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Abstract—Computer hardware is moving from uniprocessor
to multicore architectures. One problem arising in this evolution
is that only parallel software can exploit the full performance
potential of multicore architectures, and parallel software is
far harder to write than conventional serial software. One
important class of failures arising in parallel software is circular-
wait deadlock in multithreaded programs. In our on-going
Gadara project, we use a special class of Petri nets, called
Gadara nets, to systematically model multithreaded programs
with lock allocation and release operations. In this paper, we
propose an efficient optimal control synthesis methodology for
ordinary Gadara nets that exploits the structural properties
of Gadara nets via siphon analysis. Optimality in this context
refers to the elimination of deadlocks in the program with
minimally restrictive control logic. We formally establish a
set of important properties of the proposed control synthesis
methodology, and show that our algorithms never synthesize
redundant control logic. We conduct experiments to evaluate
the efficiency and scalability of the proposed methodology, and
discuss the application of our results to real-world concurrent
software.

I. INTRODUCTION

A fundamental revolution has taken place in the computer
industry in the past decade. The mainstream computer CPUs
used to have only a single processor core capable of executing
a single task at a time, and CPU speeds doubled roughly every
18 months according to Moore’s law. Processor core speed
cannot increase indefinitely, however, because faster cores
would generate excessive heat. Successive CPU generations
therefore now provide more processor cores rather than a
faster single core and can execute several tasks at once.
The problem is that only parallel software can exploit the
full performance potential of multicore architectures, and
parallel software is far harder to write than conventional
serial software. Choreographing a productive and harmonious
interplay among concurrent tasks is a very difficult task
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because reasoning about concurrency is very challenging
for human programmers. Multicore architectures are making
parallel programming unavoidable but concurrency bugs are
making it costly and error-prone. Significant effort has been
spent to eliminate several types of concurrency bugs; see,
e.g., [25], [24], [23], [26].

In our on-going Gadara project [16], we are interested
in shared-memory multithreaded software, a very common
computing paradigm in which concurrent tasks share access
to a pool of computer memory. Mutual exclusion locks (or
“mutexes”) prevent tasks from accessing the same memory
concurrently, thus allowing tasks to update shared memory
in an orderly way, because at most one task may hold a
given lock at any moment. However, it is easy for situations
to arise in which, e.g., task 1 has acquired lock A and
needs lock B, while task 2 holds B but requires A; these
tasks are deadlocked and neither can perform useful work.
Such type of deadlock is called circular-mutex-wait (CMW)
deadlock in the literature, where a set of threads are waiting
indefinitely for one another and none of them can proceed. In
this paper, we focus on CMW deadlocks, an important class
of concurrency bugs. Variants of the Banker’s Algorithm [6]
provide a principled approach to dynamic deadlock avoidance
for concurrent software. The algorithm, however, requires a
central controller that can potentially impose a global serial
bottleneck on the software it governs. Deadlock “Healing” [24]
addresses potential deadlocks by adding “gate locks” that
prevent out-of-order lock acquisitions from causing deadlocks.
At runtime, actual deadlocks are detected and remedied by
adding further gate locks, gradually eliminating deadlocks
from programs. Healing is more practical than the Banker’s
Algorithm because its runtime checks are efficient and because
it does not introduce a global serialization point into the
software that it controls.

In the Gadara project, we adopt a model-based approach
to systematically model, analyze, and control multithreaded
software for the purpose of deadlock avoidance [17]. Our
results on the first two steps, namely modeling and analysis,
have been reported in [19]; the third step, control, is the
focus of the present paper. More specifically, we employ
modeling and control techniques from discrete-event systems
(DES), which have discrete state spaces and event-driven
dynamics. While classical control theory, which focuses
on time-driven systems, has been successfully applied to
computer systems [12], the application of DES to computer
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systems is more recent; see, e.g., [29], [27], [20], [7], [3], [9],
[15], [5]. Concurrent software is a typical example of a DES.
Petri nets, a commonly used modeling formalism in DES, are
employed in our project to model multithreaded programs.
Reference [14] provides a review of the application of Petri
nets to computer programming. There are at least three
advantages of using Petri nets in this application context:
(i) Petri nets provide a compact, graphical representation of
a concurrent program’s inherent dynamics, without explicitly
enumerating its state space. (ii) The Petri net models enable
formal analysis and verification of important properties of
their associated programs via efficient structural analysis.
(iii) The models also make possible the synthesis of provably
correct and optimal control logic that can be instrumented
in the original programs for deadlock avoidance at run-time.
In this regard, we defined a special class of Petri nets,
called Gadara nets, to systematically model multithreaded C
programs with lock allocation and release operations [19].

The special features of Gadara nets enable the mapping
of the desired property of programs (e.g, deadlock-freeness)
to some structural properties of their corresponding Gadara
net models. More specifically, we have formally established
that a multithreaded program that can be exactly modeled
as a Gadara net is deadlock-free (a behavioral property) if
and only if a certain type of siphon (a structural property)
cannot be reached in its associated Gadara net [19]. Therefore,
once we have obtained a Gadara net model of the program,
we can focus on detecting the aforementioned siphons in the
net. If no such siphon is detected, then this verifies that the
underlying program is deadlock-free; otherwise, we synthesize
control logic to prevent the above siphons from becoming
reachable, thereby avoiding their associated deadlocks. As we
will discuss in Section II-B, when it is not possible to build
an exact Gadara net model of a program due to modeling
constraints, a conservatively-built Gadara net model is needed,
which is certain to include all possible execution paths of the
program (and possibly some infeasible paths as well). In this
case, the absence of the aforementioned siphons is a sufficient
condition for CMW-deadlock-freeness of the program; the rest
of the discussion in this paper still applies for the conservative
model.

In control synthesis, we employ a common control
technique for Petri nets, called Supervision Based on Place
Invariants (SBPI) [11], [10], [33], [13]. The control logic
synthesized by SBPI is in the form of monitor places that
augment the original net. An original Gadara net model
of a concurrent program is ordinary by definition, i.e., all
the arcs in the net have unit weights. However, after a
net is augmented by monitor places and their associated
arcs, the resulting controlled Gadara net is not necessarily
ordinary in general. Moreover, Petri net models for some
other application may also belong to the class of controlled
Gadara nets and contain arcs with non-unit weights. In [18],
we have developed a general methodology of optimal control
synthesis for controlled Gadara nets that need not be ordinary.
Technically, this proposed control methodology is also called
a maximally-permissive liveness-enforcing (MPLE) control
policy, since the synthesized control logic will provably

eliminate deadlocks while otherwise minimally constraining
program behavior, and the resulting controlled Gadara net is
live.

The control synthesis algorithm proposed in [18] prevents
a special type of siphons, termed Resource-Induced Deadly
Marked (RIDM) siphons [28], from becoming reachable in
the net. This algorithm possesses a very nice property that for
any monitor place synthesized by the algorithm, its associated
arcs always have unit weights. In other words, the algorithm
will never introduce additional non-ordinariness to a controlled
Gadara net. As a result, if our control synthesis starts with a
Gadara net model of a concurrent program, then the original
net is ordinary, and the subsequent controlled nets will remain
ordinary as well. This motivates us to investigate in this
paper the customization of the general algorithm in [18],
and concentrate on the ordinary case of controlled Gadara
nets, where only resource-induced empty siphons need to be
considered. A resource-induced empty siphon is a special case
of a RIDM siphon. Thus, all the properties of the general
algorithm will be preserved in the customized algorithm.

The main contributions of this paper are as follows.
(i) We propose an iterative control synthesis methodology
for ordinary Gadara nets, which customizes the general
methodology presented in [18] and preserves the properties
of correctness and maximal permissiveness. (ii) We formally
establish a set of important properties of the proposed
control synthesis methodology, and show that our algorithms
never synthesize redundant control logic. (iii) We conduct
experiments to evaluate the efficiency and scalability of the
proposed methodology.

The paper is organized as follows. Section II reviews the
class of Gadara nets and its relevant properties. Section III
provides an overview of the proposed methodology. The
customized methodology for the optimal control of ordinary
Gadara nets is presented in Section IV. We investigate
some important properties of the proposed methodology
in Section V and report on the results of its experimental
evaluation in Section VI. We discuss the application of our
results to real-world software in Section VII and conclude in
Section VIII.

II. GADARA PROJECT AND GADARA PETRI NETS

The objective of the Gadara project [1], [16] is to
develop a software tool that takes as input a deadlock-prone
multithreaded C program and outputs a modified version of
the program that is guaranteed to run deadlock-free without
affecting any of the functionalities of the program. The system
architecture of the Gadara project is shown in Figure 1, which
includes four stages. (i) We extract from the program source
code a standard graphical representation, called Control Flow
Graph (CFG), which captures the execution paths of the
program. (ii) The CFG is translated into a Petri net model
of the program, formally defined as a Gadara net, based on
which potential deadlocks in the program can be mapped to
structural features in the net. (iii) Optimal control logic is
synthesized for the Gadara net using the method presented
in this paper. (iv) The control logic is used to instrument
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Fig. 1: The Gadara architecture

the source code and manage lock allocation and release at
run-time to avoid deadlocks.

