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On the complexity of maximally permissive deadlock
avoidance in multi-vehicle traffic systems

Spyros A. Reveliotis and Elzbieta Roszkowska

Abstract— The establishment of collision-free and live vehicle motion is
a prominent problem for many traffic systems. Past work studying this
problem in the context of guidepath-based and free-range vehicular systems
has implicitly assumed that its resolution through maximally permissive
supervision is NP-hard, and therefore, it has typically pursued suboptimal
(i.e., more restrictive) solutions. The work presented in this paper offers
formal proof to this implicit assumption, closing the apparent gap in the
existing literature. In the process, it also derives an alternative proof for
the NP-hardness of maximally permissive liveness-enforcing supervision in
Linear, Single-Unit Resource Allocation Systems, that is more concise and
more lucid than the currently existing proof.

I. INTRODUCTION

The establishment of collision-free and live vehicle motion is
a prominent problem for many traffic systems. In this work, we
are particularly interested in the manifestation of this problem
in the operational context of (a) guidepath-based vehicular sys-
tems, like the Automated Guided Vehicle (AGV) and overhead
monorail systems that are used in many industrial environments
[1], and (b) free-range vehicular systems, where a set of mobile
agents moves freely within a confined planar area [4]. Past work
has shown that, in both cases, the collision-free and live motion
of the underlying traffic system can be established by superim-
posing a resource allocation structure on it and invoking results
from the burgeoning resource allocation system (RAS) theory
[7]. More specifically, in the case of guidepath-based vehicular
systems, the guidepath network is partitioned into a number of
“zones” and it is enforced that any such zone can be traversed
by at most one vehicle at any point in time (e.g., [6], [10], [11]).
Similarly, in the case of free-range vehicular systems, the entire
motion area is partitioned into a number of “cells” by means of
a rectangular tesselation, and it is required that every cell con-
tains at most one vehicle at any point in time (e.g.,[9], [8], [3]).
Hence, in both cases, the elements of the superimposed partition
– i.e., the zones or the cells – are treated as “resources” that must
be sequentially acquired and released by the system vehicles in
order to execute their designated routes. The vehicle separation
resulting from this control scheme ensures the collision-free op-
eration of the entire system, but it also arises the need for further
control logic that will ensure that the applied resource allocation
is live, i.e., deadlocks will be avoided and every vehicle will
eventually advance to its final destination.

As already mentioned, this requirement for live resource al-
location in the considered traffic systems has been addressed
through the adaptation of a set of results developed for the prob-
lem of deadlock avoidance arising in more generic resource al-
location systems [7]. The derived resource allocation policies
have been based on the implicit assumption that, similar to the
more generic cases of sequential resource allocation, enforc-
ing the liveness of the considered traffic systems in a maxi-
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mally permissive manner is an NP-hard problem, and therefore,
these policies tend to sacrifice permissiveness for computational
tractability. However, when viewed from a more theoretical
standpoint, the computational complexity of maximally permis-
sive deadlock avoidance in the aforementioned traffic systems
is an open issue. The topology of the guidepath network struc-
tures and the geometry of the tesselations employed in the spec-
ification of the resource allocation that takes place in these two
traffic environments, imply additional constraints for the struc-
ture of the resulting RAS. These constraints are not satisfied by
the reductions that have been employed in the past for the es-
tablishment of the NP-hardness of maximally permissive dead-
lock avoidance / liveness-enforcing supervision in various RAS
classes, and therefore, the relevant proofs are not directly appli-
cable to the new cases considered herein.

This work addresses the theoretical gap identified in the previ-
ous paragraph. The presented results are structured as follows:
First, we review the class of Linear, Single-Unit RAS (L-SU-
RAS) and the problem of “(RAS) state safety” [7], that is at
the core of the maximally permissive deadlock avoidance in any
sequential RAS, and we provide an alternative proof for its NP-
completeness in the L-SU-RAS context. Subsequently, we use
this proof as a “stepping stone” in order to establish the NP-
completeness of state safety in free-range vehicular systems.
Finally, the NP-completeness of the state safety in guidepath-
based vehicular systems is obtained as a straightforward corol-
lary of the second result. Concluding this introductory section,
we want also to notice that, beyond its role as a “stepping stone”
towards the main results of this paper, the presented proof for
the NP-completeness of state safety in L-SU-RAS is more con-
cise than the original proof for the same result that was provided
in [5], and more lucid regarding the elements that underlie the
increased problem complexity; therefore, it holds its own merit
as a technical result.

