
1

Conflict Resolution in Free-Ranging Multi-Vehicle
Systems: A Resource Allocation Paradigm

Spyros A. Reveliotis and Elzbieta Roszkowska

Abstract—We propose a novel paradigm for conflict resolution
in multi-vehicle traffic systems where a number of mobile agents
move freely in a finite area, each agent following a pre-specified
motion profile. The key idea behind the proposed method is
the tesselation of the underlying motion area in a number of
cells, and the treatment of these cells as resources that must
be acquired by the mobile agents for the execution of their
motion profiles, according to an appropriate resource allocation
protocol. We capitalize upon the existing literature on the real-
time management of sequential resource allocation systems, and
develop such protocols that can formally guarantee the safe
and live operation of the underlying traffic system, while they
remain scalable with respect to the number of the moving agents.
Collective past experience with the considered policies indicates
that they also provide a pretty large coverage of the RAS
behavioral space that characterizes its safe and live operation.
Finally, we also establish that the aforementioned approach is
applicable even in traffic systems where all vehicles must be in
perpetual motion until their retirement.

I. INTRODUCTION

Conflict resolution in multi-vehicle systems is a problem
that has received extensive attention in the literature, as it
concerns the safe, robust and yet efficient operation of the
transport systems employed in different application contexts.
As remarked in [1], the problem appears in many different
flavors, that result from the operational characteristics of the
underlying application contexts, but, in our opinion, they also
express the “culture” and the technical strengths and mindsets
of the researchers and the technical experts in the relevant
areas. A version of the problem that has received particular
attention in the last decade concerns the establishment of
collision-free routing for autonomous or semi-autonomous
(e.g., human-piloted) vehicles in busy areas. Typical examples
are provided by air-traffic management systems, especially
for traffic close to congested airports, small boat-traffic near
to the harbor, and the traffic generated by a large number
of mobile robots working on different tasks in a small area.
In the prevailing approaches to this problem, each vehicle is
abstracted to a mobile agent, occupying a certain area and
being able to generate a motion that is governed by a specified
set of laws. Furthermore, the area occupied by each agent is
frequently represented by a disk or sphere of a certain radius,
selected in a way that guarantees a desired degree of separation
between any pair of agents. The agent motion dynamics are

S. A. Reveliotis is with the School of Industrial & Systems Engineering,
Georgia Institute of Technology, email: spyros@isye.gatech.edu

E. Roszkowska is with the Institute of Computer Engineering, Control and
Robotics, Wroclaw University of Technology, email: ekr@pwr.wroc.pl

The first author was partially supported by NSF grants CMMI-0619978 and
CMMI-0928231.

typically modeled in continuous time, but they can vary with
respect to the assumptions made regarding the controllability
of the motion. A third attribute that defines another dimension
of classification of these models and studies, is the centralized
or decentralized nature of the adopted control scheme, and in
the case of the latter, the extent and pattern of the inter-agent
communication that is necessitated for its implementation.
Once the assumptions highlighted above have been detailed,
the problem reduces to defining the sensing capabilities, com-
munication protocols and the (feedback-based) motion control
laws that will enable each agent to complete its mission trip
while avoiding potential collisions with the remaining agents
and any other present obstacles. Some indicative examples of
this line of research can be found in [1], [2], [3], [4], [5], [6],
[7] while a higher-level but more comprehensive description
of the pursued methods can be found in [8].

Yet, a closer examination of the results presented in the
aforementioned references will reveal that, by focusing on
the continuous-time dynamics of the vehicle motion, they
tend to suffer from a very high computational complexity,
and therefore, their scalability to environments requesting the
coordination of a large number of vehicles can become a chal-
lenging issue.1 Furthermore, as remarked in [1], while many
of the above works will guarantee motion safety, very few of
them have actually considered the issue of motion liveness, i.e.,
the ability of each agent to reach successfully its destination
in finite time. When it comes to this last problem, most of the
past research approaches in this area have addressed it in a
haphazard manner, e.g., by reducing the liveness problem to
deadlock handling in specific environments, such as narrow
corridors [9], or by proposing specific road designs, such as
intersection points with buffering areas [10]. In some other
cases [11], deadlocks are not prevented, but they are allowed to
occur, then they are detected and, if possible, resolved. Finally,
among these earliest initiatives, there are also a few works, like
those presented in [12], [13], that have tried to take a more
systematic approach to the problem, and address it in a more
rigorous manner, employing models and concepts borrowed
from the supervisory control theory [14].

Motivated by the limited scalability of the aforementioned
methods and their apparent incompleteness with respect to
liveness, this work will focus on an alternative approach to the

1For instance, the results presented in [6], that constitute one of the
most comprehensive and structured approaches to coordinated and optimized
motion planning in multi-robot systems, present a computational complexity
of, at least, O(QN) where N is the number of robots and Q is the number
of decision stages per robot that result from a time-based discretization of its
motion.

2

traffic coordination of free-ranging multi-vehicle systems, that
seeks to discretize the vehicle motion into a number of stages
and establish the safety and the liveness of the vehicle motion
through a hybrid control scheme that is defined on the basis of
this additional structure. More specifically, under the proposed
regime, the motion of a vehicle within a particular stage is
controlled by one of the typically used time-driven models. On
the other hand, the vehicle transitioning among the different
stages induces an additional set of event-driven dynamics, that
evolve in the discrete state space which is defined by the po-
tential vehicle allocations to their corresponding stages. In the
resulting representation, two stages belonging to the motion
processes of two different vehicles are said to be in conflict, if
their simultaneous execution by the corresponding vehicles can
compromise the posed safety requirements. Clearly, conflicting
stages should not be allowed to occur simultaneously. But this
restriction, when combined with the arbitrary structure of the
underlying motion profiles, arises the potential of deadlock,
and it can compromise the system liveness. Hence, there is a
need for a more extensive and systematic coordination of the
vehicle transitions among the different stages of their trips.

More specifically, it should be clear from the above dis-
cussion that, in the operational regime of the considered
hybrid control models, the safety and the liveness of the
vehicle motion must be established through a restriction of
the vehicle transitions among their consecutive stages, that
will ensure the following two properties for any reachable
state: (i) no two vehicles execute motion stages that are in
mutual conflict, and (ii) there exists a feasible sequence of
stage transitions that will enable every vehicle to complete its
motion. An additional concern is that the restriction imposed
upon the vehicle motion is the minimum possible, so that
it does not impair unnecessarily other performance attributes
of the system. The resulting problem corresponds to a rather
classical problem in the theory of concurrent processes, which
has already been studied in the context of computer operating
systems [15], [16], [17], automated production systems [18],
[19], [20], [21] and other workflow management systems [22],
[23], and more recently, it has been more generally addressed
by the theory of real-time management of resource allocation
systems (RAS) [24]. The main contribution of this work is
a complete and formal reduction of the considered vehicle
safety and liveness problem to the problem of the RAS liveness-
enforcing supervision addressed in [24].

From a more conceptual standpoint, the problem considered
in this work generalizes and extends to the domain of free-
ranging multi-vehicle systems, techniques that were developed
in the past for zone-controlled Automated Guided Vehicle
(AGV) systems [25], [26], [27]. AGV systems constitute a
class of industrial automated material handling systems where
a fleet of mobile robots facilitates the material transfer among
a set of processing and buffering stations, while moving on
a physically or virtually defined guidepath network that inter-
connects the considered stations. In order to avoid collisions
and ensure the vehicle safety, the links of the guidepath
network are split into zones and it is stipulated that every
zone can be be allocated to at most one vehicle at a time.
Hence, the vehicle trips can be discretized into a sequence of

stages that is defined by the sequence of the traversed zones.
At the same time, a liveness-enforcing supervisor coordinates
the allocation of the different zones to the contesting vehicles
so that deadlocks are avoided and every vehicle can proceed
successfully to its destination.

Furthermore, the methodology developed in this manuscript
is in line with some recent developments that advocate the
use of hybrid approaches to vehicle motion planning and
control as a means to manage the complexity and enhance
the robustness of the underlying control function [28], [29].
In fact, as we shall establish in the following, our methods
can take advantage of approaches like those developed in
[29] in order to support the motion control of the system
vehicles through their allocated stages. At the same time,
the proposed methods complement those past results with
a complete theoretical framework that is able to support in
an effective and computationally efficient manner the vehicle
interaction and coordination, as they move through the shared
regions of the underlying motion space.

