
The Thinning Problem∗

Spyros A. Reveliotis and Jin Young Choi

School of Industrial & Systems Engineering

Georgia Institute of Technology

{spyros,choijy68}@isye.gatech.edu

Abstract

The main problem addressed in this work is how to confine the set
of sequential processes of a disjunctive / conjunctive resource alloca-
tion system (D/C-RAS) to a subset of their feasible behaviors while
optimizing some performance criterion. We provide a canonical char-
acterization of this problem in the form of a Mixed Integer Program-
ming (MIP) formulation, for the case that the optimized performance
criterion is the maximization of the system throughput. However, an
important additional development of this effort is a complete analytical
characterization of the performance control problem of D/C-RAS. This
characterization is based on an effective integration of recent results
on the liveness-enforcing supervision of D/C-RAS with the theory of
Markov Decision Processes, and it concretizes the interaction between
the D/C-RAS logical and performance control. Throughout the paper
development, a small example highlights the involved concepts and for-
mulations.

Keywords: Resource Allocation Systems, Deadlock Avoidance, Markov
Decsion Processes, Performance Modelling and Analysis, Congestion Con-
trol

1 Introduction

A general statement of the main problem addressed in this work is as follows:
Given a set of sequential processes, each of which can be executed through
a number of process plans – i.e., sequences of processing stages with each

∗An abridged version of this paper was presented at the 7th Workshop on Discrete
Event Systems (WODES’04).

stage requesting the exclusive allocation of some resource set – and a “bud-
get” on the “active” process plans for each process, select the process plans
to be activated with respect to each process, so that some performance in-
dex is optimized. As we shall see in the following, the entire set of process
plans available for each process can be effectively represented by a digraph
with its nodes defined by the set of processing stages, and its edges indicat-
ing all the possible transitions among these stages. In the context of this
representational framework, the problem can be posed as the selection of
a number of edges from each digraph, so that the restriction of the system
operation on the process plans expressed by the selected edges optimizes
the aforementioned performance index. Since, this edge selection process
is equivalent to the removal of the remaining edges from the corresponding
process graphs, we perceive the entire problem as a “thinning” operation of
the original process graphs.

A practical motivation for this problem has been our earlier work on the
deadlock avoidance of resource allocation systems (RAS) with complex pro-
cesses [3, 13]. As it was established in [3], as long as (i) the process-defining
logic is finitely terminating, and (ii) the system has sufficient resources to
support the execution of a single instance from any given process type, the
problem of synthesizing a liveness-enforcing supervisor (LES) for these com-
plex RAS can be reduced to the LES synthesis problem for another simpler
RAS. Specifically, in this new RAS, the sequential logic for any process is
modelled by a strongly connected state machine that encodes all the possi-
ble execution sequences for an instance of this process that runs in isolation
through the considered RAS. Hence, the resulting RAS belongs to the class
of D(isjunctive)/C(onjunctive)-RAS [15], for which efficient LES are readily
available in [6, 11]. However, a computational limitation for this approach
comes from the fact that the new representation of the process-defining
logic will not be polynomially related to the original process representation.1

Thus, the thinning problem arises in this context as a natural proposition
for obtaining LES of polynomial complexity with respect to the size of the
original RAS representation.

In the following, we focus on the particular criterion of maximizing the
RAS throughput , and we provide a canonical characterization of the cor-
responding thinning problem in the form of a Mixed Integer Programming
(MIP) formulation. An important additional development of this effort is

1This results from the fact that the new process representation is the reachability
graph modelling the behavior of any single process instance executing in isolation in the
considered RAS, trimmed with respect to a state that models the initial and final state of
the process evolution; c.f. [3].

2

the derivation of a complete formulation of the D/C-RAS performance con-
trol problem. This formulation is based on an effective integration of some
recent results on the D/C-RAS liveness-enforcing supervision [6, 11] with
the theory of Markov Decision Processes (MDP) [12].

Collectively, the above results provide new analytical insights regard-
ing the interaction of logical and performance-oriented control, and they
complement some prior work of ours presented in [4, 14]. However, when
viewed from a more practical computational standpoint, the applicability
of the derived formulations is limited by the fact that the numbers of the
involved variables and constraints are a super-polynomial function of the
size of the underlying system configuration. Therefore, there is a remaining
need for effective approximations to the optimal solutions of the presented
formulations that can be obtained in a computationally efficient manner.
Some preliminary results towards developing such effective approximations
for the D/C-RAS performance control problem can be found in [5]; on the
other hand, the development of computationally efficient methods for the
thinning problem itself is part of our current investigations.

The rest of the paper is organized as follows: Section 2 introduces the
considered class of D/C-RAS, and it surveys the currently available results
on the development of liveness-enforcing supervisors for these systems. Sec-
tion 3 proceeds to the modelling of the timed dynamics of the logically con-
trolled D/C-RAS, and it provides a linear programming (LP) formulation for
their performance control problem, based on concepts and techniques bor-
rowed from the field of Continuous-Time Markov Decision Processes (CT-
MDP) [12]. Section 4 builds upon the development of the earlier sections in
order to (i) provide a formal characterization of the thinning problem, and
(ii) derive a Mixed Integer Programming (MIP) formulation for it. Finally,
Section 5 concludes the paper and discusses directions for future work.

2 Disjunctive / Conjunctive Resource Allocation
Systems and their Liveness-Enforcing Supervi-

sion

This section introduces the considered class of D/C-RAS, and surveys the
currently available results on the development of liveness-enforcing supervi-
sors for these systems.

D/C-RAS The class of Disjunctive / Conjunctive Resource Allocation
Systems (D/C-RAS), considered in this work, is formally characterized as
follows:

3

Definition 1 A disjunctive / conjunctive resource allocation system (D/C-
RAS) is defined as an 5-tuple Φ = < R, C,P,A, T > where:

1. R = {R1, . . . , Rm} is the set of the system resource types.

2. C : R → Z+ – the set of strictly positive integers2 – is the system
capacity function, characterizing the number of identical units from
each resource type available in the system. Resources are considered to
be reusable, i.e., each allocation cycle does not affect their functional
status or subsequent availability, and therefore, C(Ri) ≡ Ci constitutes
a system invariant for each i.

3. P = {Π1, . . . ,Πn} denotes the set of the system process types sup-
ported by the considered system configuration. Each process type Πj is
a composite element itself, in particular, Πj =< Sj ,Gj >, where:

(a) Sj = {Ξj1, . . . ,Ξj,l(j)} denotes the set of processing stages in-
volved in the definition of process type Πj, and

(b) Gj is an acyclic digraph with its node set, Vj, being bijectively

related to the set Sj. Let V↗
j (resp., V↘

j) denote the set of source
(resp., sink) nodes of Gj. Then, any path from some node vs ∈

V↗
j to some node vf ∈ V↘

j defines a process plan for process
type Πj.