II. THE LINEAR SINGLE-UNIT RAS

The system For the purposes of this work, a Linear Single-
Unit Resource Allocation System (L-SU-RAS) is formally de-
fined by a 4-tuple Φ =< R ,C,P ,D >, where: (i) R is the set
of the system resource types, (ii) C : R → Z+ – the set of
strictly positive integers – is the system capacity function, char-
acterizing the number of identical units from each resource type
available in the system, (iii) P = {Π1, . . . ,Πn} denotes the set
of the system process types, where each process Πi, i = 1, . . . ,n,
consists of Ξi1,Ξi2, . . . ,Ξili consecutive processing stages, and
(iv) D : Ξ = {Ξi j | i = 1, . . . ,n; j = 1, . . . , li}→R is the resource
allocation function associating every processing stage Ξi j with
the resource required for its execution. At any point in time, the
system contains a certain number of (possibly zero) instances of
each process type that execute one of the corresponding process-
ing stages. A process instance executing a non-terminal stage
Ξi j, i = 1, . . . ,n; j = 1, . . . , li − 1, must first be allocated a re-
source unit of the resource type D(Ξi, j+1) in order to advance
to its next stage Ξi, j+1, and only then it will release the currently
held resource unit of D(Ξi j). The considered resource alloca-
tion protocol further requires that no resource type R ∈ R is
over-allocated with respect to its capacity C(R) at any point in
time. The resulting dynamics of L-SU-RAS can be represented
by a Deterministic Finite State Automaton (DFSA) [2].
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Definition 1: The DFSA G(Φ) = (S,E, f ,s0,SM) abstracting
the feasible dynamics of an L-SU-RAS Φ =< R ,C,P ,D > is
defined as follows:
1. The state set S consists of all vectors s = [s11,s12, . . . ,s1,l1 ,

s21,s22, . . . ,sn,ln ] ∈ (Z+
0 )|Ξ| such that for each k ∈ {1, . . . ,m},

∑i∈{1,...,n}∧ j∈{1,...,li}∧D(Ξi j)=Rk
si j ≤ C(Rk). Each component si j

of s gives the number of instances of process type Πi that exe-
cute stage Ξi j in state s.
2. The event set E = {ei j | i = 1, . . . ,n; j = 0, . . . , li}, where
for each i = 1, . . . ,n, event ei0 represents the loading of a new
instance of process type Πi, event eini represents the unload-
ing of a finished instance of process type Πi, and event ei j,
j ∈ 1, . . . , li − 1, represents the advancement of a process in-
stance from stage Ξi j to stage Ξi, j+1.
3. The state transition function f : S×E→ S is defined by s′ =
f (s,eqr), where the components s′i j of the resulting state s′ are
given by:

s′i j =

 si j−1 if i = q and j = r
si j +1 if i = q and j = r +1
si j otherwise

Furthermore, f (s,eqr) is a partial function defined only if the
resulting state s′ ∈ S.
4. The initial state s0 = 0, which corresponds to the situation
when the system is empty of any process instances.
5. The set of marked states SM is the singleton {s0}, and it ex-
presses the requirement for complete process runs. 2

L-SU-RAS state safety, the corresponding decision prob-
lem and its complexity The notions of state safety and the cor-
responding decision problem for the above introduced system,
can be formally stated as follows:

Definition 2: Consider an L-SU-RAS specified by the 4-tuple
Φ =< R ,C,P , D >, and a state s ∈ S of the corresponding
DFSA G(Φ).
1. State s is characterized as safe, if and only if (iff ) there exists
a feasible event sequence σ that drives the DFSA G(Φ) from
state s to its marked state s0.
2. The corresponding L-SU-RAS state safety problem is the de-
cision problem that, upon input Φ and s, addresses the question
of whether state s is safe. 2

As remarked in the introductory section, the RAS state safety
problem is at the core of maximally permissive deadlock avoid-
ance in any sequential RAS, since the corresponding supervi-
sory control policy should admit a state s iff it is safe [7]. The
next theorem establishes the NP-completeness of the L-SU-RAS
state safety problem, by considering its more restricted version
where every resource type has unit capacity. This theorem also
implies that, in general, maximally permissive deadlock avoid-
ance for L-SU-RAS is an NP-hard task.1

Theorem 1: The restriction of the L-SU-RAS state safety
problem to the case where every resource type has unit capacity
is NP-complete in the strong sense.

