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Abstract— Most of the past research on the problem of deadlock avoid-
ance for complex resource allocation systems (RAS) has acknowledged the
fact that the computation of the maximally permissive deadlock avoidance
policy (DAP) possesses super-polynomial complexity for most RAS classes,
and therefore, it has resorted to solutions that trade off maximal permissive-
ness for computational tractability. In this work, we distinguish between
the off-line and the on-line computation that is required for the effective
implementation of the maximally permissive DAP, and we seek to develop
representations of this policy that will require minimal on-line computation.
The particular representation that we adopt is that of a compact classifier
that will effect the underlying dichotomy of the reachable state space into
safe and unsafe subspaces. Furthermore, in this first study of the aforemen-
tioned problem, we restrict our attention to a particular RAS class that is
motivated by an ongoing project of ours called Gadara, and accepts sepa-
ration of the safe and unsafe subspaces of its instantiations through a set
of linear inequalities. Through a series of reductions of the derived classifi-
cation problem, we are also able to attain extensive reductions in the com-
putational complexity of the off-line task of the construction of the sought
classifier. We formally establish completeness and optimality properties for
the proposed design procedures. We also offer heuristics that, if necessary,
can alleviate the computational effort that is necessary for the construction
of the sought classifier. Finally, we demonstrate the efficacy of the devel-
oped approaches through a series of computational experiments. To the
best of our knowledge, these experiments also establish the ability of the
proposed methodology to effectively compute tractable implementations of
the maximally permissive DAP for problem instances significantly beyond
the capacity of any other approach currently available in the literature.

I. INTRODUCTION

Deadlock avoidance for sequential resource allocation sys-
tems (RAS) is an ubiquitous problem that arises in most tech-
nological applications involving the concurrent execution of a
set of processes that compete for the staged acquisition and re-
lease of some underlying set of system resources. In partic-
ular, the applied control logic must avoid the development of
circular waiting patterns where a subset of these processes are
waiting upon each other for the release of the resources that are
needed for their further advancement, a situation characterized
as “deadlock” in the relevant terminology. From a methodologi-
cal standpoint, the problem can be characterized in the classical
Ramadge & Wonham Supervisory Control (R&W SC) frame-
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work [1], [2] in a straightforward manner, by (i) expressing the
underlying resource allocation dynamics through a Finite State
Automaton (FSA) and (ii) requesting the confinement of the
RAS behavior to the subspace of this FSA that is defined by its
maximal strongly connected component that contains the sys-
tem state s0 where the RAS is idle and empty of any jobs.1 In
fact, such a characterization of the problem and its solution es-
tablishes also a notion of optimality for the considered problem,
since the resulting policy prevents effectively the formation of
deadlock while retaining the maximum possible behavioral lati-
tude for the underlying RAS.

However, the direct implementation of the solution approach
outlined in the previous paragraph, is seriously impeded by the
fact that it necessitates the “real-time” – or the “on-line” – as-
sessment of the co-accessibility of any given RAS state to the
empty state s0, a property that is otherwise known as the state
“safety”, in the relevant terminology; for most RAS classes, the
assessment of state safety is an NP-complete problem [3], [4],
[5]. Hence, the research community has tried to circumvent the
limitations imposed by this negative result either (a) by compro-
mising for sub-optimal – i.e., non-maximally permissive – solu-
tions that are based on polynomially assessed properties of the
relevant RAS states (e.g., [6], [7], [8], [9]), or (b) by adopting al-
ternative, more compact representations of the considered RAS
dynamics and hoping that the compactness of these alternative
representations, combined with further structural properties and
insights revealed by them, will also lead, at least in most practi-
cal cases, to fairly compact characterizations of the target policy
and to more efficient approaches for its derivation. A model-
ing framework that seems to hold particular promise along this
second line of research, and therefore, has been explored more
persistently in the past, is that of Petri nets (PN) [10]. In particu-
lar, the attribution of the non-liveness of the RAS-modeling PNs
to the formation of some structural objects known as “empty –
or, more generally, deadly marked – siphons”, has led to the
development of a multitude of efforts that seek to characterize
the maximally permissive deadlock avoidance policy (DAP) by
imposing the minimum possible amount of control that will pre-
vent the formation of such deadly marked siphons. However,
a significant complication for these approaches arises from the
fact that the maximally permissive DAP might not admit a PN-
based representation, and therefore, their practical potential and
applicability is not fully explored and understood yet. Another

1All technical concepts are defined more systematically in subsequent parts of
this manuscript.
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prominent approach pursued within the context of the PN mod-
eling framework is that of the “theory of regions” [11] and its
derivatives. The key idea behind the theory of regions, as imple-
mented in the considered problem context, is to first compute the
maximally permissive DAP using the standard R&W SC rep-
resentations and methods mentioned in the opening paragraph,
and subsequently encode this policy to a PN model. This ap-
proach is also limited by the aforementioned potential inability
to express the maximally permissive DAP as a PN. Furthermore,
even in its feasible cases, practical experience has shown that it
is very demanding from a computational standpoint and it re-
sults in PN representations of the maximally permissive DAP
that are much larger than the PN modeling the original RAS.
The reader can find an extensive coverage of all these past de-
velopments in [12], [13], [14], [15], and the references cited
therein.

Motivated by the above remarks, in this work we pursue an
alternative approach to the design of the maximally permissive
DAP for any given RAS. Our work presents some conceptual
similarity to the approach of the theory of regions outlined in
the previous paragraph, in that we also organize the overall com-
putation of the optimal DAP into two stages, with the first stage
obtaining this policy in the R&W SC framework, and the second
stage trying to express the obtained result in a more compact
form. However, instead of explicitly relying this compression
to concepts and results coming from the PN modeling frame-
work, we perceive the optimal DAP as a “dichotomy” of the
RAS state space and we essentially seek a compact “classifier”
that will effect this dichotomy. In this way we are able to tap
upon concepts, insights and results that are coming directly from
the relevant classification theory. Indeed, as it is revealed in the
rest of this document, the methods pursued in this work open
new ways for thinking about the considered problem that effec-
tively complement all the previously used approaches. This new
line of reasoning subsequently results into new fundamental in-
sights and connects the overall analysis to very classical, and yet
very powerful, representation frameworks and techniques. More
specifically, the proposed approach first selects a particular rep-
resentation for the sought classifier that is able to provide ef-
fective and computationally efficient classification for the RAS
class under consideration, and it defines explicitly the classifier
design problem as a minimization problem over a certain pa-
rameter space that results from the adopted representation. The
computational tractability of the posed minimization problem is
facilitated by additional properties of the considered dichotomy
that enable an effective compression of the information to be
considered explicitly during the classifier construction process,
in terms of the size and the dimensionality of the involved data
sets. Furthermore, the treatment of the classifier design problem
as an explicit optimization problem also enables the develop-
ment of heuristics that can effectively balance the structural op-
timality of the sought classifier and the computational complex-
ity that is involved in its development, and of analytical bounds
that characterize the potential sub-optimality that is incurred by
the use of these heuristics. From a more practical standpoint,
the methodology pursued in this paper has allowed the effective
and efficient implementation of the maximally permissive DAP
for very large-scale RAS, with sizes and underlying state spaces

way beyond of those addressed in the current literature.
The rest of this document presents a systematic investigation

of the ideas outlined in the previous paragraph, for a particu-
lar RAS class where the aforementioned dichotomy of the safe
and unsafe subspaces can be effected through a set of linear in-
equalities; we shall refer to a classifier with such a structure as a
“linear classifier”. Our intention is to effectively compute linear
classifiers implementing the maximally permissive DAP for any
given RAS from the considered class, while minimizing the num-
ber of the inequalities involved; in this way, the on-line com-
plexity of the implemented control scheme will be minimized.
In the considered class, the classifier design problem takes the
form of a Mixed Integer Programming (MIP) formulation that
is rendered tractable through a series of problem reductions that
effect the data compression described in the previous paragraph.
The computational results that accompany these analytical de-
velopments clearly establish that, within the scope of the con-
sidered RAS class, the proposed approach can compute effec-
tively the maximally permissive DAPs for RAS configurations
that are perceived as extremely large (and therefore, intractable)
by the standards of the current literature. At the same time, the
optimal classifiers obtained by those formulations have turned
out to be impressively compact, utilizing only a small number
of inequalities.

The practical motivation and justification of the key ideas un-
derlying the developments presented in this work, as well as the
particular RAS class that is the focus of these developments and
its accompanying technical specifications, have been provided
by the authors’ experiences in the context of an ongoing project,
called “Gadara”, which has been undertaken in collaboration
with HP Labs. The goal of the Gadara project is to develop
a software tool that will automatically take a multi-threaded
deadlock-prone program as input and instrument it with appro-
priate control logic so that the resultant code is deadlock-free.
Hence, the entire problem addressed by Gadara reduces to the
design and the deployment of a DAP that will manage the al-
location of the “locks” shared by the concurrently executing
processes (i.e., threads) in the context of the considered pro-
gram [16], [17], [18], [19]. Furthermore, in the Gadara con-
text, the deployed DAP must ensure the safe and live execution
of the underlying processes in a way that (a) imposes the min-
imal necessary restriction in the execution of these processes,
and (b) causes the minimum possible computational “overhead”
for the underlying operating system. Requirement (a) implies
that the maximal permissiveness of the applied control logic is
of paramount importance in the considered application context.
Requirement (b) introduces the additional notion of “structural
minimality” for the derived supervisors that is pursued in this
work.

In light of the above positioning of the paper objectives and
contributions, the rest of the manuscript is organized as follows:
Section II introduces the RAS class to be considered in this
work, defines formally the corresponding deadlock avoidance
problem, and establishes some of its properties that are crucial
for the development of the main results of the paper. The main
results themselves are presented in Sections III–V. More specif-
ically, Section III first provides a formal definition of the classifi-
cation problem to be considered in this work, and subsequently,
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it proceeds to its reduction to an equivalent classification prob-
lem with a much smaller input set in terms of the explicitly con-
sidered state vectors and their dimensionality. Section IV ad-
dresses the synthesis of a linear classifier for the reduced clas-
sification problem, by formulating and solving this problem as
a mixed integer program. On the other hand, Section V intro-
duces the heuristic approach to the synthesis of the sought clas-
sifier, that was mentioned in the previous paragraphs. Section VI
reports a series of computational experiments that demonstrate
the feasibility of the methodological approaches proposed in the
manuscript, and reveal the extensive computational gains that
are obtained by them. Finally, Section VII concludes the pa-
per by summarizing its main contributions and suggesting pos-
sible extensions of the presented results. Closing this introduc-
tory section, we also notice, for completeness, that an abridged
version of the results of this manuscript can be found in [20];
that manuscript contains a preliminary version of the material
of Sections II–IV and VI, and it omits all the technical proofs.

