. Since none of the conditions in the first box of test safety(R7) holds, the

process control is passed to function stable content(R6) (c.f. Figure 4(b)) that tests the number

c2 of vehicles in R′′(6) = R6 that are not yet able to leave it. To do this, vehicle A6 sends a

query whorests to R6, receives answer moi with data (c1, c2) = (1, 1) from A4, and so it finds

out that c2 = 1. Thus, test safety(R7) exits with the value safe = true, which allows vehicle

A6 to change the tentative allocation of R7 to a stable one, and to proceed further in the same

way as vehicle A9 in scenario (1).

3.2) A7 → R7. Vehicle A7 begins in the same way as in scenario (3.1), but in this case,

the execution of stable content(R2) returns the value c2 = 2, since, in the depicted state, re-

8The claim in this sentence is formally established in the next section; c.f. Proposition 2.
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source R′′(7) = R2 is occupied in a stable manner by two vehicles. Consequently, the procedure

test safety(R7) follows the right path emanating from its second conditional block (c.f. Fig-

ure 6), i.e., initiates a propagation of message request along the paths starting from R∗(7) = R7

and from R′′(7) = R2, in order to find out if any of these paths contains resource R′(7) = R8 or

a resource R such that c2 = stable content(R) < 2. Thus, vehicle A7 sends two requests, ad-

dressed to the vehicles in cells R7 and R2. The recipients of these messages follow the procedure

depicted in Figure 4, that is:

- A4 checks c2 = stable content(R2), and since c2 = 2, it relays request to R2.

- A2 and A8, occupying cell R2, receive the same request twice, from A7 and A4, yet

undertake the appropriate action only after receiving the first message, while the next one is

ignored. The vehicles check c2 = stable content(R3), and since c2 = 2, each of them sends

request to R3.

- A3 and A5, occupying cell R3, receive the two request messages issued by A2 and A8,

responding to the first and ignoring the second. In response to the first request, they check

c2 = stable content(R8), and since c2 = 2, each of them sends a request message to R8.

- A6, occupying cell R8, receives the two request messages issued by A3 and A5, and ignores

the second one. In response to the first, it checks c2 = stable content(R7), and it obtains an

outcome c2 = 2, since both vehicles A4 and A7 declare themselves as stable holders of this

resource. Hence, A6 proceeds with the relay of the request to the holders of resource R7.

- On the other hand, when receiving the first request from A3 or A5, vehicle A7 recognizes

itself as the initiator of this request. In response to this event, vehicle A7 exits procedure

test safety with the value safe = true, changes the allocation status of R7 from tentative to

stable, and proceeds further as in scenario (1).

3.3) A1 → R7. This scenario starts similarly to scenario (3.2). Vehicle A6 finds out that

c2 = stable content(R2) = 2, and therefore, it initiates the propagation of message request,

that is first sent to R∗(1) = R7 and R′′(1) = R2, and then relayed, through R3 and R8, back

to R7. Yet, in contrast to case (3.2), neither a resource R 6= R∗ with stable content < 2

nor cell R6, that is currently occupied by A1, is reached through the aforementioned relay.

Thus, procedure test safety will time out and exit with the value safe = false. Consequently,

vehicle A1 cancels its temporary allocation of resource R7 and suspends its activity for some

random time, after which it repeats the same step A1 → R7. The reader should notice that the

above result indeed prevents vehicle A1 from becoming dead; allocation of R7 to A1 in the cell

allocation depicted in Figure 2 would produce a deadlock involving vehicles A1, A2, . . . , A8.
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4.4 Establishing the correctness of the distributed control scheme and the

supporting communication protocol

In this section we establish the correctness of the proposed control scheme and the supporting

communication protocol with respect to the stated objective of ensuring collision avoidance

and liveness for the underlying traffic system. Hence, in line with the opening remarks of

Section 4.1, we need to establish that under the proposed control scheme, the advancement of

a vehicle Ai from its currently held cell R′ to the next requested cell R∗ is admissible iff (i) cell

R∗ is currently allocated to less than two vehicles, and (ii) at least one of the eight conditions of

Theorem 1 holds true. Furthermore, we need to prove that the communication protocol itself

does not create any additional dynamics that would permanently stall the advancement of some

vehicles.

A particular structure that will facilitate the development of the aforementioned results is

the automaton Kij depicted in Figure 7. This automaton abstracts the dynamics of a vehicle

Ai that is in cell R′, corresponding to the (j − 1)-st cell in its trip, and seeks the allocation of

the next cell, R∗, according to the logic of the proposed control scheme. From the standpoint

of our analysis, this process involves four key states, Ξi,j−1, βij , αij and Ξij . The semantics of

those states, and of the available transitions among these states, are defined in Figure 7 itself.