Proof. In order to prove the theorem, (I) first we show that
the considered L-SU-RAS state safety problem belongs to the

1As discussed in the Introduction, the result of Theorem 1 has already been
established in the literature [5]. Here we provide an alternative proof that is
more concise and (in our opinion) more lucid than the proof of [5], and it will
be useful in the developments of the following sections.

problem class N P , and subsequently (II) we establish its NP-
completeness by reducing to it the well-known NP-complete
problem of 3-SAT [2].

Proof of (I): We remind the reader that a decision problem
is in the class N P iff it can be solved in polynomial time by
a Nondeterministic Turing Machine (NDTM) [2]. For the L-
SU-RAS state safety problem considered in this theorem, let
n = |P |, L = max(l1, l2, . . . , ln), and notice that the specifica-
tion of the underlying resource allocation function D requires
no more than nL elements. Furthermore, it is clear that state s
is safe iff there exists at least one event sequence σ such that
(i) s0 = δ(s,σ) and (ii) σ does not include any loading event.
The length of each such sequence σ is less than or equal to mL,
where m = |R | (since the total capacity of the system bounds
the number of process instances that can be simultaneously ac-
tive at any point in time). For well-defined problem instances,
m ≤ nL (since otherwise there would be some completely un-
utilized resource types). Since the time required by NDTM to
generate and verify any of the aforementioned sequences σ is
proportional to the length of the sequence, NDTM can solve the
considered L-SU-RAS state safety problem in time O(nL2), and
the problem belongs to N P .

Proof of (II): As mentioned above, in order to prove the NP-
completeness of the L-SU-RAS state safety problem considered
in this theorem, we will provide a reduction from the 3-SAT
problem. We remind the reader that the 3-SAT problem can be
stated as follows:

3-SAT [2]: Given a set of literals X = {X1, X̄1,X2, X̄2,
. . . ,Xµ, X̄µ} and a set of clauses Λ = {Λ1,Λ2, . . ., Λν}, each
clause being a disjunction Λq = y1

q∨ y2
q∨ y3

q, y1
q,y

2
q,y

3
q ∈ X , does

there exist K ⊆ X such that the conjunction of the clauses in Λ

is satisfiable, i.e., i) ∀i = 1, . . . ,µ, K does not contain both Xi and
X̄i, and ii) ∀q = 1, . . . ,ν, K∩Λq 6= /0?

For reasons that will become clear in the following, we further
assume, without loss of generality, that the enumeration of the
literal set, X = {X1, X̄1,X2, X̄2, . . . ,Xµ, X̄µ}, defines a linear order
upon the elements of this set, and this order is also respected
during the definition of the problem clauses, Λq, q = 1, . . . ,ν; in
particular, in the following we shall assume that for any given
q = 1, . . . ,ν, the literals of the clause Λq, y1

q, y2
q, y3

q, are quoted
in increasing order with respect to the aforementioned ordering
of the literal set X .

Then, given a 3-SAT problem istance (X ,Λ), an instance of
the considered L-SU-RAS state safety problem, with Φ =<
R ,C,P ,D > and state s ∈ S, can be obtained as follows:

i. The set of resources is given by R = Λ∪{xi j : i = 1, . . .µ, j =
1, . . . ,ν}∪{z j : j = 1, . . .ν}.
ii. For each resource R ∈ R , C(R) = 1.
iii. The set of process types is given by P = {Π1,Π2, . . . ,Πν},
where each process Πq is uniquely associated with the clause
Λq = y1

q∨ y2
q∨ y3

q.
iv. For each process Πq, the resource allocation function
D(Ξq j), j = 1,2, . . ., that specifies the resources required at the
consecutive stages of Πq, is given by the “working procedure”

