
Eliminating Concurrency Bugs in Multithreaded

Software: An Approach Based on Control
of Petri Nets�

Stéphane Lafortune1, Yin Wang2, and Spyros Reveliotis3

1 Department of EECS, University of Michigan, USA
2 HP Laboratories, USA

3 School of ISyE, Georgia Tech, USA

Abstract. We describe the Gadara project, a research effort whose goal
is to eliminate certain classes of concurrency bugs in multithreaded soft-
ware by controlling the execution of programs at run-time. The Gadara
process involves three stages: modeling of the source code at compile
time in the form of a Petri net, feedback control synthesis, and control
logic implementation into the source code. The feedback control logic is
synthesized using techniques from supervisory control of discrete event
systems, where the specification captures the avoidance of certain types
of concurrency bugs, such as deadlocks. We focus on the case of circular-
wait deadlocks in multithreaded programs employing mutual exclusion
locks for shared data. The application of the Gadara methodology to
other classes of concurrency bugs is briefly discussed.

1 Introduction

The concepts and techniques of control engineering find numerous applications
in computer and software engineering. For instance, classical control theory, for
time-driven systems with continuous state spaces, has been applied to com-
puter systems problems involving quantitative properties, such as throughput
stabilization; see, e.g., [1]. However, many important problems in computer and
software engineering involve qualitative specifications, such as deadlock avoid-
ance, and their solution requires control-theoretic approaches for event-driven
systems with discrete state spaces, i.e., Discrete Event Systems (DES). In the
last few years, there has been increased interest in solving discrete-event con-
trol problems that arise in software and embedded systems; see, e.g., [2–10].
In particular, the paradigm of controlling software execution to avoid software
defects at run-time is receiving increased attention in the control engineering,
programming languages, and operating systems communities.

� Research partially supported by the U.S. National Science Foundation, under
grants CCF-0819882, CMMI-0928231, and CCF-1138860 (Expeditions in Comput-
ing project ExCAPE: Expeditions in Computer Augmented Program Engineering),
and by HP Laboratories, under an Open Innovations Award.

J.-M. Colom and J. Desel (Eds.): PETRI NETS 2013, LNCS 7927, pp. 21–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

22 S. Lafortune, Y. Wang, and S. Reveliotis

We have been investigating how to control software execution to avoid cer-
tain classes of concurrency bugs under the so-called “Gadara Project” [11], a
multidisciplinary effort centered at the University of Michigan and pursued in
collaboration with HP Laboratories and the Georgia Institute of Technology in
the U.S. In this effort, control techniques from the field of DES, such as supervi-
sory control [12] and supervision based on place invariants [13], are employed to
synthesize control logic that is instrumented into the source code and enforces
the desired safety properties at run-time [14]. Since it is model-based and re-
lies on theoretical results in DES, this approach provably guarantees the desired
safety properties, subject to model accuracy. The principal safety property of in-
terest in the work to-date is deadlock avoidance in multithreaded programs that
use locking primitives to control access to shared data [15, 16]. Recent results
address certain types of atomicity violations in multithreaded programs [17, 18].

This paper describes and discusses the key features of the Gadara method-
ology, with relevant references. It is based on, and complements, the keynote
lecture of the first author at the 34th International Conference on Application
and Theory of Petri Nets and Concurrency (June 2013).

2 Gadara Methodology

There is a large amount of literature in computer science on the study of deadlock
using a variety of modeling and analysis techniques. Petri net models have been
used for deadlock analysis in several application domains, including computer
and manufacturing systems. In particular, several special classes of Petri nets
have been characterized and analyzed for deadlock problems that involve a set
of “processes” sharing a set of common “resources” in the context of automated
manufacturing applications; see [19, 20]. Such systems are often referred to as
Resource Allocation Systems, or RAS. RAS also occur in the context of software
systems, where processes may be threads and shared resources may be data
objects. Modeling thread creation/termination and lock/unlock operations on
shared data is in fact a classical application of Petri nets [21], and Petri nets
have been employed to model multithreaded synchronization primitives in the
popular Pthread library for C/C++ programs [22]. Petri nets were also used to
analyze deadlocks in Ada programs [23]. A review of the application of Petri
nets to computer programming is presented in [24].

