
Structural Control of Large-Scale Flexibly Automated

Manufacturing Systems

Spyros A. Reveliotis

School of Industrial & Systems Engineering

Georgia Institute of Technology

Mark A. Lawley

School of Industrial Engineering

Purdue University

Placid M. Ferreira

Department of Mechanical & Industrial Engineering

University of Illinois

Abstract

Current strategic and technological trends in discrete-part manufacturing require extensive

and
exible automation of the underlying production systems. However, even though a great

deal of work has been done to facilitate manufacturing automation at the hardware component

level, currently there is no adequately developed control methodology for these environments.

In particular, it has recently been realized by the manufacturing community that any successful

attempt towards the extensive automation of these environments requires the establishment of

logically correct and robust behavior from the underlying system. The resulting line of research

is complementary to the most traditional performance-oriented control, and it has come to be

known as the structural control of the contemporary
exibly automated production environment.

In this chapter, we initially discuss the role of structural control in the broader context of real-

time control of
exible manufacturing systems (FMS), and in continuation, we present the major

results of our research program on manufacturing system deadlock, currently the predominant

structural control problem in the manufacturing research literature. In the concluding section,

we also indicate how these results should be integrated in contemporary FMS controllers, and

highlight directions for future research in the FMS structural control area.

1

1 Introduction

Current trends in Discrete-Part Manufacturing Current business and technology trends

in discrete-part manufacturing require the e�ective deployment of large-scale
exibly automated

production systems. To a large extent, this is the result of the shift of discrete-part manufacturing

strategies from the previously sought economies of scale to what has come to be known as economies

of scope [16, 12, 1]. In this new environment, emphasis is placed on the ability of the system to

provide customized products and services, while meeting tighter time constraints, and with highly

competitive prices. Large-scale
exible automation is the enabler of the aforestated economies of

scope, since, in principle, this technology allows a variety of parts to be produced through the system

(product
exibility), with each of them being pro�tably produced over a wide range of production

volumes (volume
exibility). The high speed, increased accuracy, repeatability, and recon�gurability

which are ascribed to these systems, can lead to high resource utilization, while maintaining high

responsiveness to any shift in the production objective.

Furthermore, in certain industries the sheer complexity and sensitivity of the manufacturing

operations, and/or the increased volume/weight of the transferred material, pose additional require-

ments for extensive automation of the production environment. For example, in the semiconductor

industry, the need for extremely clean environments, combined with the increased size of processed

wafers, has turned the modern semiconductor fab into one of the most technologically sophisticated

shop
oors.

The inadequacy of existing control methodologies The last �fteen years have seen a lot of

success in developing the hardware features { computerized process control and factory networking

infrastructure { to support the concept of
exibly automated production systems. However, it is be-

coming increasingly clear to the manufacturing community, that these systems have not fully realized

their advertised advantages, yet, primarily because of a lack for an adequate control methodology.

Quoting from a recently published paper [32]: \Currently most control implementations of
exible

manufacturing cells (FMC's) have been developed specially to a particular facility, and no generic

format or tools exist for systematic creation and planning for control software. In general, these

systems are developed as \turnkey" systems by personnel other than the manufacturing engineers re-

sponsible by their operation." The authors go on to identify some of the problems resulting from this

ad-hoc approach to the control of current FMC's as: (i) high implementation times and costs, (ii)

lack of portability of the resulting control software, and eventually, (iii) limited operational
exibility

2

of the production system. These �ndings are corroborated by a recent survey regarding manufactur-

ing
exibility in the printed circuit-board industry, where it was found that: \production technology

turned out to be signi�cantly related to mix and new-product
exibility, but with a pattern opposite to

what [the authors] expected given the capabilities of the technology . . .This touches a very important

point: The fact that automated and programmable equipment in [the authors'] sample tends to be

used to run the largest production batches, instead of being used in a more
exible way." [64]

This lack of a su�cient methodology for the design and operation of e�ective controllers for large-

scale
exibly automated production environments is mainly due to the extreme complexity of the

underlying control problem. The most prominent causes of this high complexity can be traced at: (i)

the large variety of events taking place in such a production system and the time-scales associated

with these events, (ii) the stochastic nature of the system operation, (iii) the nondeterminism inherent

to
exible systems, and (iv) the discrete system nature that invalidates the application of most well-

known classical analytical techniques. As a result, the development of an analytical methodology

providing \globally optimal" solutions to the problem FMS control is currently deemed unlikely.

In fact, practitioners typically resort to simulation for the synthesis of FMS controllers in real-life

applications.

Simulation approaches in FMS production planning and control The major advantage of

simulation as an analysis and evaluation tool is extensive modeling
exibility. However, with existing

computing technology, the amount of detail to be included in a simulation model is constrained by: (i)

the programming skills of the simulation developer and her thorough understanding of the modeled

system, (ii) the capabilities and constructs of the employed simulation platform, and (iii) the time

available to set up and run the simulation experiments. The third of these constraints becomes

especially prominent in a
exibly automated system, where the system operations undergo frequent

recon�gurations.

The limitations attributed to simulation-based approaches are partially addressed by the paradigm

of Object-Oriented modeling and software development. The Object-Oriented methodology tries to

systematically characterize the behavior of the underlying system components and their interaction,

and to develop \standardized" libraries of object classes, from which customized models can be

rapidly synthesized in a modular fashion (e.g., cf.[4]). Furthermore, in their e�ort to systematically

extract these standardized behaviors, Object-Oriented techniques resort to more formal analytical

models and tools, such as Discrete Event Systems (DES) theory, and Generalized Semi-Markov

3

Process models, thus, moving simulation-based e�orts closer to analytically oriented methodologies

[6].

Analytical approaches in FMS production planning and control The most prevalent ana-

lytical approach to real-time FMS control attempts to hierarchically decompose the problem into a

number of more manageable subproblems. These subproblems are classi�ed into number of layers,

based on the time-scales associated with the corresponding decision horizons. A typical classi�ca-

tion scheme discerns (i) \strategic-level" decisions, concerning the initial deployment and subsequent

expansion(s) of the production environments, (ii) \tactical-level" decisions, which determine the allo-

cation patterns of the system production capacity to various products so that external demands are

satis�ed, and (iii) \operational-level" decisions, which coordinate the shop-
oor production activity

so that the higher level tactical decisions are observed [62, 21]. Among the three (problem) layers of

the hierarchical decomposition framework described above, the ones relevant to this discussion are

the tactical and the operational; strategic-level decisions are revised over long operational periods

(typically measured in years) and therefore, they fall beyond the scope of real-time system control.

Hence, in the following, we brie
y discuss the tactical planning and the operational control problem,

as de�ned in the hierarchical decomposition framework.

FMS tactical planning Tactical planning attempts to e�ciently track external product demand

by exploiting the inherent
exibilities and recon�guration capabilities of the system. The most

prevalent framework for addressing this issue was proposed in [62]. It further decomposes the pro-

duction planning problem into the following subproblems: (i) part type selection for immediate and

simultaneous processing, (ii) machine grouping into identically tooled machine pools, (iii) establish-

ing production ratios according to which the di�erent part types must be produced over time, (iv)

resource (pallet and �xture) allocation to the di�erent part types so that the determined production

ratios are observed, and (v) loading of the machine tool magazines so that the resulting processing

capacity is consistent with the afore-stated decisions. The detailed formulation of each of these prob-

lems and their dependencies is determined by the operational details of the underlying environment.

The resulting analytical models are typically Integer Programming (IP) [66] formulations, combined

with some analytical or simulation-based performance evaluation tool that supports the \pricing" of

the various system con�gurations examined by the IP solution process. Some representative work

along these lines can be found in [9, 63, 61] and the references cited therein.

4

FMS scheduling In hierarchical decomposition, the scheduling problem consists of part load-

ing and dispatching so that target production objectives are met. Since this decision-making level

addresses the real-time operation of the system, the relevant problem formulations assume a �xed

system con�guration. Unfortunately, the FMS scheduling problem is one of the hardest problems ad-

dressed by the manufacturing community. Many researchers from di�erent methodological areas (e.g.,

\classical OR", control theory, AI, simulation, etc.) have attempted to address it. An interesting

classi�cation and general description of all the di�erent approaches taken to the problem is presented

in [56]. The authors conclude that the most viable approach, in view of the problem complexity, is

\to rely on the control paradigm to de�ne the nature and objectives of scheduling problems, serving as

a problem framework. Within this framework, combined solution heuristics from machine scheduling,

resource-constrained project scheduling and AI search could be used to generate candidate schedules.

The performance of candidate schedules could be veri�ed using simulation models, where the simu-

lations could be manipulated interactively by an expert scheduler. Such a synthesis would seemingly

wed the rich modeling aspects of control and simulation and with the solution-oriented techniques

of heuristic algorithms." Indeed, such a research program was developed in the years following the

publication of these ideas, as it is manifested in the work presented in [11, 13, 34, 37, 44, 58, 35, 36].

All this work recognizes that rather simple distributed scheduling schemes seem to be the most vi-

able approach to the scheduling problem. Furthermore, it resorts to control-theoretic techniques to

formally analyze the system behavior, measure its performance, and eventually draw some de�nitive

conclusions about the appropriateness of each of these policies in di�erent operational settings.

FMS structural control The hierarchical decomposition framework [62, 21] addresses issues re-

lated to the e�cient operation and performance optimization of the controlled production system.

However, recent attempts to extensively automate these environments indicate that robust and log-

ically correct system behavior must be established before system performance can be addressed. In

an analogy to the computing system environments, what needs to be developed is a \manufacturing

operating system", which will facilitate the logically correct, e�cient and transparent allocation of

the system resources to the various applications (i.e., production requirements). The entire suite of

problems related to the logical components of such a control system software has been character-

ized as the Structural Control of
exibly automated production systems [48, 41]. The most typical

problems currently identi�ed in this area, are: (i) the resolution the manufacturing-system deadlock ,

i.e., the establishment of undisturbed
ow for all parts in the system, and (ii) the design of protocols

5

Control Scheme

Analysis

Behavior - Oriented
Analysis

Performance - Oriented

(Initl. Design and Expansions)

(System Current Configuration)

Status & Performance Feedback Commands / Goals

(Part Loading, Dispatching)

Structural Control
(Deadlocks, Reaction to Disruptions)

Tactical Decisions

Strategic Decisions

Operational Decisions

The Extended Hierarchical Decomposition

Figure 1: A hierarchical framework for the FMS design and control problem

Domain Analysis

Theoretical Analysis &
Policy Development

Production Planning

Performance
Evaluation

Sequencing&
Scheduling

Structural Control

Object-Oriented
Simulation

(1) (2)

Real-life
manufacturing

system (4)

(3)

Figure 2: The major (discrete-part) manufacturing system control problems and their interaction

6

according to which the system should react and recover from di�erent disruptions occurring in it,

such as machine breakdowns and the processing of expedited jobs.

Chapter overview Figure 1 presents the hierarchical decomposition control framework, extended

to include the new area of structural control. Figure 2 indicates how the structural control prob-

lem is interrelated to the rest of manufacturing system control problems, identi�ed in the previous

discussion. The rest of this chapter focuses on our recent research results with respect to the man-

ufacturing structural control problem, and in particular, the manufacturing deadlock. Hence, the

next section introduces an FMS operational model, demonstrates how deadlock arises in these envi-

ronments, and overviews the existing literature on the deadlock problem. Section 3 proceeds to the

formal modeling and analysis of the problem in the context of Discrete Event Systems (DES) theory

[47]. Section 3 will also show that the optimal control of the manufacturing system with respect to

deadlock-free operation is, in general, NP -hard [20]. However, in Section 4, we establish that for

a large class of manufacturing systems, optimal deadlock avoidance is attainable with polynomial

computational cost. Section 5 develops a methodology for designing suboptimal, yet computationally

e�cient deadlock avoidance policies for the remaining cases that do not admit polynomially optimal

solutions. Section 6 considers the e�ciency of these suboptimal policies, and suggests a number of

ways in which their e�ciency can be enhanced. Section 7 concludes with a discussion of additional

research topics related to this work. Finally, we note that the discussion in this chapter emphasizes

methodological aspects and highlights the key results of the surveyed work. Technical details and

formal proofs of the presented results are to be found in the cited publications.