II. THE CONSIDERED RAS CLASS AND THE
CORRESPONDING DEADLOCK AVOIDANCE PROBLEM

The considered RAS class We begin the more technical discus-
sion of the paper developments, by providing a formal character-
ization of the RAS class to be considered in this work. This class
can be perceived as a specialization of the generic RAS model-
ing framework of [13], that is obtained through the introduction
of some additional assumptions for the underlying RAS struc-
ture. Hence, next we first review the RAS concept, as defined in
[13], and subsequently we discuss the specific assumptions that
will define the RAS sub-class considered in this work. Also, in
the rest of this manuscript the notation Z, Z+

0 and Z+ will re-
spectively denote the set of integers, non-negative integers and
strictly positive integers.

Definition 1: [13] A (sequential) resource allocation system
(RAS) is defined as a 4-tuple Φ =< R ,C,P ,A >2 where:
1. R = {R1, . . . ,Rm} is the set of the system resource types.
2. C : R →Z+ is the system capacity function, with C(Ri)≡Ci
characterizing the number of identical units from resource type
Ri that are available in the system. Resources are considered to
be reusable, i.e., they are engaged by the various processes ac-
cording to an allocation/de-allocation cycle, and each such cycle
does not affect their functional status or subsequent availability.
3. P = {J1, . . . ,Jn} is the set of the system process types sup-
ported by the considered system configuration. Each pro-
cess type J j is a composite element itself; in particular, J j =
< S j,G j >, where:
(a) S j = {Ξ j1, . . . ,Ξ j,l( j)} is the set of processing stages in-

volved in the definition of process type J j, and
(b) G j is a data structure that defines the sequential logic over

the set of processing stages S j, that governs the execution of any
process instance of type J j.
4. A :

Sn
j=1 S j → ∏

m
i=1{0, . . . ,Ci} is the resource allocation

function, which associates every processing stage Ξ jk with a re-
source allocation request A( j,k)≡A jk. More specifically, each

2The complete definition of a RAS, according to [13], involves an additional
component that characterizes the time-based – or quantitative – dynamics of
the RAS, but this component is not relevant in the modeling and analysis to be
pursued in the following developments, and therefore, it is omitted.

A jk is an m-dimensional vector, with its i-th component indicat-
ing the number of resource units of resource type Ri necessary to
support the execution of stage Ξ jk. Obviously, in a well-defined
RAS, A jk(i)≤Ci, ∀ j,k, i. Also, it is assumed that A jk 6= 0, i.e.,
every processing stage requires at least one resource unit for its
execution.

For complexity considerations, we also define the quantity
|Φ| ≡ |R |+ |

Sn
j=1 S j|+ ∑

m
i=1 Ci as the “size” of RAS Φ. Fur-

thermore, for notational convenience, in the following we shall
set ξ≡ ∑

n
j=1 |S j|; i.e., ξ denotes the number of distinct process-

ing stages supported by the considered RAS, across the entire
set of its process types. Finally, in some of the subsequent
developments, the various processing stages Ξ jk, j = 1, . . . ,n,
k = 1, . . . , l( j), will be considered in the context of a total or-
dering imposed on the set

Sn
j=1 S j; in that case, the processing

stages themselves and their corresponding attributes will be in-
dexed by a single index q that runs over the set {1, . . . ,ξ} and
indicates the position of the processing stage in the considered
total order.

It is clear from the above that Definition 1 encompasses an
entire taxonomy of RAS, obtained by the further specification of
the underlying process structure (cf. item 3(b)), the capacities of
the various resource types (cf. item 2), and the applied resource
allocation protocol (cf. item 4). The RAS class to be considered
in this work is defined by the following three assumptions that
address each of the aforementioned items:

Assumption 1: In the considered RAS, the data structure G j
that defines the sequential logic of process type J j, j = 1, . . . ,n,
corresponds to a connected digraph (V j,E j), where the graph
node set V j is in one-to-one correspondence with the process-
ing stage set, S j. Furthermore, there are two subsets V↗j and

V↘j of V j respectively defining the sets of initiating and termi-
nating processing stages for process type J j. The connectivity
of digraph G j is such that every node v ∈ V j is accessible from
the node set V↗j and co-accessible to the node set V↘j . Finally,

any directed path of G j leading from a node of V↗j to a node of

V↘j constitutes a complete execution sequence – or a “route” –
for process type J j.

Assumption 2: In the considered RAS, Ci = 1, ∀i = 1, . . . ,m.

Assumption 3: In the considered RAS, the resource alloca-
tion requests A jk, j = 1, . . . ,n, k = 1, . . . , l( j), are “conjunctive”,
i.e., a processing stage Ξ jk can request an arbitrary nonempty
subset of the system resources for its execution. Furthermore, a
process instance executing processing stage Ξ jk will be able to
advance to a successor processing stage Ξ jq, only after it is allo-
cated the resource differential (A jq−A jk)+; and it is only upon
this advancement that the process will release the resource units
|(A jq−A jk)−|, that are not needed anymore.

In the following, we shall refer to the RAS sub-class that is
defined by Assumptions 1–3 as the (class of) “Gadara” RAS.
We want to point out that the directed paths that express the var-
ious process routes, according to Assumption 1 are not necessar-
ily simple; i.e., processes of a Gadara RAS can present cycling
through a number of processing stages, during their execution.
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On the other hand, Assumption 2 implies that the various in-
stantiations, Φ, of the Gadara RAS are completely defined by
the specification of the resource set R , the set of process types
P , and the resource allocation function A , i.e., for these RAS,
we can set Φ =< R ,P ,A >. Finally, as it will be revealed by
the subsequent developments, the proposed methodology for the
synthesis of maximally permissive and compact DAPs can be
applied even to the broader RAS class that is obtained by the
removal of Assumption 2; this RAS class is an extension of the
Disjunctive / Conjunctive (D/C-) RAS defined in [13], that fur-
ther allows for internal cycling in the process routes. Successful
implementation of the presented approach to any instance Φ of
this broader RAS class will return a representation of the corre-
sponding maximally permissive DAP as a minimal set of linear
inequalities. However, in the D/C-RAS context, there is no guar-
antee that the underlying reachable safe and unsafe subspaces
will be linearly separable, and therefore, the MIP formulation of
Section IV or the heuristic of Section V might fail to return a
classifier.

Modeling the dynamics of the Gadara RAS as a Finite
State Automaton Next we discuss how the dynamics of the
Gadara RAS Φ =< R ,P ,A >, introduced in the previous para-
graph, can be formally described by a Deterministic Finite State
Automaton (DFSA) [2]. This FSA will be denoted as G(Φ) =
(S,E, f ,s0,SM), and it is defined as follows:3

1. The state set S consists of ξ-dimensional vectors s. The com-
ponents s[q], q = 1, . . . ,ξ, of s are in one-to-one correspondence
with the RAS processing stages, and they indicate the number of
process instances executing the corresponding stage in the RAS
state modeled by s. Hence, S consists of all the vectors s∈ (Z+

0 )ξ

that further satisfy

∀i = 1, . . . ,m,
ξ

∑
q=1

s[q] ·A(Ξq)[i]≤ 1 (1)

where, according to the adopted notation, A(Ξq)[i] denotes the
allocation request for resource Ri that is posed by stage Ξq, and
the unit element appearing in the right-hand-side of the equation
expresses the unit resource capacities that define the class of
Gadara RAS.
2. The event set E is the union of the disjoint event sets E↗, Ē
and E↘, where:

(a) E↗ = {erp : r = 0, Ξp ∈
Sn

j=1 V↗j }, i.e., event erp repre-
sents the loading of a new process instance that starts from stage
Ξp.

(b) Ē = {erp : ∃ j ∈ 1, . . . ,n s.t. Ξp is a successor of Ξr in di-
graph G j}, i.e., erp represents the advancement of a process in-
stance executing stage Ξr to a successor stage Ξp.

(c) E↘ = {erp : Ξr ∈
Sn

j=1 V↘j , p = 0}, i.e, erp represents the
unloading of a finished process instance after executing its last
stage Ξr.
3. The state transition function f : S×E→ S is defined by s′ =
f (s,erp), where the components s′[q] of the resulting state s′ are

3We also notice, for completeness, that an alternative formal characterization
of the resource allocation dynamics investigated by the Gadara project, that is
based on the Petri net modeling framework, can be found in [18].

given by:

s′[q] =

 s[q]−1 if q = r
s[q]+1 if q = p
s[q] otherwise

Furthermore, f (s,erp) is a partial function defined only if the
resulting state s′ ∈ S.
4. The initial state s0 is set equal to 0, which corresponds to the
situation when the system is empty of any process instances.
5. The set of marked states SM is the singleton {s0}, and it ex-
presses the requirement for complete process runs.

Let f̂ denote the natural extension of the state transition func-
tion f to S×E∗. The behavior of RAS Φ is modeled by the
language L(G) generated by DFSA G(Φ), i.e., by all strings
σ ∈ E∗ such that f̂ (s0,σ) is defined. Furthermore, the reachable
subspace of G(Φ) is the subset Sr of S defined as follows:

Sr ≡ {s ∈ S : ∃σ ∈ L(G) s.t. f̂ (s0,σ) = s} (2)

We also define the safe subspace of G(Φ), Ss, by:

Ss ≡ {s ∈ S : ∃σ ∈ E∗ s.t. f̂ (s,σ) = s0} (3)

Ss contains those states of S that are co-accessible to the marked
state s0. In the following, we shall denote the complements of
Sr and Ss with respect to S by Sr̄ and Ss̄, and we shall refer to
them as the unreachable and unsafe subspaces. Finally, Sxy,
x ∈ {r, r̄}, y ∈ {s, s̄}, will denote the intersection of the corre-
sponding sets Sx and Sy.