In the light of all the above discussion, the main con-
tributions of this work can be summarized as follows: (i)
It proposes a complete novel approach for dealing with the
problems of safety and liveness in free-ranging multi-vehicle
systems that is based on the discretization of the vehicular
dynamics and the development of a hybrid control scheme
that is less computationally demanding and, therefore, more
scalable to large-scale applications of these systems. (ii) It
provides a complete and rigorous characterization of the
discretizing model mentioned above and details the process
of its abstraction from the continuous dynamics of the un-
derlying traffic system. Instrumental in this abstraction are
(a) a tesselation of the motion area and (b) a notion of
“resource allocation” that it is induced by this tesselation.
(iii) The presented work also provides complete and rigorous
characterizations of the problems of (motion) safety and live-
ness in the context of the aforementioned resource allocation
function and the new operational regime that it defines for the
underlying vehicle system, and effective and computationally
efficient solutions to these problems. These solutions are
obtained by customizing to the considered application domain
results borrowed from the emerging broader area of real-
time management of resource allocation systems. (iv) The
manuscript also discusses issues that concern the practical
implementation of the aforementioned results, and identifies
additional opportunities for their strengthening and extension.
(v) Finally, it establishes the rather surprising result that
this new framework can be applicable even in the case of
vehicles that must be in perpetual motion until they reach their
destination and retire (and therefore, they cannot come to a halt
while contesting for the additional “resources” – i.e., access
to new areas – that are necessary for their advancement).

The rest of the paper is organized as follows: Section II
introduces the RAS concept of [24], the problem of deadlock
avoidance arising in it, and their formalization through the
framework of Deterministic Finite State Automata [14]. Sub-
sequently, Section III employs the developments of Section II
in order to provide a detailed, complete statement of the
problem considered in this work. Section IV addresses the

3

abstraction of the continuous-time dynamics of the considered
traffic systems to a motion-coordinating RAS, while Section V
deals with the notion of deadlock and the problem of deadlock
avoidance arising in this particular RAS. More specifically,
Section V provides a customized instantiation of Banker’s
algorithm [15] for the considered problem context. Section VI
extends the aforementioned results to traffic systems where all
the vehicles must be in perpetual motion until their retirement.
Section VII considers briefly some more practical aspects of
the implementation of the presented results and highlights
future research issues that can complement and extend the
proposed approach. Finally, Section VIII concludes the paper
epitomizing its major contributions.

II. RESOURCE ALLOCATION SYSTEMS

As explained in the Introduction, this work will seek to es-
tablish the safety and liveness of the considered multi-vehicle
systems by abstracting and managing a resource allocation
system (RAS). In most general terms, a RAS is a dynamical
system consisting of a set of concurrently executing processes
that compete for their access to shared resources. A formalism
particularly suitable to represent the interactive dynamics of
these processes from the standpoint of the aforestated con-
cerns of safety and liveness, is the Deterministic Finite State
Automaton (DFSA) [14]. In this section, first we provide a
systematic introduction of the RAS model to be employed
in this work and its further abstraction to a DFSA. Then,
in the second part of the section, we employ the considered
RAS and its DFSA-based representation in order to formally
characterize some concepts and properties relating to the
liveness of its behavior. Finally, for reasons of completeness,
we also provide an appendix with a brief introduction to the
DFSA modeling framework and some additional concepts in
that framework that are useful for the developments presented
in this work.

A. L-CON-RAS and their DFSA-based modeling

In this subsection, first we review the RAS concept, as
defined in [24], and subsequently we introduce the further
conditions that will define the RAS sub-class considered in
this work. Also, in the rest of this manuscript, the notation
Z, Z+

0 and Z+ will respectively denote the set of integers,
non-negative integers and strictly positive integers.

Definition 1: [24] A (sequential) resource allocation system
(RAS) is defined as a 4-tuple Φ =< R, C,P,A >2 where:

1) R = {R1, . . . , Rm} is the set of the system resource
types.

2) C : R → Z+ is the system capacity function, with
C(Ri) ≡ Ci characterizing the number of identical
units from resource type Ri that are available in the
system. Resources are considered to be reusable, i.e.,
they are engaged by the various processes according to
an allocation/de-allocation cycle, and each such cycle

2The complete definition of a RAS, according to [24], involves an additional
component that characterizes the time-based – or quantitative – dynamics of
the RAS, but this component is not relevant in the modeling and analysis to
be pursued in the following developments, and therefore, it is omitted.

does not affect their functional status or subsequent
availability.

3) P = {J1, . . . , Jn} is the set of the system
process types supported by the considered
system configuration. Each process type Jj is
a composite element itself; in particular, Jj =
< Sj ,Gj >, where:

a) Sj = {Ξj1, . . . ,Ξj,l(j)} is the set of processing
stages involved in the definition of process type
Jj , and

b) Gj is a data structure that defines the sequential
logic over the set of processing stages Sj , that
governs the execution of any process instance of
type Jj .

4) A :
⋃n
j=1 Sj →

∏m
i=1{0, . . . , Ci} is the resource

allocation function, which associates every processing
stage Ξjk with a resource allocation request A(j, k) ≡
Ajk. More specifically, each Ajk is an m-dimensional
vector, with its i-th component indicating the number of
resource units of resource type Ri necessary to support
the execution of stage Ξjk. Obviously, in a well-defined
RAS, Ajk(i) ≤ Ci, ∀j, k, i. Also, it is assumed that
Ajk 6= 0, i.e., every processing stage requires at least
one resource unit for its execution.

For complexity considerations, we also define the quantity
|Φ| ≡ |R|+ |

⋃n
j=1 Sj |+

∑m
i=1 Ci as the “size” of RAS Φ. It

is clear from the above that Definition 1 encompasses an entire
taxonomy of RAS, obtained by the further specification of the
underlying process structure (cf. item 3(b)), the capacities of
the various resource types (cf. item 2), and the applied resource
allocation protocol (cf. item 4). Next we focus on a particular
RAS class that is known as the class of Linear Conjunctive
(L-CON-) RAS [24] and is of special interest in the resource
allocation to be considered in this work. This class is defined
by the following two conditions regarding the aforementioned
items:

Condition 1: In L-CON-RAS, the data structure Gj that
defines the sequential logic of process type Jj , j = 1, . . . , n,
corresponds to a total ordering of the processing stage set Sj .
Without loss of generality, in the following we shall assume
that this total ordering is defined by the index k of Ξjk
with k ∈ {1, . . . , l(i)}. The implication of the imposed total
ordering is that any process instance of Jj will execute the
processing stages in Sj sequentially, starting from Ξj1 and
terminating with Ξj,l(j).

Condition 2: In L-CON-RAS, the resource allocation re-
quests Ajk, j = 1, . . . , n, k = 1, . . . , l(j), are “conjunctive”,
i.e., a processing stage Ξjk requests a nonempty and possibly
non-singleton subset of the system resources for its execution.
Furthermore, a process instance executing processing stage
Ξjk will be able to advance to its successor processing stage
Ξj,k+1, only after it is allocated the resource differential
(Aj,k+1 − Ajk)+; and it is only upon this advancement that
the process will release the resource units |(Aj,k+1−Ajk)−|,
that are not needed anymore.3

3We remind the reader that for any given a ∈ Z, a+ ≡ max{a, 0} and
a− ≡ min{a, 0}.

4

Next we discuss how the dynamics of the L-CON-RAS
can be further formalized in the DFSA modeling framework.
Without any loss of generality, and for reasons that will
become clear in the subsequent developments of this paper,
in the following we shall assume that each process instance
defines a distinct process type.

Definition 2: The DFSA G(Φ) = (Σ, E,Γ, f, σ0,ΣM) ab-
stracting the feasible dynamics of an L-CON-RAS Φ =<
R, C,P,A > is defined as follows:

1) The state set Σ consists of all vectors σ =
[σ1, σ2, . . . , σn] ∈ Zn such that:

∀j ∈ {1, . . . , n}, 0 ≤ σj ≤ l(j) + 1 (1)

and

∀i ∈ {1, . . . ,m},
n∑
j=1

Aj,σj
(i) ≤ Ci (2)

Each component σj of σ indicates the current stage of
process Jj . In particular, σj = 0 indicates that process
Jj has not been initiated yet, while σj = l(j) + 1
indicates that process Jj has been completed. Fur-
thermore, in Equation 2 it is implicitly assumed that
∀j, i, Aj0(i) = Aj,l(j)+1(i) = 0.

2) The event set E = {ejk | j = 1, . . . , n; k =
1, . . . , l(j) + 1}, where for every j = 1, . . . , n: (a) the
event ej1, represents the initiation of process Jj by the
allocation of the resource set Aj1; (b) the events ejk,
k = 2, . . . , l(j), represent the advancement of process
Jj from processing stage Ξj,k−1 to processing stage Ξjk
through the corresponding adjustment of its resource
allocation; and (c) the event ej,l(j)+1 represents the
termination of process Jj and the release of all the
resources currently held by it.