2 The FMS Operational Model and the Manufacturing System

Deadlock

2.1 The FMS operational model

The FMS model under consideration is depicted in Figure 3. It consists of a number of workstations ,

W1; : : : ;WN , each capable of performing some �xed set of e(lementary)-operations, a Load and an

Unload station, and an interconnecting Material Handling System (MHS). Each workstation can be

further described by a number of parallel processors/servers (i.e., identically con�gured machines)

and a number of bu�ering positions holding the parts waiting for or served by the processors. The

MHS consists of a number of carriers, each of which can transfer parts between any two workstations;

7

1 Sup(W)2 Sup(W)NSup(W)

1

LOAD

MHS

UNLOAD

W2
WN1W

R

RR 12

R

11

1k 1,C

Figure 3: The FMS Operational Model

AGV M2

R2

M1L/U L/U

J1 : M1 -> AGV -> M2 J2 : M2 -> AGV -> M1

R3R1

Figure 4: Example: The FMS Model

8

an AGV system might be a good example. Jobs are loaded in the FMS through the Load station, and

in continuation, they go through a sequence of processing steps performed at the system workstations.

Notice that a job can visit a workstation more than once in this sequence. On the other hand, the

entire processing performed on a job during a single visit at a workstation is modeled as a single

operation. The completed job exits the FMS through the Unload station.

To see how deadlock arises in such an environment, consider the small FMS depicted in Figure 4.

It consists of 2 workstations and an AGV, each able to accommodate one workpiece at a time. The

jobs supported by the system can take only one of the two routes annotated in the �gure, while

it is further assumed that all auxiliary equipment required for the processing of these jobs at their

di�erent stages, is allocated to them upon their loading into the system. For this small FMS, it is not

di�cult to see that under the loading pattern depicted in Figure 4, the system is permanently stuck.

This is the case, since the job loaded on Workstation M1 is waiting for the AGV to transport it to

the next stationM2, while the AGV is currently occupied by another job which needs to advance to

workstation M1. This permanent blocking that can take place in such manufacturing environments

is characterized as the manufacturing system deadlock .

Obviously, manufacturing deadlock is a major disruption for the system operation, as its resolu-

tion requires external intervention. During its occurrence, the utilization of the resources involved is

essentially zero. Furthermore, as it is demonstrated by the above example, this permanent blocking

e�ect results from the fact that every part loaded in the FMS, being a physical entity, has to hold

its currently allocated operational space, until it is transferred to a free unit of the resource type it

requires next. Speci�cally, this implicit hold-and-wait behavior, can give rise to a circular-waiting

pattern, where every job involved requires a unit of equipment held by another job in this loop. It

is exactly this behavioral pattern that is at the core of the deadlock problem.

Actually, deadlock has also been a problem in the operational environment of the more traditional

(non-automated) manufacturing shop
oor. However, the manufacturing community has tended to

ignore the deadlock problem in that context, since the presence of human operators allowed for an

easy solution, namely the preemption of a number of deadlocked jobs to auxiliary bu�ers so that

the remainder could proceed. It is the increased levels of automation and autonomy sought for

the contemporary FMS, that require automated solutions to the deadlock problem. Hence, it has

been realized by now that establishing nonblocking behavior for the FMS is a prerequisite to any

performance optimizing policy in such an environment.

Since the primary cause for the deadlocking e�ects in contemporary FMS is the ine�ective alloca-

9

tion of its bu�ering capacity , in the subsequent analysis, we shall focus on this capacity of the FMS

workstations and MHS, ignoring the detailed operational content of the di�erent processing stages.

Hence, all di�erent classes of FMS equipment able to stage a part, will be collectively characterized

as the FMS resources . However, an additional aspect of the FMS operation to be taken into consid-

eration during the FMS structural analysis, is the management of the system auxiliary equipment ,

i.e., the available pallets, �xtures and cutting tools. Speci�cally, if there are su�cient units of this

kind of equipment, and/or every job is allocated the required auxiliary resources when loaded into

the system and it keeps it until exiting, the management of this set of items is not a cause of dead-

lock. On the other hand, if auxiliary equipment is scarce, and it is allocated to the requesting jobs

only prior to executing the corresponding processing step(s) in an exclusive, nonpreemptive manner,

then it should be obvious that careless management of these resources can give rise to circular-wait

situations, and therefore, to deadlocks. A third feature that is relevant to the characterization of

the FMS structural behavior, is whether the routing of a certain part processed through the system

is determined on-line (dynamic routing) or during the loading of the part into the system (static

routing). The issue here is that the machine
exibility [57] implemented in modern manufacturing

processors, as well as, the operation
exibility [57] supported by the design of the various products

run through the system, allows for the production of a certain part through a number of alternate

sequences of processing steps (process plans or routes). The resulting routing
exibility [57] allows

for better exploitation of the system production capacity, since the system workload can be better

balanced. Hence, from a performance viewpoint, a dynamic routing scheme is more preferable to

static one(s). However, dynamic routing introduces an unpredictable element to the structural be-

havior of the di�erent parts running through the system, and makes the development of structural

control policies a more di�cult problem.

2.2 The underlying resource allocation system (RAS) and the RAS taxonomy

In order to systematically address the problem of FMS deadlock, we must model the FMS operation

as a Resource Allocation System (RAS). In general, a resource allocation system consists of a set of

concurrently executing processes which, at certain phases of their execution, require the exclusive

use of a number of the system resources to successfully run to completion [46]. The resources are

in limited supply, and they are characterized as reusable, since their allocation and deallocation to

requesting processes a�ect neither their nature nor their quantity. Furthermore, in the FMS case,

the resulting RAS can also be characterized as sequential , since it is assumed that every process /

10

job, during its execution, undergoes a prede�ned sequence of resource allocation and deallocation

steps. Speci�cally, every process can be described by a sequence of stages, with every stage de�ned

by the subset of resources required for its successful execution. The detailed structure of the resource

requests posed by the executed jobs at their di�erent stages, depends on the FMS operational features

discussed in the previous section, i.e., the allocation of the auxiliary equipment, and the employed

degree of routing
exibility. In fact, it turns out that the tractability of developing e�ective structural

control policies and the details of the resulting solutions, strongly depend on the way that the FMS

is con�gured with respect to these operational characteristics. This �nding has led to the following

classi�cation of the FMS-modeling RAS, based on the structure of the allowable resource requests

de�ning these processing stages [40]:

I. Single-Unit (SU) RAS: Every process stage requires only one unit from a single resource for its

successful execution. This model applies to situations where only the limited bu�ering capacity

of the FMS equipment is a cause to deadlock.

II. Single-Type (ST) RAS: Every process stage requires an arbitrary number of units, but all of

the same resource type. Similar to the SU-RAS, ST-RAS model FMS in which the only cause of

deadlock is the limited bu�ering capacity of the FMS equipment; however, the ST-RAS allows

the modeling of the aggregation of parts running through the system into tightly connected

batches of varying size.

III. Conjunctive (AND) RAS: Every process stage, to be successfully executed, requires the

simultaneous exclusive service of an arbitrary number of units of di�erent resource types. This

RAS supports the modeling of the more general case in which scarce auxiliary equipment can

also be a cause of deadlock.

IV. Disjunctive / Conjunctive (AND/OR) RAS: Every stage is associated with a set of con-

junctive requests, the implication being that satisfaction of any of these requests by the system

is su�cient for the successful execution of the step. The AND/OR RAS is the model to be

used in case that dynamic routing is allowed.

Notice that higher-numbered members of this taxonomy subsume the lower-numbered ones, but

the models get more complicated. The results presented in this chapter concern primarily the �rst

(Single-Unit) class of this taxonomy. Focusing the discussion on this RAS model allows the exposition

of the most signi�cant problem features, without being overwhelmed by the complicating details

11

arising from the increased complexity of higher-level RAS models. The interested reader can �nd

extensions of the results discussed herein to higher level models in [55, 48].

2.3 The nature of the RAS deadlock and generic resolution approaches

The problem of system deadlock was �rst studied in the context of Computer System Engineering,

back in the late '60s and early '70s. The work presented in papers like [27, 26, 10, 28] set the

foundation for understanding the problem nature. Speci�cally, one of the early �ndings in the study

of reusable RAS [10] was that for the development of a deadlock in these systems, the simultaneous

satisfaction of the next four conditions is necessary and su�cient:

mutual exclusion i.e., tasks must claim exclusive control of the resources that they require,

\wait for" condition i.e., tasks hold resources already allocated to them while waiting for addi-

tional resources,

\no preemption" condition i.e., resources cannot be forcibly removed from the tasks holding

them until the resources are used to completion, and

\circular wait" condition i.e., a circular chain of tasks exists, s.t. each task holds one or more

resources that are being requested by the next task in the chain.

The identi�cation of the above set of necessary and su�cient conditions for deadlock occurrence,

has then driven the e�orts for its resolution. In general, all the proposed solutions can be classi�ed

into three major categories, namely (i) Prevention, (ii) Detection & Recovery and (iii) Avoid-

ance [46]. Prevention methods stipulate that the RAS is designed to be deadlock-free by ensuring

that the set of necessary conditions for deadlock cannot be simultaneously satis�ed at any point in

the RAS operation. This requirement is met by imposing a number of restrictions on how a process

can request the required resources. Detection & Recoverymethods allow the RAS to enter a deadlock

state. A monitoring mechanism is used to detect a deadlock when it occurs and a resolution algo-

rithm rolls the system back to a safe state by appropriately preempting resources from a number of

deadlocked processes. Notice that a RAS state is safe, if there exists a sequence of resource acquisi-

tion and release operations that allows all the processes in the system to run to completion; detailed

de�nitions of deadlock-related concepts are provided in Section 3. Avoidance methods address the

problem of deadlocks by controlling how resources are granted to requesting processes. They use

on-line feedback about the allocation of the system resources, i.e., the RAS state. Given the current

12

RAS state, a process request is granted only if the resulting state is safe. In principle, such a scheme

leads to informed decisions about the safety of a resource allocation operation, allowing the RAS to

achieve maximum
exibility.

Among the three methodologies, avoidance approaches are considered to be the most appropriate

for dealing with the problem of deadlock as it arises in the FMS context [65, 5, 68]. The roll-back

required by the detection & recovery approaches when the system is deadlocked is deemed to be

too costly in the FMS setting since it implies the temporary \unloading" (preemption) of some

currently processed jobs. On the other hand, prevention methods, by being designed o�-line, tend

to be overly conservative, leading to signi�cant underutilization of the system. The point is that a

priori knowledge of the routes of the jobs run through the FMS, makes the information contained

in the RAS state theoretically su�cient for the determination of its safety. Therefore, in principle,

more e�cient FMS deadlock resolution policies can be designed by using on-line feedback w.r.t. the

system state and the available information on the anticipated job requirements, during the policy

decision making. As we shall see in the next section, however, this statement must be quali�ed

by the �ndings presented in [25, 3], which indicate that, in the general case, the resolution of the

state-safety decision problem { underlying the computation of the maximally permissive FMS DAP

{ is NP -complete.

In the next section, we report some results with respect to the problem of FMS deadlock avoidance

that can be found in the current literature, in addition to the results discussed in the rest of this

chapter.

2.4 A literature review of the FMS deadlock problem

In one of the �rst papers to deal with deadlock in manufacturing systems, [5], the authors remark that

avoidance seems to be the most appropriate method for handling deadlocks in an FMS environment,

and furthermore, they claim that avoidance methods developed by the computing community are not

e�cient for FMS applications, since they ignore available information about the process structures

and are thus \unduly conservative". A new deadlock avoidance policy, referred to as the (B-K)

Deadlock Avoidance Algorithm (BKDAA), is proposed. BKDAA expands on the idea underlying

Banker's algorithm1 [15] { one of the seminal deadlock avoidance policies in computer systems { by

exploiting the fact that, in some FMS, certain resources are used exclusively by a single processing

step of a single job. These exclusive resources can function as bu�ers dedicated to the related job

1This algorithm will be discussed more extensively in a subsequent section.