4. A :
⋃n

j=1 Sj →
∏m

i=1{0, . . . , Ci} is the resource allocation function
associating every processing stage Ξjk with a resource allocation re-
quest A(j, k) ≡ Ajk. More specifically, each Ajk is an m-dimensional
vector, with its i-th component indicating the number of resource units
of resource type Ri necessary to support the execution of stage Ξjk.
Obviously, in a well-defined RAS, Ajk(i) ≤ Ci, ∀j, k, i. Furthermore,
the resource set Ajk, required for the execution of a particular process-
ing stage Ξjk, is allocated exclusively and non-preemptively to each
process instance, and it is released by it only upon the allocation of the
resources required for the execution of the subsequent stage.

5. T :
⋃n

j=1 Sj → D is the timing function, corresponding to each
processing stage Ξjk a distribution Djk that characterizes the statistics
of the processing time tjk, experienced during the execution of stage
Ξjk.

2Also, in this work, Z+
0 will denote the set of nonnegative integers, Z will denote the

set of all integers, and < will denote the set of reals.

4

Finally, |Φ| ≡ |R|+ |
⋃n

j=1 Sj |+
∑m

i=1Ci will be referred to as the size of
Φ. ♦

For reasons that will become obvious in the subsequent development,
we augment each of the aforementioned graphs Gj , with an additional node

vj0, and a new set of edges {(vj0, vjk) : vjk ∈ V↗
j } ∪ {(vjk, vj0) : vjk ∈

V↘
j }. The resulting graph will be denoted by Ḡj . Notice that Ḡj is strongly

connected, with each cycle in it containing node vj0. Node vj0 models the
RAS environment, i.e., that state occupied by the process before entering
or upon leaving the system.

A logical characterization of the RAS behavior A formal logical
characterization of the behavior generated by the D/C-RAS of Definition 1,
can be provided by means of the modelling framework of Finite State Au-
tomaton (FSA) [8]. In particular, the following definition of the D/C-RAS
state facilitates the logical analysis of its behavior.

Definition 2 Consider a D/C-RAS Φ = < R, C,P,A, T >. For the pur-
poses of logical analysis, its state s(t) at time t is defined as a vector of
dimensionality D =

∑n
j=1 l(j) – i.e., equal to the total number of distinct

processing stages in the system – and with components s(q; t), q = 1, . . . , D,
being in one-to-one correspondence with the RAS processing stages, Ξjk, j =
1, . . . , n, k = 1, . . . , l(j). Furthermore, component s(q(j, k); t), correspond-
ing to processing stage Ξjk, indicates the number of process instances exe-
cuting stage Ξjk at time t. ♦

A natural way to define the correspondence between the state compo-
nents and the RAS processing stages is by setting q(j, k) = k +

∑j−1
r=1 l(r);

this will be the mapping assumed in the following. Also, to simplify the no-
tation, in the following discussion we omit the dependence of state s on time
t. The information contained in the RAS state is sufficient for the deter-
mination of the distribution of the resource units to the various processing
stages, as well as of the slack (or idle) resource capacity in the system. In
particular, we define the slack capacity, δi(s), of resource Ri at state s, by

δi(s) ≡ Ci −
D
∑

q=1

s(q(j, k)) ·Ajk(i) (1)

Then, the set S of feasible resource allocation states for the considered RAS
is defined by

S ≡ {s ∈ (Z+
0)D : δi(s) ≥ 0, ∀i = 1, . . . ,m} (2)

5

The finiteness of the resource capacities implies that card(S) ≡ |S| < ∞.
However, in general, |S| will be a super-polynomial function of the RAS
size.3 The set of events, E, that can change the system state, comprises: (i)

the events eljk, j = 1, . . . , n, k ∈ {1, . . . , l(j) : Ξjk ∈ V↗
j }, corresponding

to the loading of a new instance of process type Πj into the system, that is
to follow a process plan starting with stage Ξjk, (ii) the events eajkh, j =
1, . . . , n, k, h = 1, . . . , l(j), k 6= h, corresponding to the advancement of a
process instance executing stage Ξjk to a successor stage Ξjh, and (iii) the

events eujk, j = 1, . . . , n, k ∈ {1, . . . , l(j) : Ξjk ∈ V↘
j }, corresponding to the

unloading of a finished process instance of type Πj , whose last processing

stage was stage Ξjk ∈ V↘
j . Without loss of generality, it is assumed that,

during a single state transition, only one of these events can take place. The
resulting transition, however, is feasible only if the additionally requested set
of resources can be obtained from the system slack capacity; i.e., for each
state s, the set of feasible events, Γ(s), contains only those events that abide
to the resource allocation dynamics stated in item 4 of Definition 1. Based
on the above, the state transition function f and the feasible event function
Γ for the RAS-modelling FSA, are formally defined as follows:

∀s ∈ S, ∀e ∈ E, f(s, e) ≡

s+ 1q(j,k) if e ≡ eljk and s+ 1q(j,k) ∈ S

s− 1q(j,k) + 1q(j,h) if e ≡ eajkh and

s− 1q(j,k) + 1q(j,h) ∈ S

s− 1q(j,k) if e ≡ eujk and s− 1q(j,k) ∈ S

undefined otherwise

(3)

∀s,
Γ(s) ≡ {e ∈ E : f(s, e)!} (4)

In Equation 3, 1q(j,k) denotes theD-dimensional unit vector, with its unit
element in the component corresponding to stage Ξjk. A natural definition
for the initial state s0 is

s0 ≡ 0 (5)

i.e., the state in which the system is idle and empty of any process instances.
Since, in the following, our main logical concern is the establishment of
non-blocking behavior, we define Sm, the set of marked states of the RAS-
modelling automaton, as

Sm ≡ {s0} (6)

3in the particular case where each process stage requires a single unit from a single
resource type, |S| =

∏m

i=1

(Ci+|S(Ri)|)!
Ci!|S(Ri)|!

, where Ci denotes the capacity of resource Ri and

S(Ri) denotes the set of processing stages requesting resource Ri for their execution.

6

Hence, the marked language Lm of this automaton corresponds to “complete
(processing) runs”.

Finally, we notice that this FSA-based model of the RAS behavior can be
expressed graphically by its State Transition Diagram (STD), i.e., a digraph
G with nodes corresponding to the FSA states, and edges corresponding to
the feasible state transitions. Of particular interest, is the STD subgraph
induced by the nodes s that are reachable from node s0; this subgraph will
be denoted by Sr and it will be characterized as the reachable subspace of
the considered RAS.

Example: As a concrete example for the above characterization of the
D/C-RAS structure and its logical behavior, consider the small system of
Figure 1. This RAS consists of three resources R1, R2 and R3, each possess-
ing unit capacity, i.e., C1 = C2 = C3 = 1. In its current configuration, the
system supports a single process type, Π1, with the sequential logic char-
acterized by graph G1; specifically, there are two possible process plans for
this process type: Ξ11 → Ξ13 and Ξ12 → Ξ13. Figure 1 indicates also the
resource allocation requests Ajk associated with each processing stage Ξjk:
stage Ξ11 requires one unit of resource R1 to support its execution, stage Ξ12

requires one unit of resource R2, and stage Ξ13 requires one unit of resource
R3. Figure 2 depicts the STD structure for the reachable subspace for this
RAS, while the detailed characterization of the RAS states corresponding
to the various STD nodes is provided in Table 1.

