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Abstract. This paper proposes an analytical method for the synthesis of
reversibility-enforcing supervisors for bounded Petri nets. The proposed
method builds upon recent developments from (i) the theory of regions,
that enables the design of Petri nets with pre-specified behavioral re-
quirements, and (ii) the theory concerning the imposition of generalized
mutual exclusion constraints on the net behavior through monitor places.
The derived methodology takes the form of a Mixed Integer Program-
ming formulation, which is readily solvable through canned optimization
software. The last part of the paper discusses extensions of the presented
method so that it accommodates uncontrollable behavior and any poten-
tial complications arising from the large-scale nature of the underlying
plant nets and their behavioral spaces. Finally, the relevance and the effi-
cacy of the proposed approach is demonstrated through its application in
the synthesis of liveness-enforcing supervisors for process-resource nets.

1 Introduction

Reversibility is a well-characterized and important property in many contempo-
rary technological applications and it implies the ability of the studied system to
retrieve its initial state from any state that this system can reach during its oper-
ation. Clearly, under this basic definition, reversibility applies to the entire range
of systems that can be modelled through dynamical system theory; however, in
this work we deal with the concept of reversibility in the more restricted class
of systems that can be modelled by bounded Petri nets (PN) [5]. For systems
modelled in this representational framework, we seek to develop a methodology
that will support the design of controllers (i) enforcing the reversibility of the
underlying system and (ii) possessing an “on-line” computational cost that is
polynomial with respect to the size of this system. The pursued approach is a
combination of (i) Petri net supervisory control based on the theory of moni-
tor places [3, 4] and (ii) the design of Petri nets with a desired / pre-specfied
topology for their reachability space through the theory of regions [1]. In this



sense, our work presents considerable similarity with the works of [2, 9], which
also sought to develop monitor-based supervisors for some PN sub-classes mod-
elling sequential resource allocation, while exploiting insights and results coming
from the theory of regions. However, the main differentiator of our work from
those past efforts is the emphasis that we place on the (polynomial) complexity
of the derived solutions. More specifically, in the previous works, the authors
sought to derive a set of monitor places that would encode the maximally per-
missive supervisor for the considered application context, where the latter was
initially computed through state space-based approaches (typically, Ramadge &
Wonham’s supervisory control theory [7]). Two significant implications of that
approach were that (i) the derived supervisor might employ a number of mon-
itor places that was a super-polynomial function of the size of the underlying
Petri net, and (ii) there might be cases that the approach would fail to return a
supervisor since it might not be possible to enforce the target behavior through
a set of monitor places. Contrary to those past works, in our approach we define
a priori the maximum number of monitor places that we want to use in the
derived solution, and we seek to develop a supervisor that will guarantee “best
performance” under this size restriction. The applied performance criterion can
be quite general; for the purposes of the subsequent discussion, we shall assume
that it can be expressed by a sum of values / weights taken over the set of states
that are admitted by the derived supervisor. By restricting the number of the
considered monitor places to be a polynomial function of the underlying system
size, our approach can guarantee the polynomial “on-line” complexity of the de-
rived solution. Furthermore, as it will be established in the following, the overall
design problem reduces to the solution of a mathematical programming (MP)
formulation consisting of the aforementioned performance objective and a set of
constraints expressing the requirement for reversibility of the controlled system.
This formulation essentially constitutes an implicit search for a best supervi-
sor over the entire set of supervisors that can enforce the system reversibility
while observing the imposed size constraint, and therefore, it is richer in feasible
solutions than the earlier developed approaches. In addition, the explicit pa-
rameterization of the proposed approach through the maximum number of the
employed monitor places allows the systematic study of the trade-off between
the computational complexity of the applied supervisor and the attained per-
formance. Finally, in principle, this approach can still enable the computation
of the maximally permissive supervisor – assuming that this supervisor is im-
plementable by a set of monitor places – by setting the number of the provided
monitor places to a sufficiently large value.

¿From a more historical standpoint, this research falls within a broader initia-
tive of ours, seeking to derive polynomial-complexity, monitor-based, reversibility-
enforcing supervisors for a class of PN’s modelling sequential resource allocation.
This class of PN’s and the currently available results on its reversibility-enforcing
supervision through monitor-based approaches, are presented in [8, 11].3 Yet, one

3 In fact, one of the main results for this PN sub-class is that the net liveness and
reversibility are equivalent concepts; hence, in [8, 11], the aforementioned supervi-



of the open research questions raised in [8] is the analytical characterization of
the entire set of supervisors that can enforce the reversibility of any given in-
stance of the considered PN sub-class, while employing a pre-specified number
of monitor places. This question is resolved in this paper through the constraint
set of the aforementioned MP formulation.

In the light of the above introduction of the presented work, the rest of the
paper is organized as follows: Section 2 first reviews the basic PN concepts and
results that are necessary for the development of this work, and subsequently it
summarizes the key elements of the theory of regions, according to the perspec-
tive adopted in [2], and of the monitor-based Petri net control theory, developed
in [4]. Section 3 develops the supervisor design approach proposed in this work,
while Section 4 demonstrates the modelling and analytical power of this ap-
proach through a detailed example. Section 5 discusses some enhancements and
extensions of the basic methodology presented in Section 3, and, finally, Section 6
concludes the paper and highlights directions for future work.

2 Preliminaries

2.1 Petri net fundamentals

Petri net Definition [5] A (marked) Petri net (PN) is defined by a quadruple
N = (P, T,W, M0), where

– P is the set of places,
– T is the set of transitions,
– W : (P × T ) ∪ (T × P ) → Z+

0 is the flow relation,4 and
– M0 : P → Z+

0 is the net initial marking, assigning to each place p ∈ P ,
M0(p) tokens.

