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Abstract—This paper considers the problem of op-
timizing the (long-term) performance of operations
that are modeled by Generalized Stochastic Petri
nets. The proposed methodology employs the repre-
sentational power of the GSPN framework in order
to articulate an explicit trade-off between the compu-
tational tractability of the formulated problem and
the operational efficiency of the derived solutions.
On the other hand, the solution of the considered
formulations is based on recent results regarding the
sensitivity analysis of Markov reward processes. A
more expansive treatment of the presented results,
together with a case study that highlights the rele-
vance of the considered problem and the efficacy of the
proposed methodology, can be found in a companion
document that is accessible from the website of the
second author.

I. Introduction

Generalized stochastic Petri nets (GSPNs) are one of
the best known and most extensively used models in the
class of timed PN models. The defining element of these
nets is that they differentiate their transitions into two
classes, respectively known as “timed” and “untimed”.
Timed transitions present non-zero firing times drawn
from exponential distributions, while untimed transitions
have zero firing times. In [1], the seminal paper that
introduced the GSPN model, but also in most of the
remaining works in the GSPN-related literature [2], un-
timed transitions have been promoted as a “mechanism”
for controlling the complexity of the time-based anal-
ysis of the corresponding PN models, while preserving
all the behavioral traits of the underlying system that
are captured by these transitions. In this paper, we
consider a different role for the untimed transitions.
More specifically, in our models, untimed transitions
constitute “decisions” that are to be determined by an
external control function in an effort to govern the sys-
tem dynamics. Similar to the standard GSPN modeling
framework, conflicting decisions at any given marking
are resolved by the specification of a “random switch” ,
i.e., a probability distribution that regulates the selection
of these decisions. But while in the past applications
of the GSPN model the necessary random switches are
specified by the human modeler so that they reflect prop-
erly the (intended) operation of the underlying system,
in this work, the probabilities defining these random
switches are “decision variables” to be determined so that
certain performance objective(s) are optimized, by the
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techniques to be developed herein.1

From a more practical standpoint, the developments
presented in this work have been motivated by the need
to address the scheduling (especially the throughput
maximization) problem of sequential resource allocation
systems (RAS) that are controlled for deadlock-freedom,
liveness and reversibility according to the supervisory
control theory presented in [4], [5]. In [6], [4], it has
been shown that this scheduling problem can be modeled
as an average-reward Markov Decision Process (MDP),
which is well-defined and effectively solvable due to the
structural properties that are established by the afore-
mentioned liveness-enforcing supervision (LES). On the
other hand, the solvability of this MDP is practically
limited by the state-space explosion that is typical for
the considered RAS. As we shall show in the following,
the GSPN modeling framework enables a succinct char-
acterization of the aforementioned MDP problem, and
it also facilitates a pertinent resolution of this problem
through its restriction to certain policy spaces that are
computationally tractable, and are naturally suggested
by the GSPN modeling framework itself.
From a methodological standpoint, our results are en-

abled by fairly recent results concerning the sensitivity
analysis of finite-space Markov reward processes and
the computation of performance gradients with respect
to (w.r.t.) various control variables of these processes
through a sample-path-based analysis [7], [8]. In the
context of our work, the stochastic processes of in-
terest are the uniformized versions of the continuous-
time Markov chains (CTMCs) that abstract the timed
dynamics of the considered GSPN models, while the
control variables involved are the probabilities that define
the various random switches. The eventual integration of
the gradient estimation capability described above with
some stochastic approximation algorithms [9] enables
the determination of a set of random switches that will
optimize the performance criteria of interest, within the
scope of the considered class of policies.
Having outlined the main perspectives and the intended

contribution of this work in the previous paragraphs, the
rest of this paper is organized as follows: The next section
provides an overview of the GSPN modeling framework
and of the steady-state performance evaluation of the

1We notice, for completeness, that the work presented in [3]
employs the GSPN modeling framework for representing decision-
making processes that are conceptually similar to those considered
in this work. However, the modeling details in the two works and
the pursued approaches for the simplification and solution of the
derived analytical formulations are fundamentally different.