Liveness and Liveness-Enforcing Supervision for D/C-RAS A
major concern in the logical control of RAS is the establishment of live – or
deadlock-free or non-blocking – behavior. Deadlock is technically defined as
a RAS state containing a set of process instances with each process in this
set requesting for its advancement the allocation of resources currently held
by some of its other processes [15]. The development of deadlock results
from the fact that (i) the RAS process routes are structured in an arbitrary
manner that can give rise to cyclical patterns of resource requests among the
various executing processes, while (ii) processes will hold upon their allo-
cated resources in a non-preemptive manner. The occurrence of a deadlock
stalls the progress of all the processes involved in it, and necessitates the
application of appropriate exception handling procedures for its resolution;
these procedures are disruptive and (frequently) costly for the operation of
the underlying application.

In the FSA-based modelling of the RAS operation, deadlocks are rep-
resented by the formation of strongly connected components in the system
reachable space, Sr, which, however, are not co-accessible, i.e., the empty
state, s0, is not reachable from them through any sequence of feasible tran-

7

[0 0 1]

[0 1 0][1 0 0]

Ξ13

Ξ12Ξ11

R3R2R1

Figure 1: An example D/C-RAS

0

6 5

21

3

4

l

e
11

a

e
113

a

e
123

7

a

e
113

a

e
123

l

e
12

l

e
12

l

e
11

l

e
12

l

e
11

l

e
11

l

e
12

u

e
13

u

e
13

u

e
13

u

e
13

Figure 2: The State Transition Diagram (STD) for the D/C-RAS of Figure 1

Table 1: State information for the STD of Figure 1

sk s(q(1, 1)) s(q(1, 2)) s(q(1, 3))
0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 0 1
5 0 1 1
6 1 0 1
7 1 1 1

8

sitions. Hence, a correct Liveness-Enforcing Supervisor (LES), ∆, tries to
restrict the system operation to a strongly connected component of Sr which
contains the empty state s0. The RAS subspace that is reachable from the
initial state, s0, under supervision by some LES ∆, will be denoted by Sr(∆).
A correct LES, ∆∗, for a given D/C-RAS configuration, Φ, is characterized
as optimal , if the corresponding admissible subspace Sr(∆

∗) is the maximal
strongly connected component of Sr that contains the empty state s0. The
set of states admitted by the optimal LES, ∆∗, will be characterized as (the
set of) reachable safe states, and it will be denoted by Srs. The comple-
ment of Srs with respect to Sr will be denoted by Sru, and it constitutes the
system reachable unsafe region; formally, Sru = Sr\Srs.

Clearly, in the D/C-RAS operational context, the optimal LES, ∆∗, is
well-defined, and furthermore, it is effectively computable through an one-
step lookahead scheme that admits a tentative resource allocation if and
only if (iff) the resulting state is safe. However, it has been shown that
the problem of state safety is NP-complete for the class of D/C-RAS [1, 9].
In the light of this result, the research community has sought the develop-
ment of sub-optimal LES that are implementable in polynomial complexity
with respect to the underlying RAS size, and yet, efficient, i.e., they man-
age to admit a large part of Srs. This idea has been formalized by the
concept of Polynomial Kernel (PK-) LES’s, in the relevant literature [16].
From an implementational standpoint, the design of PK-LES requires the
identification of a property H(s), s ∈ S, such that: (i) H(s0) = TRUE, (ii)
H(s) ⇒ safe(s),∀s ∈ Sr, and (iii) the complexity of testing H() on the
RAS states is polynomial with respect to the RAS size. Then, by allowing
only transitions to states satisfying H, through one-step look-ahead, it can
be ensured that the visited states will be safe. An additional requirement,
however, is that (iv) the resulting LES is correct , i.e., the LES-admissible
subspace is strongly connected , since, otherwise, the system could reach LES-
induced deadlocks, i.e., RAS states where any further progress is stalled by
the LES itself. Two conditions H() leading to correct PK-LES for D/C-RAS
are provided in [6] and [11].

Example: Notice that the STD of Figure 2 is itself a strongly connected
graph. Hence, the uncontrolled – or feasible – behavior of the D/C-RAS
depicted in Figure 1, is already deadlock-free. This effect results from the
fact that the process routing logic expressed by graph G1 will not give rise to
any circular-waiting patterns in the contest of the various process instances
for the system resources.

9

3 Performance modelling and control of logically

controlled RAS

The assumption of exponentially distributed processing times In
order to study the performance of the D/C-RAS, we need to augment the
FSA model developed in Section 2, with the timing aspects of the system
operation. We remind the reader that the main timing information pro-
vided by the D/C-RAS object of Definition 1, concerns the distributions
Djk, characterizing the statistics of the processing times experienced during
the execution of stages Ξjk. For reasons that will become obvious in the
subsequent analysis, we assume that each Djk is an exponential distribu-
tion, with parameter λjk. Although this assumption can be considered as
a restriction of the model and its applicability, the derived results can still
be applied in an approximate sense to D/C-RAS involving more general
distributions Djk, by substituting the relevant non-exponential stages by
some appropriately structured acyclic process sub-nets modelling a phase-
type distribution that approximates Djk to some satisfactory level; we refer
the reader to [10] for the details of this approximation.

The refined RAS state space Under the assumption of exponentially
distributed processing times, the temporal aspects of the RAS behavior
can be captured through the following refinement of the basic FSA model
introduced in Section 2:

1. Each state component s(q(j, k)) is expanded to a 3-dimensional vector

[sp(q(j, k)), sf (q(j, k)), sb(q(j, k)]

Components sp(q(j, k)) and sf (q(j, k)) indicate the numbers of process
instances of stage Ξjk that are, respectively, in processing or finished .
Component sb(q(j, k)) is a binary-valued component, with the value of
1 indicating that the advancement of the finished processes in stage Ξjk

is currently blocked . Furthermore, an additional component sb(q(j, 0))
is added for each process type Πj . This component is also binary-
valued, and its value of 1 indicates that the loading of any further
instances of process type Πj is currently blocked .

2. At any point in time, there should be at least one process instance
under processing in the system, i.e., the system operation should be
globally non-idling . The feasibility of this requirement is guaranteed by
(i) the correctness of the applied LES, and (ii) the further assumption
of an infinite number of instances from each process type waiting for

10

loading in the considered D/C-RAS; this last assumption is consistent
with the posed objective of throughput maximization.

3. At any RAS state, the completion of an active process instance imme-
diately resets all the state components of sb() type to 0, i.e., it unblocks
all the process loading and advancing events.

4. A state containing unblocked loading and advancing events is followed
by a sequence of immediate transitions each of which either (i) ad-
vances an unblocked finished process instance to its next stage, or (ii)
loads a new process instance of some unblocked process type, or (iii)
sets an sb() state component to its blocked state. Process instances jj
having completed a “sink” processing stage Ξjk in their correspond-
ing graph Gj cannot be blocked, but they must be unloaded from the
system.4 The advancement of any other process instance to its next
state, or the loading of a new process instance, must be admissible by
the applied LES.