Also, for the purposes of the subsequent analysis, the size of PN N =
(P, T,W, M0) is defined as |N | ≡ |P | + |T | +

∑

p∈P M0(p).
The first three items in the above definition essentially constitute a weighted

bipartite digraph representing the system structure that governs its underlying
dynamics. The last item determines the system initial state. A conventional
graphical representation of the net structure and its marking depicts nodes cor-
responding to places by empty circles, nodes corresponding to transitions by
bars, and the tokens located at the various places by small filled circles. The
flow relation W is depicted by directed edges that link every nodal pair for
which the corresponding W -value is non-zero. These edges point from the first
node of the corresponding pair to the second, and they are also labelled – or,
“weighed” – by the corresponding W -value. By convention, absence of a label
for any edge implies that the corresponding W -value is equal to unity.

sory control problem is characterized as liveness rather than reversibility-enforcing
supervision.

4 In this work, Z
+

0 denotes the set of nonnegative integers, and < denotes the set of
reals.



Some structure-related PN concepts For computational purposes, the
net flow relation W is encoded by two |P | × |T | matrices, Θ+ and Θ−, with
Θ+(p, t) = W (t, p) and Θ−(p, t) = W (p, t). The difference Θ+ −Θ− is known as
the net flow matrix and it is denoted by Θ. A PN is said to be pure if and only
if (iff ) ∀p ∈ P, ∀t ∈ T, Θ−(p, t)Θ+(p, t) = 0. Notice that for pure PN’s, the net
flow relation, W , is completely characterized by the net flow matrix, Θ.

Given a transition t ∈ T , the set of places p for which (p, t) > 0 (resp.,
(t, p) > 0) is known as the set of input (resp., output) places of t. Similarly,
given a place p ∈ P , the set of transitions t for which (t, p) > 0 (resp., (p, t) > 0)
is known as the set of input (resp., output) transitions of p. It is customary in the
PN literature to denote the set of input (resp., output) transitions of a place p
by •p (resp., p•). Similarly, the set of input (resp., output) places of a transition
t is denoted by •t (resp., t•). This notation is also generalized to any set of places
or transitions, X, e.g. •X =

⋃

x∈X
•x.

The ordered set X =< x1 . . . xn > ∈ (P ∪ T )∗ is a path iff xi+1 ∈ x•i , i =
1, . . . , n− 1. Furthermore, a path X is characterized as a circuit iff x1 ≡ xn.

The particular class of PN’s with a flow relation W mapping onto {0, 1}
are characterized as ordinary . An ordinary PN with |t•| = |•t| = 1, ∀t ∈ T , is
characterized as a state machine, while an ordinary PN with |p•| = |•p| = 1,
∀p ∈ P , is characterized as a marked graph.

Some dynamics-related PN concepts In the PN modelling framework,
the system state is represented by the net marking M , i.e., a function from P

to Z+
0 that assigns a token content to the various net places. The net marking

M is initialized to marking M0, introduced in the PN definition provided at
the beginning of this section, and it subsequently evolves through a set of rules
summarized in the concept of transition firing . A concise characterization of
this concept has as follows: Given a marking M , a transition t is enabled iff for
every place p ∈ •t, M(p) ≥ W (p, t), or equivalently, M ≥ Θ−(·, t), and this
fact is denoted by M [t〉. t ∈ T is said to be disabled by a place p ∈ •t at M
iff M(p) < W (p, t), or, equivalently, M(p) < Θ−(p, t). Given a marking M , a
transition t can be fired only if it is enabled in M , and firing such an enabled
transition t results in a new marking M ′, which is obtained from M by removing
W (p, t) tokens from each place p ∈ •t, and placing W (t, p′) tokens in each place
p′ ∈ t•. The marking evolution incurred by the firing of a transition t can be
concisely expressed by the state equation:

M ′ = M +Θ · 1t (1)

where 1t denotes the unit vector of dimensionality |T | and with the unit element
located at the component corresponding to transition t.

Given a PN N , a sequence of transitions, σ = t1t2 . . . tn, is fireable from
some marking M iff M [t1〉M1[t2〉M2 . . .Mn−1[tn〉 Mn; we shall also denote this

fact by M
σ
→Mn. The length of σ is defined by the number of transitions in it,

and it will be denoted by |σ|. Also, the Parikh vector of σ is a |T |-dimensional
vector, σ̄, with each component σ̄(t), t ∈ T , stating the number of appearances
of transition t in σ.



The set of markings reachable from the initial marking M0 through any
fireable sequence of transitions is denoted by R(N ,M0) and it is referred to
as the net reachability space. Equation 1 implies that a necessary condition for
M ∈ R(N ,M0) is that the following system of equations is feasible in z:

M = M0 +Θz (2)

z ∈ (Z+
0 )|T | (3)

The reachability graph, G(N ,M0), of N , is a labelled directed graph with its
node set being equal to R(N ,M0), and its edge set being defined by the nodal
pairs (M,M ′) ∈ R(N ,M0) × R(N ,M0) for which there exists t ∈ T such that
M [t〉M ′; the edges of G(N ,M0) are labelled by the corresponding transitions.

A PN N = (P, T,W,M0) is said to be bounded iff all markings M ∈
R(N ,M0) are bounded. N is said to be structurally bounded iff it is bounded
for any initial marking M0. N is said to be reversible iff M0 ∈ R(N ,M), for
all M ∈ R(N ,M0), and any marking M ∈ R(N ,M0) such that M0 ∈ R(N ,M)
is a co-reachable marking of N . A transition t ∈ T is said to be live iff for all
M ∈ R(N ,M0), there exists M ′ ∈ R(N ,M) such that M ′[t〉; non-live transi-
tions are said to be dead at those markings M ∈ R(N ,M0) for which there is no
M ′ ∈ R(N ,M) such that M ′[t〉. PN N is quasi-live iff for all t ∈ T , there exists
M ∈ R(N ,M0) such that M [t〉; it is weakly live iff for all M ∈ R(N ,M0), there
exists t ∈ T such that M [t〉; and it is live iff for all t ∈ T , t is live.