GSPN models through their reduction to pertinent semi-
Markov and Markov processes. Section III defines the
MDP problem considered in this work, by further qual-
ifying the structure of the considered GSPN models.
Section IV discusses the solution of the MDP problem
formulated in Section III through sensitivity analysis of
the underlying stochastic processes and the integration
of these results in stochastic approximation algorithms.
Finally, Section V concludes the paper and proposes
directions for future work.
Closing this introductory discussion, we must also no-

tice that the imposed space limitations for this paper
do not allow a full-blown development of the presented
material. A more expansive and thorough coverage of
the presented results, together with a case study that
highlights the relevance of the considered problem and
the efficacy of the proposed methodology, can be found in
[10]; this document is available from the personal website
of the second author.

II. Generalized Stochastic Petri Nets

In this section we provide an overview of the basic
GSPN theory. In the subsequent discussion we assume
that the reader is familiar with the basic PN modeling
framework, and therefore, we focus primarily on the
time-related aspects of the GSPN model and its analysis.
An excellent introduction to the basic PN modeling
framework can be found in [11].
Following [1], we define a Generalized Stochastic Petri

Net (GSPN) as a Petri net system N = (P,T,W,m0)
where the transition set T is partitioned in two subsets
Tt and Tu denoting respectively the sets of timed and
untimed transitions. Furthermore, there is a mapping
R : Tt→R+ with rt ≡R(t), t∈ Tt, denoting the (instan-
taneous hazard) rate of the exponential distribution that
determines the firing times for transition t. These firing
times are interpreted as a delay between the enabling of
transition t and the actual firing of the transition. On the
other hand, transitions t ∈ Tu have zero firing times, i.e.,
these transitions can fire as soon as they are enabled.
Let R(N ) denote the reachability space of net N .

The firing dynamics of the GSPN N considered in [1]
are further qualified by the following assumptions: (i)
|R(N )|<∞, and (ii) for any marking m∈R(N ), the set
of enabled transitions E(m) is non-empty (in other words,
the considered GSPN does not contain any total dead-
locks). For any marking m∈R(N ), let Et(m) and Eu(m)
denote respectively the subsets of the timed and untimed
transitions enabled in m, and suppose first that Eu(m) =
∅ and Et(m) = {t1, t2, . . . , tn}. From the basic properties
of the exponential distribution [12], marking m has an
expected sojourn time of s(m) = 1/

∑
t∈Et(m) rt > 0, and

therefore, it is called a tangible marking. Furthermore,
the transitions in Et(m) define an exponential race in
m, and the probability that transition ti, i = 1, . . . ,n,
will fire first is equal to pti(m) = rti/

∑
t∈Et(m) rt. On the

other hand, in a markingm∈R(N ) for which Eu(m) 6= ∅,
any transition t ∈ Eu(m) is expected to fire before a
transition t∈Et(m). In particular, if Eu(m) is a singleton,

then, the single transition t in it will fire at m with
certainty. If Eu(m) contains more than one transitions,
then, in the standard GSPN theory, the selection of one
of these transitions is regulated by an externally specified
probability distribution defined on Eu(m) that is called
the random switch associated with m. Furthermore, it
should be clear from the above discussion that a marking
m ∈ R(N ) with Eu(m) 6= ∅ has zero sojourn time, and
therefore, such a marking is characterized as vanishing in
the relevant literature. In the sequel, we shall denote the
sets of tangible and vanishing markings by Rt(N ) and
Rv(N ), respectively. Clearly, Rt(N ) and Rv(N ) define a
partition of R(N ). Finally, the random switch associated
with a markingm∈Rv(N ), with Eu(m) = {t1, t2, . . . , tn},
will be denoted by Ξ(m) = [ξ1, ξ2, . . . , ξn]T .
The firing dynamics of the GSPN model that were