The underlying Semi-Markov structure It is clear from the descrip-
tion of the previous paragraph that states containing unblocked finished pro-
cess instances, or unblocked loading events, present zero sojourn times, and
therefore, they are characterized as vanishing . The remaining states contain
only process instances that are in processing or blocked. These states will
be characterized as tangible, since they have a finite sojourn time, that is
determined by the “exponential race” of all the process instances that are
in processing, for completion of their running processing stage. More specif-
ically, the processing times experienced at tangible states are exponentially
distributed with a rate equal to

∑

(j,k)[λjk · sp(q(j, k))]. Let Srv(∆) and
Srt(∆) denote respectively the sets of vanishing and tangible states that are
reachable under the RAS supervision by LES ∆. Then, the considered RAS
performance control problem reduces to the determination of a probability
distribution for each vanishing state, that will regulate the execution of the
corresponding LES-admissible immediate events, so that the long-run system
throughput is maximized . The resulting problem is a semi-Markov decision
process (semi-MDP) [12].

Example: Figure 3 and Table 2 encode the semi-MDP for the example
D/C-RAS of Figure 1, under the further assumption that the processing

4This requirement implies that state components sf (q(j, k)) and sb(q(j, k)) for “sink”
processing stages Ξjk will always be equal to zero, and therefore, they can be dropped
from the state vector.

11

Table 2: State information for the semi-Markov process characterizing the
timed dynamics of the D/C-RAS of Figure 1

sk sb(q(1, 0)) sp(q(1, 1)) sf (q(1, 1)) sb(q(1, 1)) sp(q(1, 2)) sf (q(1, 2)) sb(q(1, 2)) sp(q(1, 3))
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 0 0 0 1 0 0 0
3 0 1 0 0 1 0 0 0
4 1 1 0 0 0 0 0 0
5 1 0 0 0 1 0 0 0
6 1 1 0 0 1 0 0 0
7 0 0 1 0 0 0 0 0
8 0 0 0 0 0 1 0 0
9 0 0 1 0 1 0 0 0
10 0 1 0 0 0 1 0 0
11 0 0 0 0 0 0 0 1
12 0 0 0 0 1 0 0 1
13 1 0 1 1 1 0 0 0
14 0 1 0 0 0 0 0 1
15 1 1 0 0 0 1 1 0
16 1 0 0 0 0 0 0 1
17 0 1 0 0 1 0 0 1
18 1 0 0 0 1 0 0 1
19 0 0 1 0 0 1 0 0
20 1 1 0 0 0 0 0 1
21 1 1 0 0 1 0 0 1
22 0 0 0 0 0 1 0 1
23 0 0 1 0 0 0 0 1
24 0 0 1 0 1 0 0 1
25 0 1 0 0 0 1 0 1
26 1 0 0 0 0 1 1 1
27 1 0 1 1 0 0 0 1
28 1 0 1 1 1 0 0 1
29 1 1 0 0 0 1 1 1
30 0 0 1 0 0 1 0 1
31 1 0 1 1 0 1 1 1

time corresponding to processing stage Ξ1k, k = 1, 2, 3, is exponentially dis-
tributed with rate λk. Double-lined nodes in Figure 3 indicate the process
tangible states, while the expressions on the edges emanating from these
nodes characterize the corresponding branching probabilities of the semi-
Markov process. These probabilities are determined by the fact that the
process transition out of each tangible state is regulated by the “exponen-
tial race” of all the active processes in that state to complete their cur-
rently executed processing stage. For the remaining vanishing states, the
corresponding branching probabilities must be externally provided by the
performance control policy, in a way that optimizes some pre-specified per-
formance objective (in this study, the long-run system throughput).

The induced CT-MDP The above semi-MDP formulation of the con-
sidered RAS performance control problem can be further reduced to a Conti-
nuous-Time MDP (CT-MDP) problem, by focusing on the transitions of the
underlying stochastic process among the subclass of vanishing states that
are entered from some tangible state, upon the finishing of some RAS pro-
cess instance. Let us denote this particular subclass of vanishing states by
S0

rv(∆); i.e., S0
rv(∆) defines the state space of the induced process. Ac-

12

cording to item 3 in the description of the refined state space Sr(∆), any
state s ∈ S0

rv(∆) enables all the ∆-admissible process loading and advanc-
ing events. The set of all the control actions available at state s ∈ S0

rv(∆)
is defined by the set Σ(s) of all the ∆-admissible immediate transition se-
quences σ that can be executed starting from state s; indeed, enabling of
the process loading and advancing events in each transition sequence σ is
completely at the jurisdiction of the RAS controller. On the other hand,
the induced process states s′ ∈ S0

rv(∆), that can result from s by taking an
action σ ∈ Σ(s), are determined by the transitions that are enabled in the
tangible state s′′ that is obtained in the original semi-MDP process from
the execution of sequence σ upon state s; i.e., for any given control action
σ ∈ Σ(s), the resulting states s′ correspond to the finishing of some process
instance at stage Ξjk with (s′′)p(q(j, k)) > 0. The corresponding branching
probabilities are determined by

p(s′; s, σ) =
λjk · (s′′)p(q(j, k))

∑

(j′,k′)[λj′k′ · (s′′)p(q(j′, k′))]
(7)

The sojourn time associated with the transition resulting from the selection
of control action σ at state s is exponentially distributed with rate

Λ(s, σ) =
∑

(j,k)

[λjk · (s′′)p(q(j, k))] (8)

and mean value

τ(s, σ) =
1

∑

(j,k)[λjk · (s′′)p(q(j, k))]
(9)

The above characterization of the branching probabilities and the state
sojourn times indicates clearly that the decision process induced by the
transitions of the original semi-MDP process over its S0

rv(∆) sub-space, is
CT-MDP.

Example: The induced CT-Markov process for the example D/C-RAS
of Figure 1 is characterized by Tables 3 and 4, and Figure 4. While the
depicted tangible markings are not, in a strict technical sense, part of the
considered CT-Markov process, we have opted to include them in the graph
of Figure 4 in order to visualize the connection between the state space
of this process and the state space of the semi-Markov process depicted in
Figure 3. Hence, for instance, there are three possible transitions out of the
initial state s0, in the considered CT-Markov process. The first transition
corresponds to the loading of a new process instance and the initiation of

13

0

1 2

34 5

6

16

9

7

30

31

17

22

λ1/(λ1+λ2)

λ2/(λ1+λ2)

λ3/(λ2+λ3)

λ2/(λ2+λ3)

λ1/(λ1+λ3)

λ3/(λ1+λ3)

Λ3/(λ1+λ2+λ3)

λ2/(λ1+λ2+λ3)

λ1/(λ1+λ2+λ3)

λ3/(λ1+λ3)

λ1/(λ1+λ3)λ2/(λ2+λ3)
λ3/(λ2+λ3)

24

27
18

13

19

12

11

14

10

15

8

2026

21

29

25

23

28

Figure 3: The embedded Markov Chain of the semi-Markov process charac-
terizing the timed dynamics of the D/C-RAS of Figure 1

0

1 2

34 5

6

30

31

22

λ1/(λ1+λ2)

λ2/(λ1+λ2)

λ2/(λ2+λ3)

λ1/(λ1+λ3)