The methodology developed in the Gadara project for avoidance of certain
classes of deadlocks in multithreaded software is also based on Petri net models.
The methodology relies on the extraction of a suitable model of the program
source code at compile time in the form of an enhanced Control Flow Graph
(CFG) that captures the control flow and the locking behavior of all the program
threads. This step generally requires the use of static analysis techniques (see,
e.g., [25, 26]) to ensure a more accurate model. This model is then translated
into a Petri net in a straightforward process: places in the net represent basic
blocks (i.e., branch-free sets of consecutive instructions) in the CFG or locks
that will be acquired by the threads; transitions in the net represent transitions

Eliminating Concurrency Bugs in Multithreaded Software 23

in the CFG or lock acquisition and release operations; finally, tokens represent
the states of the threads and of the locks. The special class of RAS Petri nets that
arises in this context is called Gadara nets. The reader is referred to [27] for the
formal definition of Gadara nets and for a treatment of their analytical properties
in the context of multithreaded programs that use mutually-exclusive locks to
control access to shared data. The deadlocks caused by the use of mutually-
exclusive locks are circular-mutex-wait deadlocks, where threads in a set are
waiting for one another and none can proceed. Avoidance of circular-mutex-wait
deadlocks in multithreaded programs is mapped to the problem of liveness in
Gadara nets in [27]. Liveness here refers to the property that every transition
is eventually firable from any reachable state of the net. Due to the structure
of Gadara nets, liveness is equivalent to reversibility, i.e., the initial state must
be reachable from every reachable state. Algorithms based on solving Mixed
Integer Linear Programs (MILP) are presented in [27] for determining if liveness
holds or not. The algorithms exploit the structural properties of Gadara nets,
in terms of certain classes of siphons. In this regard, we note that many works
have considered similar structural analyses for related classes of Petri nets; see,
e.g., [20, 28].

The central aspect of the Gadara methodology is its focus on synthesizing a
control strategy for the Petri net model so that the controlled system is provably
live, with respect to the model. This control strategy, referred to as the control
logic hereafter, must satisfy four key requirements in addition to liveness. The
first two requirements, denoted by (R1) and (R2), pertain to its synthesis and
the last two requirements, denoted by (R3) and (R4), pertain to its implemen-
tation. (R1): The control logic should not alter the behavior of the program; it
should only act by delaying lock acquisition or release operations performed by
the threads. (R2): The control logic should only intervene when absolutely nec-
essary; this is referred to as maximal permissiveness. A correct strategy could be
to force the threads to always execute serially; deadlock would be avoided, but
no concurrency would be allowed. (R3): The control logic must be readily trans-
latable to the original source code that is modeled by the Gadara net, thereby
allowing code instrumentation as an implementation mechanism. (R4): The run-
time overhead of the control logic must be minimized, so that the instrumented
program runs almost as fast as the original program.

The supervisory control theory for DES initiated in [12] and widely studied
since then is well suited for handling (R1) and (R2). The notion of uncontrollable
transitions (or events) captures (R1), while maximal permissiveness is handled
by the concept of the supremal controllable sublanguage of the legal language
with respect to the uncontrolled system language. Here, the legal language is
the live sublanguage of the uncontrolled system, obtained by deleting states that
deadlock and those that are in a livelock, when the initial state is the only marked
state. However, using the standard algorithms of this supervisory control theory,
as described in [29] for instance, requires building the reachability graph of the
Gadara net model of the program. Moreover, the form of the control strategy,
which is now a global function over the entire reachability graph, will perform

24 S. Lafortune, Y. Wang, and S. Reveliotis

poorly in terms of (R3) and (R4), unless it can be encoded in a different form.
These two considerations have motivated the control logic synthesis research
performed in the Gadara project, which is overviewed in the next section.

