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Abstract

This chapter considers the problem of deadlock avoidance in flexibly automated

manufacturing systems, one of the most prevalent supervisory control problems

that challenges the effective deployment of these environments. The problem is

addressed through the modeling abstraction of the (sequential) resource allocation

system (RAS), and the pursued analysis uses concepts and results from the formal

modeling framework of finite state automata (FSA). A notion of optimality is

defined through the notion of maximal permissiveness, but the computation of the

optimal DAP is shown to be NP-Hard. Hence, the last part of the chapter discusses

some approaches that have been developed by the relevant research community in

its effort to deal with this negative complexity result.

6.1 Introduction

Contemporary manufacturing is characterized by (i) an ever increasing emphasis on automation

and by (ii) a quest for broader product lines and more customized product offerings [22].

Indeed, since the beginning of the industrial revolution, automation has been at the core of the

mass-production concept and practices, enabling activities and tasks that frequently transcend

the human element in terms of capability, consistency, durability and speed [21]. More recently,

automation has also been advocated as a key enabler for controlling the overall production

cost, especially in economies where labor cost is particularly high. Hence, there is an

increasing tendency to confine the presence of the human element on the production shop-floor

to supervisory and maintenance tasks only, while the actual production activity is taken over

by “intelligent” hardware, materialized in the form of numerically controlled (NC) machines,
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robots, and other material handling equipment. Clearly, enabling the reliable deployment of

such an extensive mode of automation is a pretty challenging task. Yet, in the recent years,

things have been further complicated, and the aforementioned challenges have been further

exacerbated, by the second manufacturing trend mentioned above, i.e., the emphasis that is

placed by the global markets upon choice and customization. This trend implies a need to

support the production of a broader set of items, in smaller batch sizes, and with shorter life

spans. Such demand and production patterns negate the economies of scale and the efficiencies

of the dedicated production lines that have been sought by traditional manufacturing, and

(re-)places the emphasis on concepts like resource sharing, flexibility, reconfigurability and

concurrency [18]. But the current reality has also shown that the effective support of these

concepts on the manufacturing shop-floor is highly non-trivial, and it adds an entirely new

layer of complexity and challenges to the aforementioned endeavors towards the automated

operation of production systems. The manufacturing world has become increasingly conscious

of the fact that the successful design and deployment of flexibly automated production systems

necessitates the development of a (manufacturing) “science”, in the form of analytical and

computational tools, that will enable the systematic design, the analysis, and the real-time

management of these systems [49].

In fact, manufacturing systems have been a subject of study for decision sciences for a very

long time. Characteristically, many of the performance evaluation and scheduling problems

that have been extensively studied by the disciplines of Operations Management (OM) and

Industrial Engineering (IE), have been motivated by manufacturing operations. However,

these problems have been formulated and analyzed at a level of abstraction that presumes the

presence of the human element as a facilitator and the handler of operational aspects that are

not addressed by the models themselves. Abstracting away such operational details certainly

simplifies the addressed problem(s), and whenever applicable, it constitutes an effective tool for

managing the underlying problem complexities. On the other hand, the ongoing migration to

more extensively automated operational modes that was mentioned in the previous paragraph,

implies that these operational details must be (re-)introduced in the pursued modeling and

analysis. An autonomous manufacturing system must be designed and analyzed not only with
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Figure 6.1: Deadlock formation in a flexibly automated manufacturing cell

a focus on operational efficiency, but also in a way that guarantees the (logical) correctness

of its behavior. In fact, it can be argued that in the emerging regime of flexible automation,

behavioral correctness becomes an even more crucial requirement, since it essentially implies

a notion of “robustness” and “stability” that is indispensable for defining and supporting any

further notions of “efficiency”.

In order exemplify and concretize the positions stated in the previous paragraph, next we

introduce the problem of deadlock avoidance, in one of its manifestations in the context of

flexibly automated manufacturing systems. This problem will also be the main focus of study

in the rest of this chapter. Hence, consider the flexibly automated manufacturing cell that is

depicted in Figure 6.1. This cell consists of three NC machines, labeled R1,R2 and R3. Each

machine is able to accommodate one workpiece at its corresponding worktable, and it possesses

no additional buffer. In its current configuration, this cell supports two job types. The process

plan of job type J1 consists of three operations, executed consecutively on machines R1, R2 and

R3. The process plan of job type J2 also consists of three operations, but the corresponding

sequence is from machine R3 to R2 to R1. Jobs are transferred among the different machines

and the I/O station of the cell by the depicted automated guided vehicle (AGV); this is

essentially a mobile robot that moves over a pre-specified guidepath network that connects

the cell workstations and its I/O station. Figure 6.1 depicts a state where an instance of job

type J1 is loaded on machine R1 for the execution of its first processing stage, and an instance
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of type J2 is loaded on machine R2 for the execution of its second processing stage. But then

it should be clear that the further advancement of these two jobs will be permanently stalled,

since no matter which of the two jobs will be picked first by the AGV for its transfer to the

next station, the unloading of that job will be blocked by the job located at the destined station.

Such a permanent blocking situation is characterized as a deadlock, and it has a very pernicious

impact upon the performance of the underlying system; in automated production systems,

detection and resolution of deadlocks typically necessitates external interference, while the

utilization of the resources involved in a deadlock is effectively zero. It is therefore imperative

that an automated production system has the capability to predict and prevent the formation of

deadlock in an effective manner. In the rest of this chapter we shall discuss some of the theory

and tools that are currently available for the investigation of the problem of deadlock in flexibly

automated production systems, and for the design of effectively implementable control policies

that will guarantee the deadlock-free operation of these environments, without compromising

their operational efficiency and flexibility.

As already mentioned, deadlock formation and its avoidance constitutes a behavioral (or

logical) control problem that arises in the considered production systems, and as such, it

complements the more typical performance-oriented control problems that have been studied

in the past. From a more technical standpoint, these characterizations imply that for the analysis

of the deadlock avoidance problem, the system “behavior” is manifested by the executions of

various events in it and by the sequence in which these events are taking place, but the exact

timing of the execution of these event sequences is not very relevant. Indeed, as it can be

verified in the example of the previous paragraph, the formation of deadlock depends upon

the sequence of the job loadings and their advancement among their processing stages, and

not on the exact timing of the occurrence of these events. The modeling, analysis and control

of system behavior that is manifested as (untimed) event sequences is studied by an area of

modern control theory that is known as (Qualitative) Discrete Event Systems (DES) theory

[7]. In the DES paradigm, the events of interest define the alphabet that characterizes the

system behavior, while the various manifestations of this behavior as sequences – or strings

– of events constitute the (formal) language that is generated by the system. The theory is
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complemented by additional formal models that provide a characterization of the dynamics

that generate the considered behaviors, and connect these dynamics to the structural attributes

of the underlying system. Finite State Automata (FSA) [50] and Petri nets (PNs) [36] are some

of the most extensively used such formal models. Finally, the relevant control policies are

frequently characterized as supervisory control (SC) policies (or simply as supervisors) [50].

The rest of this chapter employs the FSA modeling framework for a systematic investigation

of the behavioral problem of deadlock avoidance in flexibly automated production systems.1

Recognizing that, in the considered operational context, deadlock essentially arises from the

impertinent allocation of the finite system resources to the jobs that are contesting for their

acquisition,2 we shall formulate and study the problem through the abstracting notion of the

resource allocation system (RAS) [54]. This is a concept that captures all the relevant behavioral

aspects of a flexibly automated manufacturing system, and at the same time, it enables the

generalization and extension of the derived results to many other operational domains that share

similar resource allocation problems. Hence, the rest of this chapter is organized as follows:

Section 6.2 starts with a formal characterization of the RAS concept. That section also models

the RAS behavior as an FSA, and introduces formally the concepts of deadlock and deadlock

avoidance by means of the FSA modeling framework. The last part of Section 6.2 introduces a

notion of optimality in the context of RAS deadlock avoidance, that is defined on the basis

of maximal permissiveness. It is shown, however, that the deployment of the maximally

permissive deadlock avoidance policy (DAP) is an NP-Hard problem for many practical RAS

instantiations. Hence, the section concludes with a discussion of the various ways in which

the relevant research community has tried to address this negative complexity result, while

establishing a trade-off between computational tractability and operational efficiency for the

deployed policies. Section 6.3 reports on the results of a more recent research program that

has sought to deploy the maximally permissive DAP even for cases where it is known to

1The investigation of this problem by means of the PN modeling framework and of an alternative modeling
framework that employs a graph-theoretic representation of the system structure and dynamics, is addressed
respectively in Chapters 7 and 8 of this edition.