The target behavior of G(Φ) and the structure of the max-
imally permissive LES The desired – or “target” – behavior of
RAS Φ is expressed by the marked language Lm(G), which is
defined by means of the marked state s0, as follows:

Lm(G) ≡ {σ ∈ L(G) : f̂ (s0,σ) = s0} (4)

Equation 4, when combined with all the previous definitions,
further implies that the set of states that are accessible under
Lm(G) is exactly equal to Srs. Hence, starting from state s0, a
maximally permissive deadlock avoidance policy must allow a
system-enabled transition to a next state s if and only if (iff ) s
belongs to Ss. This characterization of the maximally permissive
DAP ensures its uniqueness for any given RAS instantiation.
It also implies that the policy can be effectively implemented
through any mechanism that recognizes and rejects the unsafe
states that are accessible through one-step transitions from Srs.

Example We demonstrate the various concepts introduced
above through a particular instance of the Gadara RAS that is
presented in Table I. This RAS will also provide an expository
base for all the technical concepts, methods and issues addressed
in this document. To facilitate the presentation in the limited
space of this document, the considered RAS is very small and
simple in terms of its structure, yet its behavioral study gives
rise to all aspects and issues that will be our major focus in the
subsequent developments. More specifically, the Gadara RAS
considered in Table I consists of three resource types R1, R2 and
R3, each of unit capacity, and two process types J1 and J2. The
sequential logic corresponding to each of these two processes
has a simple linear structure involving three stages. Finally, the
resource allocation function, A , of this RAS can also be derived
from the information on the process routes provided in the table.
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TABLE I
The Gadara RAS considered in the provided example

Resource Types {R1,R2,R3}
Resource Capacities C(R1) = C(R2) = C(R3) = 1
Process Types {J1,J2}
Process Routes G1 : R1→ R2→ R3

G2 : R3→ R2→ R1

Figure 1 depicts the reachable state space Sr for the RAS of
Table I and its partition to the safe subspace Srs, consisting of the
white states in the figure, and the unsafe subspace Srs̄, consisting
of the red states. As it can be seen in the figure, the considered
RAS has 20 reachable states, 15 of which are safe and 5 are un-
safe. Figure 1 also depicts the transitions that must be disabled
by the maximal permissive DAP, under the assumption that the
system starts its operation from the empty state, denoted by state
q0 in the figure. Finally, we notice that, while Figure 1 adopts a
graphical encoding of the various states of the RAS of Table I,
the state vector s characterizing the resource allocation of this
RAS according to the definition of the DFSA G(Φ) provided
in the previous paragraphs, is a 6-dimensional vector; the first
three components of s correspond to the sequence of the three
processing stages of job type J1 and the last three components
correspond to the sequence of the three processing stages of job
type J2. Furthermore, the unit capacity of the three resources
R1, R2 and R3 imply that the state vector s will be binary.

Some monotonicities observed by the state safety and un-
safety concepts In this paragraph, we establish that the sub-
spaces Srs and Srs̄ present some additional structure that will
become useful in the design of the target classifier. The next
definition will facilitate the formal statement and development
of the relevant results.

Definition 2: Let x,x′ denote two vectors in the vector space
(Z+

0 )ξ. Then, the (partial) ordering relationship “≤” imposed on
(Z+

0 )ξ is defined by:

x≤ x′ ⇐⇒ (∀i = 1, . . .ξ, x[i]≤ x′[i]) (5)

Furthermore, x < x′ (resp. x > x′) will denote the fact that x≤ x′
(resp. x≥ x′) and there is at least a pair of components x[i], x′[i]
for which the corresponding inequality is strict.

It should be clear from the discussion provided in the
previous paragraphs that the ability of the activated pro-
cesses in a given RAS state s ∈ S to proceed to com-
pletion, depends on the existence of a sequence < s(0) ≡
s,e(1),s(1),e(2),s(2), . . . ,s(n−1),e(n),s(n) ≡ s0 >, such that at ev-
ery state s(i), i = 0,1 . . . ,n− 1, the free (or “slack”) resource
capacities at that state enable the job advancement correspond-
ing to event e(i+1). Furthermore, if such a terminating sequence
exists for a given state s, then the event feasibility condition de-
fined by Equation 1 implies that this sequence will also provide
a terminating sequence for every other state s′ ≤ s. On the other
hand, if state s possesses no terminating sequences, then it can
be safely inferred that no such terminating sequences will ex-
ist for any other state s≤ s′ (since, otherwise, there should also
exist a terminating sequence for s, according to the previous re-
mark). The next proposition provides a formal statement to the

above observations; these results are well known in the litera-
ture, and therefore, their formal proof is omitted.4

Proposition 1: Let s, s′ denote two states of a given Gadara
RAS Φ. Then,
1. s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss
2. s ∈ Ss̄ ∧ s≤ s′ =⇒ s′ ∈ Ss̄

In light of Proposition 1, next we also define the concepts of
maximal safe state and minimal unsafe state, that will play an
important role in the subsequent developments:

Definition 3: Given a Gadara RAS Φ = (R ,P ,A),
1. a reachable safe state s ∈ Srs is maximal iff ¬∃ a reachable
safe state s′ ∈ Srs such that s′ > s;
2. a reachable unsafe state s ∈ Srs̄ is minimal iff ¬∃ a reachable
unsafe state s′ ∈ Srs̄ such that s′ < s.
Also, in the sequel, the set of maximal reachable safe states will
be denoted by S̄rs, and the set of minimal reachable unsafe states
will be denoted by S̄rs̄.

An additional implication of Proposition 1 that will be useful
in the subsequent developments is stated in the following corol-
lary:

Corollary 1: Consider a Gadara RAS Φ = (R ,P ,A), and let
Conv(Srs) denote the convex hull of the points corresponding
to the states in its reachable and safe subspace, Srs. Also, let
x ∈ Conv(Srs). Then, Conv(Srs) also contains any other vector
x′ such that 0≤ x′ ≤ x.

Proof: To establish the result of Corollary 1, it suffices to
show that the state set Srs contains all possible chains of integer
vectors between the origin 0 and its maximal elements s ∈ S̄rs.

For this, first we argue that all possible chains of integer vec-
tors between the origin 0 and the elements of S̄rs belong in Sr.
Indeed, consider a state s belonging in an integer vector chain
from state 0(≡ s0) to an element s′ ∈ S̄rs. Since s′ ∈ S̄rs, it is a
reachable state, and therefore, there exists an event sequence σ′

such that s′ = f̂ (s0,σ
′). Furthermore, from the specification of

the states s and s′ it also holds that s≤ s′, and therefore, the pro-
cess instances contained in s is a subset of the process instances
contained in s′. But since, in the context of the Gadara RAS, the
various process instances do not interact with each other except
for the sharing of the system resources, it is easy to see that the
reachability of state s′ implies also the reachability of state s; a
corresponding event sequence σ can be obtained from the event
sequence σ′ mentioned above by removing from it all the events
concerning process instances not belonging in s.

The fact that the considered state s belongs also in Ss, and
therefore in Srs, results from Proposition 1 and the aforestated
fact that ∃s′ ∈ S̄rs s.t. s≤ s′. 2

The binary nature of the state space of the Gadara RAS
and its implications For any Gadara RAS Φ =< R ,P ,A >,
Equation 1 when combined with the non-zero nature of the re-
source allocation requests A jk further imply that the RAS state
vector s is of a binary nature; i.e., the state space S of the DFSA
G(Φ), as well as any other subspace of S, consist of a number
of extreme points on the ξ-dimensional hypercube C defined by

C ≡ {(x1,x2, . . . ,xξ) : 0≤ xi ≤ 1, ∀i = 1, . . . ,ξ} (6)

4We notice, for completeness, that a formal proof for these results can be
obtained, for instance, through the analytical characterization of state safety that
is presented in [7], [21].
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Fig. 1. The finite state automaton modeling the reachable sub-space of the RAS defined in Table I. In the adopted state representation, the three inner cells indicate
the status of resources R1, R2 and R3, in this order. Empty cells imply a free resource. Cells corresponding to allocated resources are annotated by the processing
stage of the process instance that holds the corresponding resource. States depicted in red are the unsafe states that must be eliminated from the system behavior
through the employment of a deadlock avoidance policy. In particular, the maximally permissive DAP must recognize and block the transitions indicated by the red
crossings in the figure.

Next we show that every extreme point of C can be effectively
separated from the rest by a single linear inequality.

Proposition 2: Consider the hypercube C defined by Equa-
tion 6, and let x = (x1,x2, . . . ,xξ) denote one of its extreme
points. Then, point x can be separated from the remaining ex-
treme points of C by the linear inequality aT ·x≤ b where

a[i] :=
{

1, if x[i] = 1
−1, if x[i] = 0 ; b :=

ξ

∑
i=1

x[i]−1 (7)

Proof: Under the assignments of Equation 7, aT · x =
∑

ξ

i=1 x[i] > b. On the other hand, the misalignment of the unit
components of any other extreme point x′ with the positive ele-
ments of vector a implies that aT ·x′ ≤ b. 2

The practical implications of Propostion 2 for the DAP design
problems that are addressed in the rest of this document, are
stated in the following corollary:

Corollary 2: Consider two sets X and X̂ that consist of binary
vectors from some ξ-dimensional space, and further assume that
X̂ ⊂ X . Then, there exists a system of linear inequalities {aT

i ·
x ≤ bi, i = 1, . . . ,ν} that is satisfied by every x ∈ X̂ and it is
violated by every x ∈ X\X̂ , and therefore, it can function as a
linear classifier for X̂ and X\X̂ .

Proof: Consider the separating inequalities that are implied
by Proposition 2 for each x ∈ X\X̂ . Then, the system of linear
inequalities that is defined by the conjunction of all these in-

equalities is satisfied by every vector x ∈ X̂ . At the same time,
its construction implies that it is violated by any vector x∈X\X̂ .