3) For each pair (σ, ejk) we define σ′ = f(σ, ejk) such
that the components σ′q , q = 1, . . . , n, of σ′ are given
by

σ′q =

 σq + 1 if q = j ∧
(1 ≤ k ≤ l(j) + 1 ∧ σq = k − 1)

σq otherwise
4) For each state σ ∈ Σ, Γ(σ) = {e ∈ E : σ′ = f(σ, e) ∈

Σ}.
5) The initial state σ0 = 0, which corresponds to the situ-

ation where no process has been initiated, and therefore,
all the system resources are free.

6) The set of marked states ΣM is the singleton {sM =
[l(1)+1, . . . , l(n)+1]}, and it expresses the requirement
for complete process runs.

B. Deadlocks and deadlock avoidance in L-CON-RAS

A major concern in the logical control of L-CON-RAS is
the establishment of live – or deadlock-free or non-blocking –
behavior. Deadlocks are defined as RAS states where there is a
set of processes such that each of them, in order to advance, re-
quests the allocation of resources currently held by some other
process(es) in the considered set. Their development results
from (i) the fact that processes will hold upon their allocated
resources in a non-preemptive manner and (ii) the arbitrary
resource requirements of the process stages, as expressed by

function A(j, k), that can give rise to cyclical patterns of
resource requests among the various executing processes.

In the DFSA abstraction of the L-CON-RAS operation, the
presence of deadlocks is manifested by the presence of states
σ ∈ RS(σ0) from which there is no path to the marked state
σM , in the transition graph TG of automaton G(Φ). Such
states σ will be characterized as non-live in the following.
This characterization of the state liveness further implies that
a correct Deadlock Avoidance Policy (DAP) must restrict the
system operation to an acyclic subgraph of TG that contains
the initial state σ0 as the single “source” node and the marked
state sM as the single “terminal” node. In the representation
of the DFSA model G(Φ) = (Σ, E,Γ, f, σ0,ΣM), the de-
velopment of a DAP is equivalent to establishing a liveness-
enforcing supervisor (LES) Γx.4 Such a LES is characterized
as optimal, and denoted by Γ∗, if the corresponding transition
graph TG∗ is the maximal subgraph of TG that satisfies the
correctness property stated above. The set of states reachable
in G∗(Φ) includes all the reachable live states of G(Φ) and
leaves out all those states of G(Φ) that are not live.

In the L-CON-RAS operational context, the optimal LES
Γ∗ is well-defined and it is effectively computable through
an one-step lookahead scheme that admits a tentative feasible
event iff the resulting state is live. However, the corresponding
problem of assessing the state liveness in L-CON-RAS is
NP-complete [30]. In the light of this result, the research
community has pursued two alternative solutions: 1) The
identification of special L-CON-RAS structure that can admit
the deployment of the optimal DAP in polynomial complexity
with respect to the RAS size. 2) The synthesis of sub-optimal
DAPs that are implementable in polynomial complexity with
respect to the underlying RAS size, and yet, efficient, i.e., they
manage to admit a large part of TG∗. The basic mechanism
for developing this second class of policies is through the
identification of some surrogate condition to state liveness,
H(s), such that (i) H() is polynomially testable on any given
RAS state s and (ii) the application of this condition in an one-
step-lookahead control policy, while starting from the RAS
initial state s0, will lead to a correct DAP (where correctness
should be specified as in the previous paragraphs). We shall
further concretize the concepts and techniques underlying the
development of this last class of policies in Section V, where
we present a particular policy from this class that is suitable for
the management of the resource allocation function considered
in this document.

III. PROBLEM STATEMENT

Having provided, in the previous section, a formal char-
acterization of the concept of resource allocation system and
of the need for liveness-enforcing supervision that arises in
these environments, next we proceed to a more complete
description of the problem that is addressed in this work and
of the proposed methodology. Hence, in this section we first
detail the multi-vehicle system that is the focus of our study,
and subsequently we highlight the proposed approach and

4A formal definition of the concept of liveness-enforcing supervisor for any
given DFSA is provided in the appendix.

5

the specific tasks that need to be fulfilled for its successful
implementation.

The multi-vehicle system to be considered in the following
consists of a set of autonomous mobile agents that move in a
finite planar motion area U ⊂ R2. Each agent is represented
by a disk of radius ρ, and its center follows a pre-specified
path that is given in the parametric form

xc = xc(t), yc = yc(t), t ∈ [0, T] (3)

Each of the agent paths is of bounded curvature, K(t), with

K(t) =
ẋc(t)ÿc(t)− ẍc(t)ẏc(t)

(ẋc(t)2 + ẏc(t)2)3/2
=

1
R(t)

(4)

R(t) denotes the path radius at time t. At any time point
t, the agent is described by its configuration a(t) =
(xc(t), yc(t),Θ(t)), where Θ(t) is the angle defining the ori-
entation of the agent at time t, and it is measured with respect
to the x-axis. Starting from an initial configuration a(0) =
(xc(0), yc(0),Θ(0)), an agent will realize its designated path,
specified by Equation 3, if its orientation Θ(t), linear velocity
v(t), and angular velocity ω(t) change according to the model

ẋc(t) = v(t) cos(Θ(t))
ẏc(t) = v(t) sin(Θ(t))

Θ̇(t) = ω(t) = v(t) K(t)
(5)

We assume that the path of each agent starts and ends at
“private” locations, i.e., the areas occupied by the agents at
these points are disjoint, and the agents are retired from the
system upon reaching their destination. However, during their
concurrent motion in the system, the agents share the available
space, and in order to avoid collisions, they may need to
modify their path and velocity profiles. For such a system,
the basic problem that we are trying to solve can be stated as
follows:

Find a mechanism to dynamically modify the initially as-
sumed motion control of the system agents, so that: 1) in a
finite time interval, all the agents will have attained their
destination locations, and 2) at each moment of this time
interval, the areas occupied by any given pair of the agents
are disjoint. An additional concern is that the developed
mechanism compromises the underlying system performance
to a minimum possible extent, where the latter is determined
according to a pertinently selected performance index.

In the above statement, by the “initially assumed motion
control”, we imply the control law derived from Equations 3-
5, that would enable each agent to realize its designated
path without the disturbance of the remaining agents. The
requirement for “dynamic modification” means that changes in
the motion profile of the different agents must be determined
on-line, based on available information about the system state,
where the latter is defined by the agent configurations a(t).
As remarked in the introductory section, the satisfaction of
the aforestated requirement in a way that scales well with
respect to the number of the moving agents, has been a
challenging task. In this work we address this challenge with a
hybrid control scheme that: a) partitions the agents’ continuous
motion processes into stages, and b) assumes an independent,

continuous control of each agent’s motion within a stage, while
stage transitions are executed under a discrete, RAS-based
control model.

The aforementioned discretization of the vehicle motion
processes into stages is attained by means of the tesselation of
the motion plane into a number of areas that will be referred
to as “cells”. An agent is said to “occupy” a certain cell
if its disk overlaps with the area corresponding to that cell.
The defining characteristic of the proposed methodology is
the stipulation that at any point in time, each cell can be
occupied by at most one agent. Hence, the cells defined by
the adopted tesselation constitute fictitious “resources” that
must be acquired and released by any vehicle during its trip.
Furthermore, the entire vehicle motion is naturally segmented
in a sequence of “stages”, where each stage is defined by
a maximal path segment with constant cell (i.e., resource)
occupation. The exclusive allocation to a vehicle of all the
cells that correspond to a certain stage of its trip implies that
the vehicle can execute the corresponding motion segment
in a safe and undisrupted manner. On the other hand, the
vehicle transition from a certain stage to the next requires
the negotiation of any extra cells that are engaged in the
execution of the new stage. This last effect necessitates the
deployment of a resource allocation protocol that will facilitate
the aforementioned negotiation among the vehicles and will
ensure the liveness of the entire system.

In order to provide a complete realization of the approach
described in the previous paragraph we must systematically
address the following four issues:

1) the detailed specification of the tesselation mentioned
above, i.e., the discretization of the motion area U and
of the agent motion paths;

2) the development of the control logic to be followed by an
agent during the acquisition and release of the necessary
cells for the execution of its different process stages,
that will guarantee mutually exclusive cell usage by the
different agents;

3) the development of additional control logic that will
guarantee the deadlock freedom and the liveness of the
induced resource allocation system; and

4) the eventual integration of the continuous-time dynam-
ics describing the agent motion and the discrete-event
dynamics induced by the imposed resource allocation
system into a hybrid agent control model.

In the following, we provide a systematic treatment of items
#1 – #3 in the above list. Item #4 in this list, i.e., the control of
the continuous vehicle motion so that it adheres to the control
logic imposed by the RAS LES that allocates the system cells
and coordinates the vehicle advancement among the different
stages of their motion plans, is rather straightforward and
it can be formally addressed through techniques similar to
those presented in [29]. Closing this section we notice, for
completeness, that some earlier works that present conceptual
affinity to the considered problem, and also a preliminary
version of the results presented in this paper, can be found
in [31], [32], [33], [34].