2As demonstrated by the example system of Figure 6.1, a key resource that necessitates careful allocation is
the finite buffering capacity of the system workstations. But similar deadlock-related problems can arise from the
allocation of auxiliary resources likes fixtures and processing tools. Furthermore, the allocation of the traveling
segments – typically known as “zones” – in the guidepath network of an AGV or monorail system can also be
susceptible to deadlocks.
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be NP-Hard. The basic ideas that define this research program is the confinement of the

most expensive part of the involved computation in an “off-line” stage, and the translation

of the derived results to a more parsimonious representation of the obtained policy that will

be employed in the final, “on-line” implementation of this policy. It will be shown that

the obtained results are especially promising, and, in fact, they define a “paradigm” for the

practical implementation of maximally permissive DES SC policies in even broader application

settings. Section 6.4 concludes the chapter by summarizing its key theses and suggesting some

directions for future work. Finally, Appendix A.1 provides a brief introduction of the FSA

modeling framework, focusing primarily on the concepts that are necessary for the presented

developments.

6.2 Sequential Resource Allocation Systems and the

Problem of Deadlock Avoidance

6.2.1 Sequential Resource Allocation Systems

For the purposes of this work, a sequential resource allocation system (RAS) will be defined as

follows:

Definition 1 A Resource Allocation System (RAS) is a 4-tuple Φ = 〈R ,C,P ,D〉, where:

1. R = {R1, . . . ,Rm} is the set of the system resource types.

2. C : R → Z+ – the set of strictly positive integers – is the system capacity function,

characterizing the number of identical units from each resource type available in the

system. Resources are assumed to be reusable, i.e., each allocation cycle does not affect

their functional status or subsequent availability, and therefore, C(Ri)≡Ci constitutes a

system invariant for each i.

3. P = {Π1, . . . ,Πn} denotes the set of the system process types supported by the considered

system configuration. Each process type Π j is a composite element itself, in particular,

Π j =< ∆ j,G j >, where: (a) ∆ j = {Ξ j1, . . . ,Ξ j,l j} denotes the set of processing stages
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involved in the definition of process type Π j, and (b) G j is an acyclic digraph with its

node set, Q j, being bijectively related to the set ∆ j. Let Q↗j (resp., Q↘j ) denote the set of

source (resp., sink) nodes of G j. Then, any path from some node qs ∈ Q↗j to some node

q f ∈ Q↘j defines a process plan for process type Π j. Also, in the following, we shall let

∆≡
⋃n

j=1 ∆ j and ξ≡ |∆|.

4. D : ∆→∏
m
i=1{0, . . . ,Ci} is the resource allocation function associating every processing

stage Ξ jk with the resource allocation vector D(Ξi j) required for its execution; it is

further assumed that D(Ξi j) 6= 0, ∀, i, j. At any point in time, the system contains a

certain number of (possibly zero) instances of each process type that execute one of the

corresponding processing stages. A process instance executing a non-terminal stage

Ξi j ∈ Qi\Q↘i , must first be allocated the resource differential (D(Ξi, j+1)−D(Ξi j))
+

in order to advance to (some of) its next stage(s) Ξi, j+1, and only then will it

release the resource units |(D(Ξi, j+1)−D(Ξi j))
−|, that are not needed anymore. The

considered resource allocation protocol further requires that no resource type Ri ∈ R be

over-allocated with respect to its capacity Ci at any point in time.

Finally, for purposes of complexity considerations, we define the size |Φ| of RAS Φ by

|Φ| ≡ |R |+ξ+∑
m
i=1Ci.

A more general definition of the RAS concept is provided in [54]. The basic differences

between Definition 1 and the RAS definition of [54] can be summarized as follows: First of

all, the complete definition of a RAS, according to [54], involves an additional component that

characterizes the time-based – or quantitative – dynamics of the RAS; but, as explained in the

introductory section, this component is not relevant in the modeling and analysis to be pursued

in the following developments, and therefore, it is omitted. Furthermore, the process-defining

logic supported by Definition 1 encompasses the operational feature of routing flexibility, but it

excludes the possibility of merging and splitting operations, that would correspond respectively

to assembly and disassembly operations in a manufacturing setting. More generally, one can

classify the various instantiations of the RAS concept into a taxonomy that is defined on

the basis of (i) the structural characteristics of the sequential logic that defines the process
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routes, and (ii) the complexity of the resource allocation function as expressed by the resource

requests that are posed by the various processing stages. Then, the main RAS classes that

are identified and supported by the RAS definition of [54] are provided in Table 6.1. The

reader should notice that the RAS defined in Definition 1 above, essentially corresponds to the

Disjunctive/Conjunctive (D/C-) RAS class in the taxonomy of Table 6.1. The discussion and

the characterizations that are provided in the rest of this section are immediately extensible to

the more complex classes of that taxonomy. On the other hand, the extension of the results of

Section 6.3 to the more complex RAS classes of Table 6.1 would necessitate some further care.

Table 6.1: A RAS taxonomy

Based on the structure of the Based on the structure of the
Process Sequential Logic Resource Requirement Vectors
Linear: Each process is defined Single-Unit: Each stage requires
by a linear sequence of stages a single unit from a single resource
Disjunctive: A number of
alternative process plans Single-Type: Each stage requires
encoded by an acyclic digraph an arbitrary number of units,
Merge-Split: Each process is but all from a single resource
a fork-join network
Complex: A combination of Conjunctive: An arbitrary number
the above behaviors of units from different resources

6.2.2 Modeling the dynamics of the considered RAS as a Finite State

Automaton

The dynamics of the RAS Φ= 〈R ,C,P ,D〉, described in the previous paragraph, can be further

formalized by a Deterministic Finite State Automaton 〈S,E, f ,Γ,s0 , SM〉, that is defined as

follows:

1. The state set S consists of ξ-dimensional vectors s. The components s[l], l = 1, . . . ,ξ, of s

are in one-to-one correspondence with the RAS processing stages, and they indicate the

number of process instances executing the corresponding stage in the considered RAS
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state. Hence, S consists of all the vectors s ∈ (Z+
0 )

ξ that further satisfy

∀i = 1, . . . ,m,
ξ

∑
l=1

s[l] ·D(Ξl)[i]≤Ci (6.1)

where, according to the adopted notation, D(Ξl)[i] denotes the allocation request for

resource Ri that is posed by stage Ξl .3

2. The event set E is the union of the disjoint event sets E↗, Ē and E↘, where:

(a) E↗ = {erp : r = 0, Ξp ∈
⋃n

j=1 Q↗j }, i.e., event erp represents the loading of a new

process instance that starts from stage Ξp.

(b) Ē = {erp : ∃ j ∈ 1, . . . ,n s.t. Ξp is a successor of Ξr in graph G j}, i.e., erp represents

the advancement of a process instance executing stage Ξr to a successor stage Ξp.

(c) E↘ = {erp : Ξr ∈
⋃n

j=1 Q↘j , p = 0}, i.e, erp represents the unloading of a finished

process instance after executing its last stage Ξr.

3. The state transition function f : S× E → S is defined by s′ = f (s,erp), where the

components s′[l] of the resulting state s′ are given by:

s′[l] =


s[l]−1 if l = r

s[l]+1 if l = p

s[l] otherwise

Furthermore, f (s,erp) is a partial function defined only if the resulting state s′ ∈ S.

4. The feasible event function Γ : S→ 2E collects, for each state s∈ S, the set of events e∈E

for which the transition function f (s,e) is defined (i.e., the resulting state s′ belongs in

S). 4

3Following standard practice in DES literature (cf., for instance, the relevant definition in page 8 of [7]), in the
rest of this document we will frequently use the terms “space” and “subspace” in order to refer to set S and its
various subsets considered in this work. We want to emphasize, however, that S and its various subsets involved
in this work are not vector spaces in the sense that this term is used in linear algebra since they are not closed to
vector addition and scalar multiplication.

4The reader should notice that in the considered DFSA, the definition of Γ is immediately induced from the
information conveyed by the definition of the state transition function in item #3 above, and therefore, this element
is introduced only for completeness and consistency with the general definition of the DFSA concept that is
provided in the appendix.
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5. The initial state s0 = 0, i.e., the state vector with all its components equal to zero, which

corresponds to the situation when the system is empty of any process instances.

6. The set of marked states SM is the singleton {s0}, and it expresses the requirement for

complete process runs.

Let f̂ denote the natural extension of the state transition function f to S×E∗; i.e., for any

s ∈ S and the empty event string ε,

f̂ (s,ε) = s (6.2)

while for any s ∈ S, σ ∈ E∗ and e ∈ E,

f̂ (s,σe) = f ( f̂ (s,σ),e) (6.3)

In Equation 6.3 it is implicitly assumed that f̂ (s,σe) is undefined if any of the one-step

transitions that are involved in the right-hand-side recursion are undefined.