III. THE CLASSIFIER DESIGN PROBLEM IN THE CONTEXT
OF THE GADARA RAS AND ITS SIMPLIFICATION

The classification problem considered in this work This
section considers the problem of synthesizing an effective and
compact classifier that will separate the reachable safe subspace
Srs from the reachable unsafe subspace Srs̄, for any given RAS
Φ that belongs to the class of Gadara RAS. Corollary 2 of the
previous section guarantees the existence of a set of linear in-
equalities that will perform the requested separation. Our ob-
jective is to find the minimum number of linear inequalities that
achieves the separation. The next definition provides a formal
characterization of the concepts that are necessary for the exact
positioning of our problem:

Definition 4: Consider two vector sets G and H from an ξ-
dimensional vector space V .
1. We shall say that sets G and H are linearly separated by a set
of k linear inequalities {(A(i, .),bi) : i ∈ {1, · · · ,k}} iff

∀g ∈ G : ∀i ∈ {1, · · · ,k}, A(i, .) ·g≤ bi ∧
∀h ∈ H : ∃is ∈ {1, · · · ,k}, A(is, .) ·h > bis (8)

2. A linear classifier – or separator – for vector sets G and H
is minimal, iff it uses the minimum possible number of linear
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inequalities that can separate these two sets.
Hence, the problem addressed in this section can be suc-

cinctly stated as follows:
Definition 5: – The considered classification problem

Given a Gadara RAS Φ, construct a minimal linear separator
for the vector sets corresponding to the sub-spaces Srs and Srs̄,
i.e., the reachable safe and the reachable unsafe states of the
considered RAS Φ.

A major difficulty for the systematic construction of the afore-
mentioned classifier for any practical instantiation of the Gadara
RAS, is the huge cardinality of the sets Srs and Srs̄. In the fol-
lowing, we utilize the properties of the state space, S, of the
Gadara RAS, that were established in Section II, in order to ex-
tract two subsets of the sets Srs and Srs̄ that are of significantly
reduced cardinality compared to their respective supersets, and
when used as input to the classifier design process, they result to
a set of linear inequalities that still classifies correctly the origi-
nal sets Srs and Srs̄.

Thinning the set Srs̄ by focusing on its “boundary” to the
reachable and safe subspace As observed in the characteriza-
tion of the maximally permissive DAP in Section II, the effective
implementation of this policy for any given RAS Φ is equivalent
to the recognition and the blockage of transitions from the safe
to the unsafe region of the underlying state space S. In the con-
text of the state classification problem addressed in this section,
this remark further implies that the sought classifier needs to dis-
criminate successfully only between the set Srs and the subset of
the set Srs̄ that contains all the states s ∈ Srs̄ that are reachable
from some state s′ ∈ Srs in a single transition. In the following,
we shall denote this subset of Srs̄ by Sb

rs̄ and we shall refer to
its elements as the “boundary” reachable unsafe states. Table II
exemplifies the concept of the set of boundary reachable unsafe
states, Sb

rs̄, by applying it to the Gadara RAS of Table I. For
this particular RAS it is easy to see, through the state transition
diagram (STD) provided in Figure 1, that Sb

rs̄ = Srs̄.
Thinning the sets Srs and Sb

rs̄ by respectively focusing on
their maximal and minimal elements The extraction of the
“boundary” reachable unsafe states, s∈ Sb

rs̄, from the broader set
Srs̄, is the first step of the set “thinning” process that is proposed
in this document. The next two propositions establish that it is
possible to obtain a minimal linear classifier for the entire sets
Srs and Sb

rs̄, by focusing the classifier design process only on the
maximal elements of the first set, S̄rs, and the minimal elements
of the second set, S̄b

rs̄.
Proposition 3: Any linear separator (A,b) for the sets S̄rs and

S̄b
rs̄ with non-negative coefficients ai j and bi, is also an effective

separator for the entire sets Srs and Sb
rs̄.

Proof: Let s ∈ Srs be an arbitrary non-maximal safe state vec-
tor, and s∗ ∈ S̄rs be a maximal safe state vector such that s∗ > s.

Also, let u∈ Sb
rs̄ be an arbitrary non-minimal boundary unsafe

state vector, and u∗ ∈ S̄b
rs̄ be a minimal boundary unsafe state

vector such that u∗ < u.
Finally, let A(i, .) be the vector of coefficients for the i-

th hyperplane separating the sets S̄rs and S̄b
rs̄, i = 1, . . . ,k.

Then, according to the stated assumptions, A(i, .) ≥ 0 ∀i ∈
{1, · · · ,k}. Also, according to the definition of linear separa-
tion: ∀s′ ∈ S̄rs : ∀i ∈ {1, · · · ,k}, A(i, .) · s′ ≤ bi and ∀u′ ∈ S̄b

rs̄ :
∃iu′ ∈ {1, · · · ,k} such that A(iu′ , .) ·u′ > biu′ . But then, the non-

negativity of A(i, .), combined with the presumed relations of s
to s∗ and of u to u∗, further imply that:
• ∀i : A(i, .) · s≤ A(i, .) · s∗ ≤ bi
• ∃iu∗ : A(iu∗ , .) ·u≥ A(iu∗ , .) ·u∗ > biu∗

Since states s and u were arbitrarily chosen, we can infer
that ∀s ∈ Srs : ∀i ∈ {1, · · · ,k}, A(i, .) · s ≤ bi and ∀u ∈ Sb

rs̄ :
∃iu ∈ {1, · · · ,k}, A(iu, .) · s > biu , which means that the sepa-
rator (A,b) is also an effective separator for Srs and Sb

rs̄. 2

Proposition 4: The set of minimal linear separators for the
classification problem of Definition 5 will always contain a sep-
arator (A,b) with non-negative coefficients ai j and bi.

Proof: Suppose that the minimum number of linear inequal-
ties with free coefficients needed to seperate Srs from Srs̄ is k,
and such a minimal separator is represented by the set of hy-
perplanes H ={hi ≡ (ai,bi), i ∈ {1, · · · ,k}}. We need to show
that there exists a linear separator with non-negative coefficients
that achieves the separation of these two sets, and the number of
inequalities employed by this new separator is also k.

If H happens to satisfy the posed non-negativity requirement,
then there is nothing left to be proved. Otherwise, consider an
inequality hi = (ai,bi) employed in H that violates the posed
non-negativity requirement. First, we notice that from the def-
inition of minimal linear separation provided in the previous
paragraphs, we can infer that

∀ x ∈ Srs : ai ·x≤ bi ∧ ∃ y ∈ Srs̄ : ai ·y > bi (9)

The first component in the proposition of Equation 9 is a di-
rect application of the definition of linear separation, while
the second component is due to the minimality of separation
(if this component was not valid, hi can be removed from H
without any consequences for the correctness of the classifica-
tion process, and therefore, separator H is not minimal). Let
S(i)

rs̄ ≡ {y : y ∈ Srs̄ ∧ ai · y > bi} and also set |Srs| ≡ ms and
|S(i)

rs̄ | ≡ mui . Then, we have that

∀x ∈ Srs : ai ·x≤ bi ∧ ∀y ∈ S(i)
rs̄ : ai ·y > bi (10)

Equation 10, when combined with the finiteness of the set
S(i)

rs̄ , further implies that ∃ δ̂ > 0 such that ∀δ ∈ (0, δ̂]:

x1
T −1

x2
T −1
· · · · · ·

xms
T −1

−y1
T 1

−y2
T 1

· · · · · ·
−ymui

T 1


[

aT
i

bi

]
≤



0
0
· · ·

0
−δ

−δ

· · ·
−δ


(11)

where operator ‘T ’ implies transposition.
Also, notice that since (i) all inequalities employed by sep-

arator H are of the ‘≤’ type (according to Definition 4), and
(ii) the initial state s0 ≡ 0 satisfies these inequalities (being a
safe state), the right-hand-side coefficient bi of the considered
inequality hi = (ai,bi) must be non-negative, i.e.,

bi ≥ 0 (12)
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Then, Equations 11 and 12, together with Farkas’ lemma
([22], pg. 165), imply that, ∀δ ∈ (0, δ̂], the following system
of inequalities in the variable vector p is infeasible:

p≥ 0 ∧ pT



x1
T

x2
T

· · ·
xms

T

−y1
T

−y2
T

· · ·
−ymui

T


= 0 ∧ pT



−1
−1
· · ·
−1

1
1
· · ·

1


≥ 0 ∧

pT



0
0
· · ·

0
−δ

−δ

· · ·
−δ


< 0 (13)

Next we shall use the infeasibility of Equation 13 in or-
der to show the existence of another hyperplane h′i = (a′i,b′i)
with non-negative coefficients which separates Srs and S(i)

rs̄ . If
such a hyperplane exists, it can replace the original hyperplane
hi = (ai,bi) in separator H while maintaining a successful sepa-
ration of sets Srs and Srs̄. Furthermore, by invoking the same ar-
gument for every inequality of H that violates the non-negativity
requirement, we can obtain a linear separator H ′ that (i) employs
the same number of inequalities, k, and (ii) it has non-negative
coefficients for all the inequalities involved; hence, this is the
sought separator.

In a spirit similar to that underlying the development of Equa-
tion 11 above, the existence of the aforementioned hyperplane
h′i = (a′i,b′i) is equivalent to the existence of a ˆ̂

δ > 0 such that

for every δ ∈ (0,
ˆ̂
δ], the following system of equations in a′i and

b′i is feasible:



x1
T −1

x2
T −1
· · · · · ·

xms
T −1

−y1
T 1

−y2
T 1

· · · · · ·
−ymui

T 1


[

(a′i)T

b′i

]
≤



0
0
· · ·

0
−δ

−δ

· · ·
−δ


∧
[

(a′i)T

b′i

]
≥ 0

(14)

We proceed to establish the existence of the aforementioned
ˆ̂
δ and the feasibility of the systems of inequalities expressed by
Equation 14 through contradiction. For this, we assume that the
system of inequalities represented by Equation 14 is infeasible
for any δ→ 0+. Then, Farkas’ lemma [22] implies that the fol-
lowing system of inequalities in the variable vector p must be

feasible:

p≥ 0 ∧ pT



x1
T −1

x2
T −1
· · · · · ·

xms
T −1

−y1
T 1

−y2
T 1

· · · · · ·
−ymui

T 1


≥ 0 ∧ pT



0
0
· · ·

0
−δ

−δ

· · ·
−δ


< 0 (15)

Selecting δ ∈ (0, δ̂), and considering the infeasiblity of Equa-
tion 13, Equation 15 reduces to

p≥ 0 ∧ pT



x1
T

x2
T

· · ·
xms

T

−y1
T

−y2
T

· · ·
−ymui

T


> 0 ∧ pT



−1
−1
· · ·
−1

1
1
· · ·

1


≥ 0 ∧

pT



0
0
· · ·

0
−δ

−δ

· · ·
−δ


< 0 (16)

where the notation ‘>’ in the second component of the above
statement implies that at least one of the inequalities involved in
that component is strict.