described in the previous paragraph define a stochastic
process on R(N ) that has the particular structure of a
semi-Markov process [1]; in the sequel, we shall denote
this semi-Markov process by SM(N ). Sojourn times and
branching probabilities for states (or, equivalently, mark-
ings) m ∈ Rt(N ) are determined by the corresponding
exponential races described in the previous paragraph
and the net flow relation Wt, i.e., the restriction of W
on the timed transitions of the net. On the other hand,
sojourn times for markings m ∈ Rv(N ) are equal to
zero and the corresponding branching probabilities are
determined by the random switches Ξ(m) assigned to
those markings, together with the net flow relation Wu.
When net N is also reversible, under the control of the
selected random switches Ξ(m), m ∈ Rv(N ), process
SM(N ) can be shown to be ergodic [12], and thus,
analyzable for its long-term (or “steady-state”) behavior
through standard techniques borrowed from the theory
of ergodic stochastic processes. For ergodic GSPNs it
is worth-noticing that, since markings m ∈ Rv(N ) have
zero sojourn time in SM(N ), they will also have zero
steady-state probabilities. More generally, the timed dy-
namics of any given GSPN N can be effectively analyzed
by the sub-processM(N ) that projects the dynamics of
SM(N ) on the subspace of tangible markings. M(N )
is a continuous-time Markov chain (CTMC) and its
infinitesimal generator Q(N ) can be computed from the
structural characterization of SM(N ) [1]. For an ergodic
SM(N ), the availability of Q(N ) enables also the char-
acterization of the steady-state probability distribution
π ≡ [π(m), m ∈ Rt(N )] of M(N ), and the long-term
behavior of the underlying system.

III. The considered optimization problem

The original optimization problem The above dis-
cussion established that, for ergodic GSPNs, the analysis
of the induced processes SM(N ) andM(N ) can provide
a succinct characterization of the steady-state dynamics.
Additional long-term performance considerations can be
investigated in this limiting regime by introducing an
“(immediate) reward” or “cost” function on the net
markings and/or its transitions, and considering the
expectation of these functions w.r.t. the steady-state
probability distribution π. In this way, one can charac-



terize and compute “throughput” and “utilization rates”
w.r.t. various transitions of the net as well as “holding
costs” associated with the marking of its various places.
This work intends to use the GSPN modeling frame-

work in a more “prescriptive” manner, namely for the
framing and the investigation of the following funda-
mental problem: Given a (RAS-modeling) GSPN net
defined by (i) the net topology and (ii) the firing rates
of its timed transitions, and (iii) an immediate reward
function defined on the net markings and/or transitions
that characterizes a performance measure of interest, find
a set of random switches for the net vanishing markings
that maximizes the long-term performance of the net
w.r.t. the aforementioned performance measure.
As explained in the introductory section, we perceive

the random switches associated with the various van-
ishing markings as “decisions” that must be effected
upon the net dynamics through the selection of an en-
abled untimed transition from the corresponding random
switch. On the other hand, timed transitions model the
execution of the various processes / operations that are
activated by these decisions. Hence, the net dynamics
evolve through an alternation of tangible markings that
correspond to the concurrent execution of a number of
processes in the net, and a set of vanishing markings that
constitute decision points in response to the completion
of some of the activated processes in the net. In fact, such
a process completion can activate a cascading sequence of
decisions, that are modeled by a corresponding sequence
of vanishing markings, before the net settles to another
processing phase modeled by the next tangible marking.
The GSPN performance optimization problem de-