The behavior of RAS Φ is modeled by the language L(G) generated by DFSA G(Φ), i.e.,

by all strings σ ∈ E∗ such that f̂ (s0,σ) is defined. Furthermore, the reachable subspace of

G(Φ) is the subset Sr of S defined as follows:

Sr ≡ {s ∈ S : ∃σ ∈ L(G) s.t. f̂ (s0,σ) = s} (6.4)

We also define the safe subspace of G(Φ), Ss, by:

Ss ≡ {s ∈ S : ∃σ ∈ E∗ s.t. f̂ (s,σ) = s0} (6.5)

In the following, we shall denote the complements of Sr and Ss with respect to S by Sr̄ and Ss̄,

respectively, and we shall refer to them as the unreachable and unsafe subspaces. Finally, Sxy,

x ∈ {r, r̄}, y ∈ {s, s̄}, will denote the intersection of the corresponding sets Sx and Sy.
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6.2.3 The target behavior of G(Φ), the maximally permissive DAP, and

its complexity

The desired – or “target” – behavior of RAS Φ is expressed by the marked language Lm(G),

which is defined by means of the set of marked states SM, as follows:

Lm(G) ≡ {σ ∈ L(G) : f̂ (s0,σ) ∈ SM}

= {σ ∈ L(G) : f̂ (s0,σ) = s0} (6.6)

Equation 6.6, when combined with all the previous definitions, further implies that the set

of states that are accessible under Lm(G) is exactly equal to Srs. Hence, we have the following

definition of the maximally permissive deadlock avoidance policy (DAP) for the considered

RAS:

Definition 2 The maximally permissive deadlock avoidance policy (DAP) for any instantiation

Φ from the considered RAS class of Definition 1 is a supervisory control policy that, at every

state s ∈ Srs, admits a feasible transition s′ = f (s,erp) of the underlying DFSA G(Φ) iff s′ ∈ Ss.

In other words, starting from the initial state s0, a maximally permissive DAP must allow

/ enable a system-enabled transition to a next state s if and only if (iff ) s belongs to Ss. This

characterization of the maximally permissive DAP further implies its uniqueness for any given

RAS instantiation. It also implies that the policy can be effectively implemented through any

mechanism that recognizes and rejects the unsafe states that are accessible through one-step

transitions from Srs.

As a more concrete example of the various concepts and observations that were introduced

in the above discussion, Figure 6.2 depicts the state transition diagram (STD) corresponding

to the reachable state space for the RAS that models the buffer allocation taking place in

the manufacturing cell of Figure 6.1.5 In the depicted STD, the resource allocation state

5It should be easy to see that in the resource allocation dynamics taking place in the manufacturing cell of
Figure 6.1, the AGV acts as the enabling mechanism for the job transfers among the cell workstations and its
allocation will be deadlock-free as long as the allocation of the buffering capacity of the system workstation
remains deadlock-free. Hence, the allocation of this resource can be safely ignored in the analysis of the resource
allocation dynamics of the considered system.
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Figure 6.2: The reachable state space and the maximally permissive DAP for the RAS modeling
the buffer allocation in the manufacturing cell of Figure 6.1. The figure also depicts, by gray
states, the admissible state space of an implementation of the RUN DAP [55] on the considered
RAS.

corresponding to each of its nodes is represented graphically, with the three internal rectangles

representing the working tables of the three workstations; a non-empty content of these

rectangles indicates the processing stage of the job instance that is currently executed on the

corresponding machine. Unsafe states are depicted as black states; the remaining states are

safe. Clearly, in the depicted case, the maximally permissive DAP can be implemented by an

one-step-lookahead scheme that identifies and prevents transitions into the black states; these

transitions are annotated by the black crosses in the figure.

Figure 6.2 also demonstrates that the main cause of unsafety in the considered RAS

dynamics is the formation of (partial) deadlock among a (sub-)set of the running processes.

A formal definition of this last concept is as follows:

Definition 3 A (partial) deadlock is a RAS state where a (sub-)set of processes is entangled in

a circular waiting pattern with each process in this set requiring, in order to advance to its next

processing stage, some resource units that are held by other processes in the set.
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In the STD of Figure 6.2, deadlock states are those corresponding to nodes q16 – q19. On the

other hand, the reader should notice that node q15 corresponds to an unsafe RAS state that does

not contain a deadlock. For the RAS class considered in this chapter, deadlock detection – i.e.,

assessing whether a given RAS state contains a deadlock or not – is polynomially decidable

w.r.t. the RAS size |Φ|. An efficient deadlock detection algorithm can be found in ([54], Chpt.

2). But assessing the safety of a given state from the considered RAS class is an NP-complete

problem. More specifically, we have the following result:

Theorem 1 [53] Assessing the safety of any given RAS state is NP-complete in the strong

sense, even for the subclass of Linear, Single-Unit RAS where every resource has unit capacity.

Theorem 1 implies that the computation of the maximally permissive DAP is, in general, an

NP-Hard undertaking. In the next subsection we overview the main approaches that have been

employed by the research community in its efforts to cope with this non-polynomial complexity

of the maximally permissive DAP. Subsequently, Section 6.3 focuses on a particular approach

that has emerged very recently and seems to hold considerable promise for the effective

implementation of the maximally DAP in practical RAS instantiations, even in cases where

it is known to be NP-Hard.

6.2.4 Dealing with the NP-Hardness of the maximally permissive DAP:

an overview of the past approaches

The research community has tried to circumvent the limitations arising from the negative result

of Theorem 1 by pursuing the following directions:

(I) A first direction concerns the identification of “special structure” that allows the

deployment of the maximally permissive DAP through algorithms of polynomial complexity

w.r.t. the RAS size |Φ| of Definition 1. Some indicative results can be found in [2, 16, 27, 56,

65]. Furthermore, some of the identified special structure has a very practical, straightforward

applicability to the RAS deadlock avoidance problem as manifested in the operational context

of the flexibly automated manufacturing systems. It has been found, for instance, that in a

Disjunctive, Single-Unit RAS where every resource has at least two units of capacity, the class
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of unsafe states is identical to the class of deadlock states, and therefore, the problem of state

safety is polynomially decidable in this particular RAS class [56]. When translated in the

manufacturing context, this result implies that deadlock-free buffer allocation can be effected in

a maximally permissive manner, as long as every workstation has (at least) a two-slot buffer and

each job constitutes an atomic entity that requires a single buffer-slot for its accommodation.

For a further generalization of this result and an extensive discussion of its implications for the

buffer allocation in contemporary manufacturing systems, the reader is referred to [27].

(II) A second direction concerns the development of sub-optimal – i.e., non-maximally

permissive – solutions that are based on state properties that are polynomially decidable w.r.t.

the RAS size |Φ|. Under these policies, a tentative RAS transition is allowed only if the

resultant state satisfies the policy-defining property, which acts as a surrogate characterization

of safety. An important challenge in the design of these policies is the specification of this

surrogate property so that the reachable subspace satisfying it (i) contains state s0, and (ii)

it constitutes a strongly connected component of the STD representing the dynamics of the

underlying RAS; otherwise, the system will experience policy-induced deadlocks. Specific

policies implementing this general idea can be found in [4, 15, 23, 25, 26, 47, 55]. Furthermore,

Figure 6.2 exemplifies this class of policies by depicting, in gray, the subspace that is admitted

by an instantiation of the RUN DAP [55] on the corresponding RAS. This policy is clearly

sub-optimal since it fails to recognize the safety of states q5,q8,q13 and q14. On the other hand,

the policy is correct since, for every gray node in the depicted STD, there is a directed path to

node q0 that is policy-admissible (i.e., these paths visit only gray nodes).

(III) A third direction seeks to employ alternative, more compact, representations of the

considered RAS dynamics in the hope that the compactness of these alternative representations,

combined with further structural properties and insights revealed by them, will also lead, at least

in most practical cases, to fairly compact characterizations of the target policy and to more

efficient approaches for its derivation. A modeling framework that seems to hold particular

promise along this line of research, and therefore, has been explored more persistently in the

past, is that of Petri nets [36]. Some indicative works of this approach are those of [14, 24, 29,

47, 59]. Since the RAS structural analysis and the design of effective DAPs by means of the
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PN modeling framework is the topic of the next chapter in this edition, we forego any further

discussion on this research direction. We notice, however, that the PN-based approaches for

the realization of the maximally permissive DAP essentially seek to express this DAP as a set

of linear inequalities to be imposed upon the RAS state. But as it is established in the next

section, such a representation of the maximally permissive DAP will not be always possible

in the considered RAS class. Hence, these approaches are inherently limited in their ability to

effectively represent and compute the maximally permissive DAP.6

(IV) Another prominent approach that has been developed primarily in the context of PN

modeling, but essentially spans, both, the FSA and the PN-based representations, is that of

the “theory of regions” [3] and its derivatives. The key problem addressed by the theory of

regions is the conversion of a system modeled originally as an FSA into a Petri net where

(i) each distinct event is modeled by a single/unique transition and (ii) the reachability graph

of the synthesized Petri net is isomorphic to the original FSA. In [19, 61], it is proposed to

use the theory of regions to develop a PN-based representation of the maximally permissive

DAP. This approach first computes an FSA-based representation of the target DAP, using

enumerative FSA-based approaches, borrowed from DES SC theory [7, 50]; the obtained policy

is subsequently encoded to a more compact PN model through the theory of regions. The

approaches in [19, 61] can find an optimal supervisor if such a supervisor exists. But these

approaches are also limited by the aforementioned potential inability to express the maximally

permissive DAP as a PN. Furthermore, even in their feasible cases, practical experience has

shown that these methods are very demanding from a computational standpoint, and they result

in PN representations of the maximally permissive DAP that are much larger than the PN

modeling the original RAS.