13

instances, thus allowing for the decomposition of the deadlock resolution problem over segments

of process routes, and the design of an e�cient control algorithm. Using formal Petri Net (PN)

modeling [45], the authors show that under BKDAA, the system will never enter a deadlock or a

restricted2 deadlock.

PN modeling for the analysis of FMS deadlocks is also used in [65]. This work exploits the

concept of PN model invariants . The proposed control policy performs a look-ahead search over the

set of states reachable from the current state in a certain number of steps and selects as the next

system step the one least likely to lead to deadlock. Under this policy, deadlocks are possible, even

though the probability of their occurrence is reduced.

In fact, Petri Net related research has produced a series of results that pertain to the FMS

deadlock. To deal with the complexity of analyzing Petri Net structures modeling real-life FMS's,

researchers in the �eld have pursued a modular approach. Speci�cally, the FMS operation is modeled

as the interaction of a number of simpler Petri Net modules with well-de�ned properties. The

study of these characteristic properties can lead to some conclusions about the boundness , liveness

and reversibility [45] of these modules and the combined networks. Typically, a set of su�cient

conditions to be satis�ed by the initial state (marking) of the system, in order to ensure deadlock-

free operation, are eventually identi�ed.3 The work presented in [70, 24, 31, 19, 17] follows this line

of reasoning. In many of these cases, the undertaken analysis has provided signi�cant theoretical

insight to the deadlock-related properties and the broader structural behavior of the considered

systems { i.e., those that can be modeled and analyzed as a synthesis of the elementary modules.

However, in all cases known to us, the su�ciency conditions identi�ed for deadlock-free operation

require the enumeration of special structures in the net, like siphons and traps [45], which is a task

of nonpolynomial complexity. Hence, the applicability of these techniques to real-life systems will be

severely restricted by computational intractability.

A partial justi�cation for the increased complexity of the Petri Net based approaches discussed

above, is that most of them evolved as specializations to the Petri Net framework, of the broader

problem of Supervisory Control of Discrete Event Systems (DES) [47]. The primary issue undertaken

in this paradigm, is the development of a formal framework for the structural analysis and control of

DES, based on the theory of automata and formal languages [29]. In the Supervisory Control context,

2A restricted deadlock is de�ned as a state in which all feasible transitions are inhibited by the constraints imposed

by the avoidance policy itself. [5]
3Since these approaches resolve deadlock by selecting the initial con�guration of the system, they should be classi�ed

as prevention methods.

14

the requirement of deadlock-free operation is equivalent to the establishment of nonblocking behavior

[47] { a prerequisite to any further logical analysis of DES { while the deadlock avoidance problem

can be considered as a special case of the Forbidden State problem [7]. As it is observed in [7]: \The

complexity of the proposed control designs depends mainly on the representation of the forbidden

sets. Our methods are very e�cient, provided that an e�cient, parsimonious representation of

forbidden state sets can be found". In fact, this is the more general spirit of the Supervisory Control

paradigm, as the emphasis is placed on the decidability of problems encountered [29, 59, 60] { i.e.,

whether a given issue can be e�ectively / algorithmically resolved { rather than on the provision of

computationally e�cient algorithms. However, as it will become clear in the ensuing sections of this

chapter, the most severe problem in designing practical solutions to the FMS deadlock, is the lack

of a \parsimonious representation" of the states to be forbidden.

A di�erent approach to the problem is taken in [68, 8]. Here, the authors suggest that a deadlock

detection algorithm, presented in [67], be applied to the state that results if a considered request is

granted. The request can be granted only if the resulting state is not a deadlock state. This approach

is, however, susceptible to restricted deadlocks. Furthermore, the volume of information processed by

the deadlock detection algorithm in [67] grows exponentially with the size of the FMS con�guration,

since the algorithm searches for all possible cycles in a generalized version of the resource allocation

graph [28].

The resolution of the FMS deadlock problem is treated in a radically di�erent way in [30].

Recognizing the increased complexity { in fact, NP -completeness { of the exhaustive search for safe

allocation sequences, the authors suggest that this search should be restricted along the path that is

de�ned by the applied scheduling (dispatching) policy. Given a resource allocation request, the FMS

operation is simulated by �rst ordering the executed jobs according to a given dispatching rule, and

then trying to advance them in that order as much as possible. If the state (marking) resulting from

this simulation covers the minimal marking required to keep the system live [45], then the considered

allocation is deemed to be safe, and it is granted to the requesting process.

A thorough analysis of the deadlock problem in Single-Unit RAS where every resource possesses

unit capacity, is provided in [18]. In that work, the authors use the concept of the (extended)

resource allocation graph { an analytical structure expressing the interdependencies of the running

jobs resulting from the current resource allocation and the job posed requests { to topologically

characterize the concepts of deadlock and unsafety in such a system. From this characterization,

they proceed to the de�nition of deadlock avoidance policies as a number of conditions that will

15

guarantee that these problematic structures will never be realized during the system operation.

Observance of these conditions during the system operation ensures that it remains deadlock and/or

restricted-deadlock-free. Similar results over the entire class of Single-Unit RAS are derived in [69].

Finally, notice that in this survey we have tried to focus on the relatively structured approaches

to the problem of FMS deadlock. Given the current urgency of the problem, a number of more

ad-hoc solutions, some of them developed specially for certain system / cell con�gurations, have also

appeared in the literature. We have opted not to include them here because of either the specialized

or the opportunistic aspect of their nature.

2.5 Developing correct and scalable deadlock avoidance policies for contempo-

rary FMS

With the exception of [5], [30] and some of the policies discussed in [18], the approaches discussed

above su�er from problems arising from the NP -complete nature of the state-safety decision prob-

lem. Therefore, with these solutions either (i) there is no guarantee that the system will never enter

deadlock or restricted deadlock, or (ii) if such a guarantee is provided, it is obtained by (potentially)

excessive computational cost (required computation is exponential in the size of the FMS con�gura-

tion). In the �rst case, we say that the avoidance policy is not provably correct and in the second

case that it is not scalable. It is our position that deadlock avoidance policies for future technological

systems must be, both, provably correct and scalable. Note that correctness in the context of this

discussion implies only that states characterized as safe are indeed safe. There might exist a subset of

safe states which will not be recognized as such by a provably correct and scalable avoidance policy.

In fact, this is the price one must pay (the compromise one must make) to obtain scalable policies in

spite of the NP -complete nature of the underlying decision problem. Provably correct policies that

successfully recognize all safe states, are, by de�nition, optimal .

In our research program we have developed a series of FMS deadlock avoidance policies (DAP's)

possessing the two properties of correctness and scalability. These results are discussed in Sections 3,

4 and 5. As it has already been pointed out, however, the NP -hardness of the problem of obtaining

optimal structural control policies implies that, in the general case, provably correct and scalable

policies are going to be suboptimal , i.e., preclude some safe states. Therefore, a naturally arising

additional requirement is that correctness and scalability must not come at a high cost w.r.t. system

performance. Furthermore, the proposed policies must be easily implementable in the context of the

current FMS control practices. E�ciency considerations regarding our developed policies is the topic

16

of Section 6.

3 The Single-Unit RAS and the Deadlock Avoidance Problem

3.1 The Single-Unit RAS

The Single-Unit RAS model is de�ned by a number of resource types , denoted by R = fRi; i =

1; : : : ; mg, and a number of process (job) types , denoted by J = fJTj ; j = 1; : : : ; ng. Every

resource Ri is further characterized by its capacity Ci, i.e., a �nite positive integer indicating how

many units of resource type Ri the RAS possesses. Process type JTj is de�ned by a sequence

< JTjk; k = 1; : : : ; l(j) >, with element JTjk corresponding to the resource Rq supporting the

processing of the k-th step of this type. Thus, JTjk denotes the resource allocation request associated

with the k-th stage of the j-th job type. The sequence of resource allocation requests de�ning process

type JTj ; j = 1; : : : ; n, will be referred to as its route.4

The Single-Unit RAS state, s(t), at a given time instance t, is de�ned as follows:

De�nition 1 The RAS state s(t) at time t is a vector of dimensionality D =
Pn

j=1 l(j) { i.e., equal

to the total number of distinct route stages in the system {, with component si(t); i = 1; : : : ; D, being

equal to the number of processes executing step k of route JTq at time t, where q is the largest integer

s.t. i >
Pq�1

j=1 l(j) and k = i�
Pq�1

j=1 l(j).

Notice that the information contained in the RAS state is su�cient for the determination of the

distribution of the resource units to the various processes, as well as the slack (or idle) capacity of

the system. Furthermore, the �niteness of the resource capacities implies that the set of distinct

RAS states is �nite; let it be denoted by S = fsi; i = 0; 1; : : : ; Zg.

The system state changes in one of the following three ways: (i) loading a new process in the

system, (ii) advancing an already loaded process to its next route stage, and (iii) unloading a �nished

process. During a single state transition only one process can proceed. The resulting step, however,

is feasible only if the next required resource can be obtained from the system slack capacity. The

4As a result, the terms process type and process route are used interchangeably in this document. To model the

e�ects of routing
exibility in a static routing context, a subtler distinction must be made between the concepts of job

type and job route: A job type is associated with a distinct product type produced by the system, while a set of job

routes characterizes all the possible ways in which this product can be produced through the system. Although this

distinction is signi�cant when considering performance aspects, like load balancing of the system, it does not a�ect the

FMS structural behavior, and therefore, it has been downplayed in the proposed FMS modeling.

17

FMS controller selects the transition to be executed next among the set of feasible transitions. The

development of control schemes to guide this selection is the notorious problem of Job-shop sequencing

and scheduling (cf. Introduction: the scheduling problem). As such, it constitutes the major link

between structural and performance-oriented control, and it is beyond the scope of this study. In

any case, the selection of a feasible transition by the controller and its execution by the FMS, will

be called an event in the FMS operation. Furthermore, since the undertaken structural analysis is

concerned only with the logical aspects (i.e., the deadlock-free operation) of the system behavior,

we focus only on the sequencing of these events, ignoring the detailed event-timing. Practically,

we assume that the controller can defer making a decision until all transitions that are potentially

feasible from the current state have been enabled. Therefore, in the following, we suppress explicit

consideration of time.

When time is ignored in the FMS operation, the underlying Single-Unit RAS model can be

corresponded to an FSA, where the event set, E, consists of all the possible route steps executed

in the FMS, the set of states, S, corresponds to the set of underlying RAS states, and the state

transition function, f : S �E ! S, is de�ned by

f(si; e) =

8><
>:

succ(si; e); if e 2 F(si)

si; o.w.

In the above equation, F(si) denotes the set of feasible events in state si, and the function succ(si; e)

returns the state that results when event e 2 F(si) takes place with the FMS being in state si. The

initial and �nal states of this automaton are identi�ed by state s0, the state in which the FMS is

idle and empty of jobs. Hence, the language accepted by the FMS consists of those input (controller

command) strings that, starting from the empty state, leave the FMS in the same idle condition. In

a physical interpretation, these strings correspond to complete production runs.

Example We elucidate the previously de�ned concepts by returning to the example of Figure 4.

The system resource set is R = fR1; R2; R3g, with Ci = 1; i = 1; 2; 3. The job types supported by

the system can be formally described as:

JT1 =< R1; R2; R3 >

JT2 =< R3; R2; R1 >

18

The system state depicted in Figure 4 is denoted by: s(t) =< 1 0 0 0 1 0 >. Furthermore, it turns

out5 that the size of the entire FMS state space is Z = 27, with the state signatures running from 0

to 26. In particular, state s0 =< 0 0 0 0 0 0 > denotes the initial empty state. Table 1 enumerates

the FMS state transition function and Figure 5 provides the corresponding State Transition Diagram

(STD). 2

3.2 Structural analysis of the Single-Unit RAS

Next, we use the STD of the previous example to analyze the structural/deadlock properties of the

Single-Unit RAS model underlying the FMS operation.