λ3/(λ1+λ3)

Λ3/(λ1+λ2+λ3)

λ2/(λ1+λ2+λ3)

λ1/(λ1+λ2+λ3)

λ3/(λ1+λ3)

λ1/(λ1+λ3)λ2/(λ2+λ3)
λ3/(λ2+λ3)

λ3/(λ2+λ3)

24

16

9

7

27
18

13

19

10

15

8

2026

21

29

25

23

28

Figure 4: The induced CT-Markov process for the D/C-RAS of Figure 1

14

Table 3: Vanishing state information for the CT-Markov process of the
D/C-RAS of Figure 1

sk sb(q(1, 0)) < spsf sb > (q(1, 1)) < spsf sb > (q(1, 2)) sp(q(1, 3)) Res. Tan. States
0 0 0 0 0 0 0 0 0 4, 5, 6
1 0 1 0 0 0 0 0 0 4, 6
2 0 0 0 0 1 0 0 0 5, 6
3 0 1 0 0 1 0 0 0 6
7 0 0 1 0 0 0 0 0 13, 18, 21, 16, 20
8 0 0 0 0 0 1 0 0 16, 18, 21, 15, 20
9 0 0 1 0 1 0 0 0 13, 18, 21
10 0 1 0 0 0 1 0 0 15, 20, 21
19 0 0 1 0 0 1 0 0 27, 28, 26, 29
22 0 0 0 0 0 1 0 1 26, 29
23 0 0 1 0 0 0 0 1 27, 28
24 0 0 1 0 1 0 0 1 28
25 0 1 0 0 0 1 0 1 29
30 0 0 1 0 0 1 0 1 31

Table 4: Tangible state information for the CT-Markov process of the D/C-
RAS of Figure 1

sk sb(q(1, 0)) < spsf sb > (q(1, 1)) < spsf sb > (q(1, 2)) sp(q(1, 3)) Res. Van. States
4 1 1 0 0 0 0 0 0 7
5 1 0 0 0 1 0 0 0 8
6 1 1 0 0 1 0 0 0 9, 10
13 1 0 1 1 1 0 0 0 19
15 1 1 0 0 0 1 1 0 19
16 1 0 0 0 0 0 0 1 0
18 1 0 0 0 1 0 0 1 22, 2
20 1 1 0 0 0 0 0 1 23, 1
21 1 1 0 0 1 0 0 1 24, 25, 3
26 1 0 0 0 0 1 1 1 8
27 1 0 1 1 0 0 0 1 7
28 1 0 1 1 1 0 0 1 30, 9
29 1 1 0 0 0 1 1 1 30, 10
31 1 0 1 1 0 1 1 1 19

processing stage Ξ11; the resulting state is s7, while the expected sojourn
time for this transition is 1/λ1. The second transition corresponds to the
loading of a new process instance and the initiation of processing stage Ξ12;
the resulting state is s8, while the expected sojourn time for this transition
is 1/λ2. Finally, the third transition corresponds to the event sequence of
loading two instances in the considered RAS, the first of them initiated to
processing stage Ξ11 and the second initiated to processing stage Ξ12. In
this case, the resulting state could be either s9 or s10, depending on whether
the process instance completing first its current stage is that executing stage
Ξ11 or Ξ12. The corresponding branching probabilities are λ1/(λ1 +λ2) and
λ2/(λ1 + λ2), and the transition expected sojourn time is 1/(λ1 + λ2). The
rest of the graph can be interpreted in a similar fashion.

Characterizing the objective function of the CT-MDP To com-
pletely define this CT-MDP problem, it remains to specify the (immediate)
gain g(s, σ) associated with each state-option pair (s, σ), and the objective
under consideration. The characterization of these two issues is determined

15

by our focus on the long-run system throughput as the performance criterion
of interest. Hence, g(s, σ) is defined as

g(s, σ) =
∑

(j,k)

λjk · (s′′)p(q(j, k))
∑

(j′,k′)[λj′k′ · (s′′)p(q(j′, k′))]
· I

{Ξjk is a
“sink” stage
of Gj}

(10)

i.e., it is equal to the probability that some process instance will be com-
pleted and unloaded during the transition resulting from the state-option
pair (s, σ). In the light of this definition of the immediate gains, the long-
run system throughput obtained by initializing the RAS in some reachable
LES-admissible state s0 and applying some policy Ψ for governing the selec-
tion of the options σ to be enabled at each state s, is characterized by the
average expected gain ḡΨ(s0), which is formally defined as follows:

ḡΨ(s0) = lim inf
t→∞

1

t
EΨ

s0 [
∞
∑

n=0

∫ t

0
g(sn, σn) · δ(t− tn)] (11)

In Equation 11, tn denotes the time of the n-th transition in the CT-Markov
chain obtained by setting the considered RAS at state s0 in time t0 = 0,
and subsequently controlling it by policy Ψ. The expectation EΨ

s0 [] is taken
over all the corresponding sample paths of the aforementioned CT-Markov
chain, and the function δ(t) is Kronecker’s delta function. Our objective is
to identify a policy Ψ∗ such that

ḡΨ∗
(s) = sup

Ψ

{

ḡΨ(s), ∀s ∈ S0
rv(∆)

}

(12)

Example: To provide a more concrete demonstration of the gain structure
implied by Equation 10, let us consider the gain to be employed in the CT-
MDP problem of Figure 4, for the state-option pair that leads the underlying
RAS from vanishing state s7 to the tangible marking s20. The associated
scheduling decision corresponds to the event sequence of advancing a process
instance that just completed the execution of processing stage Ξ11 to its
next stage Ξ13, followed by the immediate initiation of another processing
instance at stage Ξ11. The probability of experiencing a process unloading
event during the current transition in the underlying CT-Markov chain, is
equal to the probability that the process executing processing stage Ξ13, in
tangible state s20, will complete first. Hence, the considered gain is equal to
λ3/(λ1 + λ3). On the other hand, all the transitions emanating from state
s0, considered in the example of the previous paragraph, do not involve any

16

unloading events, and therefore, the corresponding gains should be set equal
to zero.

An LP formulation for the performance control problem The
observation of some correct LES ∆ during the construction of the state space
of the aforementioned CT-MDP guarantees that there exists a deterministic
policy that can take the RAS from any given state s ∈ S0

rv(∆) to any other
state s′ ∈ S0

rv(∆). As a result, the considered CT-MDP is classified as
a communicating model and the optimal average expected gain ḡΨ∗

(s) is
constant for all initial states s ∈ S0

rv(∆) ([12], Section 8.3). In the following,
this constant optimal gain will be denoted by ḡ∗. Its value and an optimal
policy Ψ∗ can be obtained by solving the following linear programming (LP)
formulation in variables x(s, σ), s ∈ S0

rv(∆), σ ∈ Σ(s) (c.f. [12], Sections
8.8, 9.5, 11.4–5):

max
∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

g(s, σ)x(s, σ) (13)

s.t.