(V) A more recent approach that is reminiscent of the theory of regions, adopts an

adequately compact representation for the underlying RAS in the form of an Extended Finite

State Automaton (EFSA) [8]. An EFSA, as presented in [8], is an extension of the ordinary

FSA that associates each transition with a “guard” (conditional) formula and “action” functions,

including different variables. In this kind of automaton, a transition is enabled iff the associated

6For a particular RAS class where the PN modeling framework is provably capable of supporting the
representation and computation of the maximally permissive DAP, the reader is referred to [30, 31, 32].
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guard is satisfied. Furthermore, when a transition fires, the associated action functions are

applied, updating the corresponding variables. In [34, 35], the sought DAP is synthesized in

the FSA modeling framework using Binary Decision Diagrams (BDDs) in an effort to alleviate

the relevant computational effort, and then it is encoded as guarding conditions in the EFSA.

However, the scalability and the size of the thus synthesized DAP are problems that yet need to

be addressed for the efficient implementation of this approach.

More extensive and comprehensive treatments of many of the results and methodologies

that were outlined in the previous paragraphs, can be found in [28, 51, 54, 66]. We conclude

our discussion on the key concepts and elements that underlie the current theory on the problem

of deadlock avoidance in sequential RAS and the corresponding literature, by noting that the

computation of the RAS state space and of an FSA-based representation of the maximally

permissive DAP can be facilitated by a number of computational tools that have been developed

by the research community of DES SC theory: DESUMA [57], SUPREMICA [1], and TCT

[17] are some of them. Yet, it is well-recognized in the field that the enumeration and the

representation of the underlying state space suffer from scalability issues even when symbolic

techniques are employed to encode the automaton transition function [20, 60]. In recent years,

some further attention has been shed upon this issue. For instance, the state space representation

based on BDDs [6, 9, 33, 48], the data decision diagrams [12], the hierarchical set decision

diagrams [13, 58], the stubborn sets [62], and the sleep-set methods for reduced state space

generation [63] are some examples of this endeavor. Nevertheless, it can be safely argued

that the deployment of a pertinent and adequate FSA-based representation of a DES dynamics

remains a challenging task, and it can always benefit from the special structure that might be

present in the considered class of DES. In the next section, we discuss a particular research

program that seeks to capitalize upon the aforementioned capabilities, and to complement

and extend them in ways that can render the implementation of the maximally permissive

DAP effectively computable for a broad range of RAS instances, in spite of the established

NP-Hardness for this policy.
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6.3 Efficient Implementations of the Optimal DAP through

Classification Theory

6.3.1 Preamble

The discussion of Section 6.2 has revealed a number of challenges regarding the deployment of

the maximally permissive DAP for the considered RAS class of Definition 1. More specifically,

the natural deployment of this policy through the on-line resolution of the state-safety problem

in the context of an one-step-lookahead control scheme, is challenged by the NP-completeness

of this problem. Furthermore, alternative approaches that try to pre-compute a representation

of the target policy in an “off-line” mode and eventually employ this representation for its

“on-line” execution, have relied on representations that either are not scalable, and therefore,

not amenable to “on-line” parsing, or they are not able to provide an effective representation

of the target policy for every instance from the considered RAS class; in the second case,

we shall say that the adopted representation is “incomplete” (w.r.t. the target policy). In

this section we present a research program that has managed to address successfully the

aforementioned limitations, leading to effective and efficient implementations of the maximally

permissive DAP for pretty sizeable RAS instances. Similar to some of the methods discussed in

Section 6.2.4, the approach pursued in this program is decomposed to (i) a first stage where an

FSA-based representation of the optimal DAP is computed by standard DES-SC algorithms,

and (ii) a second stage where the result of the first stage is “translated” to another, more

compact representation to be used during the “on-line” implementation of the policy. However,

the alternative representations that are employed for the “on-line” policy implementation are

selected so that they are complete, and, as it will be revealed by the subsequent parts of this

section, typically they are very compact, as well. In addition, their development can be based

on the application of a very rich methodology borrowed from classical optimization theory.

These new representations of the maximally permissive DAP stem from the very basic

realization that, during its on-line implementation, the policy acts as a “classifier” that

dichotomizes the RAS state space Sr into its safe and unsafe subspaces. Once this dichotomy

has been characterized through standard SC theory, then, one can resort to concepts and results
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borrowed from classification theory [46] for the design of the relevant classifier. Hence,

the methods that are pursued in the presented research program open new ways for thinking

about the considered problem, that complement effectively all the previously used approaches.

This new line of reasoning subsequently results into new fundamental insights, and connects

the overall analysis to very classical and yet very powerful representation frameworks and

techniques. The proposed approach selects a particular representation for the sought classifier

that is able to provide effective and computationally efficient classification for the RAS class

under consideration. In fact, both, parametric and non-parametric representations for the

sought classifier have been developed. Roughly speaking, in the considered research program,

a parametric classifier is defined by a set of linear inequalities and/or boolean functions,

whereas a non-parametric classifier is defined by a pertinent data structure that stores the

information needed for the classification. For parametric classifiers, the classifier-design

problem is defined as a minimization problem over a certain parameter space that results

from the adopted representation. The treatment of the classifier-design problem as an explicit

optimization problem also enables the development of heuristics that can effectively balance

the structural optimality of the sought classifier and the computational complexity involved in

its development, and of analytical bounds that characterize the potential sub-optimality incurred

by the use of these heuristics. On the other hand, the design problem for the non-parametric

classifier is defined as the compression of the stored information in a way that (i) makes the

classifier adequately compact, and (ii) facilitates the on-line processing of this information.

From a computational standpoint, the effective resolution of the classifier-design problems

that are described in the previous paragraph is further facilitated by some particular structure

that is present in the considered dichotomy, and enables the design of the sought classifiers

while considering explicitly only a (very) small subset of the underlying RAS state space. A

succinct characterization of this structure is given by the following proposition:

Proposition 1 Consider the (partial) ordering relationship “≤” imposed on the state space S

of a given RAS Φ that is defined as follows:

∀s,s′ ∈ S, s≤ s′ ⇐⇒ (∀l = 1, . . .ξ, s[l]≤ s′[l]) (6.7)
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Then,

1. s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss

2. s ∈ Ss̄ ∧ s≤ s′ =⇒ s′ ∈ Ss̄

The validity of Proposition 1 becomes obvious upon the realization that a feasible

terminating event sequence for state s′ can be constructed from a terminating event sequence

< s(0) ≡ s,e(1),s(1),e(2),s(2), . . . ,s(n−1),e(n),s(n) ≡ s0 > for state s through the removal of those

events that correspond to the advancement of job instances that are present in s but not in

s′. From a more practical standpoint, Proposition 1 implies that the necessary information for

the classification of any given RAS state s as safe or unsafe, can be essentially reduced to a

characterization of the maximal safe and the minimal unsafe states. These two sets of states are

formally defined as follows:

Definition 4 Let s< s′ (resp. s> s′) denote the fact that s≤ s′ (resp. s≥ s′) and there is at least

a pair of components s[l], s′[l] for which the corresponding inequality is strict. Then, given a

RAS Φ = 〈R ,C,P ,D〉,

1. a reachable safe state s ∈ Srs is maximal iff ¬∃ a reachable safe state s′ ∈ Srs such that

s′ > s;

2. a reachable unsafe state s ∈ Srs̄ is minimal iff ¬∃ a reachable unsafe state s′ ∈ Srs̄ such

that s′ < s.

Furthermore, the set of maximal reachable safe states will be denoted by S̄rs, and the set of

minimal reachable unsafe states will be denoted by S̄rs̄.