Our publications in computer science venues [31], [32]
have addressed Steps 1 and 4 in detail. Moreover, the details
about Step 2, i.e., the modeling and analysis of multithreaded
programs using Gadara nets, are systematically studied in [19].
The results from [19] lay the foundation for the development
of the results in this paper where we focus on Step 3.
In this section, we review the definitions and properties of
Gadara nets. We assume readers are familiar with standard
Petri net definitions; see the appendix and [22] for necessary
background.

A. Definitions of Gadara nets

Gadara nets are a special class of Petri nets that are
employed to systematically model multithreaded C programs
with lock allocation and release operations, for the purpose of
deadlock analysis and resolution. The class of Gadara nets is
formally defined in [19]; we review the relevant results for the
sake of completeness.

Definition 1: [19] Let IN = {1, 2, ...,m} be a finite set of
process subnet indices. A Gadara net is an ordinary, self-loop-
free Petri net NG = (P, T,A,M0) where

1) P = P0 ∪ PS ∪ PR is a partition such that: a) PS =⋃
i∈IN PSi

, PSi
6= ∅, and PSi

∩ PSj
= ∅, for all i 6= j;

b) P0 =
⋃

i∈IN P0i , where P0i = {p0i}; and c) PR =
{r1, r2, ..., rn}, n > 0.

2) T =
⋃

i∈IN Ti, Ti 6= ∅, Ti ∩ Tj = ∅, for all i 6= j.
3) For all i ∈ IN , the subnet Ni generated by PSi

∪{p0i
}∪

Ti is a strongly connected state machine. There are no
direct connections between the elements of PSi ∪ {p0i}
and Tj for any pair (i, j) with i 6= j.

4) ∀p ∈ PS , if |p • | > 1, then ∀t ∈ p•, •t ∩ PR = ∅.
5) For each r ∈ PR, there exists a unique minimal-support

P-semiflow, Yr, such that {r} = ‖ Yr ‖ ∩PR, (∀p ∈
||Yr||)(Yr(p) = 1), P0 ∩ ‖Yr‖= ∅, and PS ∩ ‖Yr‖6= ∅.

6) ∀r ∈ PR,M0(r) = 1, ∀p ∈ PS ,M0(p) = 0, and ∀p0 ∈
P0,M0(p0) ≥ 1.

7) PS =
⋃

r∈PR
(‖Yr‖ \{r}).

NG is defined to be an ordinary Petri net that consists of
three types of places: (i) P0 is the set of idle places that model
the operational “boundary” of the net processes and, from a
more technical standpoint, are used to facilitate the discussion

Fig. 2: A deadlock example in the Linux kernel: Gadara net
model

of liveness and other properties; (ii) PS is the set of operation
places, each of which models a basic block of the program in
its critical section; and (iii) PR is the set of resource places
that model mutexes and are shared among the threads. Each
resource, modeled by a place in PR, must satisfy the semiflow
requirement as specified in Condition 5, which implies that a
lock acquired by a thread will always be released later. A
detailed discussion about Definition 1 is presented in [19].

Example 1: The Gadara net model NG of a deadlock bug
in version 2.5.62 of the Linux kernel is shown in Figure 2.
This model, together with the source code involved in the
deadlock, is presented in [19] (without control). The model
and our analysis to be presented later in this paper capture the
real deadlock bug of the underlying program that is studied in
[8]. We will use it as a running example, and demonstrate the
relevant control synthesis throughout this paper. �

Given a Gadara net model of a deadlock-prone program,
we employ SBPI to synthesize control logic and augment
the original Gadara net by the obtained monitor places. The
augmented net is called a controlled Gadara net, denoted as
N c

G; the definition of the class of N c
G is given in [19]. In

general, a controlled Gadara net is not necessarily ordinary,
due to the addition of monitor places and their associated
arcs. As a special case, if all the arcs associated with the
monitor places in the net have unit weights, then the resulting
controlled Gadara net is an ordinary net. Next, we define this
special subclass of controlled Gadara nets, which, as discussed
in Section I, is the focus of the control synthesis presented in
this paper.

Definition 2: [19] Let NG = (P, T,A,M0) be a Gadara
net. A controlled Gadara net N c

G1 = (P ∪PC , T, A∪AC ,M
c
0 )

is an ordinary, self-loop-free Petri net such that, in addition
to all conditions in Definition 1 for NG, we have

8) For each pc ∈ PC , there exists a unique minimal-support
P-semiflow, Ypc

, such that {pc} = ‖Ypc
‖ ∩ PC , P0 ∩
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||Ypc
|| = ∅, PR ∩ ‖Ypc

‖= ∅, PS ∩ ‖Ypc
‖6= ∅, and

Ypc(pc) = 1.
9) For each pc ∈ PC , M c

0 (pc) ≥ max
p∈PS

Ypc(p).

From Definition 2, we can see that N c
G1 preserves the net

structure of NG. A monitor place pc ∈ PC can be considered
as a generalized resource place, i.e., pc must also satisfy a
semiflow requirement that is specified in Condition 8, but
is weaker than that in Condition 5. Due to the similarity
between the original resource places and the synthesized
monitor places, we will use the term “generalized resource
place” to refer to any place p ∈ PR ∪ PC . By Definition 2, a
monitor place can have multiple initial tokens.

As we mentioned in Section I and will further elaborate
later, the control synthesis algorithm to be presented next
guarantees that for any monitor place synthesized by this
algorithm, its associated arcs always have unit weights. In
the particular application of concurrent software, we always
start with a Gadara net model NG of the software, which
is ordinary. Thus, by applying the aforementioned control
synthesis algorithm, the resulting controlled Gadara nets will
remain within the class of N c

G1. Consequently, we can restrict
our attention to NG and N c

G1 in the following development of
the control synthesis algorithm.1

Remark 1: We observe that NG is a special subclass of
N c

G1, where PC = ∅ and AC = ∅. Therefore, any property
that we derive for N c

G1 holds for NG as well.
According to the semantics of the program modeled

by Gadara nets, branching transitions2, such as those
corresponding to if/else, should not be constrained
by any resource place, which is stated in Condition 4 of
Definition 1. Any monitor place, as a generalized resource
place, is also desired to satisfy a similar condition, so that the
corresponding control logic can be properly instrumented in
the program. Technically, the branching transitions in Gadara
nets are said to be uncontrollable, as they cannot be disabled
by any generalized resource place; if a controlled Gadara
net satisfies that no monitor place in the net will attempt to
disable any uncontrollable transition, then the net is said to be
admissible. In the remainder of this paper, we only consider
admissible N c

G1.
Assumption 1: N c

G1 is admissible.
The control synthesis algorithm to be presented guarantees
the satisfaction of Assumption 1 in the considered application
context.

B. Properties of Gadara nets

The main properties of Gadara nets are formally established
in [19]. We introduce some relevant definitions, and discuss the
properties that will be used in the following control synthesis.

A Petri net is live if for any transition t in the net and any
reachable marking M , there exists another marking M ′ that
is reachable from M , such that t is enabled under M ′. In
other words, in a live Petri net, starting from any reachable

1The optimal liveness-enforcing control synthesis forN c
G is treated in detail

in [18].
2The set of branching transitions is formally defined as: {t ∈ T : (∃p ∈

PS), (|p • | > 1) ∧ (t ∈ p•)}.

marking, any given transition can always be enabled in some
future reachable marking.

Perfect static analysis of program behavior is undecidable.
A conservative model is almost needed due to the control
flow obtained with limited static analysis. We do our best
to build an accurate model but we err on the side of being
“conservative” when uncertain, e.g., some paths in the model
may not be feasible in the program. When there is uncertainty
with static analysis, we conservatively approximate the model
in order to capture the CMW deadlock [31]. Based on the
above discussion, and Proposition 2 and Theorem 3 established
in [19], we have the following proposition that bridges a
multithreaded program and its associated model.

Proposition 1: Given a conservatively-built Gadara net
model of a multithreaded program, the program is CMW-
deadlock-free if the Gadara net model is live.

Example 2: Referring to Figure 2, let us consider the
reachable marking Mu1, where there is one token in p14, one
in p22, and one in p03, while all other places are empty. At
marking Mu1, all the transitions in the net are disabled, i.e.,
the net is in a total deadlock. �

Proposition 1 implies that the goal of deadlock-avoidance
of a program can be achieved by liveness-enforcing control
of its corresponding Gadara net model. Our main intention
for modeling a program via a Gadara net is to enable the
analysis (and control) of the behavioral properties of the
program through the analysis of the structural properties of
the corresponding Gadara net. Here, the behavioral property of
interest is deadlock-freeness of the program (and liveness of its
associated Gadara net). Yet, as we will show in the following,
we only need to focus on the structure of the Gadara net to
detect the program’s potential deadlocks, without exhaustively
enumerating all the possible behaviors of the program. In this
regard, we introduce the notion of siphon, which is a well-
defined structural construct in Petri nets.