For the rest of the proof, let p j ≡ p[ j], j = 1, . . . ,ms, and p̃ j ≡
p[ms + j], j = 1, . . . ,mui . Then, the feasibility of Equation 16
can be restated as follows:

∃p : p≥ 0 ∧ (17)

∑
ms
j=1 p jxj−∑

mui
j=1 p̃ jyj > 0 ∧ (18)

−∑
ms
j=1 p j +∑

mui
j=1 p̃ j ≥ 0 ∧ (19)

−δ∑
mui
j=1 p̃ j < 0 (20)

Let l1 ≡ ∑
ms
j=1 p j and l2 ≡ ∑

mui
j=1 p̃ j. Equation 20 implies that

l2 > 0 (21)

Furthermore, the combination of Equations 17, 18 and 21 also
implies that

l1 > 0 (22)

Finally, notice that Equation 19 implies that

l2 ≥ l1 (23)

But then, Equation 18 can be rewritten as

ms

∑
j=1

p j

l1
xj >

l2
l1

mui

∑
j=1

p̃ j

l2
yj (24)
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and when combined with Equation 23, it further implies that

ms

∑
j=1

p j

l1
xj >

mui

∑
j=1

p̃ j

l2
yj (25)

Next we show that the inequality of Equation 25 contradicts
the working assumptions. Therefore, we can conclude that
∃ δ > 0 such that the system of inequalities in Equation 14 is
feasible, and our proof is completed. To see the infeasibility
of Equation 25, first notice that by the definition of the vec-
tors xj, j = 1, . . . ,ms, and of the scalar quantity l1, the vector
∑

ms
j=1

p j
l1

xj belongs in the convex hull of Srs. Furthermore, the

non-negativity of the vector ∑
mui
j=1

p̃ j
l2

yj, combined with Equa-

tion 25 and Corollary 1, imply that ∑
mui
j=1

p̃ j
l2

yj ∈ Conv(Srs), as
well. But this cannot be possible since, by the definition of l2,
the vector ∑

mui
j=1

p̃ j
l2

yj belongs also in the convex hull of the set
of points {y j, j = 1, . . . ,mui}, and this set is linearly separa-
ble from Srs (by the hyperplane hi = (ai,bi), considered at the
beginning of the proof). 2

We exemplify the set-“thinning” step established by Proposi-
tions 3 and 4, through the middle part of Table II, which provides
the sets S̄rs and S̄b

rs̄ that are obtained by the application of this
step to the sets of safe states, Srs, and boundary unsafe states,
Sb

rs̄, corresponding to the Gadara RAS of Table I.
Converting the separation problem of S̄rs and S̄b

rs̄ to an
equivalent separation problem of reduced dimensionality
The “thinning” of the original state sets Srs and Srs̄ to their state
subsets S̄rs and S̄b

rs̄, that was discussed in the previous para-
graphs, can have the additional effect that one or more of the
components of the vectors belonging in the “thinned” sets S̄rs
and S̄b

rs̄ is constant. More specifically, in our numerical exper-
imentation we have consistently encountered a situation where
many components of the vectors included in the set S̄b

rs̄ are iden-
tically zero. Next, we show that the removal of these compo-
nents from further consideration, through the orthogonal pro-
jection of the vector sets S̄rs and S̄b

rs̄ to the subspace defined
by the remaining components, retains all the information that
is necessary for the development of a minimal linear separator
that will separate effectively the original state subsets Srs and
Srs̄. To formalize the subsequent discussion, let V denote the
ξ-dimensional vector space supporting the vector sets S̄rs and
S̄b

rs̄, I denote the set of coordinates of space V , I0 denote the
set of coordinates that are identically zero in the vectors of S̄b

rs̄,
and therefore, they will be removed by the proposed projection
P, IP ≡ I\I0, and VP denote the |IP|-dimensional sub-space sup-
porting the projection P. Also, let Γ : N→ N be a bijection that
maps the elements of the coordinate set IP to the coordinates of
subspace VP. Finally, let P(S̄rs) and P(S̄b

rs̄) denote respectively
the images of the sets S̄rs and S̄b

rs̄ under P. Then, we have the
following proposition:

Proposition 5: There exists a set of k hyperplanes, Q, that
separates the projected sets P(S̄rs) and P(S̄b

rs̄) in subspace VP, iff
there exists a set of k hyperplanes, H, that separates the sets S̄rs
and S̄b

rs̄ in the original space V .
Proof: First we show that the existence of a linear separator

Q with k inequalities for the projected sets P(S̄rs) and P(S̄b
rs̄)

in subspace VP, implies the existence of a separator H with the

same number of inequalities that separates the sets S̄rs and S̄b
rs̄

in the original space V . Let qi = (aqi ,bqi) be an arbitrary hyper-
plane of Q, and denote by P(S̄b

rs̄)
(i) the set of points in P(S̄b

rs̄)
separated by qi; i.e.,

∀x∈ P(S̄rs) : aqi ·x ≤ bqi ∧ ∀y∈ P(S̄b
rs̄)

(i) : aqi ·y > bqi (26)

Also, let (S̄b
rs̄)

(i) ⊆ S̄b
rs̄ be the set of states in S̄b

rs̄ with their pro-
jection being in the set P(S̄b

rs̄)
(i). To prove our case, it suffices

to show that there exists a hyperplane hi in the original space V
that separates (S̄b

rs̄)
(i) from S̄rs. This hyperplane hi = (ahi ,bhi)

can be constructed as follows:

bhi := bqi ∧ ∀ j ∈ I0 : ahi [ j] := 0 ∧ ∀ j ∈ IP : ahi [ j] := aqi [Γ( j)]
(27)

Indeed, we can see that ∀x ∈ S̄rs,

ahi ·x = ∑
j∈I

ahi [ j] ·x[ j] = ∑
j∈Ip

ahi [ j] ·x[ j] = aqi ·xp ≤ bqi = bhi

(28)
where xp is the image of x in subspace VP. Similarly we have
∀y ∈ (S̄b

rs̄)
(i),

ahi ·y = ∑
j∈I

ahi [ j] ·y[ j] = ∑
j∈Ip

ahi [ j] ·y[ j] = aqi ·yp > bqi = bhi

(29)
where yp is the image of y in subspace VP. Therefore hi sepa-
rates (S̄b

rs̄)
(i) from S̄rs and the forward part of Proposition 5 is

proved.
Next, we show the validity of the reverse part of the propo-

sition, i.e., that the existence of a linear separator H with k in-
equalities that separates the sets S̄rs and S̄b

rs̄ in the original space
V , implies the existence of a linear separator Q with the same
number of inequalities that separates the projected sets P(S̄rs)
and P(S̄b

rs̄) in subspace VP. To prove this result, we first notice
that Proposition 4 implies that if there exists a linear separa-
tor H with k inequalities that separates the sets S̄rs and S̄b

rs̄ in
the original space V , then there also exists a linear separator H ′

with k inequalities and non-negative coefficients that separates
the same two sets in V . So, in the following we shall focus on
such a separator H ′. The rest of the proof proceeds similarly to
the proof provided for the forward part of the proposition, but it
also relies on the fact that

∀s ∈ S̄b
rs̄, ∀ j ∈ I0 : s[ j] = 0 (30)

Let hi = (ahi ,bhi) ∈H ′ and denote by (S̄b
rs̄)

(i) the set of points
in (S̄b

rs̄) separated by hi. Then,

∀x ∈ S̄rs : ahi ·x ≤ bhi ∧ ∀y ∈ (S̄b
rs̄)

(i) : ahi ·y > bhi (31)

Also, let P(S̄b
rs̄)

(i) ⊆ P(S̄b
rs̄) be the projection of (S̄b

rs̄)
(i) on

subspace VP. We need to show that there exists a hyperplane
qi in subspace VP which separates P(S̄b

rs̄)
(i) from P(S̄rs). This

hyperplane qi = (aqi ,bqi) can be constructed as follows:

bqi := bhi ∧ ∀ j ∈ IP : aqi [Γ( j)] = ahi [ j] (32)

Then, we can see that

∀xp ∈ P(S̄rs) : aqi ·xp = ∑
j∈IP

ahi [ j] ·x[ j] ≤ ahi ·x ≤ bhi = bqi

(33)
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where x is an element in the pre-image of xp in the original
space V , and the first inequality holds true because of the non-
negativity of the coefficients of the separator H ′. Similarly, we
can see that

∀yp ∈ P(S̄b
rs̄)

(i) : aqi ·yp = ∑
j∈Ip

ahi [ j] ·y[ j] = ahi ·y > bhi = bqi

(34)
where y is the pre-image of yp in the original space V , and
the second equality above holds true because of Equation 30.
Therefore, qi separates P(S̄b

rs̄)
(i) from P(S̄rs), and the proof is

complete. 2

As remarked at the beginning of this paragraph, the practical
implication of Proposition 5 is that we can construct a minimal
linear separator H for the sets S̄b

rs̄ and S̄rs by first developing
a linear separator Q for the projected sets P(S̄b

rs̄) and P(S̄rs),
and subsequently constructing H from Q through Equation 27,
which is repeated here for emphasis and convenience:

bhi := bqi ∧
∀ j ∈ I0 : ahi [ j] := 0 ∧ ∀ j ∈ IP : ahi [ j] := aqi [Γ( j)] (35)

Furthermore, the second part of the proof of Proposition 5
guarantees the we can have a minimal linear separator Q for the
projected sets P(S̄b

rs̄) from P(S̄rs) with non-negative coefficients.
Some further simplifications We close this section by dis-

cussing some further simplifications for the problem of the con-
struction of the linear separator Q mentioned above, that result
from the structure of the set P(S̄rs), i.e., the projection of the set
S̄rs to subspace VP. The first of these simplifications has to do
with the fact that the coordinates removed from the elements of
set S̄rs by the introduced projection P can have a value of ei-
ther zero or one. Hence, projection P is not bijective for the set
S̄rs, and this fact generates some redundancy in the data structure
representing the projected set P(S̄rs), that must be systematically
identified and removed. The second simplification arises from
the fact that the removal of the coordinates in I0 can introduce
some dominance among the elements of P(S̄rs) with respect to
the ordering ‘≤’. To alleviate the computational complexity of
the construction of the target separator Q, any non-maximal ele-
ments in P(S̄rs) should be identified and removed from this set;
the resulting set will be denoted by P(S̄rs).5 The last part of
Table II presents also the various vector sets that are obtained
from the application of the projection P discussed in this para-
graph on the relevant state sets for the RAS of Table I, and the
ensuing “thinning” of the vector set P(S̄rs) that results from the
projection of the set of maximal reachable and safe states, S̄rs.