Furthermore, the resource allocation dynamics that are experienced by vehicle Ai as it tries

to secure and traverse the entire sequence of cells that define its trip, can be captured by a

“cascade” of automata similar to that depicted in Figure 7, for j = 1, . . . , l(j) + 1, that are

merged through the corresponding states Ξij ; we shall refer to the resulting automaton as the

automaton Ki. Finally, the dynamics of the entire traffic system can be abstracted through

an automaton K that results from the composition of the automata Ki in a way that further

observes the structure of the underlying RAS and the control and communication logic that is

outlined in Section 4.2. In particular, the state σK of this automaton is defined by the state of

each vehicle Ai with respect to the corresponding automaton Ki.

For the needs of the subsequent developments, it is also important to notice that while

in states Ξi,j−1, βij and αij of automaton Kij , vehicle Ai is actually allocated to cell R′ =

D(Ξi,j−1), and only when transitioning to state Ξij does Ai advance, initially logically and

subsequently also physically, to cell R∗ = D(Ξij). Hence, in a DFSA-based representation that

traces only the advancements of vehicle Ai among the various cells that define its trip (i.e., the

execution of the events eij in the corresponding automaton Ki), the three states Ξi,j−1, βij and

αij of each automaton Kij can be aggregated to a single state; let us denote this state also by

Ξi,j−1, and the automaton that results from Ki through the aforementioned aggregation by Gi.

The composition of the automata Gi, corresponding to all vehicles Ai, in a way that respects

the requirement that no cell is allocated to more than two vehicles in any (global) state, is the

automaton G(Φ) of Definition 1 in Section 3. In particular, the events eij in automata Kij are
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Figure 7: The automaton Kij abstracting the dynamics of vehicle Ai’s efforts to secure its

transition from the (j − 1)-st cell to the j-th cell of its route.

in direct correspondence with the elements of the event set E introduced in Definition 1.9

In view of the formal abstractions that were defined in the previous paragraphs, the first of

the two key results that were outlined in the beginning of this section can be stated and proven

as follows:

Proposition 1 Consider a state σK of automaton K and its corresponding state σ in automa-

ton G(Φ). Then, if σ is a safe state of G(Φ), the occurrence of an event eij in K will lead to

a state σ′ of G(Φ) that is also safe.

Proof: First we notice that from the protocol description in Section 4.2, it is clear that

no vehicle will try to allocate a new cell to itself while that cell is occupied by two vehicles.

Furthermore, a vehicle Ai that has acquired the testing rights for its next requested cell R∗ can

rest assured that the number of vehicles occupying this cell may increase only through its own

decision to allocate the cell to itself. Hence, the decision by a vehicle to allocate a cell to itself

through a type-e event will never violate the stipulation that a cell is never allocated to more

than two vehicles, and σ′ is indeed a valid state of the automaton G(Φ).

Next, we establish the safety of such allocations. As remarked in Section 4.2 (and further

stated in Figure 7), the decision of a vehicle Ai to turn the request for its next cell into a stable

9This correspondence should also be evident from the characterization of the events eij in Figure 7.

28



allocation (in other words, the execution of a type-e event) is triggered by the inference reached

by vehicle Ai that one of the conditions of Theorem 1 holds true. A complication for this part

of the proof arises from the potential latency between the time that such a condition is detected

in the system and the time that the vehicle is informed about the occurrence of this condition

and determines to act with a type-e event. This remark is especially true for conditions (4),

(6), (7) and (8) of Theorem 1. In particular, a condition of type (4), (6), (7) or (8) might

have been detected in a state σ̂ that precedes the current state σ, and this particular condition

might not be true anymore in state σ. To deal with this complication, next we use an inductive

argument that is based on the number of transitions, ν, that have taken place in the evolution

of the automaton G(Φ).

The base case of this induction is defined by ν = 0. Then, irrespective of what is the

particular condition that triggers the next event ei, σ̂ = σ, and the result of Proposition 1

follows immediately from Theorem 1.

Next, we assume that the first ν transitions of G(Φ) have maintained the safety of its state

σ, and we establish that the (ν + 1)-st transition will also lead to a safe state σ′. First, let us

consider the case where the next transition is triggered by the inference of conditions (1) or (5)

by vehicle Ai. From the content of these two conditions, it is clear that σ̂ = σ, and therefore,

the safety of the next state σ′ follows immediately from Theorem 1. The equation σ̂ = σ

holds true even in the case that the inferred condition is condition (2) or (3); more specifically,

this equation results from the content of these two conditions and the remark provided in the

opening part of this proof that the number of vehicles occupying cell R∗ can increase only

through the decision of vehicle Ai to allocate this cell to itself in a stable manner. Hence,

conditions (2) and (3) are immediately resolved through Theorem 1, as well.