Definition 3: A siphon is a nonempty set of places S, such
that •S ⊆ S•.

Definition 4: In Gadara nets, a siphon S is said to be
a resource-induced (RI) siphon, if S contains at least one
generalized resource place, i.e., S ∩ (PR ∪ PC) 6= ∅.

We further introduce the notion of modified marking [28]
to facilitate our discussion.

Definition 5: Given N c
G1 and a reachable marking M , the

modified marking M is defined by

M(p) =

{
M(p), if p /∈ P0;
0, if p ∈ P0. (1)

Modified markings essentially “erase” the tokens in idle
places. The number of tokens in idle place p0i

can always be
uniquely recovered from the invariant implied by the structure
of subnet Ni, i.e., M1 = M2 if and only if M1 = M2. We
use R(N c

G1,M) to denote the set of reachable markings of
N c

G1 starting from M . The set of modified markings induced
by the set of reachable markings is defined by R(N c

G1,M
c
0 ) =

{M |M ∈ R(N c
G1,M

c
0 )}.

The following theorem relates the liveness property of a
Gadara net to its structural properties in terms of siphons. This
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Fig. 3: Iterative control of (controlled) Gadara nets: Ordinary
case (ICOG-O)

theorem is a direct result of Theorem 1 presented in [19].3

According to Remark 1, this theorem also holds for NG.
Theorem 1: (Liveness of Gadara nets) N c

G1 is live iff there
does not exist a modified marking M ∈ R(N c

G1,M
c
0 ) and a

siphon S such that S is an RI empty siphon at M .
Example 3: We know from Example 2 that the net NG

shown in Figure 2 is not live. Let Mu1 be the modified
marking that is induced by the marking Mu1 defined in
Example 2. At Mu1, there is one token in p14 and one in
p22, while all other places are empty. Let S1 be the set of
all empty places in the net at Mu1. Then, S1 is an RI empty
siphon at Mu1. �

Proposition 1 and Theorem 1 together imply that the goal
of deadlock-avoidance of a program can be achieved by
preventing RI empty siphons from becoming reachable in its
associated Gadara net model. They serve as a foundation for
the control synthesis to be carried out next.

III. OVERALL METHODOLOGY

In this section, we first present an overview of our control
synthesis methodology based on RI empty siphons. Then, we
review an efficient method for detecting RI empty siphons
using mathematical programming, which is discussed in detail
in [19].

A. Iterative control of Gadara nets

Our overall strategy for control synthesis is shown in
Figure 3 and described as follows. Given a multithreaded
program and its associated Gadara net model NG, we first
detect if there is a potential RI empty siphon that can be
reached under the modified markings of NG. For the detected
RI empty siphon, we synthesize control logic to prevent it
from becoming reachable, and obtain a controlled Gadara net
N c

G1. Then, we detect again, over the modified markings of
N c

G1, if there is a new RI empty siphon; and synthesize control

3Liveness of N c
G1 is also equivalent to the absence of any empty siphon

in the original reachable markings of the net. But we have opted to use the
result of Theorem 1 in order to stay close to the developments of the results
in [18].

logic to prevent it, if any. The above process continues, until
there is no new RI empty siphon being detected. According to
Proposition 1 and Theorem 1, upon termination, the resulting
Gadara net is live, and its corresponding program is deadlock-
free.

We see that the proposed methodology is an iterative
process, because (i) there may be some RI empty siphons that
have not been identified in the previous iterations and need
further consideration, and (ii) the synthesized monitor places
are generalized resource places, so that they may introduce
new potential RI empty siphons in the controlled net. We
refer to the above process as the ICOG-O Methodology, which
stands for “Iterative Control Of (controlled) Gadara nets:
Ordinary case”; the general ICOG Methodology that works
for both ordinary and non-ordinary cases is presented in [18].
While ICOG in [18] is based on exploiting RIDM siphons [28],
[19] (which can be considered as a generalization of the
notion of RI empty siphons for non-ordinary nets), ICOG-O
presented in this paper customizes ICOG and only considers
RI empty siphons, resulting in lower analytical complexity
and some interesting properties. In particular, bookkeeping of
prevented states, which is required in ICOG in [18], is no
longer necessary in ICOG-O.

The main features of the proposed ICOG-O Methodology to
be presented are summarized as follows. (i) ICOG-O is based
on structural analysis (using RI empty siphons), and does not
require the construction of the reachability space of the net.
(ii) ICOG-O is correct and maximally permissive with respect
to the goal of liveness enforcement. (iii) ICOG-O is guaranteed
to terminate in a finite number of iterations.

There are two major tasks in ICOG-O: detecting RI empty
siphons and rendering them unreachable. For the first task,
the potential RI empty siphon is detected in each iteration
by a Mixed Integer Programming (MIP) formulation we
proposed in [19]. We will briefly review this formulation in
Section III-B. For the second task, the detected RI empty
siphon is prevented by the UCCOR-O Algorithm, which will
be presented in Section IV.

B. Detection of RI empty siphons [19]

In [19], we have developed a customized and efficient MIP
formulation for the detection of RI empty siphons in NG

and N c
G1. The formulation exploits the following important

property of Gadara nets: If a Gadara net is not live, then the net
will always reach a total-deadlock modified-marking M (with
M being different from the initial marking), i.e., a modified
marking M where all the transitions in the net are disabled.
Moreover, if we let S be the set of all empty places at M ,
then S is an RI empty siphon [19]. Using this property, the
problem of detecting an RI empty siphon in NG and N c

G1

can be reduced to the problem of finding a total-deadlock
modified-marking that is potentially reachable in the net. The
latter one can be solved by the MIP formulation (2)–(10),
denoted as MIP-N c

G1, which is briefly reviewed as follows.
In the formulation MIP-N c

G1, M(p) is a binary indicator
variable associated with any place p ∈ P , such that if p
is not an empty place at M , then M(p) = 1; otherwise,
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M(p) = 0. In fact, for any p ∈ P0∪PS∪PR, M(p) represents
both its associated binary indicator variable and its modified
marking; however, for any p ∈ PC , M(p) only represents
its associated binary indicator variable, but not necessarily its
modified marking (a slight abuse of notation).

MIP-N c
G1: min

∑
p∈PS

M(p) (2)

s.t. M = M0 +Dσ (3)

M(p) = M(p),∀p ∈ PS ∪ PR;

M(p) = 0,∀p ∈ P0 (4)

M(p) = 0,∀p ∈ Q,where
Q = {q ∈ P : (∃t ∈ T ), (•t = {q})

∧ (q ∈ PS)} (5)∑
p∈•t

M(p)− | • t|+ 1 ≤ 0,

∀t s.t. | • t| > 1 (6)∑
p∈PS

M(p) ≥ 2 (7)

M ≥ 0;σ ∈ Z+
0 (8)

M(p) ≥M(p) ≥ M(p)

SB(p)
,∀p ∈ PC

(9)

M(p) ∈ {0, 1},∀p ∈ PC (10)

The objective function (2) seeks to minimize the number
of marked operation places in the detected total-deadlock
modified-marking. The selection of such an objective function
will produce siphons that are efficient for control synthesis
using ICOG-O. Some resulting interesting properties will be
presented in Section V.

We briefly explain the constraints (3) – (10); see [19] for
a detailed discussion. Constraint (3) is the state equation
of the net. Constraint (4) connects an original marking
with its associated modified marking based on Definition 5.
Constraints (4), (5), and (6) enforce that all the transitions in
the net are disabled at M . Constraint (7) follows from the
fact that at least two threads must be involved in a CMW
deadlock. Constraint (8) specifies the sign restrictions for the
variables M and σ. Constraints (9) and (10) are specifically
formulated for N c

G1, i.e., the siphon detection in NG will not
involve these two constraints since PC is empty in that case.
These two constraints set the values of the indicator variables
associated with any monitor place. In particular, Constraint
(10) specifies that M(p) is used as an indicator variable in the
context of this formulation (and not as the modified marking
of the corresponding monitor place p). On the other hand,
the parameter SB(p) that appears in Constraint (9) denotes a
structural bound for the marking of place p. In Gadara nets,
we can set: SB(p) = M c

0 (p), ∀p ∈ P0 ∪PC , and SB(p) = 1,
∀p ∈ PS ∪ PR.