In the light of Proposition 1 and Definition 4, the proposed approach of deploying the

maximally permissive DAP as a compact classifier effecting the RAS state space dichotomy

into its safe and unsafe subspaces, can be pertinently organized according to the workflow

that is depicted in Figure 6.3. In the depicted workflow, the tasks that are highlighted in

grey color are those to be supported by the “off-line” computation. In the rest of this section,
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Figure 6.3: Deploying the maximally permissive DAP as a classifier of the RAS state space
into its safe and unsafe subspaces.

we outline detailed realizations of this workflow for the construction of, both, parametric and

non-parametric classifiers that provide a compact representation to the target DAP.

An important issue, that is at the core of all the realizations of the workflow of Figure 6.3

that are considered in the sequel, is the selection of the particular structure that will be

employed for the sought classifier. For the case of parametric classifiers, the simplest

classification structure is that provided by a system of linear inequalities; such a classifier

will be referred to as a linear classifier in the sequel. Besides its structural simplicity, a linear

classifier is also easier to understand and analyze from the standpoint of structural minimality,

and it is also compatible with additional representations of the maximally permissive DAP that

have been pursued in the past. More specifically, as remarked in Section 6.2.4, a representation

of the maximally permissive DAP as a set of linear inequalities renders it implementable in the

PN modeling framework, and endows upon it all the analytical and computational advantages

that are possessed by this framework. On the other hand, the discussion of Section 6.2.4 also

revealed that the representation of the maximally permissive DAP as a set of linear inequalities

is not always feasible in the context of the considered RAS class, and therefore, there is a need

for more powerful classification structures, that will be able to provide a complete solution for

the classifier-design problem arising in the considered program.

Motivated by the above remarks, the rest of this section is organized as follows:

Subsection 6.3.2 first formalizes the notions of the linear classifier and of its structural
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minimality, and subsequently it outlines a methodology for the design of a structurally

minimal classifier of the maximally permissive DAP. However, as previously explained, this

methodology is applicable only in the case that the maximally permissive DAP admits a

linear representation. Hence, Subsection 6.3.3 addresses more systematically the conditions

under which the maximally permissive DAP admits a linear representation. Subsection 6.3.4

builds upon the developments of the previous two subsections in order to define complete

classifiers for the more general case. Finally, Subsection 6.3.5 addresses the design of efficient,

non-parametric classifiers for the target policy. Most of the material presented in the rest of this

section comes from [37] and a series of publications that were derived from it.

6.3.2 Designing a Linear Classifier for the Optimal DAP

We start with a formalization of the notion of the linear classifier that is employed in this work.

Definition 5 Consider two vector sets G and H from a ξ-dimensional vector space V .

1. We shall say that sets G and H are linearly separated by a set of k linear inequalities

{(ai,bi) : i = 1, · · · ,k} iff

(∀g ∈ G : ∀i ∈ {1, · · · ,k}, aT
i ·g≤ bi) ∧

(∀h ∈ H : ∃i ∈ {1, · · · ,k}, aT
i ·h > bi) (6.8)

2. A linear classifier – or separator – for vector sets G and H is (structurally) minimal, iff it

employs the minimum possible number of linear inequalities that can separate these two

sets.

Hence, the problem addressed in this section can be succinctly stated as follows:

Definition 6 – optimal linear-classifier design Given a RAS instance Φ that admits a

representation of its maximally permissive DAP as a linear classifier of the corresponding

sets Srs and Srs̄, construct a structurally minimal linear separator for these two sets. 7

7Definitions 5 and 6 imply an asymmetry for the role of the sets Srs and Srs̄ in the specification of the (optimal)
linear-classifier design problem. As explained in the following, this asymmetry enables the representation of the
obtained classifier in the Petri net formalism.
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A major difficulty for the effective construction of the sought classifier is the large

(typically huge) cardinality of the sets Srs and Srs̄, for any practical instance of the considered

RAS classes. In the following, we discuss how the monotonicity property of the pursued

dichotomy that was identified in Section 6.3.1, can enable the reduction of the aforestated

linear classification problem to another linear classification problem that is defined on a pair

of vector sets with a smaller cardinality and dimensionality than their original counterparts.

This reduction does not compromise either the effectiveness or the minimality of the derived

classifier; a complete formal treatment of these developments is presented in [44], and they are

summarized next in a series of “technical results”.

Technical Result 1 – Thinning the set Srs̄ by focusing on its “boundary” to the reachable

and safe subspace As observed in the characterization of the maximally permissive DAP in

Section 6.2, the effective implementation of this policy for any given RAS Φ is equivalent

to the recognition and the blockage of transitions from the safe to the unsafe region of the

underlying state space S. Therefore, the sought classifier needs to separate effectively only the

set of reachable safe states Srs and the subset of the reachable unsafe states Sb
rs̄ ⊆ Srs̄ that are

reachable from some state s′ ∈ Srs in a single transition.

Technical Result 2 – Thinning the sets Srs and Sb
rs̄ by respectively focusing on their

maximal and minimal elements We remind the reader that S̄rs denotes the maximal elements

of the set Srs according to the ordering relationship introduced in Proposition 1. Also, let

S̄b
rs̄ denote the minimal elements of the set Sb

rs̄ according to the same relationship. Then, any

linear separator {(ai,bi), i = 1, . . . ,k} for the sets S̄rs and S̄b
rs̄ with non-negative parameters

ai and bi, ∀i, is also an effective separator for the entire sets Srs and Sb
rs̄. Furthermore, for

RAS instances Φ that admit linear separation of their sets Srs and Sb
rs̄, the set of minimal

linear separators for these two sets will always contain a separator {(ai,bi), i = 1, . . . ,k}

with non-negative parameters ai and bi, ∀i,8 and therefore, the restriction of the classification

problem of Definition 6 to separators with non-negative parameters compromises neither the

feasibility of the problem nor the optimality of the derived solution.

8This result is a consequence of the monotonicity of state safety that is established in Proposition 1 and of the
fact that the empty state s0 = 0 is, by definition, a safe state; its detailed development can be found in [44, 37].
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Technical Result 3 – Converting the separation problem of S̄rs and S̄b
rs̄ to an equivalent

separation problem of reduced dimensionality Let V denote the ξ-dimensional vector space

supporting the vector sets S̄rs and S̄b
rs̄, L denote the set of coordinates of space V , and L0

denote the set of coordinates that are identically zero in the vectors of S̄b
rs̄. Also, let P denote

the orthogonal projection that removes from the elements of S̄rs and S̄b
rs̄ those coordinates that

correspond to the aforementioned set L0. Set LP≡ L\L0, and let VP denote the |LP|-dimensional

sub-space supporting the projection P. Also, let Γ :N→N be a bijection that maps the elements

of the coordinate set LP to the coordinates of subspace VP. Finally, let P(S̄rs) and P(S̄b
rs̄)

denote respectively the images of the sets S̄rs and S̄b
rs̄ under P. Then, there exists a set of k

hyperplanes with non-negative coefficients, W, that separates the projected sets P(S̄rs) and

P(S̄b
rs̄) in subspace VP, iff there exists a set of k hyperplanes, H, that separates the sets S̄rs and

S̄b
rs̄ in the original space V . Furthermore, the separator H can be obtained from separator W

as follows:

bhi := bwi ∧

∀ j ∈ L0 : ahi[ j] := 0 ∧ ∀ j ∈ LP : ahi[ j] := awi[Γ( j)] (6.9)

Technical Results 1–3 imply that one can construct the sought separator H for the state

sets Srs and Sb
rs̄ by first extracting the smaller vector sets (in terms of, both, cardinality

and dimensionality) P(S̄rs) and P(S̄b
rs̄), designing a linear separator W with non-negative

coefficients for the last two sets, and finally obtaining H through Equation 6.9. In fact, the

projected set P(S̄rs) can be further “thinned” to set P(S̄rs) by recognizing that for the set S̄rs

the aforestated projection P can create additional dominance among the elements of P(S̄rs)

according to the ordering relationship of Proposition 1; set P(S̄rs) is obtained from set P(S̄rs)

by identifying and removing the dominated elements. The entire workflow described above is

depicted in the flowchart of Figure 6.4, which refines the corresponding part in the flowchart of

Figure 6.3 for the particular case of linear classification.
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Maximal State Extraction

Minimal State Extraction

Orthogonal Projection

Redundancy Removal

Maximal State Extraction

Srs

S̄rs

Srs̄

P (S̄b
rs̄)

Sb
rs̄

P (S̄rs)

S̄b
rs̄

P (S̄rs)

State Space Enumeration Classification

Separator Construction

Sr Non-Boundary State Removal

Figure 6.4: The workflow proposed in [44] for the construction of a minimal linear classifier
implementing the maximally permissive DAP of any given RAS Φ (provided that this policy is amenable
to such an implementation).