∀s ∈ S0
rv(∆),

∑

σ∈Σ(s)

x(s, σ) −
∑

s′∈S0
rv(∆)

∑

σ∈Σ(s′)

p(s; s′, σ)x(s′, σ) = 0 (14)

∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

τ(s, σ)x(s, σ) = 1 (15)

x(s, σ) ≥ 0, ∀s ∈ S0
rv(∆), ∀σ ∈ Σ(s) (16)

The value of the optimal gain, ḡ∗, is equal to the optimal objective value
for this formulation. The optimal values of variables x(s, σ) – to denoted
by x∗(s, σ) – can be interpreted as the rates with which the underlying
RAS finds itself in state s having selected option σ in that state, when
operated under the optimal policy Ψ∗. Ψ∗ itself is determined as follows:
The optimal solution, x∗(s, σ), of the above formulation, partitions the state
space S0

rv(∆) into two classes, S0r
rv(∆) and S0t

rv(∆): Class S0r
rv(∆) contains the

states s ∈ S0
rv(∆) with

∑

σ′∈Σ(s) x
∗(s, σ′) > 0, that constitute the recurrent

states during the system operation under policy Ψ∗. Class S0t
rv(∆) contains

the states s ∈ S0
rv(∆) with

∑

σ′∈Σ(s) x
∗(s, σ′) = 0, that are the system

transient states. For the recurrent states s ∈ S0r
rv(∆), the optimal policy Ψ∗

is defined by setting:

ψ∗(σ; s) =
x∗(s, σ)τ(s, σ)

∑

σ′∈Σ(s) x
∗(s, σ′)τ(s, σ′)

, ∀σ ∈ Σ(s) (17)

17

1. S̄0r
rv(∆) := S0r

rv(∆);

2. While S0
rv(∆)\S̄0r

rv(∆) 6= ∅ do

(a) Find a state s ∈ S0
rv(∆)\S̄0r

rv(∆) and an action σ∗ ∈ Σ(s) s.t.
∑

s′∈S̄0r
rv(∆) p(s

′; s, σ∗) > 0;

(b) ∀σ ∈ Σ(s), if σ = σ∗ then ψ∗(σ; s) := 1 else ψ∗(σ; s) := 0;

(c) S̄0r
rv(∆) := S̄0r

rv(∆) ∪ {s}

endwhile

3. RETURN ψ∗(·; s) for each s ∈ S0t
rv(∆).

Figure 5: Defining the optimal policy Ψ∗ on transient states s ∈ S0t
rv(∆)

For the remaining transient states, the optimal policy is defined by any
action selection scheme that establishes a path from each transient state to
the class of recurrent states; a detailed algorithm for identifying such a set
of paths covering all transient states, is provided in Figure 5. Finally, it
can be shown that, for any recurrent state s ∈ S0r

rv(∆), any basic feasible
solution of the LP formulation of Equations 13-16 will have x∗(x, u) > 0 for
only one control action σ ∈ Σ(s) [12]; i.e., the optimal policy Ψ∗, returned
by this approach, will be deterministic.

Incorporating additional throughput-ratio constraints In case of
RAS with more than one process types, the definition of the process gains
and the problem objective function provided by Equations 10–12, implies
that the ultimate objective is the unconditional maximization of the cumu-
lative throughput across all process types. In most practical situations, the
throughput with respect to the various process types will be required to
observe some ratio constraints, i.e.,

THj = ρjTH1, ∀j ≥ 2 (18)

The resulting problem is a constrained CT-MDP problem ([12], Section 8.9).
Equation 18 suggests that, in this case, it is pertinent to seek the maxi-
mization of TH1, while observing the ratio constraints. Since we need to
differentiate the throughput attained with respect to each process type, the
constrained version of the problem will employ a set of gains gj(s, σ), one

18

gain function for each process type Πj , with

gj(s, σ) =
∑

k

λjk · (s′′)p(q(j, k))
∑

(j′,k′)[λj′k′ · (s′′)p(q(j′, k′))]
· I

{Ξjk is a
“sink” stage
of Gj}

(19)

The long-term throughput ḡ∗ and an optimal policy Ψ∗ for the con-
strained version of the RAS performance control problem can be obtained
by an LP formulation similar to that of Equations 13–16. The new objective
function for this formulation is

max
∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

g1(s, σ)x(s, σ) (20)

and the constraint set is augmented with the following constraint that ex-
presses the throughput ratio requirement of Equation 18:

∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

gj(s, σ)x(s, σ)

−ρj

∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

g1(s, σ)x(s, σ) = 0, ∀j ≥ 2 (21)

The optimal throughput ḡ∗ and a stationary optimal policy Ψ∗ are deter-
mined as in the unconstrained case; however, there might not exist a deter-
ministic optimal policy for this case.5

4 The thinning problem

Problem statement In the context of the RAS modelling framework pre-
sented in Sections 2 and 3, the thinning problem can be abstracted as the
selection of a subset of edges, ES

j , from each process graph, Gj , of a D/C-

RAS, Φ, such that (i) |ES
j | = µj , ∀j, (ii) and some performance index of the

RAS Φ′, that results by restricting each process type Πj to its process plans
encompassed by ES

j , is optimized. Parameters µj are externally specified,
and they quantify the size constraints imposed on the selected process sub-
nets. Next we provide a detailed, analytical characterization of the thinning
problem for the case that the observed performance objective is the maxi-
mization of the RAS throughput, which was also the performance objective
considered in the development of Section 3.

5In fact, the policy randomization is the mechanism enabling the satisfaction of the
throughput ratio constraint expressed by Equation 18.

19

1. Construct the graph Ḡj , by adding to graph Gj a node vj0 together

with the set of edges {(vj0, vjk) : vjk ∈ V↗
j }∪{(vjk, vj0) : vjk ∈ V↘

j }.

2. Construct the subgraph Ḡj(E
S
j) of Ḡj , with node set {vjk, k =

0, 1, . . . , l(j)}, and edge set ES
j ∪ {(vj0, vjk) : vjk ∈ V↗

j } ∪ {(vjk, vj0) :

vjk ∈ V↘
j }.

3. Trim the graph Ḡj(E
S
j) with respect to node vj0, to obtain the graph

ḠTr
j (ES

j).

4. Delete the node vj0 and its incident edges from ḠTr
j (ES

j), to obtain the

graph Gj(E
S
j).

5. RETURN Gj(E
S
j).

Figure 6: Characterizing all the process plans encompassed in an edge se-
lection ES

j ⊆ Ej of the process graph Gj corresponding to a process type Πj

of a D/C-RAS Φ

Consider the graph Gj characterizing the execution logic of some pro-
cess type Πj of a D/C-RAS Φ, and a selection of edges from this graph,
ES

j ⊆ Ej . The subgraph Gj(E
S
j) that encodes all the process plans for pro-

cess type Πj involving only transitions corresponding to edges in ES
j , can be

computed by the algorithm of Figure 6. Then, given a D/C-RAS Φ and sets
ES

j ⊆ Ej for each process type Πj , let Φ(ES
1 , . . . , E

S
n) denote the D/C-RAS

obtained by substituting each process graph Gj by Gj(E
S
j), in the definition

of Φ. Of particular interest for the pursued formulation are all the D/C-
RAS Φ(ES

1 , . . . , E
S
n) for which (i) the edge sets ES

j have |ES
j | = µj , where

µj ≤ |Ej | is externally defined, and (ii) Gj(E
S
j) 6= NULL, ∀j. In the fol-

lowing, the distinct edge selections defining these D/C-RAS will be denoted
by {S1, . . . ,SN}, and the corresponding D/C-RAS by Φ(Su), u = 1, . . . , N .