State Reachability and Safety A directed path in the STD of Figure 5 represents a feasible

sequence of events in the FMS. We are mainly interested in paths that start and �nish in the empty

state s0. Notice that there is a subset of nodes for which there is no directed path from state s0; these

are shown as dashed nodes in the STD. This implies that when the system is started from empty

state, (under normal6 operation) the states (resource allocation) represented by the dashed nodes

will never occur. These states will be referred to as unreachable. The remaining states are feasible

states under normal operation and will be called reachable states. The set of reachable states will

be denoted by Sr and the set of unreachable states will be denoted by S�r. Notice that S�r = S\Sr.

Formally,

De�nition 2 State si is reachable from state sj , denoted si sj, i� there exists a sequence of

events that can bring the system from state sj to state si. In the FSA notation,

8si; sj 2 S; si sj () 9u 2 E� : f(sj ; u) = si

Furthermore, a state si 2 S is a reachable state, i� si s0.

Another important classi�cation of the STD nodes / states results from the following observation:

there are states from which the empty state s0 is reachable by following a directed path of the STD,

and states for which this is not possible. In the STD of Figure 5, the former are lightly shaded while

the latter are heavily shaded. If the FMS enters any of the heavily shaded states it will never be able,

5It can be shown that, for a SU-RAS, the number of all possible distinct allocations of the system resources is equal

to
Qm

i=1
(Ci+Qi)!
Ci!Qi!

, where Qi denotes the number of stages supported be resource Ri.
6By normal it is meant that the FMS operation observes the assumptions regarding the feasibility of the state

transitions, discussed in the previous section.

19

i : si State Vector Successor States

0 0 0 0 0 0 0 1, 2

1 1 0 0 0 0 0 3, 15

2 0 0 0 1 0 0 4, 15

3 0 1 0 0 0 0 5, 6, 16

4 0 0 0 0 1 0 7, 8, 17

5 1 1 0 0 0 0 9, 18

6 0 0 1 0 0 0 0, 9

7 0 0 0 0 0 1 0, 10

8 0 0 0 1 1 0 10, 19

9 1 0 1 0 0 0 1, 11

10 0 0 0 1 0 1 2, 12

11 0 1 1 0 0 0 3, 13

12 0 0 0 0 1 1 4, 14

13 1 1 1 0 0 0 5

14 0 0 0 1 1 1 8

15 1 0 0 1 0 0 16, 17

16 0 1 0 1 0 0 18

17 1 0 0 0 1 0 19

18 1 1 0 1 0 0

19 1 0 0 1 1 0

20 0 0 1 0 0 1 6, 7

21 0 1 0 1 0 1 16

22 1 0 1 0 1 0 17

23 0 1 0 0 0 1 20, 21

24 0 0 1 0 1 0 20, 22

25 0 1 1 0 0 1 11, 23

26 0 0 1 0 1 1 12, 24

Table 1: Example: The FMS State Transition Function

20

9

0

1

3

13

2

4

5 6

10

11

14

15

16

18 19

20

21 22

24

25 26

12

17

23

7 8

Figure 5: Example: The FMS State Transition Diagram

21

under normal operation, to complete all running jobs, i.e. become idle and empty. For this reason,

the heavily shaded states are characterized as unsafe, while the lightly shaded states, which provide

accessibility to state s0, are characterized as safe. The set of safe states is denoted by Ss � S and

the set of unsafe states is denoted by S�s. Again, it holds that S�s = S\Ss. Formally,

De�nition 3 State si is a safe state i� state s0 is reachable from state si. A state which is not safe

will be called an unsafe state. In the FSA notation,

8si 2 S; safe(si)() 9u 2 E� : f(si; u) = s0 () s0 si

Furthermore, we extend the characterization of safety to FMS transitions emanating from safe

states, by characterizing them as safe if they result in a safe state; mathematically,

8si 2 Ss; 8e 2 F(s
i); safe(e=si)() f(si; e) 2 Ss

Finally, we denote the intersection of any two classes resulting from the previous two classi�cations

by Sxy where x = r; �r, and y = s; �s.

FMS Deadlock It has already been stated in the previous section, that an FMS state is a deadlock

if there exists a set of jobs s.t. every job in the set is waiting for the release of some resources held

by some other jobs in the set. This is de�ned formally below.

De�nition 4 In a single-unit RAS, state si is a partial deadlock, if a subset of its resources, DRi,

is �lled to capacity, and every process holding a unit of these resources requires transfer to another

resource in DRi for the execution of its next stage.

The class of FMS deadlock states for a given FMS con�guration will be denoted by Sd. Deadlocks

are the natural reason for the existence of the unsafe states in the FMS operation. This is established

by the following two propositions, formally proven in [48]:

Proposition 1 An FMS deadlock is an unsafe state.

Proposition 2 In the FMS-STD, every directed path that starts from an unsafe state, and does not

involve the loading of a new job in the system, results in a deadlock.

It should be noticed, however, that there can be unsafe states which are not deadlocks. As

an example, consider state s15 in the STD of Figure 5. This state, although one step away from

deadlock, it does not contain a deadlock itself, since both of its loaded jobs can advance to their next

requested resource (i.e., the AGV).

22

3.3 An algebraic FMS state-safety characterization

The de�nition of the FMS deadlock, together with the two propositions linking the safety and the

deadlock concepts, lead to the following algebraic characterization of the state-safety problem:

Consider the FMS state si = s0 in which J0 jobs, fj1; j2; : : : ; jJ0g, are currently loaded in the

system. Obviously, J0 �
Pm

k=1 Ck, the total capacity of the FMS. For uniformity of presentation,

we include an extra resource Rm+1 with Cm+1 = 1. This resource accommodates all jobs exiting

the system. Hence, all job routes are augmented by one step: JRj;l0(j) = Rm+1; j = 1; : : : ; r, where

l0(j) = l(j) + 1. Let Uit; i = 1; : : : ; J0, denote the resource unit occupied by job ji at step t. Then,

assuming that state s0 is safe, the total number of steps required for running all the currently loaded

jobs to completion, is Tt =
PJ0

i=1[l
0(jr(Ui0))� st(Ui0)], where jr(Ui0) and st(Ui0) are the functions

returning the job type and the running stage of their argument. Finally, let f�iktg denote a set of

binary variables with

�ikt =

8><
>:

1 if job ji occupies a unit of resource k at step t

0 o.w.

where i 2 f1; : : : ; J0g, k 2 f1; : : : ; m+ 1g and t 2 f0; : : : ; Ttg.

State s0 is safe i� the following system in variables �ikt is feasible:

�ik0 =

8><
>:

1 if 9q 2 f1; : : : ; Ckg : Ui0 = Rkq

0 o.w.
8i; k (1)

J0X
i=1

�ikt � Ck; 8k; t (2)

m+1X
k=1

�ikt = 1; 8i; t (3)

TtX
t=0

�i;l0(i);t � 1; 8i (4)

�ikt � (�ik(t+1) + �i;sr(i;k;pi);(t+1)) � 0; 8i; k(6=m+ 1); t (5)

�ikt + �i;sr(i;k;pi);(t+1) +
J0X
j=1

�j;sr(i;k;pi);t � C
sr(i;k;pi) + 1; 8i; k(6=m+ 1); t (6)

23

�ikt 2 f0; 1g; 8i; k; t (7)

In the above equations, sr(i; k; pi) is a function returning the resource type required by job ji

for its next processing step, given that it is currently allocated one unit of resource type k for the

execution of its pi-th processing step (s-uccessor r-esource). Equation 1 introduces the description

of the initial state s0 into the program and it represents the set of initial conditions. Equation 2

states that no resource type can hold more jobs than its capacity. Equation 3 expresses the fact that

every job instance always requires one complete unit of operational space. Equation 4 simply states

that for a RAS state to be safe, it is necessary that every job executes its last step at some point

over the considered horizon. Given the convention introduced above, this guarantees that the job

has been run to completion and left the system. Equation 5 represents the precedence constraints

introduced by the job routes, i.e. every movement of a job in the system must obey its routing

sequence. Equation 6 imposes the requirement that a job can proceed to its next step only if there

is at least one unit of available capacity from the resource type required during that step. Finally,

Equation 7 states the binary nature of the � variables.

This algebraic characterization of state safety has proven useful in developing a methodology for

establishing the correctness of a class of deadlock avoidance policies, discussed in Section 5.

3.4 Deadlock avoidance policies { general de�nitions

The characterization of state safety and the FMS deadlock by the topological structure of the State

Transition Diagram (STD) of the underlying FSA, can also be used to formally de�ne the avoidance

approach in the resolution of the FMS deadlock. In the following discussion, it is assumed that the

FMS always undergoes normal operation, so that only reachable states occur.

The subgraph consisting of the reachable states Sr and the arcs emanating from them is called

the reachability graph of the FSA. A DAP must restrict the operation of a given FMS by limiting it

to its reachable and safe subspace Srs. Practically, we seek to identify an appropriate set of feasible

transitions which when removed from the STD (or equivalently, disabled by the DAP), render the

unsafe subspace Sr�s unreachable from state s0. At the same time, it must be ensured that every

state si in the remaining graph (i.e., reachable under the control policy), is still safe (i.e., there exists

a directed path in the remaining graph leading from state si to s0). States which are reachable under

the DAP and from which progress is inhibited by the policy-imposed constraints and not by the RAS

structure, are characterized as restricted deadlocks in the deadlock literature [5].

24

0

1

3

13

2

4

5 6

10

11

14

15

16

18 19

12

17 7 8

9

Restricted
Deadlock

Figure 6: Example: A DAP inducing restricted deadlock

25

An example of a DAP that gives rise to restricted deadlock is presented in Figure 6. This

hypothetical policy, de�ned on the STD of the example FMS of Figure 4, admits (allows access to)

only the states corresponding to the white-colored nodes in the depicted STD. Notice that the policy

provides accessibility to state s8, while it disables the only transition out of it, by not admitting

state s10. As a result, whenever the system �nds itself in state s8, it is permanently blocked there

by the policy logic, itself.

A formal characterization of the above concepts is as follows:

De�nition 5 An avoidance policy P for the FMS is a function

P : S ! 2E; P(si) = fe 2 F(si) : e is selected by the policyg

Events e 2
S
iP(s

i) are called the (policy-)enabled events.

De�nition 6 Given an avoidance policy P, let si
P
 sj denote the fact that state si is reachable

from state sj through an event sequence which comprises policy-enabled events only. Let Sr(P) =

fsi : si
P
 s0g and Ss(P) = fs

i : s0
P
 sig. Then, policy P is correct i� Sr(P) � Ss(P).

In words, a DAP is correct i� the policy-reachable subspace Sr(P) is a strongly connected sub-

graph containing the idle and empty state s0. Notice that the reachable and safe subspace of the

uncontrolled system, Srs, possesses this property; in fact, this is the maximal subspace possessing

this property. This leads us to the concept of the optimal DAP. A correct avoidance policy P� is

optimal if the policy restriction on the Srs subspace of the FMS disables only those actions that

result in unsafe states. Formally,

De�nition 7 The correct avoidance policy P� is optimal i�

8si 2 Srs; 8e 2 F(s
i); e 2 P�(si)() f(si; e) 2 Ss

This characterization of the optimal policy has the following three implications:

i. For a given FMS con�guration, the optimal avoidance policy P� is unique.

ii. Sr(P�) = Srs. Establishing the optimal control policy P� is equivalent to removing from the

reachability graph those transition arcs that belong to the cut7 [Srs;Sr�s]. For example, in the

STD of Figure 5, the optimal control policy P� consists of removing the arcs that emanate

from lightly shaded solid nodes and cross the twisted dashed line.

7For a de�nition of this concept refer to [2].

26

iii. In [25, 3] it is shown that, in the general case, the problem of determining the safety of a RAS

state is NP -complete. Since the inclusion of a transition to the optimal avoidance policy P�

depends on the safety of the successor state, it follows that obtaining policy P� is an NP -hard

problem [20].

4 Single-Unit RAS admitting Polynomially Computable Optimal

DAP

The concluding remark of the last section regarding the complexity of the optimal deadlock avoidance

policies in Single-Unit RAS made researchers of the manufacturing system deadlock { including our

group { focus their e�orts, for a long time, in obtaining good suboptimal policies, i.e., policies

that are computationally tractable, and still, relatively e�cient with respect to the overall system

performance. However, some recently obtained results establish that for a large subclass (in fact,

the majority) of Single-Unit RAS, the optimal DAP is polynomially computable, and therefore,

implementable in real-time. This section develops the relevant theory.