scribed in the previous paragraphs, when combined with
the Markovian nature of the stochastic processes that
model the timed behavior of the GSPN nets, can be
casted in the framework of MDP theory [13]. In particu-
lar, the specification of a set of random switches that will
regulate the transition firing in the vanishing markings
of the considered GSPNs essentially defines a station-
ary policy that shapes the net dynamics by defining
the stochastic processes SM(N ) and M(N ) that were
discussed in the previous section. In the sequel, we shall
denote by φ the stationary policy that results by any
particular selection of random switches, and we shall also
use Φ to denote the space of all the considered stationary
policies. We further stipulate that the considered policies
are able to ensure ergodic behavior of the underlying
net. From a practical standpoint, this requirement can
be satisfied by (i) superimposing on the original net an
appropriate supervisory control policy (SCP) [12] that
will enforce the reversibility of the net behavior,2 and
(ii) lower-bounding the probability values of the random
switches that will coordinate the restricted net behavior
by a small value δ > 0. Then, letting f ≡ [f(m), m ∈
Rt(N )] denote a reward rate function defined on the
markings m∈Rt(N ), π(φ) denote the steady-state prob-
ability distribution for the CTMC M(N ) that results

2For notational economy, in the sequel we shall use N to refer to
the controlled net, as well.

from the application of policy φ, and η(φ) denote the
resulting (long-term) average reward, our optimization
problem can be expressed by the following mathematical
programming (MP) formulation:

max
φ≡{Ξ(m),m∈Rv(N )}

η(φ) = πT (φ) ·f (1)

s.t.
πT (φ) · [Q(φ) 1] = [0T 1] (2)

∀m ∈Rv(N ), ΞT (m) ·1 = 1.0 (3)

∀m ∈Rv(N ), ∀t ∈ Eu(m), δ ≤ ξ(t) (4)

Equation 1 in the above formulation expresses the
objective of maximizing the long-term average reward
that is collected according to the reward function f .
Constraints 3 and 4 define the structure of the random
switches, that are the primary decision variables in the
considered optimization problem. On the other hand,
Constraint 2 defines the steady-state probability distri-
bution π(φ) for the CTMC that is induced by any pricing
of the random switches Ξ(m), m ∈Rv(N ), according to
Constraints 3 and 4; the reader should notice that in the
considered formulation, the variables that represent the
probability distribution π(φ) have an auxiliary role.
Complexity considerations and the revised opti-
mization problem From a computational standpoint,
the formulation of Equations 1–4 is challenged by the
fact that its size, in terms of the employed decision
variables and constraints, is commensurate to the size
of Rv(N ), which grows exponentially w.r.t. the size of
underlying the GSPN model. This limitation is essen-
tially the same with the computational challenges that
limit the practical solution of the considered optimiza-
tion problem through the classical MDP theory [14]. In
particular, the employment of a separate random switch
for every marking in Rv(N ) implies that even the mere
enumeration of a given policy φ from the considered class
is a task of non-polynomial complexity w.r.t. the size of
underlying RAS. We shall characterize this fact by saying
that the aforementioned policies φ possess exponential
space complexity.
To deal with this increased and frequently computation-

ally prohibitive complexity, in this work we shall restrict
attention to a class of policies that require a reduced
space complexity for their characterization. The consid-
ered policies are suggested naturally by the structure of
the underlying GSPN model, and in many cases, they
also define policy classes of practical significance and
value for the original optimization problem under con-
sideration. From a mathematical modeling standpoint,
these policies will be defined through the introduction of
additional constraints in the MP formulation of Equa-
tions 1–4 that will establish some “coupling” among the
variables of the random switches Ξ(m) that appear in
the formulation of Equations 1–4, and will enable the
elimination of some of these variables. A simple way
to implement this idea is by introducing the following
additional constraint to the optimization problem of



Equations 1–4:
∀m,m′ ∈Rv(N ) with Eu(m) = Eu(m′), Ξ(m) = Ξ(m′)