6

(j - 1) d

(i - 1) d (i - 1)d + r

(j - 1)d + r

(i - 1)d - r

(j - 1)d - r

i di d - r

j d - r

i d + r

j d + r

j d

r

r

A4

A2

A1

A3

Fig. 1. The proposed tesselation, the mappingsW andW−1, and the further
partitioning of the motion space induced by them.

IV. THE PROPOSED TESSELATION OF THE MOTION PLANE
AND THE INDUCED RESOURCE ALLOCATION SYSTEM

The tesselation of the agent motion space that will lead
to the discretization of their motion and to the abstraction of
the relevant RAS outlined in the previous section, can take
place in many different ways. In general, the selection of such
a tesselation scheme should be driven by (i) the tractability
of the necessary calculations for determining the resource
requirements of the different agents, and (ii) the efficiencies
attained by the resulting resource allocation. The evaluation
of these efficiencies can be based on a number of (possibly
conflicting) measures, with some typical examples being (a)
the delays that are experienced by the different agents as a
result of the induced resource allocation, (b) the rate of the
trip completion, and (c) the resulting space occupancy.

When it comes to criterion (i) in the above list, one of the
simplest tesselation schemes is provided by a grid of horizontal
and vertical lines spaced at a distance d ≥ 2ρ and centered at
the origin of a coordinate system, (x, y), that is superimposed
on the motion plane. The resulting cells will be denoted
by W = {w[i, j] : i ∈ {−I, . . . ,−1, 0, 1, . . . , I}, j ∈
{−J, . . . ,−1, 0, 1, . . . , J}}, where −I, I, −J , and J are
taken large enough to encompass the entire area U , that
supports the agent motion. Then, given a point (x, y) ∈ U
and a cell w[i, j], we define

(x, y) ∈ w[i, j]⇐⇒
(i− 1) · d ≤ x ≤ i · d ∧ (j − 1) · d ≤ y ≤ j · d (6)

The size d of the grid, that defines the length of the cell
edges, should be selected by considering the efficiency criteria
mentioned above. In general, a smaller value of d can accom-
modate a larger number of agents, and therefore, can lead to
a higher space occupancy, but at the same time, it will lead
to more disruption of the agent travels by the superimposed
resource allocation process, and possibly to more congested
traffic and longer delays.

We shall say that an agent (with its disk) centered at (xc, yc)

w[i,j]

r

Fig. 2. The “inverse” mapping W−1(C) for a single cell, C = w[i, j].

lies in cell w[i, j] iff (xc, yc) ∈ w[i, j].5 On the other hand,
following the discussion of the previous section, we shall say
that an agent centered at (xc, yc) occupies cell w[i, j] iff there
exists (x, y) ∈ w[i, j] with ||(x, y)−(xc, yc)|| ≤ ρ, where || · ||
denotes the Euclidean norm.6 Clearly, this definition induces
a mapping W from the motion area, U , to the powerset of
W , 2W , that maps to any point (x, y) ∈ U the cell subset
W(x, y) ∈ 2W consisting of the cells occupied by an agent
centered at (x, y). A graphical illustration of this mapping W
is given in Figure 1. More specifically, in Figure 1, the adopted
tesselation is defined by the grid of the solid horizontal and
vertical lines, and the mobile agents are depicted by the grey
disks in it. The reader should notice that an agent can occupy
one cell (as in the case of A1), two neighboring cells (as in
the case of A2), three neighboring cells (as in the case of A3),
or four neighboring cells (as in the case of A4).

Next we show that for the tesselation scheme considered in
this work, the number of cells occupied by a mobile agent that
is located at (xc, yc) is effectively determined by the relative
positioning of (xc, yc) with respect to another partitioning of
the motion plane, that is induced by the original tesselation
scheme and the agent geometry. In Figure 1, this induced
partitioning is defined by the depicted dashed lines. In order
to develop a formal characterization for it, it is instructive to
consider the “inverse” mapping of W , W−1, that is defined
for any C ∈ 2W by W−1(C) ≡ {(x, y) ∈ U :W(x, y) = C}.
In more natural terms, for each set of cells C ∈ 2W ,W−1(C)
is the set of all points (x, y) ∈ U such that the disk of an
agent centered at (x, y) overlaps each of the cells contained
in C, and only these cells. Figure 2 depicts W−1(C) in the
particular case that C is the singleton {w[i, j]}, while Figure 3
depicts the structure of W−1(C) in the cases where the set C
consists of two, three or four neighboring cells. Furthermore,
it is clear that in the case that C contains two or more non-
neighboring cells, W−1(C) = ∅.

5It should be noticed that according to Equation 6, an agent can lie in more
than one cells at the same time. Especially, in the (rather singular) case that
the agent center is located at the intersecting point of two grid lines, the agent
will lie in all four neighboring cells.

6In order to maintain a simple notation, in the entire discussion of this
manuscript we have assumed that the system agents are homogeneous with
respect to their disk size. If, however, this is not the case, but each agent
Ξk occupies a disk of distinct radius, ρk , the concepts and structures defined
in the rest of this section still apply, but they are customized for each agent
through their parameterization by the agent radius ρk .

7

w[i,j]

w[i, j+1]

a)

w[i, j] w[i+1, j]

w[i, j+1]

b)

w[i,j]

w[i, j+1]

w[i+1, j]

w[i+1,j+1]

c)

r rr

Fig. 3. The “inverse” mappingW−1(C) in the case that set C consists of: a) two cells, b) three cells, and c) four cells; the corresponding cells are annotated
by thicker lines.

0 1 2 3 4

0

1

2

2p9

1p1 2p1
2p2

2p3
2p4

1p6

1p1

1p2

1p3

1p4 1p5

1p6

1p2
_

_ 1p6
1p2

2p5

1p7

1p7

2p7

2p6

1p8

2p8

1p9

1p10

1p11

1p12

1p13

A1

A2

Fig. 4. Example paths for two mobile agents, and the corresponding resource allocation profiles that are defined by the path partitioning into maximal
segments with the same cell occupation. The right part of the figure details the profile obtained for agent A1.

TABLE I
THE RESOURCE ALLOCATION INDUCED BY THE PATH SEGMENTATION OF FIGURE 4

Agent A1

Stage No. Required resources
j A(1, j)
1 w[0, 1]
2 w[0, 0], w[0, 1]
3 w[0, 0], w[0, 1], w[1, 1]
4 w[0, 0], w[0, 1], w[1, 0], w[1, 1]
5 w[0, 0], w[1, 0], w[1, 1]
6 w[0, 0], w[1, 0]
7 w[1, 0]
8 w[1, 0], w[2, 0]
9 w[2, 0]

10 w[2, 0], w[2, 1]
11 w[2, 1]
12 w[2, 1], w[2, 2]
13 w[2, 2]

Agent A2

Stage No. Required resources
j A(2, j)
1 w[3, 1]
2 w[3, 1], w[2, 1]
3 w[2, 1]
4 w[2, 1], w[1, 1]
5 w[1, 1]
6 w[1, 1], w[0, 1]
7 w[0, 1]
8 w[0, 1], w[−1, 1]
9 w[−1, 1]

8

Next, we consider the binary relation R that is defined on
the motion plane U by

∀ ((x1, y1), (x2, y2)) ∈ U2, R((x1, y1), (x2, y2))⇐⇒
W(x1, y1) =W(x2, y2) (7)

Clearly, R is an equivalence relation on U . The equivalence
classes of R are defined by

{W−1(C) : C ∈ 2W ∧ ∃ (x, y) ∈ U : W(x, y) = C} (8)

From a more geometric standpoint, the equivalence classes
of R establish a partitioning of the motion plane U into the
regions identified by Equation 8.7 When combined with the
continuity of the agent motion, this partitioning of U enables
the specification of a “resource allocation profile” for any
given agent, that is induced by its motion profile (or “path”)
and expresses the cell occupation and release during the
evolution of this motion. Figure 4 exemplifies the abstracting
notion of the resource allocation profile, by applying it on the
motion profiles, p1 and p2, of two agents, A1 and A2. Path p1

consists of thirteen (maximal) segments p1
1 - p1

13, and path p2

consists of nine such segments, p2
1 - p2

9. Also, Table I specifies
the cells occupied by the two agents at the various stages of
their route. The motion of an agent can, thus, be viewed as
a sequence of stages, each of which requires exclusive access
to a particular subset of resources (i.e., cells). Consequently,
the system of free ranging agents, can be considered as an
L-CON-RAS.