Figure 2 summarizes the data “thinning” process described
in the previous paragraphs, providing a flowchart of the entire
workflow that is necessary for the development of a minimal
linear separator for the safe and unsafe subspaces of a Gadara
RAS. Also, as already discussed, Table II demonstrates the re-
sults that are obtained by the application of this “thinning” pro-
cess to the sets Srs and Srs̄ corresponding to the safe and unsafe

5The fact that this additional “thinning” of the set P(S̄rs) does not compromise
the effectiveness of the obtained separator Q with respect to the separation of the
sets P(S̄rs) and P(S̄b

rs̄), can be argued on the basis of the non-negativity of the
coefficients of the target separator Q; cf. Proposition 3.

TABLE II
The various sets obtained by the application of the data “thinning” process of
Figure 2 to the sets Srs and Srs̄ corresponding to the reachable safe and unsafe

subspaces of the Gadara RAS of Table I.

Sb
rs̄ = Srs̄

S̄rs = {q13 ≡ [1 1 1 0 0 0]T , q14 ≡ [0 0 0 1 1 1]T}
S̄b

rs̄ = {q15 ≡ [1 0 0 1 0 0]T , q16 ≡ [0 1 0 1 0 0]T ,
q17 ≡ [1 0 0 0 1 0]T}

I0 = {3, 6}
P(S̄b

rs̄) = {[1 0 1 0]T , [0 1 10]T , [1 0 0 1]T}
P(S̄rs) = {[1 1 0 0]T , [0 0 1 1]T} = P(S̄rs)

subspaces of the Gadara RAS of Table I. The detailed algo-
rithms that will support the pre-processing stages that are de-
picted in Figure 2 and precede the actual construction of the
separator Q, are rather straightforward and well-established in
the relevant literature. For example, the first stage depicted in
Figure 2, involving the state space enumeration, can be easily
supported by any “search”-type algorithm [23] that starts from
the initial state and processes one state at a time, “reaching out”
to new states according to the logic established in Section II.
Similarly, the state classification involved in the second stage of
the depicted flowchart can be easily performed by applying on
the state transition diagram obtained from the first stage, any al-
gorithm that assesses state co-accessibility w.r.t. the initial state
s0 [2]. Also, the remaining steps involve elementary operations
on the extracted sets and their vector elements. Therefore, all
these algorithms are omitted for the sake of brevity. The next
two sections focus on the support of the last step depicted in
Figure 2, i.e., the construction of the linear separator Q from the
input sets P(S̄rs) and P(S̄b

rs̄).

IV. SYNTHESIZING CLASSIFIER Q THROUGH
MATHEMATICAL PROGRAMMING

The MIP formulation In this section we provide a Mixed In-
teger Programming (MIP) formulation [24] for the construction
of the separator Q, that was specified in Section III. We remind
the reader that the primary inputs to this final stage of the pro-
posed design process, are:
• the elements xi of the projected safe state set P(S̄rs), and
• the elements yi of the projected unsafe state set P(S̄b

rs̄).
In the subsequent discussion, we shall set ms ≡ |P(S̄rs)|, mu ≡

|P(S̄b
rs̄)|, and n ≡ |IP|, i.e., n denotes the dimensionality of the

subspace VP supporting the vectors xi and yi. Some additional
inputs that parameterize this last stage of our design process and
provide additional controls to it, are as follows:
• The parameter w which provides an upper bound for the “size”
of – i.e., the number of inequalities employed by – the sought
separator. Such an upper bound is readily obtained as w = mu
from Proposition 2 and Corollary 2 of Section II when combined
with the results of Proposition 4 and Equation 35 of Section III.
A tighter value for w can be effectively computed through the
heuristic discussed in the next section.
• A strictly positive parameter ε that controls the minimum
distance of the points yi from the separating hyperplanes and
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Fig. 2. The proposed workflow for the construction of a minimal linear separator for the reachable safe and unsafe subspaces of a Gadara RAS.

should be priced sufficiently close to zero. This parameter can
be perceived as a “degree of separation” that is enforced between
the two sets P(S̄rs) and P(S̄b

rs̄). In order to guarantee that the em-
ployed value of ε is not unnecessarily large to the extent that it
compromises the minimality of the derived solution, one should
re-solve the proposed formulation for a sequence {εi} such that
εi → 0+, and consider the stability of the size of the obtained
supervisors.
• A strictly positive parameter M that is useful for the mod-
elling of the separation logic in the proposed MIP formulation
and must take sufficiently large values. This is the notorious
“big-M” parameter that appears in many MIP formulations. A
more detailed discussion on its role in the proposed formulation,
as well as on its appropriate pricing, is provided in later parts of
this section.

The variables employed by the proposed formulation are as
follows:
• zl , l = 1, . . . ,w, is a binary variable that is priced to one if the
l-th inequality is used for separation and to zero otherwise.
• (A[l, .],b[l]), l = 1, . . . ,w, are the coefficients to be employed
by the l-th separating linear inequality.
• δil , i = 1, . . . ,mu, l = 1, . . . ,w, is a binary variable that must
be priced to one if the state yi and the hyperplane (A[l, .],b[l])
satisfy the inequality A[l, .] ·yi ≤ b[l]+ ε.

Finally, the formulation itself takes the following form:

min
w

∑
l=1

zl (36)

∀i ∈ {1, · · · ,ms}, ∀l ∈ {1, · · · ,w} : A[l, .] ·xi−b[l] ≤ 0 (37)

∀i ∈ {1, · · · ,mu}, ∀l ∈ {1, · · · ,w} : A[l, .] ·yi−b[l]+M ·δil ≥ ε

(38)

∀i ∈ {1, · · · ,mu} :
w

∑
l=1

δil ≤ w−1 (39)

∀l ∈ {1, · · · ,w}, ∀ j ∈ {1, · · · ,n} : 0 ≤ A[l, j] ≤ zl (40)

∀i ∈ {1, · · · ,mu}, ∀l ∈ {1, · · · ,w} : δil ∈ {0,1} (41)

∀l ∈ {1, · · · ,w} : zl ∈ {0,1} (42)

The validity of the above MIP formulation as a construction
tool for the sought separator Q can be established as follows:
First, the reader should notice that Equation 36 defines the ob-
jective of the formulation as the minimization of the number of
hyperplanes that will be actively used for the pursued separa-
tion. Also, Equations 41 and 42 respectively enforce the binary
nature of the variables δil and zl . On the other hand, the con-
straints of Equation 40 enforce (i) the non-negativity of the ma-
trix A in the returned solution, and also (ii) the requirement that
the coefficients of inactive inequalities should be set to zero. An
additional implication of the constraints expressed by the right
inequality in Equation 40, is the restriction of all the elements
of matrix A to values no greater than one. This effect does not
compromise the generality of the obtained solution, since the
values of the intercepts b[l], l = 1, . . . ,w, are not restricted by
this constraint.6 On the other hand, we shall see in the follow-
ing discussion that the restriction of the elements of matrix A in
the interval [0,1] enables the effective resolution of some other
aspects of the formulation.

The separation logic is primarily expressed by the constraints
of Equations 37–39. More specifically, the constraints of Equa-
tion 37 force every point corresponding to a safe vector xi,
i = 1, . . . ,ms, to lie below each separating hyperplane. When
combined with the non-negativity of vectors xi and of matrix A,
this constraint also enforces the non-negativity of the intercepts
b[l]. On the other hand, the constraints of Equations 38 and 39
require that every point corresponding to an unsafe vector yi,
i = 1, . . . ,mu, lies above of at least one of the separating hy-
perplanes. To understand the detailed mechanism that enforces
this requirement, first notice that for any vector yi and inequal-
ity (A[l, .],b[l]) such that A[l, .] · yi ≥ b[l] + ε, Equation 38 is

6In other words, every derived inequality (A[l, .],b[l]) can have its coefficients
normalized by the maximum element of the row vector A[l, .] and this normal-
ization will not affect its informational content.
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satisfied irrespective of the value of the binary variable δil (pro-
vided that M ≥ 0). In the opposite case, the corresponding vari-
able δil must be set to one, in order to attain the satisfaction of
Equation 38 (provided that the non-negative parameter M is suf-
ficiently large). But at the same time, Equation 39 requires that,
for every point yi, at least one of the corresponding variables
δil , l = 1, . . . ,w, must be equal to zero. Therefore, in any feasi-
ble solution of the proposed formulation, every point yi must be
above at least one of the hyperplanes (A[l, .],b[l]).

The above discussion also reveals the condition for the proper
pricing of the parameter M:

M ≥ sup{[A[l, .] ·yi−b[l]− ε]−} (43)

where [a]− ≡ |min{0,a}| and the supremum is taken over all
pairs of vectors yi and inequalities (A[l, .], b[l]) in any viable
solution. An upper bound for the quantity on the right-hand-
side of Equation 43 can be obtained by setting A[l, .] · yi = 0,
and considering an upper bound for sup{b[l] + ε}, where the
latter is taken over all the inequalities that can constitute a viable
component of the sought separator Q. To obtain this last upper
bound, we recall that the minimality of Q implies that, for every
constituent inequality (A[l, .], b[l]), there exists at least one point
y j such that A[l, .] ·yi ≥ b[l]+ε. But then, Equations 40 and 42,
together with the binary nature of vectors yi, further imply that
sup{b[l] + ε} ≤ n, where n denotes the dimensionality of the
supporting hyperspace VP. Hence, M can be set equal to n during
the solution of the considered formulation.

The next theorem provides a formal statement of the validity
of the MIP formulation of Equations 36–42 as a classifier design
tool for the classification problem considered in this work, and it
is an immediate implication of all the above discussion provided
in this section and of the developments of Section III.