IV. OPTIMAL CONTROL ALGORITHM BASED ON RI
EMPTY SIPHONS

Once an RI empty siphon is detected, we input it to
the control synthesis algorithm, called UCCOR-O, which
customizes the general algorithm UCCOR presented in [18].
The abbreviation UCCOR-O stands for “Unsafe-Covering-
based Control Of RIDM siphons: Ordinary case”. In UCCOR-
O, we focus on a special type of RIDM siphons in ordinary
nets, namely RI empty siphons. UCCOR-O synthesizes control
logic based on the notion of unsafe covering, which is
introduced next.

Similar to the modified-marking defined in Definition 5,
we further define the notion of PS-marking to facilitate the
discussion.

Definition 6: Given N c
G1 and M ∈ R(N c

G1,M
c
0 ), the PS-

marking M is defined by

M(p) =

{
M(p), if p ∈ PS ;
0, if p /∈ PS . (11)

PS-markings essentially “erase” the tokens in idle places
and generalized resource places, retaining only tokens in
operation places. Given the PS-marking M corresponding
to the original marking M , the number of tokens in places
PR and PC under M can be uniquely recovered from their
associated semiflows; the number of tokens in places P0 can
also be uniquely recovered similar to the case of modified
marking. In other words, PS-markings do not introduce any
ambiguity, i.e., there is a one-to-one mapping between the
original marking and the PS-marking, such that M1 = M2 if
and only if M1 = M2. Therefore, we can restrict out attention
to PS-markings in the following discussion, which greatly
facilitates the control synthesis. Furthermore, from Condition 6
of Definition 1, we know that a PS-marking is always a binary
vector, i.e., any component of a PS-marking is either 0 or 1.

In view of the above discussion, when focusing on PS-
markings, we “don’t care” the number of tokens in P0∪PR∪
PC . We introduce the notation “χ” for the value of a PS-
marking component, where “χ” stands for “0 or 1”. The notion
of covering is introduced below.

Definition 7: In Gadara nets, a covering C is a generalized
PS-marking, whose components can be 0, 1, or χ.

For any place p ∈ PS , C(p) represents the covering
component value on p. This notation can be extended to a set
of places Q ⊆ PS in a natural way. Furthermore, we extend
the notion of covering so that it encompasses any place p ∈ P
by setting C(p) = χ, ∀p ∈ P0 ∪ PR ∪ PC .

Given two coverings C1 and C2, we say that C1 covers C2,
if ∀p ∈ PS such that C1(p) 6= C2(p), C1(p) = χ. The “cover”
relationship between a covering and a PS-marking is defined
in a similar way. Note that as ICOG-O evolves, new monitor
places will be added to the net throughout the iterations. In
the rest of this paper, when comparing two coverings (or, a
covering and a PS-marking) with different dimensions, and
the difference is due to the synthesized monitor places, we
assume the one with a lower dimension is padded by χ’s for
those monitor places.

Definition 8: In N c
G1, a marking M is said to be an RIE-
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Fig. 4: Flowchart of the UCCOR-O Algorithm

unsafe marking, if at its associated modified marking M , there
exists at least one RI empty siphon.

Definition 9: A covering C is said to be an RIE-
unsafe covering, if for all PS-markings M it covers, the
corresponding M is an RIE-unsafe marking.

A. The UCCOR-O Algorithm: Overview

We are now ready to present the UCCOR-O Algorithm.
We organize our presentation in a top-down manner. We
first overview the procedure of UCCOR-O as illustrated in
Figure 4, and then explain the three steps of UCCOR-O in
subsequent sections. We will apply UCCOR-O to the running
example throughout our discussion.

The input to UCCOR-O is N c
G1, an RI empty siphon S, and

the associated total-deadlock modified-marking M obtained
from MIP-N c

G1. The output of UCCOR-O is a monitor place
that prevents the RI empty siphon S from becoming reachable.
The UCCOR-O Algorithm contains three steps. In Step 1,
an RIE-unsafe covering is generated based on the input to
the algorithm. This covering captures the RI empty siphon
we want to prevent. In Step 2, the obtained RIE-unsafe
covering is generalized into a new covering, by exploiting
a monotonicity property of Gadara nets. This generalization
step enhances the efficiency of the algorithm, in terms of the
number of undesirable markings that can be prevented by the
final monitor place. In Step 3, a monitor place is synthesized
to prevent the covering obtained in Step 2. Step 3 contains
two stages in general. Stage 2 is necessary only when the
controlled Gadara net obtained in Stage 1 is not admissible.
We discuss these three steps in further detail below.

B. Unsafe Covering Generation

Step 1 of UCCOR-O generates an RIE-unsafe covering,
denoted as Cu1, based on the input to the algorithm. We
consider the following set of places:

ΛS =
⋃

p∈S∩(PR∪PC)

‖Yp‖ ∪ S (12)

Intuitively, ΛS contains the set of all places that are relevant
to the siphon S. In particular, ΛS complements S with all
those operation places that utilize the generalized resources
appearing in S.

Therefore, we can specify the values for the components of
Cu1 that are associated with ΛS as: Cu1(ΛS) = M(ΛS); and
set Cu1(p) = χ, ∀p /∈ ΛS , since these places are irrelevant to
the considered siphon. Moreover, we know from the definition
of covering that we can further set Cu1(p) = χ, ∀p ∈ P0 ∪
PR ∪PC . The resulting Cu1 is input to Step 2 of UCCOR-O.

Example 4: We continue our discussion on the example in
Figure 2. Let NG, Mu1, and S1, described in Example 3,
be the input to UCCOR-O. After Step 1 of UCCOR-O, the
RIE-unsafe covering Cu1 is specified as follows. Cu1(p14) =
Cu1(p22) = 1; Cu1(p) = 0, ∀p ∈ PS \ {p14, p22}; and
Cu1(p01) = Cu1(p02) = Cu1(p03) = Cu1(rA) = Cu1(rB) =
Cu1(rC) = χ. �

C. Unsafe Covering Generalization

Step 2 of UCCOR-O generalizes the RIE-unsafe covering
obtained from Step 1, by exploiting a monotonicity property
of Gadara nets, which is formally proved in [18]. The
monotonicity property is explained as follows. Let M
and M ′ be two markings of a Gadara net, which satisfy:
M(p) ≥ M ′(p), for all p ∈ PS , and M(p) > M ′(p), for
at least some p ∈ PS . If M ′ is a marking that needs to be
prevented, then M also needs to be prevented. The intuition
is that loading a program, which is already in a deadlock
or will unavoidably enter a deadlock, with even more active
threads will only worsen the deadlock situation, but not cure
it.

Based on the above property, for the RIE-unsafe covering
Cu1 obtained in Step 1, if we replace any of its 0 components
(associated with operation places) by 1, the resulting covering
will only cover reachable PS-markings that need to be
prevented, or non-reachable PS-markings. Therefore, Cu1

can be generalized by replacing all of its 0 components by χ,
and the resulting covering is denoted as Cu2, which is input
to Step 3 of UCCOR-O.

By construction, the generalized covering Cu2 will not
“miss” covering any PS-markings that are covered by Cu1.
In general, Cu2 will cover a larger set of PS-markings than
Cu1, because the former contains more χ components. So
instead of preventing Cu1, a monitor place that prevents Cu2

is more efficient, in the sense that it will prevent a larger
set of markings in the controlled net. More importantly, the
property of maximal permissiveness is still preserved, i.e., we
only prevent reachable markings that need to be prevented, or
markings that are not reachable, due to the above discussion.
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Example 5: Given the RIE-unsafe covering Cu1 described
in Example 4, Step 2 of UCCOR-O generalizes Cu1 and
obtains Cu2, which is specified as follows. Cu2(p14) =
Cu2(p22) = 1; and Cu2(p) = χ, ∀p ∈ P \ {p14, p22}. �

D. Monitor Place Synthesis Algorithm

Step 3 of UCCOR-O aims to find an appropriate linear
inequality constraint in the form:

lTM ≤ b (13)

so that SBPI can be employed to synthesize a monitor place,
to prevent Cu2 that is obtained in Step 2; the constraint
should also guarantee that the resulting controlled Gadara
net is admissible. Generally, Step 3 consists of two stages.
Stage 2 is necessary only when the controlled Gadara net
obtained in Stage 1 is not admissible. For the sake of simplicity
and without any confusion, we let Cu ≡ Cu2 and will
use the notation Cu in the following discussion. (Step 3 of
UCCOR-O in this paper is similar to the corresponding step of
UCCOR that is presented in [18], for which no customization
is necessary; we include it here for the sake of completeness.
Also note that in the general UCCOR Algorithm, there is
a step called “Inter-Iteration Coverability Check”, which is
eliminated in the customized UCCOR-O Algorithm. The
reason of this customization will become clear when we
present Theorem 3 in Section V.)