However, the aforementioned L-CON-RAS that models the
cell occupancy by the different agents as they progress through
their motion profile presents additional structure, that renders
the resulting RAS a proper sub-class of L-CON-RAS. The
main attributes that define this new RAS class and differentiate
it from any other element of the broader L-CON-RAS class,
stem from the following two facts:

1) The resource allocation and/or de-allocation that takes
place during the transition between two consecutive
processing stages, must observe a “resource proximity”
relation that is defined by the adopted tesselation. More
specifically, in the considered RAS systems, the alloca-
tion corresponding to a particular processing stage must
be interpretable as the occupation of a number of neigh-
boring cells by the corresponding mobile agent, while
the variation of the allocations between two consecutive
processing stages must be interpretable as the occupation
of some new neighboring cells and/or the release of
some previously held ones, during the agent motion.

2) Furthermore, as stated in the previous section, in this
prototypical introduction of the presented method, we
assume that each cell can be occupied by at most one
agent at a time, which implies a unit capacity for the
system resources.

7In the mathematical theory of binary relations, this partitioning is known
as the equivalence kernel of function W , and it is denoted by kerW . The
equivalence classes of kerW , described by Equation 8, are known as the
fibers of W . [35]

e
11

e
12

e
13

e
14

e
15

1p
0

1p
1

1p
2

1p
3

1p
4

1p
5

e
16

e
17

e
18

e e19 1,11
e e1,10 1,12

e
1,13

e
1,14

1p
6

1p
7

1p
8

1 1p p9 11
1 1 1 1p p p p
10 12 13 14

e
24

e

e

e

e

26

28

29

2,10

e

e

25

27

e
23

e
22

e
21

2p
4

2

2

2

2

p

p

p

p

6

8

9

10

2

2

p

p

5

7

2p
3

2p
2

2p
1

2p
0

!
"

!
#

Fig. 5. The transition graph for the DFSA Φ that represents the dynamics
of the FREE-RANGE-RAS abstracted from the two motion profiles depicted
in Figure 4.

The sub-class of L-CON-RAS that possesses the afore-
mentioned additional features will be characterized as FREE-
RANGE-RAS. Next, we characterize the DFSA Φ that for-
malizes the dynamics of a FREE-RANGE-RAS according to
the spirit of Section II. This automaton is obtained by the
synchronous composition of the simple DFSAs that represent
the resource allocation profiles of the various agents, under
the further constraint that a certain state σ and the transitions
leading into it are feasible iff it satisfies the condition of
Equation 2. Foregoing the formal characterization of this
concept, as it would require a lengthy but rather pedantic
sequence of definitions, we provide a systematic exposition
of it in Figure 5. More specifically, the DFSA Φ depicted in
Figure 5 represents the dynamics of the FREE-RANGE-RAS
that is abstracted from the two motion profiles depicted in
Figure 4. The states of the automaton Φ are arranged in an
array with state σ[l, k] corresponding to the state where agent
A1 is executing its l-th, stage and agent A2 is executing its
k-th stage. The exact range of the state components l and
k has been determined from Table I and the state semantics
for the L-CON-RAS introduced in Section II-A. At the same
time, the state of the agent trips uniquely defines the resource
allocation state; each of the agents A1 and A2 is allocated the
set of cells respectively defined by A(1, l) and A(2, k) (cf.
Table I). All the rows of arcs in the depicted digraph represent
state transitions associated with agent A1, and are labeled with
the events given over the first row. All the columns of arcs
represent state transitions associated with agent A2 and are
labeled with the events given next to the first column. The left
upper node represents the initial state σ0 = [0, 0], where no
agent motion has been initiated, and therefore, no resources
are allocated to the agents. Thus, any allocation request of
any of the agents can be satisfied, i.e., Γ(σ0) = {e11, e21},
and the transition function f is defined for both (σ0, e11) and
(σ0, e21). The occurrence of event e11 causes the transition
to state σ′ = [1, 0], and the occurrence of event e21 causes
the transition to state σ′′ = [0, 1]. On the other hand, the
conflicting resource requirements posed by the two agents
when they execute concurrently certain pairs of their stages,
imply that not all states σ in the aforementioned array are

9

reachable. For example, in state σ = [3, 3], only the event
e14, associated with agent A1, is feasible. The event e24, that
is associated with agent A2, would lead to state σ = [3, 4]
and it can be seen from Table I that the two agents would
conflict regarding the occupancy of cell w[1, 1]. Working
in this manner, we can verify that the plausible resource
allocation space for the two-agent system depicted in Figure 4
is the connected part of the digraph of Figure 5. The remaining
nodes, representing the states that are not reachable from the
initial state σ0, are depicted with a dashed line. Finally, in
the digraph of Figure 5, we also distinguish the black and the
grey nodes from which there is no path to the marked state
σM . These two node categories represent the deadlock and
the impending-deadlock states, respectively. In the following
section, we draw our attention to these two classes of nodes
and discuss their prevention from the system behavior.

V. DEADLOCK AND DEADLOCK AVOIDANCE FOR THE
CONSIDERED MULTI-VEHICLE SYSTEMS

A. Interpreting the motion non-liveness through the formation
of deadlocks

It is clear from the discussion of Section IV that, in the
proposed regime, the agent transition from one state of their
resource allocation profile to the next must be coordinated with
the rest of the system so that conflicting (global) states of Φ are
avoided. Practically, this means that upon reaching a boundary
of an equivalence class defined by Equation 8 of Section IV,
the agent must have to wait until all the cells in the set C
that corresponds to that class are clear from any other agents,
and only then it can proceed to its next stage. However, this
advancement mechanism can lead to circular dependencies
among a number of agents, where each agent waits upon the
release of some cell(s) that are held by some other agent in
this group. Hence, the further advancement of all these agents
will be stalled indefinitely, and we shall say that these agents
are (entangled) in a deadlock. The formation of deadlock and
its insidious role in the development of non-live behavior by
the considered multi-vehicle systems are exemplified more
concretely through the vehicle motion that underlies the DFSA
dynamics depicted in Figure 5. In particular, the reader should
consider the motion dynamics corresponding to the state that
is depicted in black in this figure; let us denote this state
by σ for further reference. As indicated in Figure 5, in the
considered state σ, agent A1 executes the second stage of its
resource allocation profile, and, according to the information
provided in Table I, it occupies cells w[0, 0] and w[0, 1] of the
tesselation applied on the motion plane. On the other hand,
agent A2 executes the fifth stage of its resource allocation
profile and it occupies cell w[1, 1] of the applied tesselation.
Table I also reveals that agent A1 requests cell w[1, 1] for its
further advancement to its next state, and agent A2 requests
cell w[0, 1]. Hence, these two agents block each other, and
the resulting deadlock renders state σ a non-live state in the
dynamics depicted in Figure 5.

The reader should notice that the aforementioned formation
of deadlock in σ, incurs the non-liveness not only of state
σ itself, but also of any other state from which state σ is

unavoidable (under the discretized motion restrictions imposed
by safety). In Figure 5, these additional non-live states are
the three states depicted in grey. Hence, in order to maintain
liveness, the system controller must guard not only against
the formation of deadlock, but also against the transition into
deadlock-free non-live states. This last remark is especially
important when it comes to the computational complexity of
the required liveness-enforcing supervision. More specifically,
in the proposed operational regime, deadlock-containing states
can be recognized by algorithms of polynomial complexity
with respect to the underlying system size, where this size is
defined by the number of the circulating agents, the number
of cells in the adopted tesselation scheme, and the number
of stages in the resource allocation profiles that are induced
by this tesselation (c.f., [24]; Chpt. 2). On the other hand,
the recognition of states that are themselves deadlock-free but
from which deadlock is unavoidable, is an NP-hard problem
[36]. Hence, as discussed in Section II, liveness enforcement
in the considered system will typically be attained by a
sub-optimal supervisor that will seek to establish a trade-
off between the policy permissiveness and the computational
complexity involved in its design and implementation.

B. Efficient deadlock avoidance policies for the considered
class of multi-vehicle systems

Clearly, in resource allocation systems where each process
is defined by a finite allocation sequence, the most straight-
forward way to resolve state liveness is through a search
procedure for a feasible sequence of process advancing events
that brings every process to completion. We shall refer to
such a sequence as a process terminating (event) sequence. In
the context of this search for process terminating sequences,
the non-polynomial complexity of the state liveness problem
is manifested by the need to backtrack to a previously en-
countered state every time that the search reaches a deadlock.
The policy presented next seeks to constrain the search for
a terminating sequence over a subset of such sequences so
that it can be performed in a “greedy” manner, i.e., without
the need for backtracking. As a result, the complexity of this
search remains polynomial. On the other hand, live states with
no terminating sequences in the identified subset will have to
be rejected; this is the price that must be paid for ensuring the
computational efficiency and the scalability of the policy.

The basic concept that underlies the conceptual and compu-
tational definition of the proposed policy is that of an ordered
state:

Definition 3: We shall say that state σ of the DFSA Φ
modeling a FREE-RANGE-RAS is ordered iff there exists a
terminating sequence that advances and terminates the vehicles
activated in that state one at a time.