PN semiflows PN semiflows provide an analytical characterization of vari-
ous concepts of invariance underlying the net dynamics. Generally, there are two
types, p and t-semiflows, with a p-semiflow formally defined as a |P |-dimensional
vector y satisfying yTΘ = 0 and y ≥ 0, and a t-semiflow formally defined as a
|T |-dimensional vector x satisfying Θx = 0 and x ≥ 0. In the light of Equation 2,
the invariance property expressed by a p-semiflow y is that yTM = yTM0, for
all M ∈ R(N ,M0). Similarly, Equation 2 implies that for any t-semiflow x,
M = M0 +Θx = M0.

2.2 Petri net design through the Theory of Regions

In this section we overview an interpretation of the theory of regions provided
in [2]. According to this interpretation, the problem addressed by the theory
of regions can be stated as follows: Given a directed graph, G = (N,E), with
its edges labelled by elements from some set T , and containing a node n0 ∈ N

such that there exists a path from n0 to any other node n ∈ N , find a pure PN
N = (P, T,W,M0), such that its reachability graph G(N ,M0) is expressed by
G, when setting M0 ≡ n0. Since the net N is required to be pure, it can be fully
defined by specifying the row Θ(p, ·) of the net flow matrix Θ and the initial
marking M0(p), for each place p ∈ P . These parameters can be subsequently
obtained through a system of equations derived from the structure of the target
graph G and the logic underlying Equations 1–3.

In particular, Equation 1 implies that, for any undirected cycle, γ, in graph
G:

∀p ∈ P, Θ(p, ·) · γ̄ = 0 (4)



Equation 4 is known as the “cycle” equation of the theory of regions, and the
parameter γ̄ appearing in it is a vector of dimensionality |T |, and with component
γ̄(t) denoting the difference between the number of times that t is encountered
in γ labelling an edge pointing in the direction of the traversal of γ, and the
number of times that t is encountered in γ labelling an edge pointing in the
opposite direction.

Similarly, the reachability of a node n ∈ N from node n0 through some path
ξ(n), implies that

∀p ∈ P, M0(p) +Θ(p, ·) · ξ̄(n) ≥ 0 (5)

Equation 5 is known as the “reachability condition” associated with node n,
and the parameter ξ̄(n) appearing in it is a vector of dimensionality |T | and
with component ξ̄(n; t) indicating the number of appearances of transition t

in path ξ(n). For nodes n reachable from n0 through more than one paths,
only one of the corresponding reachability conditions should be included in the
considered system of equations, since the reachability conditions corresponding
to the remaining paths can be derived from the included condition and the cycle
equations discussed above.

On the other hand, for every node n ∈ N and transition t ∈ T such that
there is no edge emanating from n that is labelled by t, there must exist a place
p ∈ P that disables the firing of transition t at the marking M corresponding to
node n. This requirement is imposed by the following equation:

∃p ∈ P, M0(p) +Θ(p, ·) · ξ̄(n) +Θ(p, t) ≤ −1 (6)

Equation 6 is known as the “event separation condition” associated with node-
transition pair (n, t), and the parameter ξ̄(n) appearing in it is the same with
that appearing in Equation 5. Also, the node-transition pairs, (n, t), such that
there is no edge emanating from n that is labelled by t, are characterized as the
“event separation instances”.

Finally, a last requirement is that the various nodes n ∈ N of graph G

correspond to different markings of the PN N ; i.e., for any given nodal pair
(n, n′),

∃p ∈ P, Θ(p, ·) · ξ̄(n) 6= Θ(p, ·) · ξ̄(n′) (7)

Equation 7 in known as the “state separation condition”, and the parameter ξ̄(n)
appearing in it is defined as in Equations 5 and 6.

In the light of the above characterizations, the theory of regions is epitomized
by the following theorem:

Theorem 1. [2] Consider a directed graph, G = (N,E), with its edges labelled
by elements from some set T , and containing a node n0 ∈ N such that there
exists a path from n0 to any other node n ∈ N . Then, there exists a pure PN
N = (P, T,W,M0) with graph G as its reachability graph and with node n0

corresponding to its initial marking M0, iff (i) for each place p ∈ P , the flow
vector Θ(p, ·) satisfies (a) the cycle equation corresponding to each undirected
cycle γ of G and (b) the reachability condition corresponding to each node n of
G, where the latter is stated with respect to some arbitrary path from n0 to n;



(ii) the net flow matrix Θ satisfies the state separation condition for every nodal
pair (n, n′) with n 6= n′; and (iii) for every event separation instance in G, there
exists a place p ∈ P with its flow vector Θ(p, ·) satisfying the corresponding event
separation condition.

In Section 3 we employ this result towards the development of a methodology
that will support the design of reversibility-enforcing supervisors for bounded
PN’s.

2.3 Petri-net supervisory control based on Generalized Mutual

Exclusion constraints and “monitor” places

In many PN control applications, one seeks to impose a set of constraints on the
marking, M , of a plant net, N = (P, T,W,M0), that are expressed as a set of
linear inequalities of the type

A ·M ≤ b (8)

where the elements of matrix A and the right-hand-side (rhs) vector b are non-
negative integers. Marking constraints of the type expressed by Equation 8 are
known as Generalized Mutual Exclusion (GME) constraints. Consider the GME
constraint of Equation 8 that is defined by the row A(i, ·) of matrix A and the
component b(i) of the rhs vector b. Then, according to the theory of [4], this
constraint can be imposed on the plant net N by super-imposing on it a single
“monitor” place pc(i); this place must be connected to the rest of the network
according to the flow vector:

Θ(pc(i), ·) = −A(i, ·) ·Θ (9)

and its initial marking must be set to:

M0(pc(i)) = b(i) (10)

Under the aforementioned configuration, pc(i) enforces the constraint

A(i, ·) ·M ≤ b(i) (11)

on the markings, M , of the original net, by essentially establishing the invariant

A(i, ·) ·M +M(pc(i)) = b(i) (12)

Equation 12 indicates that the token content, M(pc(i)), of place pc(i) expresses
the “slack” of Constraint 11 under marking M , and justifies the characterization
of the control place pc(i) as a “monitor” place.