(5)
Under Equation 5, the random switches Ξ(m) employed

by the resultant formulation are defined only by the set
Eu(m) of the enabled untimed transitions that appear
in their support, and not by the marking m itself. Such
random switches are characterized as static in the GSPN
literature. Also, we shall refer to the optimization prob-
lem that is defined by Equations 1–5 as the “revised opti-
mization problem” . The reader should notice that the set
of static random switches is of cardinality O(2|Tu|), i.e.,
in principle, the problem space complexity remains an
exponential function of the size of the underlying GSPN
N . However, it is generally true that 2|Tu| << |Rv(N )|.
Furthermore, in most practical cases, the subsets of Tu
that define support sets for some random switch Ξ(m) of
N will be significantly less than 2|Tu|, since these subsets
are further constrained by the topology of N and the
dynamics that are induced by this topology. Hence, it
is expected that the revised optimization problem will
be much more manageable in terms of its space and
time complexity than the original optimization problem
of Equations 1–4.
We should also point out that, in spite of the simplicity

of the logic that underlies Equation 5, the resultant class
of policies is pretty rich and of practical relevance in
many practical applications. More specifically, the policy
space that is defined by the set of static random switches
enables the modeling of static priority policies defined on
the basis of various “class” concepts. Such policies have
been attractive in many application contexts due to their
operational simplicity, and in various cases they have
been proven to be optimal. Furthermore, it is easy to
see that in the revised problem formulation, Constraint 5
essentially defines an aggregation on the underlying sub-
space Rv(N ) by imposing the requirement that decisions
in vanishing markings m with the same set of enabled
untimed transitions Ev(m) should be governed by the
same decision rule (i.e., by the same random switch
Ξ(m)). One can envision the performance enhancement
of the resulting optimal policy through a refining process
that partitions (some of) the aggregated state sets into
smaller subsets. When this refinement is taken to its
extreme, one retrieves the original formulation of Equa-
tions 1–4. In the general case, such a refinement can
be effected through trial-and-error-based procedures and
search-based mechanisms similar to those used in the
area of combinatorial optimization [15]. In certain cases,
it may also be based on special problem characteristics
that are derived from the structure of the underlying sys-
tem. The concise, explicit representation of the structure
of the underlying system by the employed GSPN model
enables a succinct articulation of the applied refinement
logic, and it facilitates the identification of behavioral
traits and attributes that may be exploitable by the
refinement process.
Uniformization and a further reduction of the
revised optimization problem In the next section

we shall present a solution of the revised optimization
problem based on some results for sensitivity analysis
of Markov reward processes. To apply these results it
is convenient to discretize the Markovian dynamics that
underlie the revised problem formulation, by uniformiz-
ing these dynamics with an appropriate sampling rate
ru, e.g., ru =

∑
t∈Tt rt. In the sequel we shall denote the

resulting discrete-time Markov chain (DTMC) by U(N )
and the corresponding one-step-transition probability
matrix by P̂ (N ). Also, let us denote by ξ̄ the set of
variables that remain in the final formulation of the con-
sidered problem, after removing all the variables that are
rendered superfluous by the constraint of Equation 5 (or,
more generally, by the additional constraints that define
the target policies). Then, recognizing also the auxiliary
role of variables π(φ), the final problem formulation can
be formally reduced to

max
ξ̄

η(ξ̄) (6)

s.t.
∀ξ ∈ ξ̄, δ ≤ ξ (7)

∀Ξ, δ ≤ 1.0−
∑
ξ∈Ξ∩ξ̄

ξ (8)

In Equation 8, Ξ denotes those random switches that
are recognized as distinct entities by the definition of
the underlying policy space. We also notice that in the
sequel we shall use interchangeably the vector ξ̄ and the
policy φ that is induced by this vector.