Speci�cally, the identi�cation of the aforementioned SU-RAS subclass admitting polynomially

computable optimal DAP, resulted from the following two key observations:

1. While the decision problem regarding the safety of a SU-RAS state is, in general, NP -complete,

the deadlock detection problem { i.e., whether a given SU-RAS state is deadlock or not { is

polynomially computable.

2. There are SU-RAS models in which the set of unsafe states coincides with the set of the

deadlock states. In other words, in this class of SU-RAS, there are no unsafe states which do

not contain already a deadlock.

Observations 1 and 2 together imply that for the considered subclass of SU-RAS, optimal deadlock

avoidance can be obtained by testing for deadlock through one-step lookahead: i.e., the satisfaction

of a pending request is simulated, and if the resulting RAS state is deadlock-free, it is concluded

that granting the request is a safe step. In fact, this result provides theoretical justi�cation for a

claim made by a number of researchers in the �eld (e.g., [65, 68]), that in the majority of the cases,

deadlock avoidance policies based on a �nite horizon of look-ahead steps, even though not provably

correct, are well behaved.

27

algorithm DDA

begin

/* Initialize */

CANDIDATES := RDV;

STUCK := FALSE;

/* processing step */

while (not-empty(CANDIDATES) and not(STUCK)) do

begin

STUCK := TRUE;

for (i:=1 to cardinality(CANDIDATES)) do

begin

if (deleteable(Ri))

begin

eliminate(Ri);

STUCK := FALSE;

end

endfor

endwhile

if (not-empty(CANDIDATES))

state s is a deadlock with resources in CANDIDATES being the deadlocked subset;

else

state s is deadlock-free;

end

Figure 7: A polynomial deadlock detection algorithm for Single-Unit RAS

28

4.1 Deadlock detection in Single-Unit RAS

To show the polynomiality of the deadlock detection problem in SU-RAS, it is su�cient to provide

an algorithm resolving the problem in polynomial time. Such an algorithm is depicted in Figure 7,

and was initially developed in [55]. The algorithm logic is based on the concept of the Resource

Dependency Graph (RDG). This is a graph with each vertex Vi; i = 1; : : : ; m, corresponding to a

system resource type Ri i = 1; : : : ; m, and with each edge Eij implying that one of the units of Ri

is currently allocated to a process jk requiring a unit of Rj for its next processing stage. Hence,

a partial deadlock in a SU-RAS is depicted by a closed subgraph of the RDG in which every node

Vi has a number of emanating arcs equal to the capacity of the corresponding resource Ri; such a

subgraph is typically called a knot in the deadlock literature. The algorithm stores the information

contained in the RDG of a given state in a data structure, known as the Resource Dependency Vector

(RDV). RDV has one component for every RAS resource type Ri, containing: (i) the number of Ri

units allocated to processes in state s, and (ii) a list of the resource types required by the processes

currently allocated to Ri, for their next step. Notice that this information can be easily obtained from

the state vector and the process routes. Then, the algorithm considers the RDV and tries to identify

a subset of resources entangled in a knot. Initially, all system resources are possible candidates.

Subsequently, the algorithm goes through a number of scannings of the RDV, and at every scanning

it eliminates a number of resources from further consideration. The resources eliminated are those

which either (i) are not �lled to capacity or (ii) have units allocated to processes which are ready to

leave the system or to move to an already eliminated resource. Proceeding in this way, the algorithm

either eliminates all resources, in which case the considered state s is deadlock-free, or at a certain

scanning no resource is eliminated, in which case state s is a deadlock.

Example To provide a more concrete example of the algorithm logic, consider the SU-RAS state

depicted in Figure 8. During the �rst iteration of the algorithm, resources R1 and R4 are eliminated

from the CANDIDATES list, since each contains a job ready to leave the system, and therefore, they

cannot be entangled in a deadlock. After the second iteration, resource R3 is also eliminated since it

contains jobs waiting upon resource R4, which was shown to be able to obtain free capacity during

the �rst run. However, during the third iteration, no other resources are eliminated, and therefore, it

is concluded that the subset of resources R2; R5; R6 and R7 are permanently blocked due to a partial

deadlock. 2

The following proposition, proven in [55], establishes the polynomial complexity of the DDA

29

algorithm:

Proposition 3 The complexity of the DDA algorithm is O(m2 � �C), where m is the number of the

RAS resource types, and �C = maxi2f1;:::;mgCi (i.e., the maximum resource capacity).

4.2 Single-Unit RAS models with no deadlock-free unsafe states

The result regarding the existence of SU-RAS models for which the class of unsafe states coincides

with the class of deadlock states is stated in the following theorem:

Theorem 1 Let a Single-Unit RAS be de�ned over a resource set R, and a set of job types JT , such

that each resource Ri 2 R satis�es at least one of the following conditions:

1. Ci > 1.

2. If JTjk ; JTlm are two distinct job stages supported by resource Ri, then, (a) either the preceding

stages JTj;k�1 and JTl;m�1 or the succeeding stages JTj;k+1 and JTl;m+1 are supported by the

same resource, or (b) JTjk (JTlm) is the initial/�nal stage in JTj (JTl).

3. Ri supports a single job stage JTjk.

Then, Sru \ (S\Srd) = ;, i.e., every reachable unsafe state is a deadlock state.

A formal proof for this theorem is provided in [33], and it essentially combines similar results

initially developed in [55] and [18]. The signi�cance of this result is demonstrated by means of

the
exible manufacturing cell depicted in Figure 9. This cell presents the typical layout of many

contemporary automated manufacturing cells, consisting of a number of workstations, served by a

central robotic manipulator. Each workstation possesses an input and an output bu�er, while the

manipulator can carry only one part at a time. For such a system, it is clear that deadlock-free

operation can be established by controlling the allocation of the bu�ering capacity of the system

workstations, and treating the manipulator as the enabler of the authorized job transfers. Further-

more, the SU-(sub-)RAS de�ned by the system workstations meets the speci�cations (1) and/or (2)

prescribed in the conditions of Theorem 1, and therefore, in such a system, the optimal deadlock

avoidance can be attained through one-step lookahead on the allocation of the bu�ering capacity of

the system workstations.

Taking this whole discussion to a more practical level, we would like to remind the reader of

the fact that SU-RAS models apply to FMS environments in which the only cause of deadlocks

30

R2 R3

R4R5

R7R6

R1

J3J3

J2

J1 J1

J1J1

J3 J3 J3

J2 J2

J1

J1J3
J2

J2

J3

J3

J2J3

J3

J3

J3 J2

J3

Figure 8: Example: Using the Resource Dependency Graph to detect deadlock

Wi

W1

LOAD / UNLOAD

W(n-1)

Wn

W2

Figure 9: The Flexible Manufacturing Cell layout

31

is the limited bu�ering capacity of the FMS equipment (cf. Section 2: the RAS taxonomy). In

the light of this remark, the practical implication of the combined results of Proposition 3 and

Theorem 1, is that in these FMS environments, deadlock can be resolved optimally by ensuring that

every FMS resource can accommodate at least two parts at a time. This can be easily achieved

with the provision of an input, output or auxiliary bu�er. Hence, optimal deadlock-free bu�er

space allocation in contemporary FMS turns out to be a rather easy problem, under appropriate

design of these environments. For the sake of completeness, in the rest of this chapter, we discuss

computationally e�cient solutions to the problem of deadlock avoidance in SU-RAS, for the cases

that the conditions of Theorem 1 are not satis�ed. In addition to covering exhaustively the problem

of deadlock avoidance over the entire class of SU-RAS, these results have provided useful insight

for synthesizing deadlock avoidance policies for more complicated classes of the RAS taxonomy, for

which optimality results, similar to those of Theorem 1, are not available. The interested reader is

referred to [55, 48].

5 Polynomial-Kernel Deadlock Avoidance Policies for Single-Unit

RAS

To deal with the more computationally ill-behaved cases, we adopted an approach based on the

concept of Polynomial-Kernel policies. Simply stated, this approach requires that, since the tar-

get set Ss is not polynomially recognizable, the system operation should be con�ned to a subset of

these states which is polynomially computable. This state subset is perceived as an easily identi-

�able (polynomially computable) kernel among the set of reachable and safe states, and gives the

methodology its name. From an implementational viewpoint, this idea requires the identi�cation of

a property H(si); si 2 S, such that: (i) H(si)) safe(si); 8si 2 Sr, and (ii) H() is polynomially

testable on the system states. Then, by allowing only transitions to states satisfying H, through

one-step look-ahead, it can be ensured that the visited states will be safe.

An additional requirement is that the resulting DAP is correct , i.e., the policy-reachable subspace

must be strongly connected (cf. Section 3: De�nition 6). However, this characterization of policy

correctness is based on a global view of the system operation, and given the typically large size of the

system state space, it is not easily veri�able. A more operable criterion for testing the correctness

of Polynomial-Kernel policies is provided by the following theorem:

Theorem 2 A Polynomial-Kernel DAP is correct i� for every state admitted by the policy there

32

exists a policy-admissible transition, which, however, does not correspond to the loading of a new job

into the system.

The validity of this theorem primarily results from the observation that at any point in time,

the system workload { in terms of processing steps { is �nite, and every transition described in the

theorem reduces this workload by one unit. Hence, eventually the total workload will be driven to

zero, which implies that the system has returned to its home state s0. A more formal statement

and proof of this theorem, by means of the algebraic characterization of state safety provided by

Equations 1 { 7 (cf. Section 3), can be found in [52]. Notice, that establishing the policy correctness

by means of Theorem 2 resolves concurrently the validity of condition H as a Polynomial-Kernel

identi�er for state safety, and the restricted deadlock-free operation of the controlled system.

In the rest of this section, we present three Polynomial-Kernel policies developed in our research

program. For each of these policies, we present: (i) the motivation behind the policy de�ning

condition, (ii) the policy de�ning logic, and (iii) an elucidating example. Formal proofs of the policy

correctness and a complexity analysis can be found in the provided references. The e�ciency of these

policies with respect to the system operational
exibility is discussed in Section 6.

5.1 The Resource Upstream Neighborhood (RUN) policy

It should be obvious that no deadlock would occur in a RAS, if every job were allocated all the

resources required for its entire processing upon its loading into the system. In fact, this is a very

general prevention scheme for deadlock resolution, and as such, it fails to take into consideration any

existing information about the RAS structure, being, thus, overly conservative and underutilizing

the system resources. The second remark that RUN builds upon, is that if at any point during its

sojourn through the system, a job is allocated to a resource of very high { theoretically in�nite {

capacity, then, for the purposes of structural analysis, its route can be decomposed to a number of

segments, each of which is de�ned by two successive visits to the in�nitely capacitated resource(s).

Since, in any practical context, resources have �nite capacity, RUN exploits the existing job

routing information, to implement a nested, partial resource reservation system, on the principle

that, if there are some resources with higher capacity than others in the system, then they can

function as temporary bu�ers for the jobs that they support. A pictorial representation of RUN

reservation scheme is provided in Figure 10. For the detailed formal statement of the policy, we

introduce the concept of the resource upstream neighborhood :

33

Resource Neighborhoods

Part reservations

Figure 10: RUN motivation: The partial resource reservation scheme

De�nition 8 [52] The upstream neighborhood of resource Ri consists of all route stages JTjk which

are supported by resource Ri, plus all the route stages belonging to the maximal route subsequences

immediately preceding each of the aforementioned JTjk, and involving stages JTjp with CR(JTjp) � Ci.

A job instance jj is in the neighborhood of resource Ri i� its current processing stage is in the

neighborhood of Ri.

Then, a formal de�nition of RUN is as follows:

De�nition 9 RUN [52] A resource allocation state s is accepted by RUN DAP i� the number of

jobs in the upstream neighborhood of each resource, Ri, does not exceed its bu�ering capacity, Ci.