We conclude this brief discussion on GME constraints and their enforcing
monitor places, by establishing the following result, that will be useful in the
developments of Section 3:

Lemma 1. Consider a monitor place pc(i) that enforces the GME constraint
of Equation 11 on a plant net N . Then, every t-semiflow, x, of N is also a
t-semiflow for place pc(i).

Proof: We need to show that Θ(pc(i), ·) · x = 0. But this is an immediate
implication of Equation 9 and the fact that x is a t-semiflow of the original net
N . �



3 A Formal Statement of the Considered Problem and

the Proposed Supervisor Design Methodology

Having established in the previous section all the concepts and results that are
necessary for the formal development of this work, we can now proceed to the
detailed statement of the undertaken problem and the systematic exposition of
the methodology proposed for its solution. We start with the formal problem
statement.

A formal statement of the problem considered in this work The problem con-
sidered in this work can be formally defined as follows: Given a non-reversible,
bounded PN N , identify a set of GME constraints

A ·M ≤ b (13)

such that

i. when imposed on the plant net N , will incur the reversibility of the controlled
system.

ii. Furthermore, the cardinality of the imposed constraint set must not exceed
a pre-specified parameter K.

iii. In addition,

∀i, j, A(i, j) ∈ {0, 1, . . . , Ā(i, j)} and ∀i, b(i) ∈ {0, 1, . . . , b̄(i)}, (14)

where Ā(i, j) and b̄(i) are finitely valued, externally provided parameters.
iv. Finally, assuming that every reachable marking Mi ∈ R(N ,M0) of N is

associated with some value wi, the developed supervisor must maximize the
total value of the admissible markings, over the set of supervisors satisfying
the aforementioned requirements.

In the sequel, a PN supervisor that is defined by Equation 13 for some pricing
of matrix A and vector b, will be referred to as the supervisor S(A, b).

Overview of the proposed solution Next, we provide a Mixed Integer Program-
ming (MIP) formulation for the aforestated problem. The objective function
of this formulation will express the optimality requirement stated in item (iv)
above. Requirement (ii) will be captured by the structure of the decision variables
of the presented formulation, while requirements (i) and (iii) will be explicitly en-
coded in its constraints. More specifically, given a pricing of the matrix A and the
rhs vector b, the constraint set must check whether this pricing abides to require-
ment (iii) and it must also assess the ability of this pricing to satisfy requirement
(i), i.e., establish the reversibility of the controlled system. This last requirement
further implies that all the markingsM ∈ R(N ,M0) that remain reachable under
the considered GME constraints, are also co-reachable under these constraints.
Hence, the constraint set of the proposed formulation must be able to assess the
reachability and co-reachability of the markings M ∈ R(N ,M0) under the net



supervision by any tentative GME constraint set, A ·M ≤ b, and it must also
be able to validate that all reachable markings are also co-reachable. The rest of
this section proceeds to the detailed derivation of a formulation that possesses
the aforementioned qualities.

Characterizing the net transition firing under supervision by a GME constraint-
based supervisor S(A, b) In order to be able to assess the reachability and co-
reachability of the various markings M ∈ R(N ,M0) under supervision by a
supervisor S(A, b), it is necessary to characterize how the various transitions,
t ∈ T , of the plant net N , retain their fireability in the controlled system. Next,
we introduce a set of variables and constraints that will achieve this purpose.
The main issue to be addressed is whether a transition t that was fireable in
some marking Mi ∈ R(N ,M0), leading to another marking Mj ∈ R(N ,M0),
will remain fireable under supervision by S(A, b). For this to be true, t must be
enabled at Mi by all the monitor places, pc(k), k = 1, . . . ,K, that implement the
supervisor S(A, b). Testing whether transition t is enabled at marking Mi by a
monitor place pc(k) can be done through the employment of a binary variable zk

ij ,
that will be priced to one, if this condition is true, and to zero, otherwise. A set
of constraints that will enforce the pricing of zk

ij according to the aforementioned
scheme is the following:

M0(pc(k)) +
∑

(u,v)∈ξ(i)

Θ(pc(k), t(u, v)) +Θ(pc(k), t(i, j)) + (zk
ij − 1)Lk

ij ≥ 0 (15)

M0(pc(k)) +
∑

(u,v)∈ξ(i)

Θ(pc(k), t(u, v)) +Θ(pc(k), t(i, j)) − zk
ijU

k
ij ≤ −1 (16)

The parameter ξ(i) appearing in Equations 15 and 16 denotes any path
in R(N ,M0) leading from M0 to Mi. (u, v) denotes an edge of ξ(i) leading
from node Mu to node Mv, and t(u, v) denotes its labelling transition. Lk

ij de-
notes a lower bound for the quantity M0(pc(k)) +

∑

(u,v)∈ξ(i)Θ(pc(k), t(u, v)) +

Θ(pc(k), t(i, j)), and Uk
ij denotes an upper bound for the quantity M0(pc(k)) +

∑

(u,v)∈ξ(i)Θ(pc(k), t(u, v)) + Θ(pc(k), t(i, j)) + 1. Then, it is clear, that, when

M0(pc(k)) +
∑

(u,v)∈ξ(i)Θ(pc(k), t(u, v)) +Θ(pc(k), t(i, j)) ≥ 0 – i.e., when tran-

sition t(i, j) is enabled by monitor place pc(k) in marking Mi – the above
set of constraints is satisfied by setting zk

ij = 1. On the other hand, when
M0(pc(k)) +

∑

(u,v)∈ξ(i)Θ(pc(k), t(u, v)) + Θ(pc(k), t(i, j)) < 0 the above con-

straint set is satisfied by setting zk
ij = 0.