In other words, state σ is ordered iff we can order its
activated vehicles A1, A2, . . . , An so that all the cells that
must be occupied by vehicle Ai until the completion of its
trip, are either free or they are currently occupied by a vehicle
Aj that precedes vehicle Ai in the aforementioned order (and
therefore they will be free by the time that vehicle Ai is
picked for advancement). Clearly, every ordered state is live.

10

FUNCTION ordered (k,A) : BOOLEAN

Input: (i) k = [k1, ..., kn], where ki is the index of the current
stage of active agent Ai in the stage sequence pi1, . . .,
pil(i) defining the resource allocation profile of the agent
(ii) function A = A(i, j), i = 1, ..., n, j = 1, ..., l(i),
that returns the set of cells that are occupied
by agent Ai in its stage pij

Output: A decision of whether the resource allocation state
described by the input is ordered or not.

BEGIN
occupied :=

⋃n
i=1A(i, ki);

FOR i ∈ 1, . . . , n DO remain[Ai] :=
⋃l(i)
j=ki
A(i, j);

X := {Ai : i = 1, . . . , n};
REPEAT
X ′ := X ;
FOR Ai ∈ X

IF remain[Ai] ∩ occupied = A(i, ki) THEN
X := X \ {Ai};
occupied := occupied \ A(i, ki);

UNTIL X ′ = X OR X = ∅;
IF X = ∅ THEN ordered := TRUE;
ELSE ordered := FALSE;

END

Fig. 6. An implementation of Banker’s algorithm for the resource allocation
that takes place in the operational regime for multi-vehicle systems proposed
in this work.

Furthermore, by confining the system operation to the sub-
space of ordered states we substitute the search for a vehicle
terminating sequence with a search for a vehicle ordering that
possesses the aforementioned property. But this search can be
performed in a greedy manner, since every step that is taken in
it increases monotonically the set of free cells in the underlying
system, and therefore it can only improve the potential of
the remaining vehicles to terminate. The resulting policy is
typically known as the Banker’s algorithm [15] for resource
allocation, and its detailed instantiation for the considered class
of systems is presented in Figure 6. Furthermore, recalling that
under the proposed tesselation scheme an agent cannot occupy
more than 4 cells at any point of its trip, it is easy to verify that
the complexity of this algorithm is no more than O(n2 · L),
where L ≡ maxi{l(i)}. Figure 7 depicts the subspace of the
DFSA Φ that is admitted by the Banker’s algorithm of Figure 6
when applied to the multi-vehicle system of Figure 4.

Figure 6 reveals that the Banker’s implementation in the
considered example is also quite efficient as it fails to admit
only a very small part of the underlying live sub-space.
Collective experience with the implementation of this class of
policies in RAS abstractions resulting from other application
domains indicates that this is a typical attribute of these
policies, i.e., these policies they will provide a pretty large
coverage of the target behavioral space. Yet, in the rest of this
section we discuss a variation of the Banker’s implementation
of Figure 6 that can lead to ever more enhanced performance.

!
"

e
11

e
12

e
13

e
14

e
15

1p
0

1p
1

1p
2

1p
3

1p
4

1p
5

e
16

e
17

e
18

e e19 1,11
e e1,10 1,12

e
1,13

e
1,14

1p
6

1p
7

1p
8

1 1p p9 11
1 1 1 1p p p p
10 12 13 14

e
24

e

e

e

e

26

28

29

2,10

e

e

25

27

e
23

e
22

e
21

2p
4

2

2

2

2

p

p

p

p

6

8

9

10

2

2

p

p

5

7

2p
3

2p
2

2p
1

2p
0

!
#

Fig. 7. The FSA modeling the behavior of the agent system of Figure 4 when
operated under the original implementation of Banker’s algorithm, provided
in Figure 6.

!
"

e
11

e
12

e
13

e
14

e
15

1p
0

1p
1

1p
2

1p
3

1p
4

1p
5

e
16

e
17

e
18

e e19 1,11
e e1,10 1,12

e
1,13

e
1,14

1p
6

1p
7

1p
8

1 1p p9 11
1 1 1 1p p p p
10 12 13 14

e
24

e

e

e

e

26

28

29

2,10

e

e

25

27

e
23

e
22

e
21

2p
4

2

2

2

2

p

p

p

p

6

8

9

10

2

2

p

p

5

7

2p
3

2p
2

2p
1

2p
0

!
#

Fig. 8. The FSA modeling the behavior of the agent system of Figure 4
when operated under the modified implementation of Banker’s algorithm.

This new variation of Banker’s algorithm takes advantage
of the fact that, in many cases, there will be areas of the
motion plane U that are used exclusively by a single agent
among the agents that are active in the evaluated state. More
specifically, there will be agents Ai with stages pij in their
resource allocation profile such that the cells contained in
A(i, j) will not be occupied by any other agent at any stage of
its trip. We shall refer to stages in the agent resource allocation
profiles that present this exclusivity of the engaged cells, as
“private” stages. Furthermore, it is easy to see that the ability
to bring each agent that is active in a state σ of the DFSA
Φ to one of its private stages, implies the liveness of state
σ (since the remaining profile segments of each agent can
be executed one at a time, in any order). Hence, the search
for a terminating sequence can be replaced by a search for an
agent advancing sequence that collects all active agents to their
next private stage.8 This last observation further motivates the
substitution of the original concept of the ordered state with
the more relaxed concept of the “p-ordered” state:

Definition 4: We shall say that state σ of the DFSA Φ
modeling a FREE-RANGE-RAS is p-ordered iff there exists a

8Obviously, agents that do not possess private stages must be led to
completion by the sought sequences.

11

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

rr(x ,y)

R

ρ

Fig. 9. The expanded disk reserved for each agent (modified from [1]).

vehicle advancing sequence that brings every vehicle activated
in state σ to its next private stage or to the completion of its
trip, if such a private stage does not exist, while advancing
one vehicle at a time.

The resolution of this new property for any given state σ of
Φ can be performed by a modified version of the algorithm
of Figure 6, where the value of the variables remain[Ai] are
redefined as

FOR i ∈ 1, . . . , n DO remain[Ai] :=
⋃pi(ki)
j=ki

A(i, j);

In the above expression, the index pi(ki) indicates the first
private stage in the remaining (i.e., for j ≥ ki) resource alloca-
tion profile of agent Ai. The determination of this index from
the provided input data is quite straightforward and its details
are left to the reader. Figure 8 depicts the subspace of the
DFSA Φ that is admitted by the aforementioned modification
of the Banker’s algorithm of Figure 6 when applied to the
multi-vehicle system of Figure 4. As expected, the suggested
modification increased significanty the admitted state space;
in fact, in the considered case, the proposed modification led
to the maximal permissiveness of the applied LES.

VI. EXTENDING THE PROPOSED RESOURCE ALLOCATION
PARADIGM TO SYSTEMS WITH AGENTS IN PERPETUAL

MOTION

In this section we extend the results of Sections IV–V to
the case of multi-vehicle systems involving agents that must
be in perpetual motion until they reach their destination and
retire; a cruising airplane is a typical example of such an agent.
The presented results are motivated by and capitalize upon
some recent developments presented in [1]. More specifically,
(slightly) generalizing the model of [1], we assume that the
motion of any given agent is constrained by

∀t, v(t) ≥ v > 0 ∧ ω(t) ∈ [−ω, ω] (9)

Then, it is clear from Equation 5 that the minimum path
radius R is attained by setting v(t) = v and ω(t) = ±ω.
In particular, by setting v(t) = v and ω(t) = −ω, the agent
will keep moving on a stationary circle of minimal radius
R. The center (xr(t), yr(t)) of this circle can be derived from
the agent configuration a(t) = (xc(t), yc(t),Θ(t)) through the
following equation:

(xr(t), yr(t)) = (xc(t)+R·sin(Θ(t)), yc(t)−R·cos(Θ(t)))
(10)

Furthermore, under this operational regime, the separation
of the considered agent from the other agents in the traffic

system can be ensured by exclusively allocating to it the entire
disk centered at (xr(t), yr(t)), and having a radius ρr = R+ρ,
where ρ is the agent disk radius defined in Section III (c.f.
Figure 9). Finally, by setting Θr(t) = Θ(t), we can define a
configuration ar(t) = (xr(t), yr(t),Θr(t)) for this expanded
reservation area, with a structure similar to the configuration
a(t) of the original agent. The dynamics of configuration ar(t)
are induced by the dynamics of the agent configuration a(t),
according to the following equations:

ẋr(t) = ẋc(t) +R · cos(Θ(t)) · Θ̇(t)
= (v(t) +R · ω(t)) · cos(Θ(t)) (11)

ẏr(t) = ẏc(t) +R · sin(Θ(t)) · Θ̇(t)
= (v(t) +R · ω(t)) · sin(Θ(t)) (12)

Θ̇r(t) = Θ̇(t) = ω(t) (13)

Equations 11-13 reveal that configuration ar(t) is much
more controllable than the original configuration a(t). In
particular, Equations 11 and 12 verify that by setting v(t) = v
and ω(t) = ω, configuration ar(t) can be stopped. Also,
once stopped, ar(t) can be moved in any desired direction
Θr, by letting the agent to rotate around the stationary point
(xr(t), yr(t)), until Θ(t) = Θr, and then setting ω(t) = 0. But
then, one can ensure conflict-free motion for the considered
traffic system by profiling the motion of the configurations
ar(t) instead of the motion of the original agent configurations
a(t), and controlling this motion through the imposition upon
the motion area U of a tesselation with a grid size d ≥ 2ρr.
The implementational details are straightforward and they are
left to the reader.