Wq = Λq,Y 1
q ,Y 2

q ,Y 3
q ,
→
Λ,zq,

←
Λ, where for each k = 1,2,3,

Y k
q =

{ →
xi= xi1,xi2, . . . ,xiν if yk

q = Xi
←
xi= xiν,xi(ν−1), . . . ,xi1 if yk

q = X̄i,
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Consider the 3-SAT problem instance defined by X =
{X1, X̄1,X2, X̄2,X3, X̄3}, Λ1 = X1 ∨X2 ∨ X̄3, and Λ2 = X̄1 ∨X2 ∨
X3. Then:
R = {Λ1,Λ2}∪{x11,x12,x21,x22,x31,x32}∪{z1,z2},
C(R) = 1,∀R ∈ R ,
W1 = Λ1,x11,x12,x21,x22,x32,x31,Λ1,Λ2,z1,Λ2,Λ1,
W2 = Λ2,x12,x11,x21,x22,x31,x32,Λ1,Λ2,z2,Λ2,Λ1,
s = [100000000100|100000000100].

Fig. 1. An example instance of the reduction employed in Theorem 1.

and
→
Λ= Λ1,Λ2, . . . ,Λν,

←
Λ= Λν,Λn−1, . . . ,Λ1.

v. s is the state where each process type Πq has two active in-
stances, respectively executing its first stage (that requires re-
source Λq) and the stage that requires resource zq.

Figure 1 provides a more concrete example of the above re-
duction of the 3-SAT problem to the L-SU-RAS state safety
problem considered in this theorem. It is evident that the reduc-
tion presented above can be performed in polynomial time with
respect to the size of the 3-SAT problem. Thus, to prove that the
considered L-SU-RAS state safety problem is NP-complete, we
only need to establish that an instance of the 3-SAT problem is
satisfiable iff state s of the above constructed RAS is safe. To
do this, let us call the process instances of the constructed state s
that are located on the resources Λq as second-instances, and the
process instances located on the resources zq as first-instances,
q = 1,2, . . . ,n. Then, we make the following observations:
a. If any second-instance enters section

→
Λ before at least one

first-instance has left the system, the resulting state is not safe.
Moreover, no first-instance can leave the system until all the
second-intstances have left their initial locations Λq.
b. From (a) it further follows that each sequence of states lead-
ing from s to s0 must contain a state s′ such that the second-
instance of each process Πq is located in some resource belong-
ing to a resource subsequence Y k

q , k ∈ {1,2,3}.
Next we show that the L-SU-RAS state s is safe iff there exists

a state s′ that (i) is reachable from s, (ii) it is of the type identified
in Observation (b), and (iii) it possesses the additional property
that no two processes Πq and Πr have their second instances in
the complementary sections Y k

q =
→
xi and Y l

r =
←
xi. The necessity

of this condition for the safety of s is obvious from Observations
(a) and (b), and the further remark that any state s′ that does not
satisfy the last part of the condition will unavoidably lead to a
deadlock of the processes Πq and Πr. The sufficiency of the
aforestated condition for the safety of s can be established by
noticing that state s0 can be reached from state s′ according to
the following sequence:
1. First, all processes corresponding to first-instances can pro-
ceed to completion, one at a time (as long as these process in-
stances are completed one at a time, they can be processed in any
order). The feasibility of such a completion sequence is guaran-
teed by the availability of all the resource units Λq, q = 1, . . . ,ν,
in state s′ (c.f. Observation (b)).
2. Once all first-instances have been completed, the remaining
set of processes, corresponding to second-instances, can be ad-
vanced to completion one at a time, according to a sequence that
is defined by the resources allocated to them in state s′. In order
to define this sequence, we first remind the reader that the defini-
tion of state s′ implies that each of the second-instance processes

will be located at a resource xi j, i = 1, . . . ,µ, j = 1, . . . ,ν, that
corresponds to a literal Xi or X̄i in the relevant clause Λq (c.f.
item (iv) in the construction of state s). Hence, in state s′, each
second-instance can be mapped to an element of the literal set
X . This mapping combined with the ordering of the elements of
X that was introduced in the definition of the 3-SAT problem,
induces an ordering on the process set of second-instances. This
ordering is partial, since it is possible that state s′ contains more
than one jobs in the resource sequences

→
xi or

←
xi, i = 1, . . . ,µ.