3 Control Logic Synthesis

Requirements (R3) and (R4) of the previous section suggest to use control places
(also called monitor places) as the control mechanism for the Gadara net model
of the program. Control places are connected to the transitions of the net, which
in turn can be mapped back to specific lines of code in the program. Instrumented
code can then be inserted at the appropriate location to implement the constraint
imposed by the control place, which is treated as a global variable. This control
mechanism only affects program execution when it reaches a point where the
corresponding transition in the Gadara net is connected to a control place. The
control synthesis task is therefore to determine a set of control places, their initial
marking, and their connectivity to the net, such that the control logic enforced
by these control places keeps the Gadara net live in a maximally-permissive
manner. Moreover, the control places should never lead to the disablement of an
uncontrollable transition in the net. In other words, the control logic enforced
by these control places should correspond exactly to the supremal controllable
sublanguage of the Gadara net subject to the live sublanguage specification
mentioned earlier.

In our efforts so far, we have used the control technique called Supervision
Based on Place Invariants (SBPI) to synthesize the desired control places. SBPI
is a control logic synthesis framework that uses control places to enforce a set
of linear inequality constraints on the reachable states of a given arbitrary Petri
net [13]. Each linear inequality corresponds to a weighted sum of the number of
tokens in each place of the net, and it will be exactly enforced by one control
place, if enforceable at all; that is, the control is correct and maximally permissive
with respect to the linear inequality. We have pursued two approaches that
leverage the SBPI technique.

Assume that we can enumerate the set of reachable states of the Gadara
net and calculate the supremal controllable sublanguage solution. This solution
corresponds to a partition of the set of reachable states of the Gadara net into
legal and illegal states. It is shown in [27] that this partition can be done using
a set of linear inequalities on the states; in other words, the set of legal states is
linearly separable. In [30], the problem of finding the minimum number of linear
inequalities for effecting the desired separation of the state space is solved using
concepts and techniques borrowed from classification theory. SBPI can then be
invoked to obtain control logic that necessitates the minimum number of control
places, which is highly correlated to the achievement of requirement (R4). This
methodology is referred to as MSCL, for Marking Separation using CLassifiers,
in subsequent works.

To avoid the explicit enumeration of the state space of the Gadara net that
must be performed to calculate the supremal controllable sublanguage solution,

Eliminating Concurrency Bugs in Multithreaded Software 25

a control logic synthesis technique based on structural analysis of the Gadara
net was developed. The general framework of this methodology, called ICOG for
Iterative Control Of Gadara nets, is presented in [31], while its customization to
the case of programs modeled by Gadara nets is presented in [32] and referred
to as ICOG-O therein, since the nets involved remain ordinary throughout the
iterations. This approach does not guarantee at the outset that the number of
control places will be minimized. However, it leverages the structural properties
associated with liveness analysis in Gadara nets from [27] in the context of an
iterative scheme that eliminates illegal states by eliminating so-called resource-
induced empty siphons [20, 27]. ICOG employs siphon analysis, coupled with
SBPI, as well as a book-keeping mechanism to ensure convergence in a finite
number of iterations. At convergence, a set of control places that separates the set
of legal states from the set of illegal states is obtained. ICOG explicitly considers
the controllability properties of transitions when synthesizing the control logic,
so that no control place has an outgoing arc to an uncontrollable transition.
In effect, ICOG computes the supremal controllable sublanguage solution by
iterating directly on the Gadara net structure, using the notion of resource-
induced empty siphon to capture illegal states.

4 Discussion

The principal focus of the Gadara project so far has been the problem of circular-
wait-mutex deadlock in multithreaded software. This is an important problem
due to the prevalence of multicore computer architectures. There are numerous
other software problems where we believe control engineering techniques from the
field of DES hold great promise. These include other types of deadlocks, such as
reader-writer deadlock, condition wait/signal deadlock, inter-process deadlock,
and other concurrency issues such as race, atomicity violation, and priority in-
version. Results on the case of reader-writer deadlocks have recently appeared in
[33], while certain types of atomicity violations have been addressed in [17, 18].

A key challenge that is posed by the consideration of reader-writer locks stems
from the fact that the underlying state space is not necessarily finite; this is
because one can perceive this class of RAS as one where in writing mode, the
capacity of the resource is “one,” while in reading mode, it is “infinite.” This
obstacle is addressed in [33] by taking advantage of special structure that exists
in the set of inadmissible states, which enables a finite representation of this set
through its minimal elements.