Detailed algorithms that can support the (off-line) execution of the various pre-processing

stages in this flowchart while mitigating the computational difficulties that arise from the

typically large size of the underlying state spaces, can be found in [39].9 The last step in

the workflow of Figure 6.4 – i.e., the synthesis of the sought classifier – can be formulated and

solved as a mixed integer program (MIP); we refer to [44] for the relevant details. The same

work also provides an efficient heuristic that can be applied in the cases that the proposed MIP

is intractable; in particular, it is shown that the (structural) sub-optimality of the classifier that

is returned by this heuristic is bounded by a factor of ln |P(S̄b
rs̄)|.

Table 6.2 demonstrates the application of the workflow of Figure 6.4 for the optimal

linear-classifier design, and concretizes further the concepts and the results that were

discussed in the previous paragraphs, by applying this workflow to the design of an optimal

linear classifier for the RAS that abstracts the buffer space allocation taking place in the

manufacturing system of Figure 6.1. Furthermore, the application of the MIP formulation of

[44] upon the sets P(S̄rs) and P(S̄b
rs̄) of Table 6.2 returned a minimal linear classifier for these

two sets – and by means of Technical Result 3, for the entire sets Srs and Sb
rs – which consists

9We briefly revisit this issue in Section 6.3.5.
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Table 6.2: The various sets obtained by the application of the data-thinning process of
Figure 6.4 to the sets Srs and Srs̄ corresponding to the reachable safe and unsafe subspaces
of the RAS that abstracts the buffer space allocation taking place in the manufacturing system
of Figure 6.1.

Sb
rs̄ = Srs̄

S̄rs = {q13 ≡ [1 1 1 0 0 0]T , q14 ≡ [0 0 0 1 1 1]T}
S̄b

rs̄ = {q15 ≡ [1 0 0 1 0 0]T , q16 ≡ [0 1 0 1 0 0]T ,
q17 ≡ [1 0 0 0 1 0]T}

L0 = {3, 6}; LP = {1, 2, 4, 5}
P(S̄b

rs̄) = {[1 0 1 0]T , [0 1 1 0]T , [1 0 0 1]T}

P(S̄rs) = P(S̄rs) = {[1 1 0 0]T , [0 0 1 1]T}

of the following two linear inequalities:

s[1]+ s[5]≤ 1.0

0.01 · s[1]+0.99 · s[2]+ s[4]≤ 1.0

It should be clear from Definition 5 and the example that was provided in the previous

paragraph, that each linear inequality employed by the sought classifier acts as a “cover” for

the subset of unsafe states that are separated by it, and therefore, the entire problem of the

optimal linear-classifier design has a strong affinity to the well known set-covering problem

[64]. This affinity has motivated the heuristic of [44] that was mentioned above, and it is

further exploited in [11], where an alternative method for the computation of the minimal linear

classifier is proposed, based on set-covering concepts and techniques that are borrowed from

combinatorial optimization theory [45]. In the next section, we shall return to the identified

affinity between the considered problem and the set covering problem, in order to develop

the conditions that characterize the existence of a linear classifier for the representation of the

maximally permissive DAP of any given RAS instance Φ.

We conclude the discussion of this section by providing, in Table 6.3, some indicative

results that were obtained through a set of computational experiments on a subclass of the
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Linear, Conjunctive-RAS, where every resource possesses unit capacity.10 The presented

results demonstrate very clearly the computational tractability of the considered approach

(whenever applicable) and the compactness that is attained in the representation of the optimal

DAP.

Table 6.3: Some computational results characterizing the compression attained by the encoding of the
maximally permissive DAP as a linear classifier. The considered RAS instances have been suggested by
the Gadara project [30].

state # safe # unsafe reduced proj. max proj. min # lin.
dim. states states state dim. safe states unsafe states inqlties
61 8,696,502 71,677 7 9 5 1
75 5,699,463 268,807 23 315 43 4

107 5,696,776 1,165,958 35 533 155 9
60 3,994,272 348,576 10 22 12 2
97 3,718,540 706,177 31 418 122 7

112 2,521,030 556,743 38 643 168 8
63 1,567,434 17,579 17 163 29 3
96 1,240,726 188,189 33 467 113 8

6.3.3 Determining the Existence of a Linear Classifier

It should be clear from the discussion of the previous section that, given an instance Φ from

the considered RAS class, there will exist a linear classifier for its maximally permissive DAP,

of the type specified in Definition 5, iff every unsafe state u ∈ Sb
rs̄ is linearly separable from

the elements of the safe subspace Srs. But it is well known that a given vector u is linearly

separable from a vector set V = {vi, . . . ,vn} iff u does not belong in the convex hull of V

(i.e., u cannot be expressed as a convex combination of the elements of V ) [45]. Things can

be a little more complicated, in general, when the sought classifier must contain nonnegative

parameters only. The next set of results, adapted from [10], formalizes the above remarks, and

also provides a complete set of conditions for the existence of linear classifiers with nonnegative

parameters. To formally state these results, let Conv(Srs) denote the convex hull of Srs. Also,

define Conv(Srs)≡
⋃

y∈Conv(Srs){x ∈ R
ξ : x≤ y}. Then, we have the following proposition:

10As discussed in the next subsection, the restriction of the RAS class of Definition 1 to unit resource capacities
guarantees the linear representation of the maximally permissive DAP.
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Table 6.4: An example RAS that does not admit a linear representation for its optimal DAP.

Resource Types {R1,R2}
Resource Capacities C(R1) =C(R2) = 2
Process Types {J1,J2}
Process Routes G1 : R1→ 2.R2

G2 : R2→ 2.R1

Proposition 2 Consider a RAS instance Φ from the RAS class of Definition 1, and the

corresponding sets Srs and Sb
rs̄ of the underlying state space. Then, the following statements

hold true:

1. There exists a linear classifier of the form defined by Definition 5 that can represent the

maximally permissive DAP of Φ iff Conv(Srs)∩Sb
rs̄ = /0.

2. There exists a linear classifier of the form defined by Definition 5 with nonnegative

parameters that can represent the maximally permissive DAP of Φ iff Conv(Srs)∩Sb
rs̄ = /0.

3. For the considered RAS class, it also holds that Conv(Srs)∩ (R+0 )ξ = Conv(Srs), and

therefore, the two tests in items (1) and (2) above are equivalent.

Some further characterizations and an algorithmic construction of Conv(Srs) are provided

in [52]. On the other hand, a simple (although computationally intensive) test for assessing the

condition Conv(Srs)∩ Sb
rs̄ = /0 can be based on the assessment, for each state u ∈ Sb

rs̄, of the

feasibility in a,b of the following system of linear inequalities :

∀s ∈ Srs, a · s ≤ b

a ·u ≥ b+1

a, b ≥ 0

Table 6.4 and Figure 6.5 concretize the results Proposition 2 by providing an example RAS

Φ that does not admit a representation of its maximally permissive DAP as a linear classifier.

More specifically, the RAS configuration defined in Table 6.4 has two resource types, R1

and R2, each with capacity C(Ri) = 2. It also has two process types, J1 and J2, where each
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Figure 6.5: Characterization of the safe and unsafe reachable states for the example RAS of Table 6.4,
in the projected sub-space defined by the state components x1 and x3. Safe reachable states are depicted
by rhombi and unsafe reachable states by squares. Also, the shadowed area corresponds to the convex
hull of the projected safe states.

process type consists of two processing stages with each stage engaging a single resource type

at the amount indicated by the corresponding coefficient. The RAS state s is defined by the

4-dim vector [x1,x2,x3,x4] corresponding to the stages Ξ11, Ξ12, Ξ21 and Ξ22 respectively.

It can be easily checked that Srs ≡ {[0,0,0,0], [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1],

[2,0,0,0], [0,0,2,0], [1,1,0,0], [0,0,1,1]}, and that Sb
rs̄ ≡ {[1,0,1,0], [2,0,1,0], [1,0,2,0]}.

Since process instances executing the stages Ξ12 and Ξ22 can immediately exit the system upon

their completion, we can study the corresponding deadlock avoidance problem by considering

only the projection of the reachable state space to the subspace defined by the components x1

and x3;11 Figure 6.5 provides this characterization. It is easy to see that the boundary unsafe

state corresponding to point [1,1] belongs in the convex hull of the points that correspond to

the RAS safe states, and therefore, it is not linearly separable from them.

We conclude the discussion on the representation of the maximally permissive DAP for the

RAS instances of Definition 1 as a linear classifier, by characterizing two RAS sub-classes for

which this representation is always possible. The first of them concerns RAS instantiations

where every resource has a single unit of capacity. Since, according to Definition 1, every

11This remark is a manifestation of the dimensionality reduction that was discussed in Technical Result 3 of
Section 6.3.2.
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processing stage in the considered RAS requires at least one unit from some resource type,

the above restriction on the RAS capacities further implies that the resulting RAS sub-class

has binary state spaces. But it can be easily checked that every “corner” (more formally,

extreme point) of the ξ-dimensional binary hypercube that encompasses these state spaces,

can be separated from the rest by a single hyperplane. The reader is referred to [44] for a more

formal statement of this result. Some further implications of it are explored in [30] and the

references that are cited therein.