However, we can obtain a total ordering of the set of second-
instances, by ordering any unordered process subsets according
to the natural order defined by the second index of the allocated
resources xi j. Finally, it is easy to verify that, under the working
assumptions, the advancement and completion of the second-
instances one instance at a time, and in a decreasing sequence
with respect to the process total order constructed above, consti-
tutes a feasible processing sequence and establishes the safety
of the considered state s′.

The proof concludes by showing that the existence of the
aforementioned state s′, that is necessary and sufficient for the
safety of the original state s, is equivalent to the existence of
a satisficing literal subset K for the considered 3-SAT problem
instance (X ,Λ). Indeed, if the aforementioned state s′ exists,
then, set K consists of all the literals Xi (resp., X̄i) which cor-
respond to resource sequences

→
xi (resp.,

←
xi) that are non-empty

of process instances in s′. Set K satisfies property (i) posed by
the 3-SAT problem, since, by the definition of the considered
state s′, no two processes Πq and Πr have their second instances
in the complementary sections Y k

q =
→
xi and Y l

r =
←
xi. It also sat-

isfies property (ii) posed by the 3-SAT problem, due to the fact
that state s′ satisfies the requirement of Observation (b), i.e., the
second-instance of each process Πq is located in some resource
belonging to a resource subsequence Y k

q , k ∈ {1,2,3}. In order
to show that the reverse is also true, i.e., that the existence of a
satisficing set K for the 3-SAT problem enables the construction
of a state s′ that (i) is reachable from state s and (ii) satisfies the
safety requirements postulated in the earlier parts of this proof,
we work as follows: State s′ is chosen as any state such that
the second-instance corresponding to clause Λq, q = 1, . . . ,ν, is
staged in the resource sequence Y k

q for some of its literals that
belongs to the literal set K. Such a literal will exist for every
clause Λq since K is a satisficing set of literals. Also, the satis-
ficing nature of K further guarantees that, in the resulting state
s′, no two processes Πq and Πr have their second instances in
the complementary sections Y k

q =
→
xi and Y l

r =
←
xi. To establish the

reachability of such a state s′ from the original state s, we con-
sider the ordering of the set of second-instances corresponding
to the clauses Λq, q = 1, . . . ,ν, that is induced from the ordering
of the literals Y k

q that were used in the construction of the state
s′ as explained above. Then, it is easy to see that the second-
instances can be advanced from their processing stages in state
s to their processing stages in state s′, one at a time, and with
the sequence of these advancements corresponding to a decreas-
ing sequence according to the aforementioned ordering of these
processes. In the particular case that two or more processes cor-
respond to the same literal Y k

q in state s′, their advancement can
be performed in any sequence without a problem, since the cor-
responding resource sequence

→
xi or

←
xi has a combined capacity
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of ν units (c.f. item (iv) in the construction of the considered
L-SU-RAS and of state s). Hence, it can be concluded from all
the above discussion that state s of the constructed RAS is safe
iff the considered instance of 3-SAT has a solution. 2

III. FREE-RANGE VEHICULAR SYSTEMS

The system In this section we consider a set of autonomous
mobile agents that move in a finite planar area A ⊂ R2, where
R denotes the set of reals. Each agent is represented by a disk
of radius ρ > 0, and its center follows a pre-specified path that
is given in the parametric form: xc = xc(t), yc = yc(t), t ∈ [0,T ].
We assume that the agents stay off the system before they start
their travel, and that they are retired from the system upon reach-
ing their destination. However, during their concurrent motion
in the system, the agents share the available space, and in or-
der to avoid collisions, they may need to modify their velocity
profiles.