In Stage 1, we specify a linear inequality constraint in the
form of (13) for Cu. From the first two steps of UCCOR-O,
we know that Cu contains only “1” or “χ” components. The
parameters of the constraint associated with Cu are:

lCu
(p) =

{
1, if Cu(p) = 1;
0, otherwise. (14)

bCu
=

( ∑
p:p∈ΛS and Cu(p)=1

Cu(p)

)
− 1 (15)

According to Theorem 3 in [18], this constraint only prevents
Cu (i.e., any PS-marking or covering that is covered by Cu).
Thus, the corresponding control logic synthesized based on
this constraint is maximally permissive. The synthesis of a
monitor place based on this constraint can be achieved by
SBPI. If the resulting N c

G1 is admissible, then Stage 2 is
not necessary and we can continue with the next iteration of
ICOG-O; otherwise, we need to proceed to Stage 2, where
constraint transformation is carried out to deal with the partial
controllability and ensure the admissibility of N c

G1.
Example 6: We illustrate Stage 1 by continuing our

discussion on the running example. Given the covering
described in Example 5, we specify the following linear
inequality constraint according to (14) and (15):

M(p14) +M(p22) ≤ 1 (16)

The monitor place pc, which enforces (16), is synthesized by
SBPI and shown in Figure 5. We see that pc has two out-
going arcs, both of which connect to branching transitions. In
this running example, we define that only the lock acquisition

Fig. 5: A deadlock example in the Linux kernel: Controlled
Gadara net model

transitions are controllable; and all the other transitions (i.e.,
those corresponding to branching and lock releases) are
uncontrollable. Thus, the controlled net that contains pc is not
admissible. We resolve this problem in Stage 2 of Step 3. �

In Stage 2, the original constraint specified by (14) and (15)
is transformed, so that the new constraint, when applied to
SBPI, will render a monitor place that leads to an admissible
controlled net. For the sake of discussion, the constraint
obtained in Stage 1 can be rewritten as:

M(p1) +M(p2) + ...+M(pn) ≤ n− 1 (17)

The key idea of the proposed constraint transformation is
the following. If place pi in (17) can gain tokens through
a sequence of uncontrollable transitions, places along the
sequence of uncontrollable transitions must be included
to the left-hand-side of (17) as we cannot prevent these
transitions from firing and populating tokens into pi. We
make two remarks for the above statement: (i) The set of
places corresponding to a given sequence of uncontrollable
transitions is unique due to the state-machine structure of
the process subnet. (ii) The uncontrollable transitions in this
sequence are not blocked by any generalized resource place,
otherwise they would be controllable. The pseudo-code that
implements the constraint transformation for (17) is given in
Figure 6. Based on the set of places C obtained above, the
new, transformed constraint is:∑

p∈C
M(p) ≤ n− 1 (18)

The important properties of the proposed constraint
transformation technique are summarized as follows; see [18]
for a formal treatment. (i) The constraint transformation
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Algorithm: Constraint Transformation
Input: A linear inequality constraint, e.g., (17)
Output: A set of places C
Method:

1. add p1, ..., pn in (17) to stack S, and to set C
2. while S is not empty
3. p = S.pop()
4. for each uncontrollable t in •pi, if •t is not in C,

add •t to S and C
5. end while

Fig. 6: The constraint transformation technique used in Stage 2
of the Monitor Place Synthesis Algorithm

technique guarantees that the resulting controlled Gadara net
is admissible. (ii) Any marking prevented by the original
constraint is also prevented by the new constraint. (iii) Any
reachable marking that is prevented by the new constraint but
not by the original constraint, can reach a marking prevented
by the original constraint via a sequence of uncontrollable
transitions.

Example 7: We apply the proposed constraint
transformation technique to (16), which is obtained from
Stage 1 in Example 6. After Stage 2, the new, transformed
constraint is:

[M(p14) +M(p13) +M(p15)]

+[M(p22) +M(p21) +M(p23)] ≤ 1 (19)

The monitor place pc1, which enforces (19), is synthesized by
SBPI and shown in Figure 5. We see that pc1 has two out-
going arcs, both of which connect to controllable transitions.
Thus, the controlled net that contains pc1 is admissible. We
denote the resulting controlled Gadara net as N c(1)

G1 , which
consists of NG and pc1. �

Example 7 completes the first iteration of ICOG-O on the
running example. We continue our discussion on the second
iteration in Example 8.

Example 8: In the second iteration of ICOG-O, we first
input the net N c(1)

G1 obtained from Example 7 into MIP-N c
G1

for the detection of RI empty siphons. MIP-N c
G1 finds a total-

deadlock modified-marking Mu2, where there is one token in
p12 and one in p22, while all other places are empty. Note
that this corresponds to a circular-wait deadlock induced by
rA and pc1. Let S2 be the set of all empty places in the net
at Mu2. Then, S2 is an RI empty siphon at Mu2.

We input N c(1)
G1 , S2, and Mu2 to UCCOR-O. Step 1 of

UCCOR-O generates the covering Cu1, which is specified as:
Cu1(p12) = Cu1(p22) = 1; Cu1(p) = 0, ∀p ∈ PS \{p12, p22};
and Cu1(p) = χ, ∀p ∈ P0 ∪ PR ∪ PC . Step 2 of UCCOR-O
further generalizes Cu1 and obtains the covering Cu2, which
is specified as: Cu2(p12) = Cu2(p22) = 1; and Cu2(p) = χ,
∀p ∈ P \ {p12, p22}.

Based on Cu2, Stage 1 of Step 3 of UCCOR-O constructs
the following constraint:

M(p12) +M(p22) ≤ 1 (20)

Similar to the situation encountered in Example 6, the
monitor place that is synthesized by SBPI and enforces

(20), will attempt to disable uncontrollable transitions. Thus,
the resulting controlled net would not be admissible, which
necessitates Stage 2 of Step 3.

In Stage 2, the original constraint in (20) is transformed
into:

[M(p12)+M(p11)]+[M(p22)+M(p21)+M(p23)] ≤ 1 (21)

The monitor place pc2, which enforces (21), is synthesized
by SBPI and shown in Figure 5. We denote the resulting
controlled net as N c(2)

G1 , which consists of NG, pc1, and pc2.
The controlled Gadara net N c(2)

G1 is admissible.
In the third iteration of ICOG-O, we input N c(2)

G1 into MIP-
N c

G1, and no solution is found. Therefore, no new RI empty
siphon can be detected in N c(2)

G1 , and ICOG-O terminates. �

V. PROPERTIES OF THE PROPOSED CONTROL SYNTHESIS
METHODOLOGY

The general ICOG Methodology and UCCOR Algorithm
proposed in [18] are shown to be both correct and maximally
permissive, with respect to the goal of liveness enforcement
of Gadara nets via siphon-based control. Moreover, ICOG
is guaranteed to terminate in a finite number of iterations.
The general ICOG Methodology is developed independent
of the method used to detect siphons. Thus, ICOG-O and
UCCOR-O presented in this paper, which are customized
versions of ICOG and UCCOR respectively, still preserve
the aforementioned properties. Moreover, the customization
possesses some new properties that are formally established
below.

A. Properties of the UCCOR-O Algorithm
Theorem 2: In N c

G1, for any monitor place pc ∈ PC

synthesized by UCCOR-O, any process subnet will never
have two consecutive resource acquisitions from pc without
a resource release to pc in between. Also, any process subnet
will never have two consecutive resource releases to pc without
a resource acquisition from pc in between. Moreover, all the
arcs associated with pc have unit arc weights.4

Proof: Since any covering Cu considered in UCCOR-O
is a generalized PS-marking, the linear constraint generated in
Step 3 of UCCOR-O will only involve operation places. That
is, for any p such that lCu

(p) = 1, p must be an operation
place; further, lCu

(p) = 0, ∀p ∈ P0∪PR∪PC . Given Cu, let pc
be the corresponding monitor place synthesized by UCCOR-O
using SBPI. Also, let Q be the set of places that are involved
in the linear constraint, i.e., Q = {p ∈ PS : lCu(p) = 1}.

Consider an arbitrary transition t ∈ T . We discuss the
connectivity of the monitor place pc to t in four cases, as
shown in Figure 7, where the places that belong to Q are
highlighted. Due to the aforementioned property of lCu

, we
can focus on process subnets (since the generalized resource
places will not affect the connectivity of pc to t in terms of
lCu

). Recall Condition 3 of Definition 1 that, in the process
subnet, t has only one input place, denoted as p11, and one
output place, denoted as p12.

4This theorem also applies to UCCOR developed for the control synthesis
for N c

G, as presented in [18]. However, this result was not presented in [18].
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Fig. 7: Cases considered in the proof: (a) Case 1; (b) Case 2;
(c) Case 3; (d) Case 4

Case 1: p11 ∈ Q and p12 /∈ Q, as shown in Figure 7(a). In
this case, we have: lCu

(p11) = 1 and lCu
(p12) = 0. The state

machine structure of the process subnets leads to the following
feature of the incidence matrix D of N c

G1: if we only consider
the rows associated with the places in all the process subnets,
then in the column corresponding to t, there are only two
nonzero entries, i.e., Dp11,t = −1 and Dp12,t = 1. Therefore,
the algebraic calculation of SBPI [13] will result in one arc
connecting t to pc, whose weight equals to 1.