Clearly, N is finite; in particular, N ≤
∏n

j=1

(

|Ej |
µj

)

.

In the context of this formalism, the thinning problem can be posed as
follows: Given a D/C-RAS Φ, a correct LES ∆, target throughput ratios ρj

for j = 2, . . . , |P|,6 and parameters µj ≤ |Ej |, j = 1, . . . , |P|, find an edge

6In the case of D/C-RAS with a single process type, this data set is vacuous, and the
unconstrained version of the throughput maximization problem must be employed.

20

selection S∗ such that

S∗ = arg max
S

{

TH∗
1 (Φ(S); ∆, ρ2, . . . , ρ|P|)

}

(22)

s.t.
|ES

j | = µj ∧ Gj(E
S
j) 6= NULL, ∀ES

j ∈ S (23)

The maximal throughput, TH∗
1 (Φ(S); ∆, ρ2, . . . , ρ|P|), for D/C-RAS Φ(

S), can be computed through the techniques presented in Section 3. More
specifically, under the assumption that all the timing distributions, Djk, of
the considered RAS, Φ, are exponential, the maximal throughput TH∗

1 (Φ(S);
∆, ρ2, . . . ρ|P|) can be computed through the formulation of Equations 20, 14–
16 and 21, by forcing to zero every variable x∗(s, σ) that corresponds to a
transition leading to a state s′ which does not belong to Sr(Φ(S); ∆), the
reachable ∆-admissible subspace for the D/C-RAS Φ(S).

Next we establish a dominance relationship that will allow the further
restriction of the set of selections to be considered in the solution of the thin-
ning problem defined by Equations 22 and 23. Given two selections S1 and
S2 satisfying Constraint 23, let S1 � S2 denote that graph G(ES1

j) is a sub-

graph of G(ES2
j), for all j. The relationship ‘S1 � S2’ defines a partial order

on the set of selections satisfying Constraint 23, and we shall say that selec-
tion S1 is dominated by – or it is smaller than – selection S2. Clearly, S1 � S2

implies that Sr(Φ(S1); ∆) ⊆ Sr(Φ(S2); ∆) ⊆ Sr(Φ; ∆). Suppose that the
evaluation of the optimal throughput, TH∗

1 (Φ(Si); ∆, ρ2, . . . , ρ|P|), for RAS
Φ(Si), i = 1, 2, is performed through the formulation of Equations 20, 14–16
and 21. Then, the above set inclusions imply that, (i) every feasible solution
for the LP formulation estimating TH∗

1 (Φ(S1); ∆, ρ2, . . . , ρ|P|) is also a feasi-
ble solution for the LP formulation estimating TH∗

1 (Φ(S2); ∆, ρ2, . . . , ρ|P|),
while (ii) the objective function of the former formulation is subsumed in
the objective function of the latter. The last two observations further im-
ply that TH∗

1 (Φ(S1); ∆, ρ2, . . . , ρ|P|) ≤ TH∗
1 (Φ(S2); ∆, ρ2, . . . , ρ|P|). Hence,

it can be concluded that, among the selections that satisfy Constraint 23,
only those that are maximal with respect to relationship ‘ �’ need to be
considered in the solution of Equation 22.

Example: Suppose that (i) the processing times, t1k, for the three stages
Ξ1k, k = 1, 2, 3, of the D/C-RAS of Figure 1 are exponentially distributed
with corresponding rates λk, and (ii) the “thinning” requirement of µ1 = 1
is imposed on its operation. It is obvious from the structure of the graph G1,
depicted in Figure 1, that this thinning requirement essentially implies the
enactment of only one of the two possible process plans during the system
operation. Technically, these two selections are defined by the edge sets

21

ES1
1 = {(Ξ11,Ξ13)} and ES2

1 = {(Ξ12,Ξ13)}, both of which are maximal with
respect to relation ‘�’. The subspaces Sr(Φ(Si); ∆

∗), i = 1, 2, can be easily
obtained from the information provided in the state space Sr of Figure 2 and
in Table 1. For this simple case, it is easy to see that the optimal selection,
S∗, for the considered thinning problem, is given by7

S∗ =

{

S1, for λ1 ≥ λ2

S2, for λ1 ≤ λ2
(24)

A MIP formulation of the thinning problem for Markovian
RAS In the case of RAS with exponentially distributed stage processing
times, Equation 15 implies that, in the computation of TH∗

1 (Φ(S); ∆, ρ2, . . . ,
ρ|P|) for some given edge selection S, the requirement of forcing to zero
every variable x(s, σ) that corresponds to a transition leading to a state
s′ 6∈ Sr(Φ(S); ∆), can be expressed by the addition of the following con-
straint in the LP formulation of Equations 20, 14–16 and 21:

∀s ∈ S0
rv(∆), ∀σ ∈ Σ(s), x(s, σ) ≤

{ min
(s,σ): s∈S0

rv(∆), σ∈Σ(s)
τ(s, σ)}−1I{s′∈Sr(Φ(S);∆)} (25)

The pricing logic underlying Equation 25, that facilitates the perfor-
mance evaluation of the D/C-RAS, Φ(S), resulting from a single edge se-
lection S, can be subsequently extended to a Mixed Integer Programming
(MIP) [17] formulation for the entire thinning problem, as follows: Consider
an enumeration {S1, . . . ,SN ′} of all the ‘�’-maximal edge selections satisfy-
ing Constraint 23, and associate a binary variable Iu with each selection Su,
such that Iu = 1 indicates that the finally selected edge sets ES

j are those in
selection Su. Obviously,

∑

u

Iu = 1 (26)

In addition, in the spirit of Equation 25, we must have:

∀s ∈ S0
rv(∆), ∀σ ∈ Σ(s), x(s, σ) ≤

{ min
(s,σ): s∈S0

rv(∆), σ∈Σ(s)
τ(s, σ)}−1

∑

u:s′∈Sr(Φ(Su);∆)

Iu (27)

7A systematic way to obtain this result is by: (i) developing closed-form expressions
for the optimal throughput TH∗(Φ(Si); ∆

∗), i = 1, 2, through the steady-state analysis of
the induced CTMC’s describing the restriction of the RAS operation on the corresponding
subspaces; and (ii) studying the sign of the difference TH∗(Φ(S1); ∆

∗)−TH∗(Φ(S2); ∆
∗)

for the two cases of Equation 24. We leave the computational details to the reader.

22

i.e., the transition corresponding to control action σ ∈ Σ(s) can be activated
in the final solution, only if this solution engages an edge selection Su such
that the resulting state s′ is in Sr(Φ(Su); ∆).