It remains to connect the variables M0(pc(k)) and Θ(pc(k), ·) to the primary
problem variables, A, b, and explain how to compute the bounds Lk

ij and Uk
ij

employed in the above equations. Connecting M0(pc(k)) and Θ(pc(k), ·) to the
variables A, b can be done straightforwardly through Equations 9 and 10; the
corresponding substitutions respectively transform Equations 15 and 16 to:



b(k)−
∑

(u,v)∈ξ(i)

A(k, ·) ·Θ(·, t(u, v))−A(k, ·) ·Θ(·, t(i, j))+ (zk
ij − 1)Lk

ij ≥ 0 (17)

b(k) −
∑

(u,v)∈ξ(i)

A(k, ·) ·Θ(·, t(u, v)) −A(k, ·) ·Θ(·, t(i, j)) − zk
ijU

k
ij ≤ −1 (18)

Finally, it should be clear from the structure of Constraints 17 and 18 that the
bound Lk

ij (resp., Uk
ij), defined above, can be obtained by minimizing (resp., max-

imizing) the quantity b(k)−
∑

(u,v)∈ξ(i)A(k, ·) ·Θ(·, t(u, v))−A(k, ·) ·Θ(·, t(i, j))

over the space defined by the admissible ranges of the involved variables A(k, ·)
and b(k) (c.f., item (iii) in the formal problem statement provided at the begin-
ning of this section).

Once variables zk
ij have been properly priced for all k, the feasibility of

Mi[t(i, j)〉Mj can be assessed by introducing another real variable, zij , that
is priced according to the following constraints:

zij ≤ zk
ij , ∀k ∈ {1, . . . ,K} (19)

zij ≥
K

∑

k=1

zk
ij −K + 1 (20)

0 ≤ zij ≤ 1 (21)

To understand the pricing logic behind Constraints 19–21, first notice that
Constraint 21 restricts the variable zij within the interval [0, 1]. Then, Con-
straint 19 sets it to zero, as long as any of the variables zk

ij is priced to zero
– and therefore, the corresponding monitor place pc(k) disables t(i, j). On the
other hand, when all variables zk

ij are priced to one, Constraint 20 forces variable
zij to its extreme value of one.

Characterizing the reachability of the markings Mi ∈ R(N ,M0) under super-
vision by a GME constraint-based supervisor S(A, b) The availability of the
variables zij , defined above, subsequently enables the characterization of the
reachability of the various markings Mi ∈ R(N ,M0) under supervision by the
GME constraint-based supervisor S(A, b). This can be done by introducing the
real variables yl

i, 0 ≤ i ≤ |R(N ,M0)|, 0 ≤ l ≤ l̄, and pricing them so that yl
i = 1

indicates that marking Mi is reachable from the initial marking M0 under su-
pervision by S(A, b) and the minimum length of any transition sequence leading
from M0 to Mi is l; if Mi is not reachable from M0 under supervision by S(A, b),
yl

i should be set to zero, for all l. Clearly, in order to satisfy this definition of yl
i,

l̄ must be set to the length of the maximum path in G(N ,M0) that starts from
M0 and contains no cycles. Then, a set of constraints that achieves the pricing
of yl

i described above, is as follows:



y0
i =

{

1, i = 0
0, i 6= 0

(22)

0 ≤ yl
i, ∀i ∈ {1, . . . , |R(N ,M0)|}, l ∈ {1, . . . , l̄} (23)

l̄
∑

l=0

yl
i ≤ 1 (24)

δl
ji ≤ yl−1

j , ∀j : (Mj ,Mi) ∈ G(N ,M0) (25)

δl
ji ≤ zji, ∀j : (Mj ,Mi) ∈ G(N ,M0) (26)

yl
i ≤

∑

j

δl
ji (27)

yl
i ≥ yl−1

j + zji − 1 −
l−1
∑

q=0

y
q
i , ∀j : (Mj ,Mi) ∈ G(N ,M0) (28)

Constraint 22 expresses the fact that marking M0 is reachable from itself
in zero steps, under supervision by S(A, b), and this is the only marking in
R(N ,M0) possessing this property. Constraint 23 states the nonnegative real
nature of variables yl

i, i > 0, l > 0, while Constraint 24 expresses the fact
that, according to the pricing scheme discussed above, only one of the variables
yl

i, 0 ≤ l ≤ l̄, can be priced to one. Constraints 25, 26 and 27 express the fact
that, under supervision by S(A, b), there is a minimal path from marking M0 to
marking Mi of length l, only if there is a minimal path of length l − 1 from M0

to some marking Mj such that (i) (Mj ,Mi) ∈ G(N ,M0) and (ii) this transition
remains feasible under S(A, b). In particular, variables δl

ji is a set of auxiliary

real variables that are used to force yl
i to zero every time that the aforestated

condition is violated for all the markings Mj ∈ R(N ,M0) such that (Mj ,Mi) ∈
G(N ,M0). On the other hand, Constraint 28 tends to price variable yl

i to one
every time that there exists a marking Mj such that (i) (Mj ,Mi) ∈ G(N ,M0),
(ii) this transition remains feasible under S(A, b), and (iii) Mj is reachable from
M0 under supervision by S(A, b) through a minimal path of length l−1; however,

this pricing is enforced only when the quantity
∑l−1

q=0 y
q
i appearing in the right-

hand-side of this constraint is equal to zero – i.e., only when the marking Mi

cannot be reached from the initial marking M0 through a path of smaller length.

Characterizing the co-reachability of the markings Mi ∈ R(N ,M0) under su-
pervision by a GME constraint-based supervisor S(A, b) It is well-known that
the co-reachability of a marking Mi ∈ R(N ,M0) is equivalent to the reacha-
bility of the same marking in the graph GR(N ,M0), obtained from G(N ,M0)
by reversing all its arcs. In the light of this observation, the set of constraints



characterizing the co-reachability of the markings Mi ∈ R(N ,M0), under super-
vision by a GME constraint-based supervisor S(A, b), can be obtained through
a straightforward modification of the constraint set 22–28, characterizing the
reachability of these markings. More specifically, let ψl

i be a real variable that
will be priced to one, if Mi ∈ R(N ,M0) is co-reachable under supervision by
S(A, b), and a minimal transition sequence leading from Mi to M0 has a length
equal to l; otherwise, ψl

i should be priced to zero. By following a logic similar
to that employed in the previous paragraph for the pricing of variables yl

i, we
obtain the following set of constraints for the pricing of variables ψl

i:

ψ0
i =

{

1, i = 0
0, i 6= 0

(29)