Case 2: p11 /∈ Q and p12 ∈ Q, as shown in Figure 7(b). In
this case, we have: lCu

(p11) = 0 and lCu
(p12) = 1. Similar

to the analysis in Case 1, the calculation results in one arc
connecting pc to t, whose weight equals to 1.

Case 3: p11 ∈ Q and p12 ∈ Q, as shown in Figure 7(c). In
this case, we have: lCu

(p11) = lCu
(p12) = 1. According to

the calculation of SBPI, no arc will be synthesized between
pc and t.

Case 4: p11 /∈ Q and p12 /∈ Q, as shown in Figure 7(d).
In this case, we have: lCu

(p11) = lCu
(p12) = 0. Similar to

Case 3, no arc will be synthesized between pc and t.
Note that Cases 1 and 4 also apply to the situation when t

is a terminating transition of the process subnet and p12 is an

idle place. Similarly, Cases 2 and 4 also apply to the situation
when t is an initiating transition of the process subnet and
p11 is an idle place. Thus, the above four cases cover all the
possibilities of the connectivity of pc to an arbitrary transition
t.

As a result, if we traverse from the upstream to the
downstream of a process subnet, it is impossible for the
subnet to have two consecutive resource acquisitions from (or
resource releases to) pc.

As a consequence of Theorem 2, we have the following
corollary, which can be considered as a special case of
Condition 8 of Definition 2 when UCCOR-O is employed to
synthesize monitor places.

Corollary 1: In Gadara nets, for each pc ∈ PC synthesized
by the UCCOR-O Algorithm, there exists a unique minimal-
support P-semiflow, Ypc , such that {pc} =‖Ypc‖ ∩ PC , (∀p ∈
‖Ypc‖)(Ypc(p) = 1), P0 ∩ ‖Ypc‖= ∅, PR ∩ ‖Ypc‖= ∅, and
PS ∩ ‖Ypc

‖6= ∅.

B. Properties of the ICOG-O Methodology

Define C(i)
u to be the covering input to Step 3 of UCCOR-O

in the i-th iteration of ICOG-O; and define

K(i) =
∑

p:p∈ΛS and C
(i)
u (p)=1

C(i)
u (p) (22)

namely, K(i) is the total number of 1’s in C(i)
u that is induced

by the siphon S under consideration.
Lemma 1: In ICOG-O, K(i) is non-decreasing with respect

to i. That is, the total number of 1’s in the covering considered
in Step 3 of UCCOR-O is non-decreasing, throughout the
iterations of ICOG-O.

Proof: Consider an arbitrary i ≥ 1, and let pc be the
monitor place synthesized in the i-th iteration of ICOG-O that
prevents C(i)

u . According to Step 3 of UCCOR-O, the initial
marking of pc is M0(pc) = K(i) − 1.

We mentioned above that a monitor place is essentially a
generalized resource place and may introduce new potential
deadlocks in the controlled net. More specifically, the monitor
place pc can directly induce a new circular-wait deadlock, if in
the controlled net, (i) there exists a total-deadlock modified-
marking M (M 6= M c

0 ), such that pc is empty at M , and
(ii) pc blocks at least one thread that is involved in a circular-
wait deadlock at M , i.e., the thread is waiting for the resource
from pc while holding some other resources involved in the
deadlock.

Let C(i+1)
u be the covering that corresponds to the optimal

solution of MIP-N c
G1 in the (i + 1)-st iteration of ICOG-O.

We consider the following two cases.
Case 1: pc does not directly induce the deadlock involved

in C
(i+1)
u , i.e., pc is not part of the deadlock. In this case,

the optimal solution of MIP-N c
G1 in the (i+ 1)-st iteration of

ICOG-O must also be a feasible solution in the i-th iteration,
because, by the assumption of Case 1, this optimal solution
is not a new feasible solution induced by pc. Therefore, MIP-
N c

G1 guarantees that the number of 1’s contained in C
(i+1)
u

will be greater than or equal to that in C(i)
u ; otherwise, C(i+1)

u

would have been exploited in earlier iterations.
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Case 2: pc directly induces the deadlock involved in
C

(i+1)
u , i.e., pc is part of the deadlock. In this case, we

show that at least K(i) operation places must be marked at
C

(i+1)
u . Since pc directly induces the deadlock, pc is empty

at C(i+1)
u (Condition (i) mentioned above). Thus, according

to Theorem 2, there must be M0(pc) = K(i) − 1 different
operation places in ‖ Ypc

‖ that are marked at C(i+1)
u in

order to empty pc. Moreover, we know that pc blocks at
least one thread that is involved in the deadlock at C(i+1)

u

(Condition (ii) mentioned above). Then, there exists an output
transition t of pc, such that the (unique) input operation place
of t (denoted as q1) is marked at C(i+1)

u , which corresponds
to a thread blocked by pc. We argue that q1 /∈‖ Ypc ‖. If
q1 ∈‖ Ypc ‖, then the (unique) output operation place of
t (denoted as q2), which belongs to ‖ Ypc

‖ by definition,
must satisfy Ypc

(q2) > 1. This contradicts Corollary 1.
Thus, the marked operation place q1 is different from the
aforementioned K(i) − 1 marked operation places in ‖Ypc

‖.
As a result, at least K(i) operation places are marked at
C

(i+1)
u , and the number of 1’s contained in C

(i+1)
u , K(i+1),

is at least K(i).
We conclude this section with an important property of

ICOG-O that need not be true for ICOG.
Theorem 3: ICOG-O will not synthesize redundant monitor

places. That is, there does not exist a pair of monitor places
pci and pcj synthesized by ICOG-O, such that the covering
prevented by pci covers the covering prevented by pcj .

Proof: For the sake of discussion, let pci and pcj be the
monitor places synthesized in the i-th and j-th iterations of
ICOG-O, respectively. Correspondingly, let C(i)

u and C(j)
u be

the coverings considered in Step 3 of UCCOR-O in the i-th
and j-th iterations of ICOG-O, respectively. That is, pci is
synthesized to prevent C(i)

u and pcj is synthesized to prevent
C

(j)
u .
If i > j, then according to Lemma 1 and the fact that

C
(i)
u 6= C

(j)
u , we know that C(i)

u cannot cover C(j)
u .

If i < j, we want to show that C(i)
u cannot cover C(j)

u

either. In the i-th iteration of ICOG-O, pci is synthesized to
prevent C(i)

u ; hence, any marking covered by C(i)
u will not be

reachable in the net considered in the j-th iteration of ICOG-
O. As a result, in the j-th iteration, any marking covered by
C

(i)
u will not be a feasible solution to the state equation of the

net, and hence will not be a feasible solution to MIP-N c
G1.

In other words, in the j-th iteration, the solution of MIP-N c
G1

and the corresponding C(j)
u cannot be covered by C(i)

u .

VI. EXPERIMENTAL EVALUATION

We discussed above that the development of the control
synthesis methodology and the validity of the associated
properties are independent of the method used to detect
RI empty siphons. However, we observe that the RI empty
siphon detection algorithm does play an important role in the
efficiency of control synthesis; it is in fact the computational
bottleneck of ICOG-O. This motivated us to develop the
customized formulation, MIP-N c

G1, for efficient siphon
detection in Gadara nets, which we reviewed in Section III-B.
While MIP-N c

G1 is specifically designed for Gadara nets,

siphon detection algorithms for more general classes of Petri
nets have been extensively studied in the literature. A generic
MIP formulation is presented in [4] for the detection of
maximal empty siphons in ordinary, structurally bounded
Petri nets, and it is one of the most widely used empty
siphon detection algorithms in the literature; we refer to this
formulation as MIP-ES hereafter. Our customized algorithm,
MIP-N c

G1, is inspired by MIP-ES, and further incorporates
the special properties of Gadara nets.

A. Objective and setup of the experiments

In this section, we investigate the performance of two
versions of ICOG-O: (i) the original ICOG-O that uses MIP-
N c

G1 for siphon detection, and (ii) a modified version of
ICOG-O, denoted as ICOG-O-ES, that uses MIP-ES for siphon
detection. Since MIP-N c

G1 is customized for Gadara nets,
while MIP-ES is formulated for general, ordinary bounded
Petri nets, we of course expect ICOG-O to be more efficient
than ICOG-O-ES in the context of the Gadara nets. Thus,
in the following experiments, we use ICOG-O-ES as the
baseline for assessing and concretizing this attained efficiency
by ICOG-O. We also report a sample of experimental results
that demonstrate the scalability of ICOG-O.