A second RAS sub-class for which the maximally permissive DAP is always representable

as a linear classifier, is the subclass of Disjunctive, Single-Unit RAS where the set of unsafe

states coincides with the set of deadlock states. We remind the reader that some specific RAS

sub-classes that satisfy this property, were identified and discussed in Section 6.2.4. It can be

easily seen that, in the case of Single-Unit RAS, the prevention of any (reachable) deadlock can

be achieved in a maximally permissive manner through the enforcement of a linear inequality

stipulating that the total number of process instances executing the processing stages that

are involved in the considered deadlock remains strictly below the combined capacity of the

resources that are involved in the deadlock; this last remark establishes the claim that was

made at the beginning of this paragraph.12

6.3.4 Complete Parametric Classifiers for the Optimal DAP

In this section we seek to characterize classifier structures that are complete w.r.t. maximally

permissive DAP of the entire RAS class of Definition 1; i.e., these classifiers will be able to

provide an effective (and hopefully compact) representation for the RAS state space dichotomy

that is effected by the maximally permissive DAP of any instance Φ from the considered RAS

class. The existence of such a classifier is guaranteed by a well-known result in classification

theory that establishes the effective separation of two distinct, finite vector sets from any

ξ-dim space V , through a particular classification mechanism that is known as a “(generalized)

committee machine (CM)” [46]. This classifier is defined by a 4-tuple CM = 〈A,b,π,θ〉, where:
12However, the practical significance of this last result is mitigated, to a certain extent, by the availability

for these RAS sub-classes of polynomial one-step-lookahead implementations of the optimal DAP that guard
against the formation of deadlock through “on-line” deadlock detection algorithms; c.f., the relevant discussion in
Section 6.2.4.
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(i) A is a real-valued matrix of some dimensionality k× ξ; (ii) b and π are real-valued k-dim

vectors; and (iii) θ is a real-valued scalar. This classifier accepts a vector v ∈V iff

k

∑
i=1

π[i] · I{A[i,·]·v≤b[i]} ≤ θ (6.10)

In Equation 6.10, I{A[i,·]·v≤b[i]} is an indicator variable that is priced to one iff A[i, ·] · v ≤ b[i].

Hence, a CM can be perceived as a two-layered structure. The first layer of this structure

consists of the linear inequalities that are defined by the pair 〈A,b〉 and it constitutes a mapping

mechanism that maps the ξ-dim input vector v to another k-dim binary vector I consisting of

the indicator variables that appear in Equation 6.10. The second layer accepts or rejects the

input vector v based on the satisfaction by its image vector I of the linear inequality that is

defined by the pair 〈π,θ〉.

However, a direct application of the above result to the classification problem under

consideration would be challenged by the excessive size of the classified subspaces. Hence,

we stipulate that any practical approach towards the development of the sought classifiers

should retain the capability of focusing explicitly only upon the maximal safe and the minimal

unsafe states of the underlying state space, that was established for the linear classifier-design

problem in Section 6.3.2. Next, we present two variations of the CM classifier that provide

this additional capability, while retaining their completeness w.r.t. the target policy that is

considered in this work. From a more technical standpoint, both of these variations are enabled

by the monotonicity property of Proposition 1, and the topology of the underlying subspaces

that is implied by this property; a concrete example of this topology is provided in Figure 6.5.

The first variation is known as the two-layer classifier, and its basic structure is depicted

in Figure 6.6. As it can be seen in this figure, the two-layer classifier retains the two-layered

structure of the CM, but it replaces the original inequality in the second layer by an entire set of

linear inequalities. In general, there might be a trade-off among the number of inequalities

of the first and the second layer that are necessary for effecting the target classification.

Hence, the aforementioned expansion of the second layer intends to allow for more compact

representations of the target DAP, and a more economical computation for the “on line”

classification of any given RAS state, than those that are supported by the original CM.



CHAPTER 6. 31

Figure 6.6: A schematic diagram of the two-layer classifier

Furthermore, this expansion, when combined with the monotonicity property of Proposition 1,

enables also the restriction of the sought two-layer classifiers to the sub-class of this family

that involves only nonnegative coefficients for the classifier inequalities. This last effect

subsequently enables the design of the sought classifier based only on the explicit consideration

of the maximal safe and the minimal unsafe states, and establishes the practicality of the

approach. The reader is referred to [40] for a complete treatment of the corresponding

classifier-design problem, along lines similar to those that were pursued for the design of the

linear classifier in Section 6.3.2.

The second complete classifier that has been employed for the representation of the

maximally permissive DAP by the research program that is considered in this section, is

known as the Boolean classifier. As indicated by its name, this classifier substitutes the linear

inequality in the second layer of the CM by a Boolean function that is defined in terms of the

binary components of the image vector I that is produced by the first layer. The motivation for

this substitution comes from the realization that, for RAS instances that fail the conditions of

Proposition 2, the safe subspace Srs can be represented by the union of a number of polytopes

that do not contain any elements of Sb
rs̄; Figure 6.7 depicts the generic structure of the Boolean

classifier.

From a more analytical standpoint, each of these polytopes is characterized as a set of

linear inequalities, while their union can be expressed as a disjunctive normal form (DNF)
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Figure 6.7: A schematic diagram of the Boolean classifier

with the constituent clauses being defined by the conjunctions of the indicator variables that

correspond to the inequalities of each polytope. As in the previous cases, the restriction of

the parameters of the first-layer inequalities to nonnegative values does not compromise the

completeness of the classifier, and it enables its design based only on the explicit consideration

of the maximal safe and minimal unsafe states of the underlying state space. A complete

analysis is presented in [38], where it is also shown that the Boolean function of the second

layer can be replaced by alternative forms than the one suggested above, with potential gains

in the compactness of the classifier and/or the computational effort for its design. Furthermore,

the work of [10] provides additional algorithms for the design of the Boolean classifiers of

the DNF form that was described above. These algorithms are based on the embedding of the

geometrical perspectives that underlie the specification of the aforementioned DNF form into

pertinent “Branch & Bound” schemes, similar to those that are employed by combinatorial

optimization theory [45].

6.3.5 Non-Parametric Classifiers for the Optimal DAP

As stated in Section 6.3.1, the key thesis underlying the proposition of this classifier is that, in

many practical applications of the considered RAS theory, once the FSA-based representation

of the optimal DAP has been obtained, it is possible to encode the part of that representation that

is necessary to resolve the underlying state safety problem, in a “data structure / mechanism”

sufficiently compact, so that the problem can be effectively addressed within the time and
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other resource constraints that typically arise in a real-time computation. More specifically, a

straightforward implementation of the aforementioned idea might explicitly store the set Sb
rs̄,

and during the “on-line” stage, it will use this information to test the membership of a given

state s in Sb
rs̄. Furthermore, using the monotonicity property of Proposition 1, we can explicitly

store only Sb
rs̄, i.e., the subset of the minimal elements of Sb

rs̄; then, starting from the initial

state s0, the transition to a reachable state s should be blocked as unsafe iff there exists a state

u′ ∈ Sb
rs̄ such that s ≥ u′. An equivalent characterization of state safety is as follows: s is a

safe state iff ∀u′ ∈ Sb
rs̄, ∃iu′ ∈ L s.t. s[iu′] < u′[iu′ ]. In this last characterization, L denotes the

dimension set of the state vector, as defined in Technical Result 3. But from the definition of the

dimension set L0 in the same Technical Result, we can see that the sought iu′ /∈ L0; hence, the

set of dimensions L0 can be dropped from the stored data set. This last remark further implies

that the set P(Sb
rs̄), that is obtained by applying the workflow depicted in Figure 6.4, contains

sufficient information for the correct classification of any state vector that must be considered

during the “on-line” stage.

For a more efficient storage and on-line processing of the set P(Sb
rs̄), we propose to use

(n-ary) decision diagrams to store this set, which are also known as the TRIE data structure [5].

These decision diagrams are an extension of the BDD concept [6] so that they can support

the storage and processing of vectors with finite but possibly non-binary support for their

components. Given a set of k vectors, an (n-ary) decision diagram employed for their storage

is an acyclic digraph with a dummy source node and multiple sink nodes. This digraph is

characterized mainly by the following properties: (i) Other than the source node, each node

stores the value of a single coordinate of some vector(s) in the given set. (ii) There exist

k directed paths from the source node to the sink nodes, and the contents of the nodes on

each of these paths correspond to a vector in the given set. Moreover, there is an one-to-one

correspondence between these directed paths and the given vectors. (iii) The diagram employs

the minimum number of nodes that support properties (i) and (ii).