Example: To provide a more concrete demonstration of the synthesis
of the constraint set implied by Equation 27, consider the thinning prob-
lem studied in the earlier example. Letting I1, I2 be defined as above,
the constraints generated by Equation 27 for the decision variables x(s, σ)
corresponding to the three transitions out of state s0 in the underlying CT-
Markov process in Figure 4, are as follows:

x(s0 → s7) ≤ (λ1 + λ2 + λ3)I1 (28)

x(s0 → s8) ≤ (λ1 + λ2 + λ3)I2 (29)

x(s0 → {s9, s10}) ≤ 0 (30)

♦
The complete formulation of the thinning problem is obtained by com-

bining Equations 26 and 27 with the formulation of Equations 20, 14–16
and 21:

max
∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

g1(s, σ)x(s, σ) (31)

s.t.

∀s ∈ S0
rv(∆),

∑

σ∈Σ(s)

x(s, σ)

−
∑

s′∈S0
rv(∆)

∑

σ∈Σ(s′)

p(s; s′, σ)x(s′, σ) = 0; (32)

∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

τ(s, σ)x(s, σ) = 1; (33)

∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

gj(s, σ)x(s, σ)

−ρj

∑

s∈S0
rv(∆)

∑

σ∈Σ(s)

g1(s, σ)x(s, σ) = 0,∀j ≥ 2; (34)

∀s ∈ S0
rv(∆), ∀σ ∈ Σ(s), x(s, σ) ≤

{ min
(s,σ): s∈S0

rv(∆), σ∈Σ(s)
τ(s, σ)}−1

∑

u:s′∈Sr(Φ(Su);∆)

Iu; (35)

∑

u

Iu = 1; (36)

x(s, σ) ≥ 0, ∀s ∈ S0
rv(∆), ∀σ ∈ Σ(s); (37)

Iu ∈ {0, 1}, ∀u. (38)

23

In principle, this formulation can be solved through available commercial
solvers [17]. However, we notice that the size of both variable sets, x(s, σ)
and Iu, is a super-polynomial function of |Φ| and, in general, these sets will
grow very fast. Therefore, for practical purposes, it is important to develop
alternative approximating schemes to the above MIP formulation. Such
approximating schemes can be based on the adaptation, for the considered
problem, of typical search-based combinatorial optimization algorithms, like
Tabu search [7] and genetic algorithms [2], and they are part of our current
investigations.

5 Conclusions

This paper provided a detailed formal characterization of the “thinning”
problem, that was originally defined in [3]. The derived formulation is a
mixed integer program, and therefore, it can be solved, in principle, through
well-developed computational algorithms. A severe limitation of the ap-
proach, though, is that the number of the involved variables and constraints
grows super-polynomially with respect to the underlying RAS size. There-
fore, future work will seek to exploit the derived formulation towards the
development of efficient approximating solution algorithms for the thinning
problem.

An additional important contribution of the presented results was the
employment of the CT-MDP modelling framework for the systematic char-
acterization of (i) the D/C-RAS performance control problem, and (ii) the
impact of the decisions pertaining to the D/C-RAS logical control on the
achievable performance by the underlying system.8

Finally we notice that the thinning problem studied in this work belongs
to the class of congestion control problems, since the quest is for a system
configuration that will result in enhanced performance by minimizing the
negative effects of the process contest for a shared set of resources. Under
this interpretation, many of the ideas and techniques developed herein will

8Regarding this last issue, the formulation of Equations 31–38 has further prototypical
value. For instance, one can easily envision a generalization of the aforementioned formu-
lation where the applied LES ∆ is an additional problem variable to be selected among
an enumeration of candidate LES’s. The formulation of Equations 31–38 can address this
extended version of the problem, by redefining the binary variables Iu so that each of
them corresponds to a combination of a candidate LES with a maximal edge selection.
Furthermore, by fixing the structure of the process graphs, Gj , according to some partic-
ular edge selection S, the same formulation will return the LES ∆∗ that maximizes the
throughput of the resulting D/C-RAS Φ(S).

24

apply to a larger set of application contexts; as a concrete example, we
mention the problem of selecting a set of routes for travelling between any
pair of nodes in an AGV or an urban railway network, that maximizes the
system throughput by minimizing the blockage experienced by the various
vehicles.

References

[1] T. Araki, Y. Sugiyama, and T. Kasami. Complexity of the deadlock
avoidance problem. In 2nd IBM Symp. on Mathematical Foundations
of Computer Science, pages 229–257. IBM, 1977.

[2] B. P. Buckles and F. E. Petry (eds.). Genetic Algorithms. IEEE Com-
puter Society Press, Los Alamitos, CA, 1992.

[3] S. F. Chew, M. Lawley, and S. Reveliotis. Liveness enforcing supervi-
sion for resource allocation with complex workflows. In Proceedings of
MMAR’03, pages 823–829. IEEE, 2003.

[4] J. Y. Choi and S. A. Reveliotis. A generalized stochastic petri net
model for performance analysis and control of capacitated re-entrant
lines. IEEE Trans. on Robotics and Automation, 19:474–480, 2003.

[5] J. Y. Choi and S. A. Reveliotis. Relative value function approximation
for the capacitated re-entrant line scheduling problems: An experimen-
tal investigation. In Proceedings of CDC’04, pages –. IEEE, 2004.

[6] J. Ezpeleta, F. Tricas, F. Garcia-Valles, and J. M. Colom. A banker’s
solution for deadlock avoidance in fms with flexible routing and multi-
resource states. IEEE Trans. on R&A, 18:621–625, 2002.

[7] F. Glover. Tabu search: A tutorial. INTERFACES, 20:74–94, 1990.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, MA, 1979.

[9] M. A. Lawley and S. A. Reveliotis. Deadlock avoidance for sequential
resource allocation systems: hard and easy cases. Intl. Jrnl of FMS,
13:385–404, 2001.

[10] H. T. Papadopoulos, C. Heavy, and J. Browne. Queueing Theory in
Manufacturing Systems Analysis and Design. Chapman & Hall, New
York, NY, 1993.

25

[11] J. Park and S. A. Reveliotis. Deadlock avoidance in sequential resource
allocation systems with multiple resource acquisitions and flexible rout-
ings. IEEE Trans. on Automatic Control, 46:1572–1583, 2001.

[12] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 1994.

[13] S. A. Reveliotis. On the siphon-based characterization of liveness in
sequential resource allocation systems. In Applications and Theory of
Perti Nets 2003, pages 241–255, 2003.

[14] S. A. Reveliotis and J. Y. Choi. On the optimality of randomized
deadlock avoidance policies. Jrnl of DEDS: Theory and Applications,
13:303–320, 2003.

[15] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira. Polynomial com-
plexity deadlock avoidance policies for sequential resource allocation
systems. IEEE Trans. on Automatic Control, 42:1344–1357, 1997.

[16] S. A. Reveliotis, M. A. Lawley, and P. M. Ferreira. Structural control of
large-scale flexibly automated manufacturing systems. In C. T. Leon-
des, editor, The Design of Manufacturing Systems, pages 4–1 – 4–34.
CRC Press, 2001.

[17] W. L. Winston. Introduction To Mathematical Programming: Applica-
tions and Algorithms, 2nd ed. Duxbury Press, Belmont, CA, 1995.

26