Such a coordination can be achieved through a supervisory
control scheme that is based on the tesselation of the motion
plane in a number of areas, called “cells” [8]. An agent is
said to occupy a certain cell if its disk overlaps with the area
corresponding to that cell. In order to avoid collisions, it is
required that at any point in time, a cell can be occupied by
only one agent. Hence, the cells defined by the proposed tes-
selation constitute fictitious resources of unit capacity. Further-
more, under the proposed control scheme, the paths designated
to the different agents are naturally segmented to a number of
stages, with each stage corresponding to a maximal path seg-
ment with constant cell (i.e., resource) occupation. The result-
ing stage sequences define the corresponding resource (i.e., cell)
allocation processes that must be observed by each agent. Con-
sequently, the system of free ranging agents, can be considered
as a Linear-Conjunctive-RAS (L-CON-RAS) [7].2 The behav-
ior of this RAS can be further formalized by a DFSA in a spirit
very similar to that introduced in Section II for the formal rep-
resentation of the L-SU-RAS behavior; two additional elements
that characterize this new DFSA are: (a) the unit capacity of
the system resources, which implies that the components of all
states s ∈ S will be of binary nature, and (b) the fact that the
RAS process types Πi are in one-to-one correspondence with
the mobile agents of the vehicular system, which implies that
each process can have only one active process instance (i.e.,
∀i = 1, . . . ,n, ∑

li
j=1 si j ≤ 1).

Yet, the main attributes that define the RAS class considered
in this section and differentiate it from any other element of the
broader L-CON-RAS class, stem from the fact that the resource
allocation and/or de-allocation that takes place during the transi-
tion between two consecutive processing stages, must observe a
“resource proximity” relation that is defined by the adopted tes-
selation. More specifically, in the considered RAS systems, the
allocation corresponding to a particular processing stage must
be interpretable as the occupation of a number of neighboring
cells by the corresponding mobile agent, while the variation
of the allocations between two consecutive processing stages
must be interpretable as the occupation of some new neighbor-
ing cells and/or the release of some previously held ones, during

2The characterization “conjunctive” denotes the fact that certain processing
stages might require the simultaneous – or conjunctive – allocation of more than
one resource units.

(j - 1) d

(i - 1) d (i - 1)d + r

(j - 1)d + r

(i - 1)d - r

(j - 1)d - r

i di d - r

j d - r

i d + r

j d + r

j d

r

r

A4

A2

A1

A3

Fig. 2. Depending on the position of its central point, an agent occupies one
cell (as A1), two cells (as A2), three cells (as A3), or four cells (as A4).

the agent motion. The sub-class of L-CON-RAS that possesses
the aforementioned additional features will be characterized as
FREE-RANGE-RAS. Following the notation introduced in Sec-
tion II, an element of this new RAS class will be denoted by
Φ = (R ,P ,D) and it will be further presumed that the allo-
cation function D presents the aforementioned attributes with
respect to the underlying tesselation.3

Concluding the presentation of the considered vehicular sys-
tems and their abstracting RAS, we notice that, for most practi-
cal purposes, the adopted tesselation is obtained by applying a
rectangular grid on the motion plane with step sizes (consider-
ably) greater than 2ρ. This will also be the type of tesselation
that we shall consider in the rest of our discussion. It should be
clear (see Figure 2) that in the case of such a rectangular tes-
selation, the number of cells, k, occupied at a time by a single
agent is 1 ≤ k ≤ 4. Furthermore, for reasons that will become
clear in the sequel, we distinguish a particular type of the agent
paths that consist only of horizontal and vertical segments join-
ing the centers of the consecutive cells that they lie on; we shall
refer to these paths as central vertical-horizontal paths. Such
a path can be specified by the sequence of the traversed cells,
p = R1,R2, . . . ,Rw, as indicated in the example depicted in Fig-
ure 3. Also, the motion process of an agent that follows a central
vertical-horizontal path specified by p = R1,R2, . . . ,Rw−1,Rw
consists of 2w−1 stages that, respectively, require the following
resource sets: {R1}, {R1,R2}, {R2}, . . . , {Rw−1}, {Rw−1,Rw},
{Rw}. For example, the motion of an agent along the path de-
picted in Figure 3 consists of nine stages, which require the re-
spective cell subsets: {R1}, {R1,R4}, {R4}, {R4,R5}, {R5},
{R5,R6}, {R6}, {R6,R3} and {R3}. The reader should particu-
larly notice that the specification of a central vertical-horizontal
path p determines uniquely the underlying resource allocation
process. All the above observations will become useful in the
next section, where we consider the state safety problem for the
FREE-RANGE-RAS and its computational complexity.