From an algorithmic standpoint, the (n-ary) decision diagram for the storage of k

l-dimensional vectors {v1,v2, . . . ,vk} is constructed in two stages:

(a) First, an (n-ary) decision tree is constructed for the storage of the given vectors as
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(b) The corresponding decision diagram
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(a) The decision tree

Figure 6.8: A decision tree and the corresponding decision diagram storing the vector set {[1,2,1,1],
[2,1,1,1], [1,1,3,2], [1,2,3,0]}.

follows: This tree has a dummy root node, n0, of depth 0, and l layers of nodes, with depths

from 1 to l that correspond to the l dimensions of vectors vi. Starting with node n0 as the

single node of layer 0, the tree nodes at each of the remaining layers are defined recursively as

follows: The children of a node n at layer l(n) ∈ {0, . . . , l− 1} correspond to all the possible

values of coordinate l(n)+ 1 in the vector subset of {v1,v2, . . . ,vk} that is obtained by fixing

the first l(n) coordinates at the values specified by the path from the root node n0 to node n.

The coordinate value that corresponds to each node n in layers 1 to l, according to this node

generation scheme, is characterized as the “content” of n. Obviously, the nodes generated for

layer l according to the previous recursion have no children, and they constitute the leaf nodes

of the tree. In the resulting tree structure, every vector vi, i = 1, . . . ,k, is represented by a path

to one of the leaf nodes.

(b) In the second stage, the decision tree is converted to a decision diagram by iteratively

identifying and eliminating duplicate sub-graphs in the generated structure, while starting from

the last layer l. Two subgraphs – or sub-diagrams – originating at given layer i ∈ {1, . . . , l}

are considered duplicate if (i) they are isomorphic, and (ii) each isomorphically related pair of

nodes has the same content.

Figure 6.8 exemplifies the construction of an n-ary decision diagram by depicting

the decision tree and the corresponding decision diagram that store the vector set

{[1,2,1,1], [2,1,1,1], [1,1,3,2], [1,2,3,0]}. A complete treatment of the application of the

TRIE data structure for the efficient representation and deployment of the optimal DAP in the
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considered RAS class can be found in [39].

We conclude the discussion of this section by noticing that all the three approaches for the

representation and the deployment of the maximally permissive DAP that were discussed in

it, reveal clearly that the information that is really necessary for the effective resolution of the

safety problem, is contained in some subsets of the safe and unsafe subspaces consisting of

extreme elements of these sets. Furthermore, Table 6.3, and additional collective experience

that is reported in the various references that are cited in this section, suggest that these

critical subsets are significantly (typically, by many orders of magnitude) smaller than the

corresponding state spaces. Hence, it is pertinent to explore the possibility of enumerating

these target sets while foregoing a complete enumeration of the underlying state space. Such

an approach necessitates a systematic investigation of the notions of maximality / minimality

w.r.t. the concepts of RAS state safety / unsafety. A study along the aforementioned lines

has been undertaken in [41, 42], which provides an efficient algorithm for the enumeration of

the minimal unsafe states, based on a backtracing scheme from the set of minimal deadlocks.

Furthermore, the companion work of [43] establishes that the ability to identify the minimal

unsafe states through a partial enumeration of the underlying RAS state space, localized around

the minimal deadlocks, enables the effective deployment of the maximally permissive DAP

even for certain RAS classes where the underlying state space is not finite, and therefore, not

amenable to the classical enumerative approaches of the DES-SC theory.

6.4 Concluding Remarks

This chapter has addressed the deadlock-related problems that arise in the context of the

contemporary flexibly automated manufacturing systems. Starting from the thesis that the

behavioral complexity that is exhibited by the aforementioned systems necessitates a structured

approach to the modeling, analysis and, eventually, the control of their behavior, the chapter has

presented a formal approach for the investigation of the relevant deadlock avoidance problems

that is based on (i) the abstracting notion of the resource allocation system, and (ii) the further

representation of the RAS dynamics in the FSA modeling framework. This analysis has enabled
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a rigorous characterization of the concepts of deadlock and deadlock avoidance policies. It has

also led to a notion of optimality for the sought DAPs, in the form of maximal permissiveness.

However, it was further established that the deployment of the maximally permissive DAP is an

NP-Hard proposition. Hence, the second part of the chapter discussed a number of approaches

that have been used by the relevant research community in its endeavor to deal with the

computational challenges that arise from this negative result. The presented results demonstrate

very clearly that the pertinent identification and the effective exploitation of various problem

attributes that define “special structure” for it, are of paramount importance for the effective

management of the underlying complexities. They also reveal the gains that can be obtained

from a synergistic application of various modeling frameworks and analytical perspectives and

tools on the considered problem. In this way, the results that were presented in this chapter can

define a “paradigm” for the effective deployment of optimal supervision for other applications

that are amenable to DES-SC theory.

At the same time, the overall development of this section also reveals a number of

possibilities for the further strengthening, extension, and complementation of the presented

material. Some of the most prominent ones concern the extension of the methodology

of Section 6.3 to more complex classes of the RAS taxonomy of Table 6.1 than the

Disjunctive/Conjuctive RAS, which is the RAS class essentially considered in this chapter.

A key challenge for this extension is the identification of pertinent properties, similar to those

of Proposition 1, that will enable the effective compression of the information that must be

explicitly employed in the synthesis of the sought classifiers. In a similar spirit, one can seek

the extension of the results of this chapter to RAS that exhibit uncontrollable and unobservable

behavior; in the manufacturing context, such behavior can arise, for instance, from timing

restrictions regarding the consecutive execution of certain operations, routing decisions that

depend on the inherent process dynamics and are not controllable by the supervisory control

logic, or merely by the lack of the necessary sensing and actuating capability that would result

in a fully observable and controllable behavior. Finally, an important remaining issue is the

integration of the results that were presented in this chapter, and the broader results that are

currently available regarding the behavioral control of flexibly automated production systems,
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with the complementary set of results that pertain to the performance modeling, analysis and

control of these environments. Some further discussion on the research directions that are

highlighted above, including some preliminary results and pointers to the relevant literature,

can be found in [54].



Appendix A

A.1 Finite State Automata: Some Basic Concepts and

Definitions

Among the class of qualitative behavioral models employed by Discrete Event System theory,

the most straightforward, and, probably, the most widely used, is the Finite State Automaton

(FSA) [7]. A formal definition of this model is as follows:

Definition 7 [7] A (Deterministic) Finite State Automaton (FSA) G is a 6-tuple

G = 〈E,S, f ,Γ,s0,Sm〉

where

• E is a finite set, called the event set of the automaton;

• S is a finite set, called the state set of the automaton;

• f : S×E→ S, is the state transition function, i.e., ∀s ∈ S,∀e ∈ E, f (s,e) = s′ means that

there is a transition from state s to state s′ that is triggered by event e; in general, f is a

partial function on its domain, i.e., certain events cannot occur in state s;

• Γ : S→ 2E is the feasible event function, i.e., ∀s ∈ S, Γ(s) denotes the set of all events e

for which f (s,e) is defined;

• s0 ∈ S is the initial state of the automaton;

38
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• Sm ⊆ S is the set of marked states.

The transitional structure expressed by the FSA model can be visualized by a labeled

digraph G ; this directed graph is known as the state transition diagram (STD) of the FSA,

and its node set corresponds to the state set S of the automaton, its edge set is defined by the

state transition function, and its edge label set corresponds to the event set E of the automaton.

It is obvious from the above definitions that the FSA and its corresponding STD can be

perceived as a complete map for the behavioral evolution of the modelled system. This effect

can be formalized as follows:

Definition 8 [7] Consider an FSA G = 〈E,S, f ,Γ,s0,Sm〉 and let E∗ denote the set containing

all the finite-length sequences that can be generated from E, including the empty sequence ε.

1. The FSA state transition function f is naturally extended to S×E∗ as follows:

∀s ∈ S, f (s,ε) ≡ s (A.1)

∀s ∈ S,∀u ∈ E∗,∀e ∈ E, f (s,ue) ≡ f ( f (s,u),e) (A.2)

2. The language L(G) generated by G is defined by

L(G)≡ {u ∈ E∗ : f (s0,u) is well-defined} 1 (A.3)

3. The language Lm(G) marked by G is defined by

Lm(G)≡ {u ∈ L(G) : f (s0,u) ∈ Sm} (A.4)

In the STD context, L(G) can be described as the set of all event sequences u ∈ E∗ that can

be traced on any path, not necessarily simple, starting from the initial state s0. Lm(G) is used to

model event sequences that correspond to the achievement of some “milestone” in the system

behavior.
1i.e., f (s0,u) involves only transitions corresponding to feasible events
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