Theorem 1: The application of the formulation of Equa-
tions 36–42 to the sets P(S̄rs) and P(S̄b

rs̄) corresponding to any
given Gadara RAS Φ, returns a minimal linear classifier for
these two sets, and through Equation 35, a minimal linear clas-
sifier for the original sets Srs and Sb

rs̄.
Example The application of the formulation of Equations 36–

42 to the sets P(S̄rs) and P(S̄b
rs̄) provided in Table I, while setting

ε = 0.01, resulted in a linear classifier that is expressed by the
following two inequalities:

s[1]+ s[5]≤ 1.0

0.01 · s[1]+0.99 · s[2]+ s[4]≤ 1.0

Indeed, the reader can verify that this system of inequalities
is satisfied by every vector in P(S̄rs) and it is violated by every
vector in P(S̄b

rs̄). But then, the previous developments in this
manuscript imply that the one-step-lookahead policy defined by
the above two inequalities is an effective implementation of the
maximally permissive DAP for the RAS of Table I. Further-
more, by its construction, this implementation is minimal, i.e.,
it uses the minimum possible number of linear inequalities that
can represent effectively the maximally permissive DAP for the
considered RAS.

Complexity considerations It should be clear from the above
discussion that the MIP formulation of Equations 36–42 in-
volves (mu + 1) ·w binary variables, (|IP|+ 1) ·w real variables

and w · (ms +mu + |IP|)+mu technological constraints.7 Hence,
the size of this formulation, in terms of the variables and con-
straints involved, is polynomially related to the size of the clas-
sified sets P(S̄rs) and P(S̄b

rs̄) and the dimensionality of their sup-
porting sub-space VP. In Section VI we provide a set of com-
putational results that demonstrate the tractability of the MIP
formulation of Equations 36–42 for RAS instantiations from the
Gadara RAS class with size comparable to those encountered in
many practical applications. These results make us believe that
the MIP formulation of Equations 36–42 will be an effective
computational tool for the synthesis of minimal linear separa-
tors Q for a very broad range of the Gadara RAS instantiations
to be encountered in “real-life” applications.

Yet, a general MIP formulation is always an expensive
(non-polynomial complexity) proposition from a computational
standpoint. Furthermore, ms and mu, i.e., the cardinalities of the
sets P(S̄rs) and P(S̄b

rs̄), in general will grow super-polynomially
with respect to the size of the underlying RAS Φ. Therefore,
in the next section, we present a heuristic that can provide an
effective trade-off between the structural minimality of the ob-
tained separator, as measured by the number of the involved in-
equalities, and the computational effort for its development. We
also show that the relative size of the separators returned by this
heuristic to the size of any minimal separator is no higher than
ln |P(S̄b

rs̄)|. Therefore, the classifiers provided by this heuristic
are still quite compact and computationally efficient.8

V. AN EFFICIENT HEURISTIC FOR THE SYNTHESIS OF
CLASSIFIER Q

The main idea that underlies the heuristic proposed in this
section is to construct the sought separator Q one hyperplane at a
time; in particular, at each iteration we consider the set of points
in P(S̄b

rs̄) that have not been separated yet from the set P(S̄rs)
by any of the constructed hyperplanes, and we try to identify a
hyperplane that will separate the maximum possible number of
these points from P(S̄rs). Corollary 2 of Section II together with
Proposition 4 of Section III imply that in the case of the Gadara
RAS, which is the focus of this work, this iterative procedure
will terminate in a finite number of iterations.

Next we present a MIP formulation that can support the com-
putation of the hyperplane sought at each of the iterations de-
scribed in the previous paragraph. The input data for this for-
mulation are:
• the elements xi of the projected safe state set P(S̄rs);
• the elements yi of the projected unsafe state set P(S̄b

rs̄) that
remain unseparated in the current iteration;
• strictly positive parameters ε and M that play a role similar to
that played by the corresponding parameters in the MIP formu-
lation of Equations 36–42.

Also, similar to the MIP formulation of Equations 36–42, we
let ms ≡ |P(S̄rs)|, mu ≡ |{yi}|, and n ≡ |IP|. The variables em-

7By technological constraints we mean all the formulation constraints except
from those that impose the nonnegative and the binary nature of the various
variables. These are the constraints that are explicitly considered in the compu-
tations performed by any solution algorithm for the MIP formulation.

8Actually, the heuristic of Section V can also assist the solution of the MIP
formulation of Equations 36–42 itself, e.g., by providing additional constraints
in the form of incumbent solutions to this formulation.
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ployed by this new formulation are as follows:
• (a,b) are the coefficients of the generated hyperplane.
• δi, i = 1, . . . ,mu, is a binary variable that is priced to one iff
the state yi and the generated hyperplane satisfy the inequality
a ·yi ≥ b+ ε (i.e., point yi is separated by the generated hyper-
plane).

The formulation itself is expressed by the following equa-
tions:

max
mu

∑
i=1

δi (44)

∀i ∈ {1, · · · ,ms} : a ·xi−b≤ 0 (45)

∀i ∈ {1, · · · ,mu} : a ·yi−b+(1−δi) ·M ≥ ε (46)

∀ j ∈ {1, · · · ,n} : 0≤ a[ j]≤ 1 (47)

∀i ∈ {1, · · · ,mu} : δi ∈ {0,1} (48)

Equation 44 expresses the objective of the considered formu-
lation as the maximization of the number of the unsafe points
that will be separated by the generated hyperplane. Equation 45
forces all the safe state vectors xi to lie below the generated
hyperplane. On the other hand, Equation 46, in collaboration
with Equation 44, enforces the correct pricing of the indicator
variables δi, and therefore, it ensures the correct evaluation of
the objective function for any given pricing of the design vari-
ables (a,b). The detailed mechanics of this enforcement are as
follows: For a given unsafe state yi, if a · yi− b < ε, the cor-
responding variable δi is forced to zero. On the other hand, if
a · yi− b ≥ ε, Equation 46 allows δi to take any of its two pos-
sible values, but the objective stated in Equation 44 will force
δi to one, in any optimal solution. Equation 47 constrains the
generated hyperplanes to have non-negative coefficients, and it
also enforces a normalization of these coefficients similar to the
normalization performed by the formulation of Equations 36–
42. Equation 48 enforces the binary nature of the variables δi.
Finally, we notice that for reasons similar to those explained in
the discussion of the formulation of Equations 36–42, the pa-
rameter M of Equation 46 can be safely set equal to n during the
solution of the formulation.

The formulation of Equations 44–48 employs (|IP|+ 1) real
and mu binary variables in (ms + mu + |IP|) technological con-
straints; therefore, the computational effort required for its so-
lution is expected to be much smaller than the corresponding
effort required for the solution of the exact formulation of Equa-
tions 36-42. Our computational results reveal that the relevant
gains are so substantial, that the heuristic proposed in this sec-
tion will tend to run much faster than the algorithm that solves
the exact formulation, in spite of the fact that the formulation
of Equations 44–48 is solved repeatedly in the context of this
heuristic.

The complete algorithm that utilizes the formulation of Equa-
tions 44–48 for the iterative construction of a linear separator
for the state sets P(S̄rs) and P(S̄b

rs̄), is provided in Figure 3. The

Input: (i) the set of safe states P(S̄rs); (ii) the set of unsafe
states P(S̄b

rs̄); (iii) the parameters ε and M to be used during the
solution of the MIP formulation of Equations 44–48
Output: (i) a list L containing the coefficients of the generated
linear inequalities (a(l, .),b(l)); (ii) the number of the linear
inequalities in L, k′

/* Let UnseparatedUnsafeStates be the set of all unsafe states
yi ∈P(S̄b

rs̄) that are not separated by any of the already generated
hyperplanes; i.e., a ·yi−b(l) < ε for every hyperplane (a,b) in
list L. */

1. UnseparatedUnsa f eStates← P(S̄b
rs̄); k′ := 0;

2. While UnseparatedUnsafeStates 6= /0

(a) k′ := k′+1;
(b) Generate a hyperplane (a,b) by solving the MIP formula-

tion of Equations 44-48 with input P(S̄rs) and UnseparatedUn-
safeStates
(c) Add (a,b) to L
(d) For each yi ∈ UnseparatedUnsafeStates
• if (a ·yi−b≥ ε)
– Remove yi from UnseparatedUnsafeStates

3. Return L and k′

Fig. 3. A heuristic algorithm for the iterative construction of a linear separator
for the state sets P(S̄rs) and P(S̄b

rs̄).

next proposition establishes an upper bound to the potential sub-
optimality of this algorithm.9

Proposition 6: The number of the separating hyperplanes ob-
tainted by the algorithm of Figure 3 is at most K ln |P(S̄b

rs̄)|,
where K is the minimum number of hyperplanes that achieves
separation.

Proof: In order to simplify the notation employed in this
proof, we shall set U ≡ P(S̄b

rs̄), i.e., the set of unsafe states fed to
the algorithm of Figure 3, and we shall also set mu ≡ |P(S̄b

rs̄)|. In
addition, W (h) will denote the elements of U that are separated
from the set of safe states, P(S̄rs), by any given hyperplane h.
We claim that for each U ′ ⊆U , there exists a hyperplane h that
separates at least |U ′|/K states of U ′; i.e.,

∀U ′ ⊆U, ∃h : |W (h)∩U ′| ≥ |U ′|/K (49)

To see the validity of Equation 49, just notice that if it was
not true, we would need more than K hyperplanes to separate
U ′, and the same fact would be true for the separation of the
superset U . But this contradicts the definition of K as the mini-
mum number of hyperplanes that achieves the separation of U .