Example We highlight the policy-de�ning logic and the resource neighborhood construction through

an example. Consider the small SU-RAS depicted in Figure 11. This system consists of four

resources R1; R2; R3; R4, with a corresponding capacity vector C =< 2; 1; 1; 1 >. In its cur-

rent con�guration, the system supports the production of three distinct job types, with job routes:

JT1 : R1 ! R2 ! R3; JT2 : R3 ! R4 ! R3; JT3 : R1 ! R2. By applying the logic of De�nition 8

to this system, we obtain the neighborhood inclusions indicated by the following incidence matrix:

ARUN =

2
66666664

1 1

1 1

1 1 1 1 1

1 1

3
77777775

(8)

Each row of the above array corresponds to a resource neighborhood, N(R1); : : : ; N(R4). Each

column corresponds to a route stage, starting with the stages of job type JT1, and concatenating the

stages of JT2 and JT3. Using the de�nition of the system state provided in Section 3 { i.e., a vector

34

R1 R2 R3 R4

JT1: R1 -> R2 -> R3

JT2: R3 -> R4 -> R3

JT3: R1 -> R2

Figure 11: Example: A Single-Unit RAS for RUN and RO DAP demonstration

s(t) with components corresponding to the distinct job stages JTjk ; j = 1; : : : ; 3; k = 1; : : : ; l(j),

and with sjk(t) being equal to the number of job instances executing stage JTjk at time step t { it

is easy to see that the policy constraints can be expressed by a system of linear inequalities on the

system state:

ARUNs � C (9)

2

The policy correctness is established in [52]. In fact, in [52] it is also shown that if instead of

the partial ordering imposed by resource capacities, any other (partial) ordering of the resource set

is used in the neighborhood de�nition, the resulting policy is still correct. Therefore, RUN logic

de�nes an entire family of policies for a given FMS con�guration, with each member resulting from

a distinct (partial) ordering of the system resources. The exploitation of this result for improving

the policy e�ciency is discussed in the Section 6. Finally, the policy is scalable (i.e., of polynomial

complexity in the FMS size, as de�ned by the number of resources and the distinct route stages

of the underlying RAS), since: (i) Construction of the neighborhood sets for a single job type is

of complexity no higher than O(L2), where L is the length of the longest route supported by the

system. Therefore, computing the complete resource upstream neighborhoods is of complexity not

higher than O(nL2), where n is the number of job types supported by the system. (ii) Evaluating

the admissibility of a RAS state by the policy, requires the veri�cation of m linear inequalities in the

D system state variables, where m is the number of system resources, and D is the total number of

distinct job stages supported by the system.

35

A Single-Unit "Counterflow" RAS

1 4 52 3

A CORRECT SUFFICIENT condition for safe operation

Figure 12: RO motivation: A correct su�cient condition for deadlock-free operation of Single-Unit

\Counter
ow" RAS

5.2 The Resource Ordering (RO) policy

To understand the logic behind the Resource Ordering (RO) policy, let us �rst concentrate on a

subclass of SU-RAS, with the special property that the RAS resources can be numbered so that all

job routes correspond to strictly increasing or strictly decreasing resource sequences. We shall char-

acterize this particular class of SU-RAS, as the class of \counter
ow" systems [40]. It should be easy

to see that a su�cient condition for physical and restricted deadlock-free operation in \counter
ow"

systems, is that no pair of resources (Ri; Rj), with i < j, are �lled to capacity with the jobs in re-

source Ri corresponding to ascending resource sequences, and the jobs in resource Rj corresponding

to descending resource sequences. These remarks are proven in [40], and are visualized in Figure 12.

Of course, the \counter
ow" property is a very restrictive requirement, and the policy would not

be of any practical use if it was applicable only to this class of system. It turns out, however, that

the policy-motivating idea outlined above can be extended to the more general class of SU-RAS; the

solution is to \double-count" job instances for which the remaining route segment is nonmonotonic

w.r.t. the resource numbering.

The complete policy de�nition is as follows:

De�nition 10 RO [43]

1. Impose a total ordering on the set of system resources R, i.e., a mapping

o : R! f1; : : : ; jRjg s.t. Ri < Rj , o(Ri) < o(Rj)

We say that \Ri (Rj) is to the left (right) of Rj (Ri)", i� Ri < Rj.

36

Furthermore, job stage JTjk is characterized as right (left)-directed if R(JTj(x�1)) < (>

) R(JTjx); 8x > k, where R(JTjk) denotes the resource supporting stage JTjk. A stage which

is neither right nor left-directed is an undirected stage.

A job instance is characterized as right, left, or undirected on the basis of its running processing

stage.

2. Let

� RCi(t) = fright-directed + undirected job instances in Ri at time step tg

� LCi(t) = fleft-directed + undirected job instances in Ri at time step tg

3. A resource allocation state s(t) is accepted by RO i�

8i; j : Ri < Rj) RCi(t) + LCj(t) � Ci + Cj � 1 (10)

Example We elucidate the de�nition of RO DAP, by applying it on the small system of Figure 11.

The ordering used in the policy implementation is the natural ordering of the system resources, i.e.,

o(Ri) = i; 8i. Furthermore, we observe that job instances executing the last stage of their route can

never deadlock the system, since their unloading from the system is always a feasible step. Hence,

they can be ignored during the evaluation of the admissibility of a resource allocation state, and

therefore, they are omitted during the de�nition of the content of RCi(t) and LCi(t).8

It is easy to see that job stages JT11, JT12 as well as JT31 are right-directed, while job stage JT21

is undirected, and job stage JT22 is left-directed. Hence, the contents of the RCi and LCi counts are

de�ned by the following table:

Resource RCi LCi

R1 JT11; JT31

R2 JT12

R3 JT21 JT21

R4 JT22

8Although not used in the previous example, a similar remark regarding the (in-)signi�cance of last job stages in

deadlock avoidance applies to the implementation of RUN DAP.

37

Then, part 3 of De�nition 10 implies that this implementation of RO on the considered RAS

imposes the following set of linear inequalities on the system state:

2
666666666666664

1 1

1 1 1

1 1 1

1 1

1 1

1 1

3
777777777777775

s �

2
666666666666664

2

2

2

1

1

1

3
777777777777775

(11)

In Equation 11, each inequality corresponds to a pair (Ri; Rj) with Ri < Rj , and with all these pairs

ordered lexicographically in increasing order (i.e., (R1; R2); (R1; R3), etc.). 2

The policy correctness is proven in [43]. Given a certain FMS con�guration, RO, like RUN,

essentially de�nes a family of DAP's, generated by all the possible total orderings imposed on the

FMS resources. The computation required for the initial setup of the policy (i.e., classi�cation of

the di�erent route stages to left, right and undirected) is of complexity O(D), where D is the total

number of distinct processing stages executed in the considered RAS, while the number of constraints

on the RAS state to be checked on-line, is of order O(m2), wherem is the number of system resources.

Therefore, the policy is scalable.

5.3 Ordered States and the FMS Banker's Algorithm

The classical Banker's algorithm [26] is based on the observation that a state is safe if its running

processes can be ordered in such a manner that each process in the ordering can terminate using

only its currently allocated resources, resources currently available in the system, and also, resources

currently allocated to processes which are preceding it in the order. In the context of correct and

scalable FMS DAP's, this idea leads to the concept of the ordered state, de�ned as follows:

De�nition 11 [38] Let D =
Pn

j=1 l(j), the number of distinct route stages supported by a given

system. RAS state s(t) is ordered i� there exists an ordering of the set of distinct job stages,

o() : fJTjk : j = 1; : : : ; n; k = 1; : : : ; l(j)g ! f1; : : : ; Dg, such that the resource requirements for

processing to completion a job instance ji in stage JT (i) can be satis�ed by means of the free resources

in state s(t), plus the resources held by job instances jq in stages JT (q), with q � i.

Let So denote the set of ordered RAS states. In [38], it is shown that So is a strongly connected

subspace of the RAS STD, containing the empty state, and therefore, the restriction of the system

38

R1 R2 R3

JT1: R1 -> R3

JT2: R3 -> R2 -> R1

Figure 13: Example: A Single-Unit RAS for Banker's algorithm demonstration

operation on this set de�nes a correct DAP.

De�nition 11 provides also immediately an algorithm for testing whether a state is ordered or

not:

De�nition 12 { FMS Banker's Algorithm [38]

1. Set UJ := fJTjk; j = 1; : : : ; n; k = 1; : : : ; l(j)g; i = 0; ORDERED:=TRUE.

2. Repeat

(a) i := i+ 1;

(b) Try to �nd a job stage JTjk 2 UJ the instances of which can terminate by using their

currently allocated resources, plus the currently free resource units.

(c) If no such a job stage can be found, ORDERED:= FALSE.

(d) else JTjk � JT (i); UJ := UJ \fJTjkg; release the resources held by the job instances of

JTjk to the pool of the free resource units.

until (UJ = ;) _ (ORDERED=FALSE)

3. If (ORDERED=FALSE) return FALSE else return TRUE

Example Consider the Single-Unit RAS of Figure 13. This system consists of three resources, R1,

R2, R3, with C1 = 1 and C2 = C3 = 2. In its current con�guration, the system supports two job

types: JT1 =< R1; R3 > and JT2 =< R3; R2; R1 >. The reader should be able to verify that

state s =< 1 0 1 1 0 > is ordered, with a valid ordering being JT (1) = JT11, JT (2) = JT22 and

JT (3) = JT21. On the other hand, state s0 =< 1 0 2 1 0 > is not ordered, even though it is safe:

39

advancing one instance of job stage JT21 to its next stage allows the job instance in stage JT11 to

run to completion, which further allows the remaining jobs to �nish. 2

It is the inability of Banker's logic to discern the viability of the partial job advancements demon-

strated in the previous example that renders the algorithm suboptimal. This is the price paid to keep

the algorithm complexity polynomial in the system size. Indeed, similar to the \classical" Banker's

Algorithm, the correctness of the FMS Banker's results from the fact that the re-usability of the

system resources implies a monotonic increase of the pool of free resources whenever job instances

terminate, and makes backtracking unnecessary during the search for a feasible job stage ordering.

Hence, the complexity of the above algorithm is polynomial, speci�cally, O(mD logD).

6 E�ciency Considerations for Polynomial-Kernel DAP's

It has already been observed that Polynomial-Kernel policies attain their tractability at the cost

of suboptimality. Hence, a valid point for this line of research is to try to reduce suboptimality

as much as possible. Before, however, we start considering this problem, we must de�ne a metric

for measuring the e�ciency of these policies. There are two general approaches to establish such

a metric. The �rst approach compares the attainable system performance under the control of

various DAP's with respect to typical performance measures like process throughput(s), waiting

times, Work-In-Process, and resource utilizations. Results along these lines for RUN and RO DAP's

can be found in [48, 51, 53]. In this chapter, we shall focus on the second approach, which evaluates

the e�ciency of the di�erent DAP's, based on the concept of operational
exibility . Speci�cally, the

exibility allowed by the evaluated policy is compared to the
exibility attained by the maximally

permissive (optimal) DAP, by assessing the coverability of the safe space Ss by the policy-admissible

subspace, S(P). More formally, consider the Polynomial-Kernel policy de�ned by property H, and

let S(H) � fsi 2 S : H(si) is TRUEg, i.e., the policy admissible subspace. Then, a viable policy

e�ciency measure is provided by the ratio

I =
jS(H)j

jSsj
(12)

where jSj denotes the cardinality number of set S.

Due to the typically large size of the S(H) and Ss subspaces, their explicit enumeration will

not be possible, and therefore we must resolve to simulation and statistical sampling techniques.

Such a technique, known as the Co-space Simulation technique, is developed in [39]. Brie
y, this

approach recognizes that the set of safe states of a given SU-RAS, Q, corresponds to the reachability

40

set of a \co-system", Q0, which is de�ned from the original RAS Q, by reversing its job routes.

Hence, the operation of the co-system Q0 is simulated until a su�ciently large sample of states is

obtained. According to the previous remark, this sample set consists of safe states of the original

system. In continuation, the condition H de�ning the evaluated DAP is applied on the extracted

sample set, and the portion of the sample states admitted by the policy is determined. This portion

expresses the policy coverability of the extracted sample set, and constitutes a point estimate for

index I . Application of this technique to the Polynomial-Kernel DAP's of Section 5, and experimental

evaluation results can be found in [39, 43, 38]. In the rest of this section,we discuss some properties of

Polynomial-Kernel DAP's which can be used to enhance the operational
exibility of these policies,

when implemented on any given FMS con�guration.