Detecting atomicity violations is substantially more difficult than deadlock
detection. In [18], a class of atomicity violation bugs called “single-variable atom-
icity violations” is considered. Gadara nets are employed to capture this class of
bugs by control specifications expressed as linear inequalities on the net mark-
ing; adjustments to the construction of the Gadara net at modeling time are
necessary to make this possible. After adding one monitor place to enforce each
linear inequality using SBPI, the ICOG methodology is then directly applied on
the resulting controlled Gadara net to eliminate potential deadlocks introduced

26 S. Lafortune, Y. Wang, and S. Reveliotis

by these control places. If one is interested in obtaining the minimum-size con-
troller, in terms of number of added control places, then MSCL can be employed,
albeit the process is more involved.

5 Conclusion

The application of the control engineering paradigm and of DES techniques to
software failure avoidance opens up new avenues of research that cover the gamut
from theory to implementation. While some of the above-mentioned opportuni-
ties can be solved by existing DES control theory, better customized solutions
are often desirable. A crucial issue is scalability, which often necessitates the
development of customized algorithms that exploit problem structure. Another
crucial issue is the requirement on run-time overhead of the control logic in soft-
ware applications, which is much more stringent than in other application areas
such as manufacturing systems or process control, for instance. This leads to
numerous opportunities to advance the state-of-the-art of DES control theory.
Collaboration with domain experts is essential to construct suitable models and
to understand the implementation constraints of the control logic. We wish to en-
courage students and researchers to consider contributing to this very promising
emerging area of research.

References

1. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. Wiley (2004)

2. Wallace, C., Jensen, P., Soparkar, N.: Supervisory control of workflow scheduling.
In: Proc. International Workshop on Advanced Transaction Models and Architec-
tures (1996)

3. Phoha, V.V., Nadgar, A.U., Ray, A., Phoha, S.: Supervisory control of software
systems. IEEE Transactions on Computers 53(9), 1187–1199 (2004)

4. Liu, C., Kondratyev, A., Watanabe, Y., Desel, J., Sangiovanni-Vincentelli, A.:
Schedulability analysis of Petri nets based on structural properties. In: Proc. In-
ternational Conference on Application of Concurrency to System Design (2006)

5. Wang, Y., Kelly, T., Lafortune, S.: Discrete control for safe execution of IT au-
tomation workflows. In: Proc. ACM EuroSys Conference (2007)

6. Dragert, C., Dingel, J., Rudie, K.: Generation of concurrency control code using
discrete-event systems theory. In: Proc. ACM International Symposium on Foun-
dations of Software Engineering (2008)

7. Auer, A., Dingel, J., Rudie, K.: Concurrency control generation for dynamic
threads using discrete-event systems. In: Proc. Allerton Conference on Commu-
nication, Control and Computing (2009)

8. Gamatie, A., Yu, H., Delaval, G., Rutten, E.: A case study on controller syn-
thesis for data-intensive embedded system. In: Proc. International Conference on
Embedded Software and Systems (2009)

9. Iordache, M.V., Antsaklis, P.J.: Concurrent program synthesis based on supervi-
sory control. In: Proc. 2010 American Control Conference, pp. 3378–3383 (2010)

Eliminating Concurrency Bugs in Multithreaded Software 27

10. Delaval, G., Marchand, H., Rutten, E.: Contracts for modular discrete controller
synthesis. In: Proc. ACM Conference on Languages, Compilers and Tools for Em-
bedded Systems (2010)

11. Gadara Team: Gadara project, http://gadara.eecs.umich.edu/

12. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control Optim. 25(1) (1987)

13. Moody, J.O., Antsaklis, P.J.: Supervisory Control of Discrete Event Systems Using
Petri Nets. Kluwer Academic Publishers, Boston (1998)

14. Kelly, T., Wang, Y., Lafortune, S., Mahlke, S.: Eliminating concurrency bugs with
control engineering. IEEE Computer 42(12), 52–60 (2009)