For conditions (4), (6), (7) and (8), the equation σ̂ = σ might not be true anymore. Next,

we argue the safety of state σ′ for the case of condition (4); the remaining three cases can be

argued in a similar manner. For condition (4), first we consider Case (a) where this condition

was satisfied in state σ̂ through the presence of a vehicle Aj in cell R′′ executing its last stage. If,

in state σ, vehicle Aj is not present in R′′ any more, then, there are two possibilities regarding

the allocation of the corresponding capacity unit of R′′ in σ: (a-i) This capacity unit is free.

(a-ii) This capacity unit is allocated to another vehicle Al. In case (a-i), condition (4) is still

true in state σ; hence, the execution of the considered event eij in it leads to a safe state σ′. In

case (a-ii), the inductive hypothesis implies that vehicle Al is not dead. Hence, by Property 1

of Section 3, there exists a path leading from R′′ to a resource R of free capacity, possibly R∞.

Furthermore, this free unit is not the unit tentatively held by Ai on R∗, since the allocation

of Al to R′′ took place at some state σ̃ that succeeded state σ̂, and therefore, vehicle Ai had

already performed that tentative allocation. Hence, the considered resource R will retain its

free capacity in state σ′, which further implies that vehicle Ai is not dead in σ′. But then, by
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Property 2 of Section 3, state σ′ is safe. Case (b), where condition (4) materialized in state σ̂

through the presence of a free unit on resource R′′, and this free unit is not available any more

in state σ, can be handled by an argument similar to that used for case (a-ii) above. �

The next result establishes that the proposed control scheme does not introduce additional

dynamics that might lead to the indefinite stalling of some vehicle Ai in its current cell.

Proposition 2 Consider a state σK of the aforementioned automaton K that corresponds to

a safe state σ of the automaton G(Φ). Then, a type-e event will take place in finite time w. p.

1.10

Proof: First , let us consider the case where state σ contains a vehicle Ai that has reached the

terminal cell of its route and it is about to initiate its termination stage. Then, according to the

previous description of the proposed control scheme (c.f. also Section 2), the vehicle can proceed

immediately to the execution of the relevant motion while coordinating this maneuvering with

any surrounding vehicles that might be affected by it. Hence, Proposition 2 is true in this case.

Next, we consider the more interesting case where, in state σ, every vehicle Ai needs to

transition to a neighboring cell R∗ 6= R∞. For the needs of the following argument, let A
denote the set of the system vehicles, and set |A| = n. Since state σ is safe, there will be a

subset Ã of A that can advance to their next cell in a safe manner (i.e., the state σ′ resulting

from any such advancement will be safe). Also, Proposition 1 guarantees that any attempt to

advancement by a vehicle in A \ Ã will be blocked by the considered protocol. In the rest of

this proof, we shall show that some vehicle Ai in Ã will advance to its next cell R∗ in finite

time, w. p. 1.

From the description of the protocol in Section 4.2 (c.f. also the abstracting automaton in

Figure 7), a successful attempt by a vehicle Ai ∈ Ã to allocate the next cell R∗ to itself must

go through the following two phases:

(a) In a first phase, the vehicle attempts to get the testing rights for cell R∗ by sending

the corresponding message whois and then waiting for a finite time τ1 before it can conclude

that either R∗ is currently empty, and therefore the allocation of this cell to itself is safe, or

that it has obtained the testing rights and can proceed with the further testing of the safety

of the contemplated allocation. On the other hand, the vehicle will have to abort during this

phase only if there is a conflict with another vehicle Aj that also tries to secure the testing

rights for the same cell (the remaining possibility that vehicle Ai is blocked by the presence of

two vehicles in cell R∗ is excluded by the fact that Ai ∈ Ã). In the last case mentioned above,

the vehicle will restart a new attempt at a later time point, defined by a random delay that

10We remind the reader that the notation ‘w. p. 1’ is an abbreviation of the expression ‘with probability 1’

and it implies that the stated result will hold true with the possible exception of a set of outcomes with zero

total probability measure [21].
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is selected from an exponential distribution with some rate λ. Furthermore, letting ti0 denote

the initiation time of Ai’s attempt, it should be clear that the aforementioned conflict will be

avoided as long there is no initiation of an advancement attempt to cell R∗ by any other vehicle

Aj over the time interval (ti0 − τ1, ti0 + τ1).

(b) Upon the successful completion of the first phase described above, vehicle Ai might have

to go through a second phase where it will have to resolve the safety of the allocation of cell R∗

to itself. From the protocol description in Section 4.2, this phase will last a bounded time τ2.