0 ≤ ψl
i, ∀i ∈ {1, . . . , |R(N ,M0)|}, l ∈ {1, . . . , l̃} (30)

l̃
∑

l=0

ψl
i ≤ 1 (31)

ηl
ij ≤ ψl−1

j , ∀j : (Mi,Mj) ∈ G(N ,M0) (32)

ηl
ij ≤ zij , ∀j : (Mi,Mj) ∈ G(N ,M0) (33)

ψl
i ≤

∑

j

ηl
ij (34)

ψl
i ≥ ψl−1

j + zij − 1 −
l−1
∑

q=0

ψ
q
i , ∀j : (Mi,Mj) ∈ G(N ,M0) (35)

The parameter l̃, appearing in Equations 30 and 31, denotes the length of the
maximum path in GR(N ,M0) that leads from node M0 to node Mi and contains
no cycles, and the auxiliary variables ηl

ij , that appear in Constraints 32 and 33,

play a role identical to that played by variables δl
ji in Constraints 25 and 26.

Characterizing the closure of the sub-space that is reachable and co-reachable
under supervision by a GME constraint-based supervisor S(A, b) Let xi be a
real variable that will be priced to one when the marking Mi ∈ R(N ,M0) is
reachable and co-reachable under supervision by S(A, b), and it will be priced to
zero, otherwise. Then, in the light of the above characterizations of reachability
and co-reachability, the desired pricing of xi can be enforced by the following
constraints:

xi ≤
l̄

∑

l=0

yl
i (36)



xi ≤
l̃

∑

l=0

ψl
i (37)

xi ≥
l̄

∑

l=0

yl
i +

l̃
∑

l=0

ψl
i − 1 (38)

0 ≤ xi ≤ 1 (39)

Constraint 39 restricts xi in the interval [0, 1]. Then, Constraints 36 and 37
force it to zero, when marking Mi is not reachable or co-reachable. On the other
hand, if Mi is both reachable and co-reachable, Constraint 38 forces xi to its
extreme value of one.

Finally, the availability of variables xi allows us to express the requirement
for closure of the sub-space of R(N ,M0) that is reachable and co-reachable under
supervision by S(A, b), through the following constraint:

(1 − xi) + xj ≥ zij , ∀i, j : (Mi,Mj) ∈ G(N ,M0) (40)

When xi = 1 and xj = 0 – i.e., when xi belongs to the target space of markings
that are reachable and co-reachable under supervision by S(A, b), but xj does
not belong to this set – Constraint 40 forces variable zij to zero – i.e., it requires
that the corresponding transition Mi[t(i, j)〉Mj is disabled by S(A, b). In any
other case, the left-hand-side of Constraint 40 is greater than or equal to one,
and therefore, the constraint becomes inactive.

The objective function of the proposed formulation The objective function of the
considered formulation is straightforwardly expressed as follows:

max
∑

i

wixi (41)

Proving the correctness of the proposed formulation Next, we state and prove
the correctness of the derived formulation.

Theorem 2. The formulation of Equations 14,17–41 returns an optimal solu-
tion to the problem stated at the beginning of this section, provided that such a
solution exists; otherwise, this formulation will be infeasible.

Proof: First, let us suppose that the aforementioned formulation returns a
feasible solution. Then, it is clear from the earlier discussion of the various con-
straints of the considered formulation, that the set of markings Mi ∈ R(N ,M0)
with xi = 1 and the edges (Mi,Mj) of G(N ,M0) with zij = 1, in the returned
solution, define a strongly connected subgraph of G(N ,M0) containing the ini-
tial marking M0; let us denote this subgraph by GC(N ,M0). Next we show
that GC(N ,M0) is the reachability graph of the net NC , that is obtained from
the plant net N by super-imposing on it the monitor places that implement



the GME constraint set A · M ≤ b, where A, b have the values returned by
the considered formulation. To establish this result, it is sufficient to show that
the net NC satisfies the conditions of Theorem 1 with respect to GC(N ,M0).
This can be shown as follows: First notice that the state separation condition
over GC(N ,M0) is immediately satisfied by NC , since its marking subsumes
the marking of the original net N . The satisfaction of the reachability condition
for every node of GC(N ,M0) is a consequence of Constraints 17–28. For event
separation instances of GC(N ,M0) that were already present in G(N ,M0), there
must be a place p in the original net N that satisfies the corresponding event
separation condition. For the remaining event separation instances, the defini-
tion of GC(N ,M0) implies that the relevant variables zij were priced to zero
in the returned solution, and therefore, for each of them, there exists a place
pc(k), k ∈ {1, . . . ,K}, that satisfies the corresponding event separation con-
dition. For places p in the original net N , the cycle equations for the various
cycles of GC(N ,M0) are immediately satisfied by the fact that GC(N ,M0) is a
subgraph of G(N ,M0). For the monitor places pc(k), k ∈ {1, . . . ,K}, the sat-
isfaction of the cycle equations for the cycles of GC(N ,M0) is guaranteed by
Lemma 1. Finally, the optimality of the supervisor S(A, b), that is returned by
the considered formulation, is guaranteed by the specification of the objective
function (c.f. Equation 41).

On the other hand, if the considered formulation is infeasible, then it is
impossible to identify a strongly connected subgraph of G(N ,M0) that contains
the initial marking M0 and can be separated from G(N ,M0) by using K GME
constraints with the corresponding matrix A and rhs vector b priced in the pre-
specified ranges. Hence, it can be concluded that the supervisor design problem
defined at the beginning of this section, is infeasible. �

4 Example

In this section, we demonstrate the implementation and the efficacy of the design
methodology developed in Section 3, by applying it to the design of a liveness-
enforcing supervisor for the PN depicted in Figure 1.