6.1 Policy disjunctions and essential di�erence

The �rst way to improve the e�ciency of an FMS structural controller employing Polynomial-Kernel

DAP's, w.r.t. the metric of Equation 12, is based on the following proposition:

Proposition 4 Given two conditions H1() and H2() de�ning correct Polynomial-Kernel DAP's, the

policy de�ned by the disjunction H1() _H2() is another correct Polynomial-Kernel DAP.

To see this, simply notice that acceptance of a state s by the policy disjunction implies that at

least one of the two policy de�ning conditions, H1(), H2(), evaluates to TRUE at s, and therefore,

state s is safe. Furthermore, if state s 2 S(Hi); i 2 f1; 2g, then the correctness of the corresponding

policy implies the existence of at least one feasible event e, which is enabled by that policy, and

�(e; s) � s0 2 S(Hi) (cf. Theorem 2). But then, s0 2 S(H1 _ H2), and according to Theorem 2, the

policy de�ned by H1()_ H2() is correct.

It is also easy to see that the subspace admitted by the policy disjunction is the union of the

subspaces admitted by the two constituent policies. If it happens that:

(S(H1) 6� S(H2))^ (S(H2) 6� S(H1)) (13)

then S(H1)[S(H2) is richer in states than any of its constituents. Therefore, the resulting policy is

more e�cient with respect to index I . Two polynomial-kernel policies based on conditions H1 and

H2 that satisfy Equation 13, are characterized as essentially di�erent . Moreover, the policy de�ned

by their disjunction is more e�cient than the policy de�ned by each one of them, as it was just

shown.

41

The essential di�erence of the Polynomial-Kernel policies presented in Section 5 is analyzed in

[38]. It turns out that RUN and the FMS Banker's algorithm are essentially di�erent, while RO is

subsumed by Banker's.

6.2 Optimal and orthogonal orderings for RUN and RO DAP's

A second opportunity for improving the e�ciency of RUN and RO DAP's is provided by the fact that

the de�ning logic of these two policies essentially leads to entire families of policies for a given FMS

con�guration. As we saw in Section 5, each member of these families is de�ned by a distinct ordering

of the system resource set. Hence, a naturally arising question is which of these orderings leads to

the most e�cient policy implementation. In this way, an optimization problem is de�ned, which can

be considered as a parameter-tuning (optimization) problem. This optimization problem has been

characterized as the \Optimal Ordering" problem, and some further discussion on its formulation

and solution can be found in [39, 43].

Furthermore, the aforestated richness of RUN and RO implementations on a given RAS con�g-

uration raises the possibility of the existence of di�erent orderings within the same policy family

which lead to the admissibility of subspaces complementary to each other. This idea, combined with

the closure of Polynomial-Kernel DAP's with respect to policy disjunction, has led to the de�nition

of the \Orthogonal Ordering" problem. Details of the problem formulation and its solution can be

found in [48].

6.3 Combining Polynomial-Kernel DAP's with partial search

A last idea that can lead to e�ciency improvement of Polynomial-Kernel DAP's, is to expand the

state space admitted by such a policy, by allowing transitions to states s which fail to satisfy the

policy de�ning condition H(), { i.e., H(s) = FALSE { but for which their inclusion in the target set

Ss can be established through controlled partial search, i.e., n-step look-ahead schemes. Speci�cally,

for an n-step look-ahead scheme, state s with H(s) = FALSE is admissible, if there exists a sequence

of feasible events, w, such that (i) jwj � n, and (ii) �(w; s) = s0 2 S(H). Since this new admissibility

condition is of existential character, it is deemed that it can increase the policy e�ciency with rather

small computational cost, for reasonable sizes of look-ahead horizons.

It is interesting to notice how the length, n, of the look-ahead horizon partitions the target set

Ss accepted by the optimal DAP: n = 0 de�nes the kernel set S(H), while every time that the

look-ahead horizon is increased by one step, say from n to n+1, an additional ring of states is added

42

n=1
n=2
n=N-1

Su

S(H) : n=0

Ss : n=N

Figure 14: Expanding the admitted subspace of Polynomial-Kernel DAP's through n-step lookahead

search

to the set of states admitted when the horizon length is equal to n. Obviously, for �nite state spaces

this expansion continues only up to the point that the entire set Ss is covered, for some maximal

length N . This partitioning of the optimal subspace on the basis of the lookahead horizon size, n, is

depicted in Figure 14.

It might also be e�cient to store some of the results of these partial searches in a look-up table.

Speci�cally, some states s for which H(s) = FALSE, but which have been shown to belong to Ss

through the search mechanism, can be stored to a table for future reference. In this way, the cost

of look-ahead search is spared for these states. However, given the large size of the underlying

spaces, storing the entire set of states found to be admissible through n-step look-ahead search, in

general, will not be practically possible. All the same, the idea can become practical by exploiting

the following economies introduced by the system structure and operation:

i. From the FMS structural analysis of Section 3, it easily follows that:

8s1; s2 s.t 8i; s1i � s2i : safe(s2)) safe(s1) (14)

This result implies a covering relationship over the set of safe states admitted by a look-ahead

policy, in the sense that an admissible state should be stored in the policy look-up table, only

if its admissibility is not implied by an already stored state and Equation 14.

ii. Sometimes, the system operation presents considerable localization with respect to its underly-

ing state space, i.e., a rather small number of states is revisited a signi�cant number of times.

Then, an appropriately sized look-up table can function as a cache memory which holds in-

formation about the structure of the currently working subspace. Furthermore, a forgetting

43

mechanism is required to update the set of stored states as the system \drifts" to new state

regions. Such a mechanism can be provided, for instance, by time-stamping the stored states

with the last time that they were visited during the system operation { a variation of a scheme

known as aging [14].

An application of the combination of Polynomial-Kernel deadlock avoidance policies with partial

search can be found in [38].

7 Additional Issues and Future Directions in FMS Structural Con-

trol

The starting point of this chapter has been the observation that current trends in discrete-part

manufacturing require extensive levels of automation of the underlying shop-
oor activity, and in

order to support this extensive automation, a more sophisticated real-time control methodology for

these environments is needed. Speci�cally, the extensive automation, or even autonomy, required for

the operation of these systems gives rise to a new set of of problems concerning the establishment

of their logically correct and robust behavior, which is collectively known as the structural control

problem of contemporary FMS. In the rest of the chapter, we focused on one particular problem of

this area, the resolution of the manufacturing system deadlock, which has been a predominant FMS

structural control issue. The details of the FMS deadlock problem and its solution depend on the

operational characterisics of the system, as it was revealed by Section 2.1 and the RAS taxonomy

of Section 2.2. Restricting the subsequent discussion to the most typical case where deadlocks arise

due to ine�ective allocation of the system bu�ering capacity (i.e., the �rst class of the underlying

RAS taxonomy), we were able to show that, even though, in the general case, the problem of optimal

(maximally permissive) deadlock avoidance is NP -hard, when the system is con�gured so that every

resource (i.e., workstation and/or MHS-component) can stage at least two parts at a time, we can

obtain the optimal DAP with polynomial computational cost. Hence, the problem of FMS deadlock

due to �nite bu�ering capacity is conclusively resolved, for all practical purposes. Furthermore, to

completely cover the class of Single-Unit RAS, we presented Polynomial-Kernel DAP's, a class of

suboptimal yet e�cient DAP's which are also computationally tractable.

In the rest of this section we brie
y discuss some other aspects of this work, not covered in

the material of this chapter. For one thing, it has already been mentioned that the Polynomial-

Kernel DAP's of Section 5 have been extended to cover the Single-Type and Conjuctive RAS of

44

the aforestated taxonomy. These results are straightforward generalizations of the policies presented

in Section 5, and can be found in [55, 54]. Presently, work is under devlopment addressing the

last class of the presented RAS taxonomy, i.e., the integration of deadlock avoidance with
exible

job routing. This problem is non-trivial, since, in addition to the increased complexity associated

with the underlying state-safety decision problem, the introduction of routing
exibility results in

very high space complexity due to the exponentially large number of routing options associated with

each job type. Some initial results investigating the trade-o� between increased computational e�ort

and the bene�ts of routing
exibility are presented in [42]. A di�erent approach on the issue is

presented in [49]: acknowledging the increased complexity of the on-line job rerouting problem, the

author suggests the exploitation of the system inherent
exibilities for e�ective accommodation job

of di�erent operational contingencies, like machine breakdowns and the arrival of expedient jobs.

So, this work essentially deals with the e�ective recon�guration of the system in face of a major

disruption, and \bridges" the existing results on deadlock avoidance with the second main area of

FMS structural control, i.e., the design of protocols for exception handling and graceful degradation.

Finally, additional directions of extending the developed DAP's to new RAS classes include the

study of hierarchically structured RAS, and RAS in which the length of the di�erent job routes is

not predetermined, but depends on the occurrence of various events. These results are currently

under development.

FMS structural control and the developed policies have also signi�cant repercussion on the various

aspects of the system performance. In a sense, the constraints imposed by a structural control policy

de�ne the feasibility space for any performance-optimizing model. In other words, they signi�cantly

shape the system capacity .9 As it is observed in [23], \de�ning, measuring and respecting capacity are

important at all levels of the [system] hierarchy. No system can produce outside its capacity, and it is

futile at best, and damaging, at worst, to try . . . It is essential therefore to determine what capacity

is, then to develop a discipline for staying within it.". Initial results for scheduling the capacity of the

structurally controlled FMS are presented in [48, 51, 53]. An architecture for real-time integration

of structural and performance-oriented control in contemporary FMS controllers is presented in [48].

Essentially, the SC policy, at any point of the system operation, censors the decisions of the system

dispatcher for action admissibility with respect to safety. In some more recent work [50], the e�ect

of this censorship on the stability10 of some well-known distributed scheduling policies has been

9For a rigorous de�nition of this concept, see [22].
10Practically, a DAP is stable if it can provide the maximum throughput attainable over the entire class of scheduling

45

analyzed. It turns out that even when maximally permissive deadlock avoidance control is applied,

most of the distributed policies which have been formally shown to be stable under the assumption

of in�nite capacitated bu�ers, are not optimal (i.e., stable) any more. This result reiterates the

signi�cance of adequate modeling of the system structural aspects while analyzing its performance,

and reintroduces the scheduling problem in this new environment. In a similar fashion, the entire

FMS tactical planning problem (cf. Introduction) needs to be re-considered.

A last contribution of this work, and a new horizon for additional research, is the systematic

treatment of complexity in large-scale supervisory control problems. As it was stated in the Intro-

duction, current supervisory control theory has a very signi�cant impact on the formulation and the

rigorous analysis of the solvability (decidability) of problems rising in the area of logical control of

Discrete Event Systems [47]. However, most of the proposed algorithms, in their e�ort to remain

generic enough, address these problems at a (formal lagnuage-theoretic) syntactical level, which ig-

nores the detailed structure of the controlled system. As a result, these solutions are of complexity

polynomial to the size of the underlying system state space, and therefore, intractable for the cases

where this size explodes badly (as in the case of the deadlock avoidance problem). The work pre-

sented herein demonstrates that much can be gained in terms of mastering this complexity, if the

undertaken analysis focuses also on the speci�cs of the system behavior (language semantics). It

is our feeling that there are a lot of DES logical control problems currently begging computation-

ally e�cient (real-time) solution. Understanding the problem attributes determining the problem

complexity and establishing rational trade-o�s between computational tractability and operational

e�ciency are very important but also challenging problems for the �eld.

References

[1] A survey on manufacturing technology. The Economist, March 5th:3{18, 1994.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms and Appli-

cations. Prentice Hall, Englewood Cli�s, NJ, 1993.

[3] T. Araki, Y. Sugiyama, and T. Kasami. Complexity of the deadlock avoidance problem. In 2nd

IBM Symp. on Mathematical Foundations of Computer Science, pages 229{257. IBM, 1977.

policies.