More specifically, by the end of this time interval the vehicle will have already verified the safety

of its advancement, or it will have failed to do so, in which case, it will have to abort and re-

attempt its advancement at a later time point, determined by a random delay with distribution

Exp(λ). Since Ai belongs in Ã, a negative outcome for this phase will result only in the case

that another vehicle Ak is simultaneously testing a tentative allocation of its own next cell

to itself. Such a situation can be avoided as long as there is no initiation of an advancement

attempt by another vehicle in the interval (ti0+τ1−(τ1+τ2), ti0+τ1+τ2−τ1) = (ti0−τ2, ti0+τ2).

It is also natural to assume that τ2 ≥ τ1, since the vehicle communication involved in phase

(a) is of a more local nature than the vehicle communication involved in phase (b). Hence,

combining the results obtained in the analyses of phases (a) and (b) above, we can conclude

that vehicle Ai will be successful in the considered endeavor to allocate its next cell R∗ to itself,

as long as there is no initiation of an advancement attempt by another vehicle over the time

interval (ti0 − τ2, ti0 + τ2). Since each vehicle (not necessarily in Ã) performs a new advancing

attempt with a random delay drawn from Exp(λ), the probability of the aforementioned event

is bounded from below by p̂ = e−((n−1)λ)(2τ2) (i.e., by the probability that the time to the

next event for an exponential race with n− 1 independent random variables sharing the same

instantaneous failure rate λ is greater than 2τ2 [21]). But then, Proposition 2 results from the

basic properties of a Bernoulli trial with a positive “success” probability p [21], and the fact

that the time between two consecutive attempts for any vehicle Ai ∈ Ã is finite. �

Finally, Propositions 1 and 2 lead to the following result that establishes the correctness of

the proposed control scheme.

Theorem 3 Under the control scheme of Section 4.2, and the further assumption that the

intra-cellular traffic is coordinated by a local control scheme that enables all the locally located

vehicles to reach the next set-point for their local motion profile in finite time and without any

collisions,11 every vehicle will reach its final destination in finite time w. p. 1.

Proof: Proposition 2, together with the assumed liveness of the local motion within any

given cell, guarantee that the underlying traffic system will advance from any safe state σ of

automaton G(Φ) to a neighboring state σ′ in finite time w. p. 1. Furthermore, Proposition 1

11We outlined such control schemes in Section 2.
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guarantees the safety of σ′. But then, the result of Theorem 3 follows immediately from the

fact that the safe sub-space of G(Φ) is a connected acyclic digraph with the only terminal node

being defined by state σM = [l(1) + 1, . . . , l(n) + 1]. �

5 Conclusions

In this paper we presented a new distributed control scheme and its supporting communication

protocol that will enable a fleet of vehicles sharing a common motion area to execute their

trips in a collision-free and live manner. The proposed controller segments the vehicle motion

by means of a tesselation of the motion area, and refers the continuous-time control problem

regarding the collision-free and live execution of a single motion segment, by any given vehicle,

to results already existing in the literature. On the other hand, the coordination of the execution

of the entire set of motion segments, across all vehicles, in a way that ensures the liveness of

the overall traffic, was abstracted to a resource allocation problem, and the relevant results

from resource allocation system theory were extended so that they can support a distributed

implementation. The resulting hybrid control scheme was formally proven to be correct and

complete in terms of the combined objective of collision avoidance and liveness enforcement. It is

also scalable with respect to the underlying fleet size, since the continuous-time control problem

is of a local nature and it always concerns no more than a few vehicles, while the scalability of

the coordinator that addresses the resource allocation problem and of the associated protocol

is guaranteed by Theorem 2 in Section 3. To the best of our knowledge, this is the first set

of results to provide a non-trivial, complete, scalable and distributed solution to the problem

of collision avoidance and liveness-enforcing supervision that arises in free-ranging vehicular

systems with limited communication capabilities.

We also notice, for completeness, that the adopted abstraction of the vehicle entity to

a disk that is controlled by controlling the motion of its center, enables the application of

the proposed control scheme even in vehicular systems where the vehicles are expected to

be in perpetual motion from the initiation of their trip until they retire at their destination;

the reader is referred to [20] for the methodological details that enable this implementation.

Furthermore, the proposed approach is implementable in higher-dimensional spaces, or under

other tessellation patterns, as long as it is possible to establish the existence of control schemes

that can support collision-free and live vehicle motion within the various cells of the adopted

tessellation. In fact, under some obvious modifications, the control logic and the communication

protocol of Section 4.2 can support collision-free and live cell allocation in FREE-RANGE*-

k-RAS for k > 2. This capability establishes the possibility of a more relaxed control at the

higher level of the proposed hybrid control framework, and a potentially higher occupancy of

the motion area, at the expense of more complex control for the lower level. The practical

32



implications of this trade-off need to be systematically assessed and explored.

More generally, our future endeavors will focus on (i) a full-fledged implementation of the

proposed control scheme in simulated and/or actual vehicular systems, and (ii) the embedding of

the developed controller in broader control architectures that will also address issues pertaining

more explicitly to the system performance.
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