IV. Solving the considered optimization
problem

The performance sensitivity formula The optimiza-
tion problem of Equations 6–8 can be addressed by rather
standard techniques from the theory of Mathemati-
cal Programming (MP) [16], provided that the partial
derivatives ∂η(ξ̄)/∂ξ are well defined over the feasibility
space defined by Constraints 7 and 8. In [7] it is shown
that for discrete-time Markov reward processes of the
type that underlie the MP formulation of Equations 6–
8, the derivative of the performance index η w.r.t. any
parameter ξ that is involved in the definition of the
corresponding one-step-transition probability matrix P̂ ,
can be computed as follows:

∂η(ξ̄)
∂ξ

= π(ξ̄)T · ∂
∂ξ
P̂ (ξ̄) ·g(ξ̄) (9)

The vector g(ξ̄) that appears in the above equation is
the relative value function (or the potential function) for
the uniformized Markov reward process U(N ,f ;φ). In
the considered class of Markov reward processes, vector
g(ξ̄) is defined by the corresponding Bellman equation
up to an additive constant [13]. However, since P̂ (ξ̄) is
a stochastic matrix, the matrix ∂

∂ξ P̂ (ξ̄) has zero row
sums, and therefore, the computation of ∂η(ξ̄)

∂ξ through
Equation 9 is invariant to the various selections of g(ξ̄).
Furthermore, in the sequel we shall show that, in the
considered GSPN models, the elements of the matrix



P̂ (ξ̄) are polynomials of the decision variables ξ. There-
fore, the (matrix) partial derivative ∂

∂ξ P̂ (ξ̄), that appears
in Equation 9, will always exist. Hence, as long as the
variable vector ξ̄ is selected in the space defined by Equa-
tions 7 and 8, and the resultant matrix P̂ (ξ) corresponds
indeed to the one-step-transition probability matrix of an
irreducible, ergodic Markov chain, the derivative ∂η(ξ̄)

∂ξ
will be well defined.
Sample-path-based estimation of the performance
derivatives From a computational standpoint, the prac-
tical value of Equation 9 is limited by the fact that
each of the three factors that appear in its right-hand-
side is an entity of size commensurate to the size of the
underlying state space; as explained in Section III, the
state space for the considered processes will explode even
for rather small GSPN configurations. But the results of
[7] provide also sample-path-based estimators for ∂η(ξ̄)

∂ξ
that are derived from Equation 9 and the finite and
irreducible nature of the underlying Markov process.
Such an estimator can be obtained, for instance, from
the following result [7]:

∂η(ξ̄)
∂ξ

=

E

[∑uν+1−1
k=uν [f(mk)−η(ξ̄)]

∑k
j=uν(k)

∂
∂ξ p̂(mj−1,mj ;ξ̄)
p̂(mj−1,mj ;ξ̄)

]
E[uν+1−uν ] (10)

In Equation 10, m = 〈m0,m1,m2, . . .〉 denotes a sample
path of the considered process, and the sequence uν , ν =
0,1,2, . . ., collects the time points of the path visits to
some selected state m∗ that constitutes a regenerative
point for the underlying stochastic process. Finally, uν(k)
denotes the time step of the last visit, prior to time step
k, to the aforementioned regenerative point m∗.
Equation 10 implies that the detailed specification of a
∂η(ξ̄)
∂ξ estimator on the basis of this equation necessitates

the characterization of the elements of matrix P̂ (ξ̄) as
functions of ξ̄, and of the partial derivatives of these
elements w.r.t. each decision variable ξ. Next we provide
these characterizations.
Computing the elements of matrix P̂ (ξ̄) and their
partial derivatives As explained in Section III, the
interpretation of the random switches Ξ as “decisions”
that drive the system behavior further implies that,
in the underlying semi-Markov process SM(N ), the
transition from a tangible state m to another tangible
state m′ will be interfered, in general, by a sequence of
vanishing markings M̂ = {m̂1, m̂2, . . . , m̂k}. Sequence M̂
will contain no cyclical behavior; i.e., m̂i 6= m̂j for i 6= j,
since the repetition of vanishing markings in sequence
M̂ can be perceived as a manifestation of “confusion”
in the underlying decision making process. However, it is
conceivable that two or more of the vanishing markings in
M̂ might possess the same static random switch Ξ; i.e., it
is possible that Ev(m̂i) = Ev(m̂j) for some i 6= j, in which
case, Equation 5 further implies that Ξ(m̂i) = Ξ(m̂j).
Next, consider the transition sequence T̂ = {t̂0, t̂1, . . . , t̂k}