46

[4] G. Arango and R. Prieto-Diaz. Domain analysis concepts and research directions. In R. Prieto-

Diaz and G. Arango, editors, Domain Analysis and Software Systems Modeling, pages 9{33.

IEEE Computer Society Press, 1991.

[5] Z. A. Banaszak and B. H. Krogh. Deadlock avoidance in
exible manufacturing systems with

concurrently competing process
ows. IEEE Trans. on Robotics and Automation, 6:724{734,

1990.

[6] D. A. Bodner and S. A. Reveliotis. Virtual factories: An object-oriented simulation-based

framework for real-time fms control. In ETFA'97, pages 208{213. IEEE, 1997.

[7] R. K. Boel, L. B. Naoum, and V. V. Breusegem. On forbidden state problems for a class of

controlled petri nets. IEEE Trans. on Automatic Control, 40:1717{1731, 1995.

[8] H. Cho, T. K. Kumaran, and R. A. Wysk. Graph-theoretic deadlock detection and resolution for

exible manufacturing systems. IEEE Trans. on Robotics and Automation, 11:413{421, 1995.

[9] H. C. Co, J. S. Biermann, and S. K. Chen. A methodical approach to the
exible manufacturing-

system batching, loading and tool con�guration problems. Int. J. Prod. Res., 28:2171{2186,

1990.

[10] E. G. Co�man, M. J. Elphick, and A. Shoshani. System deadlocks. Computing Surveys, 3:67{78,

1971.

[11] D. Connors, G. Feigin, and D. Yao. Scheduling semiconductor lines using a
uid network model.

IEEE Trans. on Robotics & Automation, 10:88{98, 1994.

[12] National Research Council. Information technology and manufacturing. Technical report, Na-

tional Academy Press, 1993.

[13] J. G. Dai, D. H. Yeh, and C. Zhou. The qnet method for re-entrant queueing networks with

priority disciplines. Op. Res., 45:610{623, 1997.

[14] H. M. Deitel. Operating Systems. Addison Wesley, Reading, MA, 1990.

[15] E. W. Dijkstra. Cooperating sequential processes. Technical report, Technological University,

Eindhoven, Netherlands, 1965.

47

[16] P. F. Drucker. The emerging theory of manufacturing. Harvard Business Review, May-June:94{

102, 1990.

[17] J. Ezpeleta, J. M. Colom, and J. Martinez. A petri net based deadlock prevention policy for

exible manufacturing systems. IEEE Trans. on R&A, 11:173{184, 1995.

[18] M. P. Fanti, B. Maione, S. Mascolo, and B. Turchiano. Event-based feedback control for deadlock

avoidance in
exible production systems. IEEE Trans. on Robotics and Automation, 13:347{363,

1997.

[19] L. Ferrarini, M. Narduzzi, and M. Tassan-Solet. A new approach to modular liveness analysis

conceived for large logic controllers' design. IEEE Trans. on Robotics and Automation, 10:169{

184, 1994.

[20] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman and Co., New York, NY, 1979.

[21] S. B. Gershwin. Hierarchical
ow control: A framework for scheduling and planning discrete

events in manufacturing systems. Proceedings of the IEEE, 77:195{209, 1989.

[22] S. B. Gershwin. Manufacturing Systems Engineering. PTR Prentice Hall, Englewood Cli�s,

N.J., 1994.

[23] S. B. Gershwin, R. R. Hildebrant, R. Suri, and S. K. Mitter. A control perspective on recent

trends in manufacturing systems. IEEE Control Systems Magazine, 6:3{15, 1986.

[24] A. Giua and F. DiCesare. Petri net structural analysis for supervisory control. IEEE Trans. on

Robotics and Automation, 10:169{184, 1994.

[25] E. M. Gold. Deadlock prediction: Easy and di�cult cases. SIAM Journal of Computing, 7:320{

336, 1978.

[26] A. N. Habermann. Prevention of system deadlocks. Comm. ACM, 12:373{377, 1969.

[27] J. W. Havender. Avoiding deadlock in multi-tasking systems. IBM Systems Journal, 2:74{84,

1968.

[28] R. D. Holt. Some deadlock properties of computer systems. ACM Computing Surveys, 4:179{

196, 1972.

48

[29] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation.

Addison-Wesley, Reading, MA, 1979.

[30] F. S. Hsieh and S. C. Chang. Dispatching-driven deadlock avoidance controller synthesis for

exible manufacturing systems. IEEE Trans. on Robotics and Automation, 10:196{209, 1994.

[31] M. D. Jen and F. DiCesare. Synthesis using resource control nets for modeling shared-resource

systems. IEEE Trans. on Robotics and Automation, 11:317{327, 1995.

[32] S. B. Joshi, E. G. Mettala, J. S. Smith, and R. A. Wysk. Formal models for control of
exible

manufacturing cells: Physical and system models. IEEE Trans. on Robotics and Automation,

11:558{570, 1995.

[33] P. Kumar, K. Kothandaraman, and P. Ferreira. Scalable and maximally-permissive deadlock

avoidance for fms. In ICRA'98 (submitted). IEEE R&A, 1998.

[34] P. R. Kumar. Scheduling manufacturing systems of re-entrant lines. In D. D. Yao, editor,

Stochastic Modeling and Analysis of Manufacturing Systems, pages 325{360. Springer-Verlag,

1994.

[35] P. R. Kumar and S. P. Meyn. Stability of queueing networks and scheduling policies. IEEE

Trans. Autom. Control, 40:251{260, 1995.

[36] P. R. Kumar and S. P. Meyn. Duality and linear programs for stability and performance analysis

of queueing networks and scheduling policies. IEEE Trans. Autom. Control, 41:4{17, 1996.

[37] P. R. Kumar and T. I. Seidman. Dynamic instabilities and stabilization methods in distributed

real-time scheduling of manufacturing systems. IEEE Trans. Autom. Control, 35:289{298, 1990.

[38] M. Lawley, S. Reveliotis, and P. Ferreira. The application and evaluation of banker's algorithm

for deadlock-free bu�er space allocation in
exible manufacturing systems. Intl. Jrnl. of Flexible

Manufacturing Systems (to appear).

[39] M. Lawley, S. Reveliotis, and P. Ferreira. Fms structural control and the neighborhood policy,

part 2: Generalization, optimization and e�ciency. IIE Trans., 29:889{899, 1996.

[40] M. Lawley, S. Reveliotis, and P. Ferreira. Design guidelines for deadlock handling strategies in

exible manufacturing systems. Intl. Jrnl. of Flexible Manufacturing Systems, 9:5{29, 1997.

49

[41] M. A. Lawley. Structural Analysis & Control of Flexible Manufacturing Systems. PhD thesis,

University of Illinois, Urbana, IL, 1995.

[42] M. A. Lawley. A control model for integrating routing
exibility with algebraic deadlock avoid-

ance in
exible manufacturing systems. Technical Report Res. Mem. 97-12 (submitted to Intl.

Jrnl of Prod. Res.), School of Industrial Eng., Purdue Univ., 1997.

[43] M. A. Lawley, S. Reveliotis, and P. Ferreira. The resource order policy: A con�gurable and

scalable control policy for deadlock-free bu�er-space allocation in
exible manufacturing sys-

tems. Technical Report UILU-ENG 96-4014 (submitted to the IEEE Trans. on Robotics and

Automation), University of Illinois at Urbana-Champaign, 1996.

[44] S. H. Lu and P. R. Kumar. Distributed scheduling based on due dates and bu�er priorities.

IEEE Trans. on Aut. Control, 36:1406{1416, 1991.

[45] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77:541{

580, 1989.

[46] J. L. Peterson. Operating System Concepts. Addison-Wesley, 1981.

[47] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of

the IEEE, 77:81{98, 1989.

[48] S. A. Reveliotis. Structural Analysis & Control of Flexible Manufacturing Systems with a Per-

formance Perspective. PhD thesis, University of Illinois, Urbana, IL, 1996.

[49] S. A. Reveliotis. Accommodating fms operational contingencies through routing
exibility.

Technical Report (submitted to IEEE Trans. on R&A), School of Industrial & Systems Eng.,

Georgia Tech, 1997.

[50] S. A. Reveliotis. The destabilizing e�ect of blocking due to �nite bu�ering calacity in multi-class

queueing networks. Technical Report (submitted to IEEE Trans. on Autom. Control), School

of Industrial & Systems Eng., Georgia Tech, 1997.

[51] S. A. Reveliotis and P. M. Ferreira. An analytical framework for evaluating and optimizing the

performance of structurally controlled fms. In 1996 IEEE International Conference on Robotics

and Automation, pages 864{869. IEEE Robotics and Automation Society, 1996.

50

[52] S. A. Reveliotis and P. M. Ferreira. Deadlock avoidance policies for automated manufacturing

cells. IEEE Trans. on Robotics & Automation, 12:845{857, 1996.

[53] S. A. Reveliotis and P. M. Ferreira. Performance evaluation of structurally controlled fms: Exact

and approximate approaches. In Flexible Automation and Intelligent Manufacturing, 1996, pages

829{838. Manufacturing Research Center, Georgia Tech., 1996.

[54] S. A. Reveliotis and M. A. Lawley. E�cient implementations of banker's algorithm for deadlock

avoidance in
exible manufacturing systems. In ETFA '97, pages 214{220. IEEE, 1997.

[55] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira. Polynomial complexity deadlock avoidance

policies for sequential resource allocation systems. IEEE Trans. on Automatic Control, 42:1344{

1357, 1997.

[56] F. A. Rodammer and P. Jr. White. A recent survey of production scheduling. IEEE Trans. on

SMC, 18:841{851, 1988.

[57] A. K. Sethi and S. P. Sethi. Flexibility in manufacturing: A survey. The International Journal

of Flexible Manufacturing Systems, 2:289{328, 1989.

[58] A. Sharifnia. Stability and performance of distributed production control methods based on

continuous-
ow models. IEEE Trans Autom. Control, 39:725{737, 1994.

[59] R. S. Sreenivas. On a weaker notion of controllability of a language k with respect to a language

l. IEEE Trans. on Automatic Control, 38:1446{1447, 1993.

[60] R. S. Sreenivas. On the existence of �nite state supervisors for arbitrary supervisory control

problems. IEEE Trans. on Automatic Control, 39:856{861, 1994.

[61] B. Srivastava and W-H Chen. Heuristic solutions for loading in
exible manufacturing systems.

IEEE Trans. on R&A, 12:858{868, 1996.

[62] K. E. Stecke. Design, planning, scheduling and control problems of
exible manufacturing

systems. Annals of Operations Research, 3, 1985.

[63] K. E. Stecke and N. Raman. Production planning decisions in
exible manufacturing systems

with random material
ows. IIE Trans., 26:2{17, 1994.

51

[64] F. F. Suarez, M. A. Cusumano, and C. H. Fine. An empirical study of manufacturing
exibility

in printed circuit board assembly. Operations Research, 44:223{240, 1997.

[65] N. Viswanadham, Y. Narahari, and T. L. Johnson. Deadlock avoidance in
exible manufacturing

systems using petri net models. IEEE Trans. on Robotics and Automation, 6:713{722, 1990.

[66] W. L. Winston. Introduction To Mathematical Programming: Applications and Algorithms, 2nd

ed. Duxbury Press, Belmont, CA, 1995.

[67] R. A. Wysk, N. S. Yang, and S. Joshi. Detection of deadlocks in
exible manufacturing cells.

IEEE Trans. on Robotics and Automation, 7:853{859, 1991.

[68] R. A. Wysk, N. S. Yang, and S. Joshi. Resolution of deadlocks in
exible manufacturing systems:

Avoidance and recovery approaches. Journal of Manufacturing Systems, 13:128{138, 1994.

[69] K. Y. Xing, B. S. Hu, and H. X. Chen. Deadlock avoidance policy for petri net modeling of

exible manufacturing systems with shared resources. IEEE Trans. on Aut. Control, 41:289{295,

1996.

[70] M. Zhou and F. Dicesare. Parallel and sequential mutual exclusions for petri net modeling

of manufacturing systems with shared resources. IEEE Trans. on Robotics and Automation,

7:515{527, 1991.

52