15. Wang, Y., Kelly, T., Kudlur, M., Lafortune, S., Mahlke, S.A.: Gadara: Dynamic
deadlock avoidance for multithreaded programs. In: Proc. the 8th USENIX Sym-
posium on Operating Systems Design and Implementation, 281–294 (2008)

16. Wang, Y., Lafortune, S., Kelly, T., Kudlur, M., Mahlke, S.: The theory of deadlock
avoidance via discrete control. In: Proc. the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 252–263 (2009)

17. Liu, P., Zhang, C.: Axis: Automatically fixing atomicity violations through solving
control constraints. In: International Conference on Software Engineering (2012)

18. Wang, Y., Liu, P., Kelly, T., Lafortune, S., Reveliotis, S., Zhang, C.: On atomicity
enforcement in concurrent software via discrete event systems theory. In: Proc. the
51st IEEE Conference and Decision and Control (2012)

19. Li, Z., Zhou, M., Wu, N.: A survey and comparison of Petri net-based deadlock
prevention policies for flexible manufacturing systems. IEEE Transactions on Sys-
tems, Man, and Cybernetics—Part C 38(2), 173–188 (2008)

20. Reveliotis, S.A.: Real-Time Management of Resource Allocation Systems: A
Discrete-Event Systems Approach. Springer, New York (2005)

21. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

22. Kavi, K.M., Moshtaghi, A., Chen, D.: Modeling multithreaded applications using
Petri nets. International Journal of Parallel Programming 35(5), 353–371 (2002)

23. Murata, T., Shenker, B., Shatz, S.M.: Detection of Ada static deadlocks using Petri
net invariants. IEEE Transactions on Software Engineering 15(3), 314–326 (1989)

24. Iordache, M.V., Antsaklis, P.J.: Petri nets and programming: A survey. In: Proc,
American Control Conference, 4994–4999 (2009)

25. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions
and deadlocks. In: Proc. 19th ACM Symposium on Operating Systems Principles
(2003)

26. Cho, H.K., Wang, Y., Liao, H., Kelly, T., Lafortune, S., Mahlke, S.: Practical
lock/unlock pairing for concurrent programs. In: Proc. 2013 International Sympo-
sium on Code Generation and Optimization, CGO 2013 (February 2013)

27. Liao, H., Wang, Y., Cho, H.K., Stanley, J., Kelly, T., Lafortune, S., Mahlke, S.,
Reveliotis, S.: Concurrency bugs in multithreaded software: Modeling and analysis
using Petri nets. Discrete Event Dynamic Systems: Theory & Applications 23
(2013) (published online May 2012)

28. Cano, E.E., Rovetto, C.A., Colom, J.M.: An algorithm to compute the minimal
siphons in S4PR nets. In: Proc. International Workshop on Discrete Event Sys-
tems, pp. 18–23 (2010)

29. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn.
Springer (2008)

http://gadara.eecs.umich.edu/

28 S. Lafortune, Y. Wang, and S. Reveliotis

30. Nazeem, A., Reveliotis, S., Wang, Y., Lafortune, S.: Designing compact and max-
imally permissive deadlock avoidance policies for complex resource allocation sys-
tems through classification theory: The linear case. IEEE Transactions on Auto-
matic Control 56(8), 1818–1833 (2011)

31. Liao, H., Lafortune, S., Reveliotis, S., Wang, Y., Mahlke, S.: Optimal liveness-
enforcing control of a class of petri nets arising in multithreaded software. IEEE
Transactions on Automatic Control 58(5) (2013)

32. Liao, H., Wang, Y., Stanley, J., Lafortune, S., Reveliotis, S., Kelly, T., Mahlke, S.:
Eliminating concurrency bugs in multithreaded software: A new approach based on
discrete-event control. IEEE Transactions on Control Systems Technology (2013)
(published online January 2013)

33. Nazeem, A., Reveliotis, S.: Maximally permissive deadlock avoidance for resource
allocation systems with r/w-locks. In: Proc. the 11th International Workshop on
Discrete Event Systems (2012)

	Eliminating Concurrency Bugs in Multithreaded Software: An Approach Based on Control of Petri Nets
	Introduction
	Gadara Methodology
	Control Logic Synthesis
	Discussion
	Conclusion