Our experiments were completed on a Mac OS X laptop
with a 2.4 GHz Intel Core2Duo processor and 2 GB of RAM.
Both ICOG-O and ICOG-O-ES are implemented in C++ and
compiled under the GNU gcc compiler. The MIP formulations
are solved using Gurobi 3.0.1 [2]. Random Gadara nets for
these experiments are generated by a random-walk-style
algorithm. At each step, the program randomly decides either
to grab a lock or to release one already held, according to
the input parameters. Additional logic was applied to ensure
valid behavior. The random Gadara net generator (available at
http://gadara.eecs.umich.edu/software.html)
is based on our experience modeling real concurrent programs
[30]. The input parameters of the generator are further
explained in Section VI-B and Table I.

In our experiments, for each set of parameters (each row in
Table I), 150 samples of random Gadara nets are generated.
The generated nets with no unsafe states5 are removed from
the samples. We set a time-out threshold of 10 seconds for the
stage of RI empty siphon detection in ICOG-O and ICOG-O-
ES. A net times out if it cannot be solved by either MIP-
N c

G1 or MIP-ES in less than 10 seconds. Unless otherwise
specified, all statistical results reported below are calculated
over the sample nets where both ICOG-O and ICOG-O-ES
did not time out.

B. Comparative analysis of ICOG-O and ICOG-O-ES

Figure 8 shows the time to converge (TTC) of ICOG-O and
ICOG-O-ES. Figure 8(a) shows the Normalized Cumulative

5A state is said to be unsafe if (i) at this state, there exists a deadlock
in the corresponding program, or (ii) starting from this state the net will
unavoidably or uncontrollably reach a state, where there exists a deadlock in
the corresponding program; otherwise it is said to be safe.
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TABLE I: Comparative analysis between ICOG-O and ICOG-O-ES

s a TLE SS1 US1 n P T SS2 US2 time (s) iterations time

iteration
µ σ µ σ µ

6 6 0.00 4,202 969 16 35.62 29.00 1,441 200 0.10 0.21 5.25 7.22 0.02
0.11 1,441 200 19.89 52.63 6.38 7.10 3.12

6 7 0.05 3,341 1,017 27 41.46 34.69 1,612 251 0.19 0.40 8.00 8.98 0.02
0.31 1,553 242 41.50 78.72 11.31 11.96 3.67

6 8 0.14 4,244 958 30 42.93 35.48 2,293 276 0.23 0.50 8.07 10.18 0.03
0.32 2,216 267 30.70 51.92 10.17 12.01 3.02

7 6 0.05 3,146 449 19 38.95 31.89 2,077 230 0.08 0.16 4.84 6.67 0.02
0.10 2,077 230 17.48 49.09 5.79 6.64 3.02

7 7 0.07 7,831 3,030 29 46.79 39.69 3,818 697 0.17 0.33 7.83 8.30 0.02
0.34 3,818 697 70.04 160.09 13.35 15.65 5.25

7 8 0.13 8,969 2,833 36 46.89 39.22 3,746 481 1.89 10.00 8.50 10.08 0.22
0.35 3,746 481 32.75 51.58 11.22 11.67 2.92

8 6 0.00 8,750 1,280 21 43.19 35.76 5,716 483 0.08 0.16 5.14 6.51 0.02
0.16 5,716 483 19.21 54.44 5.95 6.22 3.23

8 7 0.06 12,375 4,484 35 48.14 40.54 5,340 855 0.22 0.40 8.66 9.40 0.03
0.31 5,340 855 46.19 69.40 12.86 12.46 3.59

8 8 0.24 10,413 1,384 37 49.23 41.57 5,731 612 1.95 10.15 8.49 9.71 0.23
0.40 5,421 579 38.13 59.51 11.86 11.60 3.22

8 9 0.17 17,558 4,755 27 48.96 41.00 5,101 789 2.62 12.30 9.35 10.57 0.28
0.59 4,912 760 58.55 108.88 13.96 14.91 4.19

8 10 0.18 12,261 4,155 30 55.90 47.66 8,890 1,895 0.66 1.33 14.52 15.48 0.05
0.58 8,594 1,832 79.34 126.98 19.62 21.32 4.04

9 8 0.14 20,871 5,841 41 54.02 46.05 11,062 1,472 1.85 9.36 11.61 12.87 0.16
0.41 11,062 1,472 70.60 141.38 16.07 16.25 4.39

9 9 0.22 21,314 4,481 30 52.83 44.45 8,791 1,049 1.60 7.66 8.76 9.28 0.18
0.61 8,498 1,014 35.63 79.70 12.07 12.41 2.95

9 10 0.23 19,039 5,091 33 58.67 50.24 10,597 1,763 1.06 2.03 17.70 19.74 0.06
0.58 10,597 1,763 104.72 143.20 22.64 23.43 4.63

10 8 0.15 31,562 6,733 47 55.63 47.28 17,848 1,970 1.51 8.85 8.50 9.03 0.18
0.40 17,469 1,929 42.80 60.19 14.33 12.36 2.99

10 9 0.22 39,690 9,206 37 56.27 47.95 14,721 1,761 0.28 0.45 9.59 9.63 0.03
0.56 14,721 1,761 46.00 71.70 14.19 12.72 3.24

10 10 0.21 34,488 9,676 31 60.03 51.57 14,439 1,319 0.82 1.92 14.27 18.96 0.06
0.64 13,973 1,277 80.94 134.43 18.37 22.05 4.41

Frequency (NCF, a.k.a. the empirical cumulative distribution
function). The x-axis is the TTC (in seconds), and the y-
axis is the NCF, which is the cumulative number of samples
normalized by the sample size. A point (x, y) on the graph
means that a fraction of y samples have a TTC that is less
than x seconds. From Figure 8(a), we observe that using
ICOG-O, 64% of the samples can be completed within 0.1
second, while using ICOG-O-ES, 18% of the samples can be
completed within 0.1 second. Moreover, using ICOG-O, 89%
of the samples can be completed within 1 second, while using
ICOG-O-ES, 43% of the samples can be completed within 1
second. Figure 8(b) is the empirical probability distribution
function obtained by kernel density estimation. The x-axis
is the TTC, and the y-axis is the probability. We see that
using ICOG-O, the majority of the samples can be completed
between 0.01 second and 0.1 second, while using ICOG-O-
ES, the majority of the sample completion times span a wider
range from 0.1 second to 100 seconds.

Figure 8(c) is the NCF graph for the difference of the
number of iterations of ICOG-O-ES and ICOG-O. The x-axis
is the extra number of iterations required by ICOG-O-ES as
compared to ICOG-O. The y-axis is the NCF. Note that for all
the samples we tested, ICOG-O always requires fewer or equal

number of iterations than ICOG-O-ES; and correspondingly,
ICOG-O always synthesizes fewer or equal number of monitor
places than ICOG-O-ES. From Figure 8(c), we see that ICOG-
O requires fewer iterations (and synthesizes fewer monitor
places) than ICOG-O-ES for 43% of the samples.

Table I presents a summary of the experimental results of
the comparative analysis between the performance of ICOG-
O and that of ICOG-O-ES. For each row of the table, the
sub-row with italics corresponds to the performance of ICOG-
O-ES, and the counterpart without italics corresponds to the
performance of ICOG-O. The first two columns correspond
to the parameters used to generate the random sample Gadara
nets. The first (s) and second (a) columns are the number of
process subnets and the number of resource acquisitions per
subnet. In generating the random nets, the number of resources
(locks) in the original Gadara net is set to be 11, the probability
of acquiring a new resource before releasing one already held
is 0.2, and the branching probability is 0.1. The third column
(TLE) shows the ratio of sample nets that timed out in any
iteration of ICOG-O and ICOG-O-ES. The fourth (SS1) and
fifth (US1) columns describe the state space complexity. The
sub-row without italics (resp., with italics) shows the average
number of safe and unsafe states that are reachable by the
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Fig. 8: (a) TTC of ICOG-O and ICOG-O-ES: Normalized
cumulative frequency; (b) TTC of ICOG-O and ICOG-O-ES:
Estimated probability density function; (c) Difference of the
number of iterations of ICOG-O-ES and ICOG-O

original nets, where ICOG-O (resp., ICOG-O-ES) did not ever
time out. Note that ICOG-O and ICOG-O-ES do not construct
the state space, since they exploit structural properties of
Gadara nets; these numbers were generated separately for
the sake of scalability assessment. The sixth column (n) is the
number of generated Gadara nets, where both ICOG-O and
ICOG-O-ES did not ever time out throughout the iterations.
The seventh (P) and eighth (T) columns correspond to the
average number of places and transitions in the original Gadara
nets. The ninth (SS2) and tenth (US2) columns shows the
average number of safe and unsafe states that are reachable

TABLE II: Scalability study of ICOG-O

SS US time (s) iters
786,430 487,990 46.05 102
727,240 295,290 2.17 48
532,630 233,800 46.05 61
373,700 136,260 18.45 91
354,270 64,488 25.92 29
336,250 200,370 8.35 83
320,180 118,470 18.35 91
290,970 50,002 3.54 51
285,700 64,386 0.34 13
271,780 64,488 46.21 29
247,920 84,502 26.41 57
226,330 28,242 0.50 20
176,960 26,788 0.42 13
176,920 22,392 0.44 20

by the original nets, where both ICOG-O and ICOG-O-ES
did not ever time out. The eleventh column (time (s)) shows
the average and standard deviation of the time (in seconds)
the entire ICOG-O and ICOG-O-ES processes took until they
converged. The twelfth column (iterations) shows the average
and standard deviation of the number of iterations for ICOG-
O and ICOG-O-ES to converge. Since for any sample net, the
number of synthesized monitor places is always 1 less than the
number of total iterations, we have not included the number
of monitor places in the table. The last column (time/iteration)
is the average time per iteration of ICOG-O and ICOG-O-ES.