where m
t̂0→ m̂1, m̂i

t̂i→ m̂i+1 for i = 1, . . . ,k − 1, and
m̂k

t̂k→m′. T̂ can be considered as another representation
of the dynamics that lead process SM(N ) from m
to m′ through the sequence of vanishing markings M̂ ,
and it facilitates a straightforward computation of the
realization probability of the corresponding dynamics.
More specifically, let p̂(t̂i; ξ̄), i = 0,1, . . . ,k, denote the
probability for firing transition t̂i in the corresponding
marking (i.e., marking m for i = 0, or marking m̂i for
i= 1, . . . ,k). Then, taking also into consideration (i) the
transitional dynamics that are introduced by the uni-
formizing operation that was introduced in Section III,
and (ii) the specification of the variable vector ξ̄ em-
ployed by the formulation of Equations 6–8, we have that

p̂(t̂i; ξ̄) =


rt̂i
ru
, for i= 0

ξ(t̂i) ∈ Ξ(m̂i), for i= 1, . . . ,k∧ ξ(t̂i) ∈ ξ̄
1.0−

∑
ξ∈Ξ(m̂i)∩ξ̄ ξ, for i= 1, . . . ,k∧ ξ(t̂i) 6∈ ξ̄

(11)
Also, the probability for the entire transition sequence
T̂ is given by

p̂(T̂ ; ξ̄) =
k∏
i=0

p̂(t̂i; ξ̄) (12)

From Equations 11 and 12 it is easy to see that p̂(T̂ ; ξ̄)
constitutes a polynomial function in ξ̄. Generally, there
will be more than one sequence M̂ materializing the
transition from m to m′. Let all these sequences be
denoted by M̂1, . . . ,M̂ l, and furthermore, let T̂ 1, . . . , T̂ l

denote the corresponding transition sequences defined
according to the above discussion. The total probability
of transitioning from a tangible marking m to another
marking m′ in the uniformized process U(N ; ξ̄) is given
by

p̂(m,m′; ξ̄) =
l∑

j=1
p̂(T̂ j ; ξ̄) =

l∑
j=1

k(j)∏
i=0

p̂(t̂ji ; ξ̄) (13)

and p̂(m,m′; ξ̄) remains a polynomial function in ξ̄.
Equation 13 suggests a straightforward algorithm for

computing p̂(m,m′; ξ̄). For any given transition pair
(m,m′) in U(N ; ξ̄), we first construct the acyclic digraph
Gv(N ;m) which unfolds the transitional dynamics of
GSPN N when the latter is initialized at marking m
and evolves first through the execution of the transitions
that are enabled in m and subsequently through the
execution of transition sequences that consist of untimed
transitions only. Hence, graph Gv(N ;m) contains (i)
marking m as its “source” node, (ii) the set of markings
M̃ that can be reached from m through the firing of
any transition t ∈ E(m), and (iii) all the markings that
can be reached from the markings in M̃ by firing un-
timed transitions only. Furthermore, the “leaf” nodes of
Gv(N ;m) will be a set M̄ of tangible markings with m′ ∈
M̄ .3 The availability of Gv(N ;m) subsequently enables

3The reader should also notice that the “unfolding” nature of the
construction of Gv(N ;m) implies that it is possible that m ∈ M̄ . In
fact, this will be the case for the “fictitious” transitions in U(N )
that are introduced from the uniformization.