VII. PRACTICAL IMPLEMENTATION AND FURTHER
RESEARCH

In this section we briefly discuss the control “architecture”
and the communication protocol that can facilitate the imple-
mentation of the control logic developed in the previous parts
of this manuscript. The main intention of this discussion is (i)
to provide a more concrete perspective regarding the practical
applicability of the presented results, and also (ii) to highlight
further research directions that can extend the applicability of
these results by further alleviating the computational and / or
the communication complexity of the control function.

It is generally true that the supervisory control problem of
establishing non-blocking behavior in the context of various
DES models necessitates a comprehensive / holistic view
of the system behavior. As a result, the solutions that are
developed for such supervisory control problems are typi-
cally characterized by a centralized structure; i.e., the various
decisions are effected by a central controller that maintains
a detailed representation of the state of the entire system
and interacts with the various agents operating in the system
through an appropriate communication protocol. This is also
the typical control structure that is assumed by the RAS
supervisory control theory. Hence, the most straightforward
implementation of the control logic developed in the previous
sections will involve a central controller – or supervisor – that
maintains a characterization of the global resource allocation

12

state in the form of the DFSA Φ that was introduced in
Section IV. This supervisor has also knowledge of (i) the
imposed tesselation on the motion area U , and of (ii) the
continuous motion profiles executed by every agent; therefore,
it can infer the evolution of the future cell requirements for
every agent. On the other hand, each mobile agent is aware
of the applied tesselation and of the further partitioning of the
motion area U that it is induced by it (cf. Figure 1 and the
accompanying discussion in Section IV). In particular, every
time that the agent is about to cross the boundary of one
of the regions defined by this induced partitioning, the agent
will experience an “interrupt” that will cause it to signal the
corresponding event to the supervisor and get into a waiting
mode until the supervisor grants it permission to proceed.
The supervisor response to the reception of such a boundary-
crossing signal by a mobile agent is structured as follows:
First it assesses the admissibility of the requested transition by
assessing the admissibility of the resulting RAS state by the
deadlock avoidance policy detailed in Section V. If the applied
DAP rejects the requested transition, the supervisor archives
it as a “blocked request”. In the opposite case, the supervisor
updates accordingly the maintained resource allocation state
and signals its permission to the requesting agent. In this
second case, the supervisor also revisits the list of blocked
requests, and re-assesses them in the context of the new
resource allocation state. The blocked requests must be re-
assessed one request at a time, according to a priority scheme
that is aligned to the performance criteria of the traffic system.
A similar set of procedures will regulate the initiation of a
new trip by an agent and the retirement of an agent that has
completed its trip.

We want to point out that, in spite of its centralized nature,
the control architecture outlined above will be practically
implementable for traffic systems that involve a very large
number of vehicles due to the discretized / abstracting nature
of the applied control logic, and the low (polynomial) compu-
tational complexity of the proposed DAP. In fact, it is possible
to further reduce the complexity of the computation performed
by this policy during the assessment of the admissibility of a
requested advancement by any given vehicle, by processing the
vehicles in the set X of the algorithm in Figure 6 in a way that
seeks to terminate the advancing vehicle first and returns with
an accepting outcome as soon as this vehicle has been removed
from set X ; the relevant details are rather straightforward and
they are omitted due to space limitations.

Other directions that can be investigated in an effort to
further alleviate and control the computational and communi-
cation complexity of the underlying control function involve
the hierarchical and/or decentralized implementation of this
function. In general, such distributed implementations of the
control function are based on “special structure” in the con-
trolled plant that enables the localization of the underlying
decision making process. In the context of the RAS-based
paradigm that is proposed in this work, a possibility for de-
centralized liveness-enforcing supervision is facilitated by well
known results from supervisory control theory that specify
conditions under which the concepts of deadlock and non-live
states become equivalent. In the resulting regime one needs to

guard only against transitions to deadlock states, and this test
is much more amenable to decentralization than the test for
non-liveness. A systematic investigation of these ideas and a
preliminary set of results on them can be found in [37].

VIII. CONCLUSION

This paper has proposed a novel paradigm for establishing
safe and live motion in free-ranging multi-vehicle systems.
The defining idea of the proposed method is the tesselation of
the underlying motion plane in a number of cells of a certain
shape and size, and the treatment of these cells as resources
that must be acquired by the moving agents for the execution
of the corresponding segments of their motion profiles. The
paper established that the resulting resource allocation problem
can be effectively addressed by leveraging results provided by
the burgeoning area of real-time management of resource allo-
cation systems. It also highlighted further research directions
that can extend these results and their practical implementation
in the considered application context. In fact, we believe that
the paper defines a new research domain for the underlying
application area, and many of the more open topics highlighted
in earlier sections of the manuscript constitute part of our
current investigations.

APPENDIX

DETERMINISTIC FINITE STATE AUTOMATA

In this appendix, we introduce the concept of Deterministic
Finite State Automaton (DFSA) and we discuss some of its
properties that are important for the developments presented
in the main part of the paper. A more extensive discussion on
this material can be found in [14].

Definition 5: A deterministic finite state automaton (DFSA)
is a 6-tuple G = (Σ, E,Γ, f, σ0,ΣM), where:

1) Σ is the set of states.
2) E is the set of events. The occurrence of an event causes

a state transition in G.
3) Γ : Σ→ 2E is the feasible-event function. Event e ∈ E

is feasible (i.e., can occur) in state σ ∈ Σ iff e ∈ Γ(σ).
4) f : Σ× E → Σ is the transition function, i.e., a partial

function defined for pairs (σ, e) such that e ∈ Γ(σ), and
with σ′ = f(σ, e) defining the state that results from the
occurrence of event e in state σ.

5) σ0 ∈ Σ is the initial state.
6) ΣM ⊆ Σ is the set of marked states.
For the sake of convenience, function f is often extended

from domain Σ × E to domain Σ × E∗, where E∗ denotes
the set that contains all the finite-length strings consisting of
elements of E and the empty string ε. For any given z ∈ E∗
and e ∈ E, the extension of f is defined in the following
recursive way:

f(σ, ε) = σ

f(σ, ze) = f(f(σ, z), e) (14)

We will say that state σ′ is reachable from state σ iff there
exists string z ∈ E∗ such that f(σ, z) = σ′. The set of all

13

states reachable from σ is denoted by RS(σ) and it is called
the reachability set of σ.

An alternative way to define a DFSA is through its transition
graph TG = (RS(σ0), F), i.e., a labelled, directed multi-
graph such that (i) RS(σ0) is the vertex set of TG, (ii) F ⊆
Σ×Σ×E is the set of edges, where each edge d = (σ, σ′, e)
is directed from vertex σ to vertex σ′ and labelled by e, and
(iii) f = (σ, σ′, e) ∈ F iff e ∈ Γ(σ) and σ′ = f(σ, e).

From the application viewpoint, an important property of a
DFSA is the demonstration of non-blocking behavior, which
is defined as follows:

Definition 6: A DFSA G presents non-blocking behavior
(or, more briefly, is non-blocking), iff ∀σ ∈ RS(σ0), RS(σ)∩
ΣM 6= ∅.

In plain terms, a DFSA G is non-blocking if every string
that originates at the initial state σ0 can be extended so that it
leads to one of the automaton marked states σ ∈ ΣM . Hence,
this definition is consistent with the general idea in DFSA-
based modeling that marked states indicate the achievement of
a “milestone” or a task completion, in the behavior generated
by the automaton. In the context of the application considered
in this manuscript, non-blocking behavior coincides with the
concept of traffic liveness, and therefore, these two concepts
are used inter-changeably. In a system that is not naturally
live, one can consider enforcing this property by making the
feasible event function Γ more restrictive. In more technical
terms, the adopted supervisor filters out from the set of feasible
events at every state, an appropriate subset of admissible
events; a formal characterization of this idea is as follows:

Definition 7: Given a DFSA G = (Σ, E,Γ, f, σ0,ΣM), a
restriction of G is an automaton Gx = (Σ, E,Γx, f, σ0,ΣM),
such that for each σ ∈ Σ, Γx(σ) ⊆ Γ(σ). If the resulting
automaton Gx is live then Γx is called a liveness enforcing
supervisor or an LES.