Interpreting the PN of Figure 1 as a process-resource net The PN in Figure 1
models a Resource Allocation System (RAS), consisting of three resource types,
R1, R2, and R3, with respective capacities C1 = C3 = 1, and C2 = 2, and
supporting two process types, JT1 and JT2. The process plans of these two
process types are respectively modelled by the paths < t10p11t11p12t12p13t13 >

and < t20p21t21p22t22p23t23 >; thus, it can be seen that (i) each process consists
of three consecutive stages, (ii) the execution of each processing stage by some
process instance requires the exclusive allocation of a single unit from a certain
resource type, and (iii) a process instance can release the resource currently
allocated to it and advance to the next processing stage only when it has secured
the allocation of the next required resource. Finally, the places p10 and p20

are characterized as the “idle places” of the corresponding processes, and their
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Fig. 1. The process-resource net considered in the example of Section 4

initial marking, M0(pi0), i = 1, 2, establishes an upper bound to the number of
instances of process type JTi that can be simultaneously loaded into the system.

Liveness-enforcing supervision of process-resource nets based on Generalized Mu-
tual Exclusion constraints and monitor places 5 The reachability space,R(N ,M0),
for the PN depicted in Figure 1 is provided in Figure 2, while the detailed char-
acterization of the markings corresponding to the various nodes of the graph of
Figure 2 can be found in Table 1.6 It can be seen in Figure 2 that the consid-
ered net is not reversible. In particular, there is a class of states depicted by the
darker-shaded nodes in Figure 2 such that every time that the net transitions to
one of these states, there is no path to the initial state M0; for further reference,
this class of markings will be characterized as unsafe. From a more conceptual
standpoint, the net non-reversibility can be interpreted by the development of
a RAS deadlock, i.e., the entanglement of a subset of the running processes in
a circular waiting pattern, where each process in this subset waits upon some
other process of this set to release its currently allocated resource. Furthermore,
the net non-reversibility implies that the underlying RAS might not be able to
complete the currently loaded processes, under normal operation.7

The last fifteen years have seen the development of an extensive body of
research seeking to develop supervisors that will enforce the reversibility of the
considered class of process-resource nets. Generally speaking, these supervisors

5 We remind the reader that, in the considered class of process-resource nets, re-
versibility and liveness are equivalent concepts, and that the term ”liveness-enforcing
supervision (LES)” has prevailed over the term ”reversibility-enforcing supervision”.

6 Table 1 provides only the markings of the places corresponding to the various pro-
cessing stages, since the markings of the remaining places can be easily obtained
from the net invariants corresponding to (i) the reusability of the system resources
and (ii) the circuits established by the introduction of the process idle places.

7 i.e., without external intervention to resolve the developed deadlock.
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Fig. 2. The reachability graph of the process-resource net of Figure 1, and a comparison
of the sub-spaces admitted by the supervisors of Equations 42, 43 and 45

seek to constrain the behavior of the underlying process-resource net within a
strongly connected component of its safe sub-space, that also contains the initial
marking M0.

8 Furthermore, one particular class of such supervisors, known as
algebraic, seeks to establish the reversibility of the underlying process-resource
net by restricting the number of process instances that can execute simultane-
ously various subsets of processing stages; hence, each such restriction can be
expressed as a GME constraint involving the subset of places in the underly-
ing process-resource net that correspond to the repsective processing stages. For
the process-resource net of Figure 1, two such algebraic reversibility-enforcing
supervisors have been developed in [6]. They are respectively expressed by the

8 Ideally, one would like to obtain the maximally permissive supervisor that will admit
the entire safe sub-space of the underlying process-resource net, but it has been
shown that, for the considered PN sub-class, the recognition of the net safe markings
is an NP-complete problem [8].



Table 1. The markings of the reachability space depicted in Figure 2

State p11 p12 p13 p21 p22 p23 State p11 p12 p13 p21 p22 p23

0 0 0 0 0 0 0 24 0 1 0 1 1 0
1 1 0 0 0 0 0 25 0 1 0 0 0 1
2 0 0 0 1 0 0 26 1 0 0 0 2 0
3 0 1 0 0 0 0 27 0 0 0 1 2 0
4 1 0 0 1 0 0 28 0 0 0 0 1 1
5 0 0 0 0 1 0 29 1 1 1 0 0 0
6 1 1 0 0 0 0 30 1 2 0 1 0 0
7 0 0 1 0 0 0 31 1 0 1 0 1 0
8 0 1 0 1 0 0 32 1 1 0 1 1 0
9 1 0 0 0 1 0 33 0 0 1 0 0 1
10 0 0 0 1 1 0 34 0 1 0 1 0 1
11 0 0 0 0 0 1 35 1 0 0 1 2 0
12 0 2 0 0 0 0 36 0 0 0 1 1 1
13 1 0 1 0 0 0 37 0 2 1 0 0 0
14 1 1 0 1 0 0 38 0 1 1 0 1 0
15 0 1 0 0 1 0 39 0 1 0 0 1 1
16 1 0 0 1 1 0 40 0 0 0 0 2 1
17 0 0 0 0 2 0 41 1 2 1 0 0 0
18 0 0 0 1 0 1 42 1 1 1 0 1 0
19 1 2 0 0 0 0 43 0 1 1 0 0 1
20 0 1 1 0 0 0 44 0 0 1 0 1 1
21 0 2 0 1 0 0 45 0 1 0 1 1 1
22 1 1 0 0 1 0 46 0 0 0 1 2 1
23 0 0 1 0 1 0

following GME constraint sets:





1 1 1 1
1 1 1 1
1 1 1 1



 · M̂ ≤





1
2
1



 . (42)





1 1 1 1
1 1 1 1
1 1 1 1



 · M̂ ≤





3
2
3



 . (43)

where M̂ = (M(p11),M(p12),M(p13), M(p21),M(p22),M(p23))
T . Notice that

the Constraint set 43 is a relaxation of the Constraint set 42 since A1 = A2

and b1 ≤ b2. Therefore, the supervisor established by the Constraint set 43 is
expected to be more permissive than the supervisor established by the Constraint
set 42, and this is indeed reflected in Figure 2 that also depicts the sub-spaces
admitted by each of these two supervisors.