the enumeration of all the transition sequences T j that
connect markings m and m′ according to the previous
discussion, and the computation of p̂(m,m′; ξ̄) according
to the formula of Equation 13.
The deployment of the digraph Gv(N ;m), for any

tangible marking m ∈ Rt(N ), is a “local” computation
when perceived in the context of the entire reachability
space R(N ), and, in general, it is expected that each
such digraph Gv(N ;m) will be a pretty small graph.
This is also suggested from the conceptual interpretation
of Gv(N ;m) as the digraph that encodes the decision
sequences that can be effected in response to the events
(i.e., the transition firings) that take place in marking m.
Hence, the computation of the digraphs Gv(N ;m), and
the extraction of the necessary transition sequences T j
from them, are supposed to be performed on the fly, upon
the observation of the corresponding transition (m,m′)
in the processed sample path m.
Furthermore, the availability of the transition sequences
T j for any pair m,m′ ∈ Rt(N ) enables also the com-
putation of ∂

∂ξ p̂(m,m
′; ξ̄) for any ξ ∈ ξ̄. To define an

algorithm for this computation, we first notice that it
suffices to provide an algorithm for the computation of
∂
∂ξ p̂(T̂

j ; ξ̄), for any sequence T j ; once this algorithm is
available, Equation 13 implies that ∂

∂ξ p̂(m,m
′; ξ̄) can be

computed by applying it for every T j and summing the
obtained results. But an algorithm for the computation
of ∂

∂ξ p̂(T̂
j ; ξ̄) can be obtained from Equation 12, which

implies that

∂

∂ξ
p̂(T̂ j ; ξ̄) =

k(j)∑
q=1
{[I{ξ(t̂jq)=ξ}−

I{(ξ(t̂jq) 6∈ξ̄)∧(ξ∈Ξ(m̂q)∩ξ̄)}
]
k(j)∏

i=0;i 6=q
p̂(t̂ji ; ξ̄)} (14)

In Equation 14, the quantity I{·} denotes the indica-
tor variable for the condition that is expressed in the
brackets. Hence, in more practical terms, ∂

∂ξ p̂(T̂
j ; ξ̄) can

be computed as follows: First, ∂
∂ξ p̂(T̂

j ; ξ̄) is initialized to
zero. Subsequently, the subsequence {t̂jq : q = 1, . . . ,k(j)}
is parsed from left to right, and every time that a tran-
sition t̂jq is encountered such that the probability ξ(t̂jq) is
expressed by variable ξ, then the corresponding product∏k(j)
i=0;i 6=q p̂(t̂

j
i ; ξ̄) is added to the partial sum express-

ing ∂
∂ξ p̂(T̂

j ; ξ̄). On the other hand, if the encountered
transition t̂jq has a corresponding probability ξ(t̂jq) 6∈ ξ̄
but the corresponding random switch Ξ(m̂q) contains ξ,
then the product

∏k(j)
i=0;i 6=q p̂(t̂

j
i ; ξ̄) is subtracted from the

partial sum expressing ∂
∂ξ p̂(T̂

j ; ξ̄). In all other cases, the
computed sum remains unchanged.
Solving the MP formulation of Equations 6–
8 through stochastic approximation algorithms
With the performance gradient ∇η(ξ̄) – or, more specif-
ically, a good estimator of this gradient – effectively
computable, the optimization problem of Equations 6–
8 can be addressed through algorithms provided by

the theory of stochastic approximation [9], [8]. In [10]
we adapt a rather classical stochastic approximation
algorithm presented in [9] to the considered problem,
and we establish its ability to converge to stationary
points of the underlying objective function. Furthermore,
the overall dynamics of the considered algorithm, and
the corresponding stability properties, render unlikely its
entrapment in stationary points of the wrong type. The
developments presented in [10] provide also a case study
that demonstrates the efficacy and the performance of
the proposed optimization algorithm, and corroborates
the aforestated expectations.

V. Conclusions

This paper introduced a novel methodology for perfor-
mance optimization of many contemporary operations,
based on their GSPN model and some recent results on
the sensitivity analysis of Markov reward processes. Fu-
ture work will seek a systematic assessment of the quality
of the obtained policies, and the further refinement of the
method for enhanced modeling power and performance,
along the lines that were outlined in the earlier parts of
this document.
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