The state safety problem and its complexity The state

3Since, in the case of FREE-RANGE-RAS, all resources have unit capacity,
function C does not provide any additional significant information, and there-
fore, it was dropped from the tuples defining the corresponding problem in-
stances.
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Fig. 3. An example of a central vertical-horizontal path. The path is uniquely
specified by the sequence of the traversed cells, R = R1,R4,R5,R6,R3, and it
induces nine stages for the agent’s motion process.
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Fig. 4. Illustration for the proof of Theorem 2: Highlighting the basic topology
of the agent paths that define the FREE-RANGE-RAS employed in the relevant
reduction from 3-SAT.

safety problem for the vehicular system introduced in the pre-
vious section can be stated as follows:

Definition 3: Given a FREE-RANGE-RAS specified by the
triplet Φ =< R ,P ,D >, and a state s ∈ S, is the marked state
s0, where all vehicles have successfully completed their trips
and retired from the system, reachable from s?

Next we prove the following:
Theorem 2: For rectangular tesselations with step sizes

greater than or equal to 2ρ, the problem of FREE-RANGE-RAS
state safety is NP-complete in the strong sense.

Proof. Similar to the case of Theorem 1, we establish the
result of Theorem 2 in two major steps: (I) First we show that
FREE-RANGE-RAS state safety is in class N P , and (II) next
we show that the NP-complete problem 3-SAT is polynomially
reducible to FREE-RANGE-RAS state safety.

Proof of (I): Notice that the size of an instance of the consid-
ered problem is essentially determined by the size of the data
required to specify function D , which is proportional to the to-
tal number of processing stages, |Ξ|. Since this number bounds
also the length of any event sequence σ that can constitute a fea-
sible solution to the considered state safety problem, it follows
that the problem can be solved by an NDTM in polynomial time,
and consequently the FREE-RANGE-RAS state safety problem
belongs to the class N P .

Proof of (II): To prove the NP-completeness of the FREE-

RANGE-RAS state safety problem, we shall provide a reduc-
tion from the 3-SAT problem that can be performed in polyno-
mial time with respect to the size of this last problem. More
specifically, an instance of the FREE-RANGE-RAS state safety
problem, specified by the RAS Φ =< R ,P ,D > and state s∈ S,
can be obtained from a 3-SAT instance (X ,Λ) as follows:
a. The set of resources R consists of the set of (square) cells
depicted in Figure 4.
b. The set of processes is given by P = {Λ1,Λ2, . . . ,Λν} ∪{Z}.
c. The resource allocation function D is implied by the topol-
ogy of the paths followed by the agents, which involves (c.f.
Figure 4) :
• two nested rings,
• µ ”bridges”, each corresponding to one of the variables

X1, . . . ,Xµ of the 3-SAT problem and consisting of ν cells,
• another cell, marked by Z in the figure.

The agents executing the processes Λq, q = 1, . . . ,ν, are dis-
tributed at various (arbitrary) locations at the outer ring and each
of them has to pursue the following central horizontal-vertical
path:
(i) First it enters the inner ring through its cell next to it.
(ii) Subsequently it moves clockwise on that ring until it meets

the entry point of the bridge corresponding to the first variable
in clause Λq. If this variable is not negated in the clause, the
bridge must be crossed from left to right; otherwise, it must be
crossed from right to left.
(iii) Upon exiting the first bridge, the agent continues moving

clockwise on the inner ring until it enters the bridge correspond-
ing to its second variable, and then it continues in the same way
with the bridge corresponding to its third variable.
(iv) Upon exiting the third bridge, the agent must (i) perform a

complete loop of the entire inner ring, moving in the clockwise
direction, (ii) pass to the outer ring through the cell held by Λν

in the figure, (iii) traverse clockwise the entire outer ring and
eventually terminate at the cell held by Z.
The agent executing the process annotated as Z must move in
the counter-clockwise sense, initially traversing the outer ring,
then entering the inner ring from the cell next to Λν, and finally
traversing this entire ring before terminating in the cell where
the ring was entered.
d. In state s, all the agents are at the first stages of the above
described routes.