Next consider the execution of the algorithm of Figure 3, and
let Ui ⊆U denote the set of unsafe states still not separated af-
ter i steps of the algorithm. Also, let hi+1 be the hyperplane

9The content of this result and the arguments employed in its proof are rem-
iniscent of similar results developed for the set cover problem [25]. In fact,
an interesting research extension for the results presented in this section, is a
more profound exploration of the analogies between the classification problem
addressed herein and the set cover problem, and of the implications of these
analogies for the complexity of the considered problem and the approximation
of its optimal solution.
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generated at step (i+1). Hence,

W (hi+1)∩Ui = Ui\Ui+1 (50)

Since the considered algorithm maximizes |W (hi+1)∩Ui|, we
can infer from Equations 49 and 50 that

|W (hi+1)∩Ui|= |Ui|− |Ui+1| ≥ |Ui|/K =⇒
|Ui+1| ≤ |Ui|(1−1/K) (51)

So, by induction on i, we have that

|Ui| ≤ (1−1/K)imu (52)

Choosing i ≥ K ln(mu), we see that

|Ui| ≤ (1−1/K)K ln(mu)mu < e− ln(mu)mu = 1 (53)

Thus, all the unsafe states in U must have been separated from
the safe states in P(S̄rs) after K ln(mu) steps. 2

Example Closing this section, we notice that the application
of the heuristic of Figure 3 to the sets P(S̄rs) and P(S̄b

rs̄) of Ta-
ble I, while setting ε = 0.01, resulted in a linear classifier con-
sisting of two inequalities, and therefore, of minimal size. For
completeness, we mention that the obtained inequalities were as
follows:

s[1]+0.01 · s[4]+0.99 · s[5]≤ 1.0

s[2]+ s[4]≤ 1.99

VI. COMPUTATIONAL RESULTS

In this section we report the results from a series of com-
putational experiments, in which we applied the DAP design
methodology described in the earlier parts of this manuscript
upon a number of randomly generated instantiations of Gadara
RAS. We remind the reader that according to the class defini-
tion, all resources in a Gadara RAS possess unit capacity. On the
other hand, each of the generated instances was further specified
by:
• The number of resources in the system; the range of this pa-
rameter was between 1 and 14.
• The number of process types in the system; the range of this
parameter was between 2 and 14. Furthermore, in the consid-
ered experiments all process types were assumed to have a sim-
ple linear structure, with the corresponding graphs G j being sim-
ple paths (i.e., paths without any loops) for all j.
• The number of transitions in each process, with each transi-
tion corresponding to a single resource acquisition or a single
resource release. The range of this parameter was between 2
and 14, but additional logic was applied to ensure a meaning-
ful resource allocation sequence; hence, the eventual number of
transitions appearing in every generated process differed by the
originally specified number.10 In particular, upon its initiation,
a process was allocated randomly one of the system resources.
At every subsequent transition, the process was either releasing
one of its allocated resources, or it was acquiring one of the re-
maining resources. The association of any given transition with

10The particular RAS dynamics adopted in the presented experiments were
chosen so that they imitate closely the lock allocation and deallocation in real
computer programs.

a resource release or a resource acquisition was equiprobable,
except for the case where the process found itself possessing no
resources; in that case the next transition was an acquisition with
probability one. Similarly, the selection of the resource to be re-
leased by the process during a release transition, or the resource
to be added to its current acquisitions during an acquisition tran-
sition, was determined equiprobably among the corresponding
resource sets. Once the pre-specified number of transitions was
determined as described above, the necessary number of release
transitions was appended so that the process eventually returned
all the acquired resources. Furthermore, in order to remain con-
sistent with the RAS structure of Definition 1, all process stages
resulting from the above construction that might correspond to
zero resource allocation were identified and pruned from the
process-defining sequence.

The employed RAS generator was encoded in Java, and it
was compiled and linked by Java 1.6.0. Each generated RAS in-
stance, Φ, was subjected to the DAP design process described in
Figure 2. The construction of the linear classifier itself was per-
formed according to, both, the exact and heuristic approaches
described respectively in Sections IV and V. In the case of the
exact approach, we imposed a hard limit of 30 minutes (or 1800
secs) for the solution of the MIP formulation of Equations 36–
42. For instances that were not completely solved within this
time budget, the solver terminated prematurely and reported the
best feasible solution identified up to that point. All our compu-
tational experiments were performed on a 2.66 GHz quad-core
Intel Xeon 5430 processor with 6 MB of cache memory and
32 GB RAM; however, each job was single-threaded. The al-
gorithms involved in the preprocessing stages of the proposed
methodology were encoded in C++, compiled and linked by the
GNU g++ compiler under Unix, while the MIP formulations of
Equations 36–42 and Equations 44–48, that are employed re-
spectively by the exact and the heuristic approaches, were solved
through ILOG CPLEX 11.1 with ILOG Concert technology us-
ing C++.

Table III reports a representative sample of the results that we
obtained in our experiments.11 The reported cases are ordered
in decreasing magnitude of the corresponding |Srs|, the number
of reachable and safe states (second column in the presented ta-
ble). The first column in Table III reports the dimensionality of
the original state space corresponding to each listed configura-
tion. Columns 3 – 9 report the cardinalities of the state subsets
extracted through the various processing stages depicted in Fig-
ure 2, and also, the dimensionality reduction that was obtained
through the projection P, discussed in the earlier parts of this
section. Columns 10 and 11, entitled by kexact and kheuristic, re-
port the number of linear inequalities in the solutions returned
by the exact and the heuristic approach, respectively. Further-
more, the qualification [O] and [F] of the values reported in
Column 10 indicates whether the obtained solution was opti-
mal or just a feasible one (this would happen if the solution
algorithm was terminated prematurely, upon the exhaustion of
the 30 minute budget). Finally, Columns 12, 13 and 14, respec-
tively entitled by tthinning, texact and theuristic, report the amount of

11This sample has been selected from data resulting by the application of the
proposed methodology on more than 500 instances of the Gadara RAS generated
according to the logic described in the earlier parts of this section.
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TABLE III
A sample of our experimental results

ξ |Srs| |Srs̄| |Sb
rs̄| |S̄rs| |S̄b

rs̄|= |P(S̄b
rs̄)| |IP| |P(S̄rs)| |P(S̄rs)| kexact kheuristic tthinning texact theuristic

61 8,696,502 71,677 71,677 162,052 5 7 35 9 1 [O] 1 80 0 0
75 5,699,463 268,807 267,853 389,332 43 23 3,613 315 4 [O] 4 57 26 0

107 5,696,776 1,165,958 1,021,301 1,544,165 155 35 3,286 533 12 [F] 9 100 1,800 1,800
70 5,501,728 1,321,928 1,137,856 152,570 21 21 1,340 245 4 [O] 5 70 10 0
74 4,432,641 283,561 278,490 660,951 28 21 3,068 367 4 [O] 4 42 4 0
60 3,994,272 348,576 348,576 105,606 12 10 44 22 2 [O] 2 39 0 0
97 3,718,540 706,177 622,035 938,461 122 31 2,672 418 8 [F] 7 56 1,800 492
79 3,144,658 249,690 246,301 754,307 75 22 1,366 330 9 [F] 7 30 1,800 1
69 3,102,964 56,752 56,752 201,944 38 20 2,386 235 4 [O] 4 25 12 0
87 2,841,494 834,672 750,951 386,960 40 28 1,802 175 4 [O] 4 43 45 0

112 2,521,030 556,743 518,684 929,498 168 38 2,633 643 10 [F] 8 42 1,800 675
64 2,501,508 501,060 433,632 54,496 18 17 307 71 3 [O] 4 27 1 0
74 1,953,671 110,937 103,311 109,964 57 17 272 81 2 [O] 2 18 0 0
73 1,906,704 152,387 150,349 423,799 50 21 1,139 266 6 [F] 7 17 1,800 0

106 1,696,349 382,291 352,622 587,314 152 36 2,295 553 8 [F] 8 25 1,800 97
63 1,567,434 17,579 17,579 84,109 29 17 1,194 163 3 [O] 3 11 1 0
96 1,240,726 188,189 181,689 413,175 113 33 2,005 467 8 [F] 8 13 1,800 2
67 1,197,240 121,442 97,434 30,481 13 15 86 30 2 [O] 2 11 0 0
53 963,900 9,618 9,618 29,354 5 7 35 9 1 [O] 1 6 0 0
71 911,283 209,248 199,507 98,772 13 18 380 67 2 [O] 2 8 0 0

computing time (in seconds) that was required to execute (i) the
pre-processing steps indicated in Figure 2, (ii) the construction
of the linear classifier obtained by the exact approach, and (iii)
the construction of the linear classifier obtained by the heuristic
approach. The perusal of the data provided in Table III reveals
very clearly
• the efficacy and the significance of the various set-“thinning”
steps performed by the process depicted in Figure 2,
• the solvability of the exact MIP formulation of Section IV for
very large configurations from the considered RAS class, as a
result of this “thinning” process, and also,
• the capability of the heuristic algorithm of Section V to pro-
vide separators that are (i) very efficient compared to those re-
turned by the exact approach, and (ii) obtained in computational
times that are significantly shorter than the times necessary for
the solution of the exact MIP formulation.

VII. CONCLUSIONS

This work has developed a novel methodology for the effec-
tive deployment of the maximally permissive DAP in the con-
text of the complex resource allocation that takes place in many
contemporary applications. Our results are enabled by (i) a care-
ful distinction between the off-line and the on-line parts of the
computation that is required for the effective characterization
and deployment of the target policy, and (ii) the effective con-
trol of the complexity involved in the on-line part of the com-
putation through the employment of pertinent representations
and data structures. More specifically, under the proposed ap-
proach, the on-line implementation of the maximally permissive
DAP is perceived as a classifier that effects the dichotomy of the
underlying state space into the safe and unsafe subspaces, and
therefore, the efficient implementation of the policy reduces to
the synthesis of a classifier that can express the sought sepa-
ration of the state space in a succinct and compact manner. It
was shown that certain properties of the underlying state space
enable extensive reductions of the information that must be ex-

plicitly considered during the classifier synthesis process, allevi-
ating substantially the computational effort of the process itself,
and enabling the structural compactness and minimality of the
derived supervisor. The manuscript provided a thorough formal
treatment of the above ideas in the context of Gadara RAS, a
particular RAS class for which the sought classifiers can take
the convenient form of a set of linear inequalities. Furthermore,
extensive numerical experimentation in the context of the afore-
mentioned RAS class confirmed the tractability of the approach
and its ability to provide compact implementations of the maxi-
mally permissive DAP for RAS with a very large size and very
large state spaces.

As it was pointed out in Section II, the methodology for the
synthesis of maximally permissive and compact DAPs devel-
oped in this manuscript, can also be applied to the broader RAS
class that is obtained from the class of Gadara RAS through the
removal of Assumption 2 that was stated in that section, but
in that case there is not guarantee for its completeness. More
specifically, the MIP formulation of Section IV may fail to iden-
tify any feasible solutions, and the iterations performed by the
heuristic of Section V may reach a point where none of the re-
maining unsafe states will be linearly separable from the safe
ones. Hence, in our future work we shall seek the extension and
the detailed implementation of the basic approach developed in
this manuscript in a way that guarantees its completeness for
RAS classes beyond that of the Gadara RAS. Some initial re-
sults in this direction can be found in [26].
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