In the experiments, we observed that the majority of time
spent by ICOG-O or ICOG-O-ES is on the stage of RI
empty siphon detection. This is precisely why we developed a
customized MIP formulation for RI empty siphon detection in
Gadara nets. Compared to the baseline performance of ICOG-
O-ES, the data above show the efficiency attained by ICOG-O
– the improvement in average time ranges from 17 to 404 times
faster. In addition, the average number of iterations of ICOG-O
is smaller than that of ICOG-O-ES for all the cases. From the
second to fourth columns, we see that ICOG-O timed out on
much fewer nets; and, on average, ICOG-O is able to handle
much larger nets than ICOG-O-ES.

C. Scalability study of ICOG-O

Table II presents a sample of experimental results that
highlight the scalability of ICOG-O. The first (SS) and second
(US) columns are the number of safe and unsafe states. (Again,
ICOG-O does not expand these states; these numbers were
generated separately.) The third column (time (s)) is the total
time (in seconds) for ICOG-O to converge. The fourth column
(iters) is the number of iterations until convergence. We set
a time-out threshold of 6000 seconds for these experiments.
Table II shows that ICOG-O is very scalable even on a modest
computer set up.

VII. DISCUSSION

In the analysis of multithreaded programs, our approach
fully exploits the structural properties of the proposed Petri
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net models, without explicitly constructing the reachability
space of the programs [19]. Our choice of Petri nets is
also supported by the implementation of control logic. The
overhead of controlling software can be generally attributed
to two aspects: (i) control logic runtime decisions, and (ii)
transitions blocked as a result of the control decisions. With
an automaton model, the control decision is based on the
global state of the program. In contrast, the control logic in a
Petri net model is expressed as a set of decentralized monitor
places, which only locally intervene the critical regions that
are involved in the potential deadlocks, thus avoiding a global
bottleneck for control decisions. A synthesized monitor
place is essentially a generalized resource place, whose
outgoing arc effectively delays the target lock acquisition
action that will otherwise lead to a CMW-deadlock [32]. The
similarity between the monitor places and resource places
(that model locks) implies that the synthesized control logic
can be implemented with primitives supplied by standard
multithreading libraries, e.g., libpthread. The framework
of Gadara nets enables the synthesis of correct and maximally
permissive control logic that provably prevents all the
potential CMW-deadlocks in the program and will delay a
lock acquisition only when necessary [18]. The customized
methodology developed in the current paper further guarantees
that no redundant control logic is synthesized throughout the
iteration process (Theorem 3).

VIII. CONCLUSION

We proposed an iterative control synthesis methodology
for ordinary Gadara nets, called ICOG-O, based on
structural analysis in terms of siphons. The control logic
synthesized by ICOG-O enforces liveness in Gadara nets and
provably eliminates all the potential CMW-deadlocks in the
corresponding multithreaded programs. ICOG-O customizes
the general control synthesis algorithm, ICOG, presented
in [18], from which the properties of correctness and maximal
permissiveness are preserved. In addition, we formally
established a set of important properties of the proposed
methodology, and showed that ICOG-O never synthesizes
redundant control logic. Compared to the general ICOG
and UCCOR [18], the customized ICOG-O and UCCOR-O
presented in this paper focus on ordinary Gadara nets, and
thus enable us to implement control synthesis based on a type
of empty siphons. The customization permits a conceptually
simpler process for the control of ordinary Gadara nets. It
also simplifies some steps in the general ICOG and UCCOR.
Due to Theorem 3, in the control of ordinary Gadara nets,
ICOG-O requires a fewer number of iterations than ICOG
in general, and ICOG-O never synthesizes redundant control
logic even without the bookkeeping of prevented states (that
is required in ICOG). Our experimental results showed that
ICOG-O is very efficient in terms of time and the number
of synthesized monitor places. The results also demonstrated
the scalability of our approach to large-scale real-world
software. From a more general perspective, the results in
the Gadara project illustrate that software failure avoidance
is a fertile application area for discrete-event control, and

moreover, special features from this application area are
motivating further theoretical developments on the control of
discrete-event systems.

APPENDIX

Definition 10: A Petri net dynamic system N =
(P, T,A,W,M0) is a bipartite graph (P, T,A,W ) with an
initial number of tokens. Specifically, P = {p1, p2, ..., pn} is
the set of places, T = {t1, t2, ..., tm} is the set of transitions,
A ⊆ (P × T ) ∪ (T × P ) is the set of arcs, W : A → {0, 1, 2, ...}
is the arc weight function, and for each p ∈ P , M0(p) is the initial
number of tokens in p.

The marking of a Petri net N is a column vector M of n entries
corresponding to the n places. M0 is the initial marking. We use
M(p) to denote the (partial) marking on a place p, which is a scalar.
The notation •p denotes the set of input transitions of place p: •p =
{t|(t, p) ∈ A}. Similarly, p• denotes the set of output transitions of
p. The sets of input and output places of transition t are similarly
defined by •t and t•. This notation is extended to sets of places
or transitions in a natural way. A transition t is enabled or fireable
at a marking M , if ∀p ∈ •t, M(p) ≥ W (p, t). A pair (p, t) is
called a self-loop if p is both an input and output place of t. We
consider only self-loop-free Petri nets in this paper. Our Petri net
models of multithreaded programs have unit arc weights. Such Petri
nets are called ordinary. However, addition of monitor places may
render them non-ordinary. The incidence matrix D of a Petri net is
an integer matrix D ∈ Zn×m, where Dij = W (tj , pi)−W (pi, tj)
represents the net change in the number of tokens in place pi when
transition tj fires. A state machine is an ordinary Petri net such that
each transition t has exactly one input place and exactly one output
place, i.e., ∀t ∈ T, | • t| = |t • | = 1.

Let D be the incidence matrix of a Petri net N . Any non-zero
integer vector y such that DT y = 0, is called a P-invariant of N .
Further, P-invariant y is called a P-semiflow if all the elements of y
are non-negative. By definition, P-semiflow is a special case of P-
invariant. A straightforward property of P-invariants is given by the
following well known result [22]: If a vector y is a P-invariant of
Petri net N = (P, T,A,M0), then we have MT y = MT

0 y for any
reachable marking M ∈ R(N ,M0). The support of P-semiflow y,
denoted as ‖y‖, is defined to be the set of places that correspond
to nonzero entries in y. A support ‖ y ‖ is said to be minimal if
there does not exist another nonempty support ‖y′‖, for some other
P-semiflow y′, such that ‖ y′ ‖⊂‖ y ‖. A P-semiflow y is said to
be minimal if there does not exist another P-semiflow y′ such that
y′(p) ≤ y(p), ∀p. For a given minimal support of a P-semiflow,
there exists a unique minimal P-semiflow, which we call the minimal-
support P-semiflow [22].

Supervision Based on Place Invariants (SBPI) [13] provides an
efficient algebraic technique for control logic synthesis by introducing
a monitor place, which essentially enforces a P-invariant so as to
achieve a given linear inequality constraint of the form: lTM ≤ b,
where M is the marking vector of the net under control, l is a weight
(column) vector, and b is a scalar. All entries of l and b are integers.
The main result of SBPI is as follows.

Theorem 4: [13], [21] Consider a Petri net N , with incidence
matrix D and initial marking M0. If M0 satisfies b−lTM0 ≥ 0, then
a monitor place, pc, with incidence matrix Dpc = −lTD, and initial
marking M0(pc) = b−lTM0, enforces the constraint lTM ≤ b when
included in the closed-loop system. This supervision is maximally
permissive, i.e., a transition in the net is disabled by the monitor
place only if its firing leads to a marking where the given linear
constraint lTM ≤ b is violated.
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