Clearly, the above construction can be polynomial with re-
spect to the number of literals and clauses of the underlying
3-SAT problem. Next we establish that the considered 3-SAT
problem instance has a solution iff the FREE-RANGE-RAS
state s, that was defined through the above construction, is safe.
For this, the reader should notice the following:
i. Since, in state s, process Z occupies a cell required by each
process Λq for its completion, no Λq can complete until Z ad-
vances to another stage. Furthermore, since process Z moves on
the two rings in a direction opposite to that of the motion of pro-
cesses Λq, no state such that process Z is in one of the two rings
while any other process Λq executes the last part of its route, as
specified by item (c-iv) above, is safe.
ii. A little more reflection will reveal that the target state, where
all processes have run to completion, is reachable from the con-
sidered state s, iff it is possible to reach a state s′ such that all
processes Λq are accomodated on the bridges and each bridge is
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Fig. 5. Illustration for the proof of Theorem 3: Highlighting the basic topology
of the agent paths that define the AGV-RAS employed in the relevant reduction
from 3-SAT.

occupied by processes that traverse it in the same direction.
iii. But then, it is easy to see that in the state s′ identified in
Observation (ii) above, the bridges and their two directions of
traversal play the same role with that played by the resource
sequences

→
xi and

←
xi in the proof of Theorem 1, and therefore,

the rest of the proof proceeds in exactly the same manner.

IV. THE STATE SAFETY PROBLEM IN AGV SYSTEMS

Unlike what is happening with the case of free-range systems,
in an AGV system vehicles move in a guidepath network, whose
topology is invariant and can be abstracted with a graph. In or-
der to avoid physical collisions of the various vehicles, the en-
tire network is partitioned into zones, represented by the graph
edges, and only one vehicle is allowed in any zone at any point
in time. In this section we consider the class of open and stat-
ically routed AGV systems, characterized by the following two
attributes: (i) A vehicle enters the guidepath network when as-
signed a task and it leaves this network, retiring to a docking
station, when the task is completed. (ii) The vehicle route is
completely determined a priori, upon the task initiation, and it
is defined by a specific sequence of zones to be visited by the
vehicle until its retirement to the docking station.

Notice that such a system can be considered as a RAS where
the system resources are defined by the set of zones and the
system processes are defined by the set of vehicles following
their assigned paths. In fact, the resulting RAS constitutes a
sub-class of L-SU-RAS, distinguished by the following two ad-
ditional attributes: (a) each resource R ∈ R , possesses unit ca-
pacity; (b) the resource allocation function D must observe the
network topology, i.e., the resources required for the consecutive
stages of a process must form a path in the graph representing
the guidepath network. We shall characterize such a RAS sys-
tem as an AGV-RAS, and the corresponding problem to decide
whether or not a particular state in it is safe, as the AGV-RAS
state safety problem. With the results of the previous sections, it
is not hard to prove the following:

Theorem 3: The AGV-RAS state safety problem is NP-
complete in the strong sense.

Proof: The proof of this theorem is analogous to that for

Theorem 2. The topology of the agent paths that define the
AGV-RAS employed in the relevant reduction from 3-SAT, is
presented in Figure 5. The structure of the system and of the
vehicle processes implements the same ideas as those consid-
ered in the corresponding result for the FREE-RANGE-RAS.
The guidepath network consists of two rings and µ bridges, and
the routes of the vehicles are the same as assumed in the proof
of Theorem 2. Thus, by the same argumentation, Theorem 3 is
also true.

V. CONCLUSIONS

In this paper, we provided some new results regarding the
computational complexity of the “state safety” problem, as it
arises in the context of some multi-vehicle traffic systems that
are encountered in modern technological applications. In the
process of deriving these results, we also developed a new proof
for the NP-completeness of state safety in the class of L-SU-
RAS, which is more concise and more lucid than the currently
existing one. Two additional, similar problems that remain open,
concern the computational complexity of state safety in (a) dy-
namically routed AGV and free-range vehicular systems, where
a vehicle can be routed dynamically to any zone / cells neigh-
boring its current location, and (b) in closed AGV and free-range
vehicular systems where agents never retire from the domain of
their motion, but they remain in it between the assignment of
two consecutive trips. Furthermore, it is also interesting to iden-
tify any special structure under which the FREE-RANGE-RAS
and AGV-RAS state safety problems, considered in this work,
acquire polynomial complexity. Such a line of research can
leverage and expand results of similar type for the L-SU-RAS
state safety problem reported in [7] (c.f., Chapter 3).
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