For the purposes of this paper, we also recall the concept
of the parallel composition of two or more automata.

Definition 8: The parallel composition of automata G1 and
G2 is the automaton G1 ‖ G2 = (Σ1 × Σ2, E1 ∪ E2,Γ1‖2, f ,
(σ01, σ02),ΣM1 × ΣM2) such that:

1) Γ1‖2(σ1, σ2) = (Γ1(σ1) ∩ Γ2(σ2)) ∪ (Γ1(σ1) \ E2) ∪
(Γ2(σ2) \ E1)

2) f((σ1, σ2), e) =
(f1(σ1, e), f2(σ2, e)) if e ∈ Γ1(σ1) ∩ Γ2(σ2)
(f1(σ1, e), σ2) if e ∈ Γ1(σ1) \ E2

(σ1, f2(σ2, e)) if e ∈ Γ2(σ2) \ E1

undefined otherwise

In the parallel composition, feasible events that are “private”
to each constituent automaton can occur independently in the
automaton, while events shared by the two automata must oc-
cur in both of them in a synchronized manner. Finally, we also
notice that, as an operator, parallel composition is associative
and commutative; that is, G1 ‖ (G2 ‖ G3) = (G1 ‖ G2) ‖ G3

and G1 ‖ G2 = G2 ‖ G1.

REFERENCES

[1] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,” IEEE

Trans. on Robotics, vol. 23, pp. 1170–1183, 2007.
[2] A. Bicchi and L. Pallottino, “On optimal cooperative conflict resolution

of air traffic management systems,” IEEE Trans. on Intelligent Trans-
portation Systems, vol. 1, pp. 221–232, 2000.

[3] C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air traffic
management: a study in multiagent hybrid systems,” IEEE Trans. on
Automatic Control, vol. 43, pp. 509–521, 1998.

[4] J. Lygeros, D. N. Godbole, and S. Sastry, “Verified hybrid controllers
for automated vehicles,” IEEE Trans. on Automatic Control, vol. 43, pp.
522–539, 1998.

[5] G. Inalhan, D. M. Stipanovic, and C. J. Tomlin, “Decentralized opti-
mization, with application to multiple aircraft coordination,” in Proc. of
CDC’02. IEEE, 2002, pp. 1147–1155.

[6] S. M. La Valle and S. A. Hutchinson, “Optimal motion planning for
multiple robots having independent goals,” IEEE Trans. on Robotics &
Automation, vol. 14, pp. 912–925, 1998.

[7] D. V. Dimarogonas, S. G. Loizou, K. J. Kyriakopoulos, and M. M.
Zavlanos, “A feedback stabilization and collision avoidance scheme for
multiple independent non-poin agents,” Automatica, vol. 42, pp. 229–
243, 2006.

[8] J. K. Kuchar and L. C. Yang, “A review of conflict detection and
resolution modeling methods,” IEEE Trans. on Intelligent Transportation
Systems, vol. 1, pp. 179–189, 2000.

[9] Y. Lee, K. Gupta, and S. Payandeh, “Motion planning of multiple agents
in virtual environments using coordination graphs,” in IEEE Int. Conf.
Robotics and Automation, ICRA’05, 2005, pp. 378–383.

[10] J. Wang and S. Premvuti, “Distributed traffic regulation and control for
multiple autonomous mobile robots operating in discrete space,” in IEEE
Int. Conf. Robotics and Automation, ICRA’95, vol. 2, 1995, pp. 1619 –
1624.

[11] M. Jager and B. Nebel, “Decentralized collision avoidance, deadlock
detection, and deadlock resolution for multiple mobile robots,” in
IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS’01, vol. 3,
2001, pp. 1213 – 1219.

[12] F. Noreils, “Integrating multirobot coordination in a mobile-robot control
system,” in IEEE Int. Workshop Intelligent Robots and Systems, 1990,
pp. 43–49.

[13] Y. Liu, S. Kuroda, T. Naniwa, H. Noborio, and S. Arimoto, “A practical
algorithm for planning collision-free coordinated motion of multiple
mobile robots,” in IEEE Int. Conf. Robot. Automat., 1989, pp. 1427–
1432.

[14] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Boston, MA: Kluwer Academic Pub., 1999.

[15] E. W. Dijkstra, “Cooperating sequential processes,” Technological Uni-
versity, Eindhoven, Netherlands, Tech. Rep., 1965.

[16] E. G. Coffman, M. J. Elphick, and A. Shoshani, “System deadlocks,”
Computing Surveys, vol. 3, pp. 67–78, 1971.

[17] R. D. Holt, “Some deadlock properties of computer systems,” ACM
Computing Surveys, vol. 4, pp. 179–196, 1972.

[18] Z. A. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible
manufacturing systems with concurrently competing process flows,”
IEEE Trans. on Robotics and Automation, vol. 6, pp. 724–734, 1990.

[19] J. Ezpeleta, J. M. Colom, and J. Martinez, “A Petri net based deadlock
prevention policy for flexible manufacturing systems,” IEEE Trans. on
R&A, vol. 11, pp. 173–184, 1995.

[20] S. A. Reveliotis and P. M. Ferreira, “Deadlock avoidance policies for
automated manufacturing cells,” IEEE Trans. on Robotics & Automation,
vol. 12, pp. 845–857, 1996.

[21] M. P. Fanti, B. Maione, S. Mascolo, and B. Turchiano, “Event-based
feedback control for deadlock avoidance in flexible production systems,”
IEEE Trans. on Robotics and Automation, vol. 13, pp. 347–363, 1997.

[22] W. Van der Aalst and K. Van Hee, Workflow Management: Models,
Methods and Systems. Cambridge, MA: The MIT Press, 2002.

[23] J. Park, “A deadlock and livelock free protocol for decentralized internet
resource coallocation,” IEEE Trans. on Systems, Man and Cybernetics,
Part A, vol. 34, pp. 123–131, 2004.

[24] S. A. Reveliotis, Real-time Management of Resource Allocation Systems:
A Discrete Event Systems Approach. NY, NY: Springer, 2005.

[25] ——, “Conflict resolution in AGV systems,” IIE Trans., vol. 32(7), pp.
647–659, 2000.

[26] M. P. Fanti, “Event-based controller to avoid deadlock and collisions
in zone-control AGVS,” Int. J. of Production Res., vol. 40, no. 6, pp.
1453–1478, 2002.

[27] E. Roszkowska and S. Reveliotis, “On the liveness of guidepath-based,
zoned-controlled, dynamically routed, closed traffic systems,” IEEE
Trans. on Automatic Control, vol. 53, pp. 1689–1695, 2008.

14

[28] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
motion planning and control in polygonal environments,” IEEE Trans.
on Robotics, vol. 21, pp. 864–874, 2005.

[29] D. C. Conner, H. Choset, and A. A. Rizzi, “Flow-through policies for
hybrid controller synthesis applied to fully actuated systems,” IEEE
Trans. on Robotics, vol. 25, pp. 136–146, 2009.

[30] T. Araki, Y. Sugiyama, and T. Kasami, “Complexity of the deadlock
avoidance problem,” in 2nd IBM Symp. on Mathematical Foundations
of Computer Science. IBM, 1977, pp. 229–257.

[31] E. Roszkowska, “Provably correct closed-loop control for multiple
mobile robot systems,” in Proceedings of ICRA’05. IEEE, 2005, pp.
2810–2815.

[32] ——, “High-level motion control for workspace sharing mobile robots,”
in Robot Motion and Control. Springer, LNCIS vol. 360, 2007, pp.
427 – 435.

[33] A. Kobetski, “Optimal coordination of flexible manufacturing systems
with automatic generation of collision and deadlock-free working sched-
ules,” Ph.D. dissertation, Chalmers University of Technology, 2008.

[34] S. A. Reveliotis and E. Roszkowska, “Conflict resolution in multi-vehicle
systems: a resource allocation paradigm,” in Proceedings of IEEE CASE
2008. IEEE, 2008, pp. 115–121.

[35] W. M. Wonham, “Supervisory control of discrete event systems,” Elec-
trical & Computer Eng., University of Toronto, Tech. Rep. ECE 1636F
/ 1637S 2006-07, 2006.

[36] S. A. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE
Trans. on Automatic Control, vol. 55, pp. 1646–1651, 2010.

[37] E. Roszkowska and S. Reveliotis, “A maximally permissive distributed
protocol for motion coordination in free-range vehicular systems,” in
IFAC World Congress 2011. IFAC (submitted), 2011, pp. –.