Obtaining a more permissive supervisor for the net of Figure 1 In this work, we
employed the formulation of Equations 14,17–41 in order to compute an algebraic
reversibility-enforcing supervisor for the net of Figure 1 that possesses the same
computational complexity with the supervisors of Equations 42 and 43, but it is
maximally permissive. In other words, we sought to obtain a pair

A =





a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36



 , b =





b1
b2
b3



 , (44)



such that (i) the supervisor S(A, b) ≡ A · M̂ ≤ b will accept a strongly con-
nected component of the safe sub-space depicted in Figure 2 containing the
initial marking M0, and furthermore, (ii) the number of markings accepted by
this supervisor is the maximal possible that can be accepted by any algebraic
supervisor possessing the aforementioned structure.

Foregoing the straightforward implementational details, for the sake of brevity,
we proceed to the presentation of the results of our computation. The supervisor
returned by the proposed formulation is:

S(A, b) = S









1 0 0 0 3 0
0 1 0 2 0 0
2 2 0 2 3 0



 ,





6
3
8







 . (45)

The sub-space admitted by the supervisor of Equation 45 is also depicted in
Figure 2. As it can be seen in this figure, the obtained supervisor manages to
recognize the entire safe space of the considered process-resource net, and there-
fore, it is optimal. Hence, this example corroborates the efficacy and analytical
power of the proposed methodology.

5 Enhancements and Extensions of the Proposed

Approach

In this section we consider some enhancements of the basic formulation devel-
oped in Section 3, and some modifications of the underlying supervisor design
methodology, that will allow the accommodation of additional considerations,
like the uncontrollability of certain transitions of the plant net N , the poten-
tially prohibitive computational cost resulting from the very large size of the
underlying reachability space G(N ,M0), and the imposition of additional costs
and/or restrictions on the elements of the matrix A. We deal with each of these
issues in a separate paragraph.

Accommodating the uncontrollability of the plant transitions In certain cases it
is possible that some of the plant transitions t ∈ T cannot have their firing
controlled by an external supervisor, but they will fire spontaneously any time
that they are enabled by the plant. Their presence partitions the transition set
T to the subset TU of uncontrollable transitions, and its complement TC of the
controllable ones. Clearly, a reversibility-enforcing supervisor S(A, b) should not
try to disable the fireability of any transition t ∈ TU , whenever such a transition
is enabled by the places of the original plant net N . This requirement can be
easily introduced in the MIP formulation of Equations 14,17–41, by adding to it
the following constraint:

∀i, j : (Mi,Mj) ∈ G(N ,M0) ∧ t(i, j) ∈ TU , zij ≥ xi (46)

Constraint 46 essentially requests that the uncontrollable transition between
markings Mi and Mj is enabled by all the monitor places implementing the



supervisor S(A, b), but this request is enforced only for the transitions emanating
from markings Mi ∈ R(N ,M0) that remain accessible during the operation of
the controlled net.

Dealing with complexity considerations It is clear from the structure of the for-
mulation of Equations 14,17–41, that it involves a number of variables and con-
straints that is polynomially related to the size of the original reachability graph
G(N ,M0) of the underlying plant net N . It is well-known, though, that, in gen-
eral, the size of G(N ,M0) is a super-polynomial function of the size of the net N ,
and therefore, there might be cases where the generation and solution of the pro-
posed formulation will be a computationally intractable task. In these cases, the
approach proposed in Section 3 can still be pursued on a judiciously selected sub-
space of G(N ,M0). The main requirements imposed on this subspace are that (i)
it includes a strongly connected component containing the initial state M0, and
(ii) there are no uncontrollable transitions leading from this subspace to the rest
of the graph G(N ,M0); otherwise, its selection is left to the jurisdiction of the
designer. Let C denote the cut from the subspace of G(N ,M0) to be considered
during the application of the proposed methodology, to the rest of G(N ,M0).
Then, the only modification required in the formulation of Equations 14,17–41 so
that it effectively applies on the subgraph of G(N ,M0) mentioned above, is that
it must also contain a set of variables zk

ij , k ∈ {1, . . . ,K}, zij , for every edge
(Mi,Mj) ∈ C, priced according to the constraint set 17–21, and the additional
constraint:

∀i, j : (Mi,Mj) ∈ C, zij ≤ 1 − xi (47)

Constraint 47 requests the disabling by the developed supervisor of the transi-
tions in the cut C, but, similar to Constraint 46, it enforces this requirement only
for those transitions of C that emanate from markings that remain reachable in
the operation of the controlled net.

Restricting the elements of matrix A In certain cases, it might be pertinent, for
computational or more general implementational purposes, to put a cost struc-
ture on the elements of matrix A. As a case in point, it will be generally desirable
to keep the elements of matrix A as small as possible. Of course, this additional
requirement should not compromise the primary objective of the design pro-
cess, which is stated in Equation 41. Hence, these additional concerns can be
addressed through a hierarchical goal programming [10] approach. According to
this approach, the formulation of Equations 14,17–41 is initially solved to opti-
mality without any consideration of the extra concerns, in order to obtain the
value of an optimal solution to the original problem stated in Section 3. Subse-
quently, the entire formulation is resolved with a new objective that expresses
the cost criterion imposed on the elements of matrix A, while the desired value
of the derived solution with respect to the original objective is fixed to the ear-
lier computed optimal value and it is communicated to the new problem as an
additional constraint; we leave to the reader the implementational details of this
idea.



6 Conclusions

This paper proposed an analytical method for the synthesis of reversibility-
enforcing supervisors for bounded Petri nets. The proposed method was based
upon recent developments from (i) the theory of regions, that enables the de-
sign of Petri nets with pre-specified behavioral requirements, and (ii) the theory
concerning the imposition of generalized mutual exclusion constraints on the
net behavior through monitor places. The derived methodology takes the form
of a Mixed Integer Programming formulation, which is readily solvable through
canned optimization software. A small example borrowed from the theory of
liveness-enforcing supervision for process-resource nets demonstrated the efficacy
of the proposed approach, while the last part of the paper discussed extensions
of the presented method so that it accommodates uncontrollable behavior and
any potential complications arising from the large-scale nature of the underlying
plant nets and their behavioral spaces.
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