
A practical approach to the design of maximally permissive
liveness-enforcing supervisors for complex resource allocation systems

Ahmed Nazeem and Spyros Reveliotis
School of Industrial & Systems Engineering

Georgia Institute of Technology
anazeem@gatech.edu, spyros@isye.gatech.edu

Abstract— The problem of designing and deploying liveness-
enforcing supervisors (LES) for sequential resource allocation
systems is well-documented and extensively researched in the
current literature. Acknowledging the fact that the computation
of the maximally permissive LES is an NP-hard problem, most
of the present solutions tend to trade off maximal permissive-
ness for computational tractability and ease of the policy design
and implementation. In this work, we demonstrate that the
maximally permissive LES can be a viable solution for the
resource allocation taking place in many practical applications,
by (a) effectively differentiating between the off-line and on-line
problem complexity, and (b) controlling the latter through the
development of succinct and compact representations of the
information that is necessary for the characterization of the
maximal permissive LES.

I. INTRODUCTION

The problem of liveness-enforcing supervision – or dead-
lock avoidance – for sequential resource allocation systems
(RAS) has received extensive attention in the literature. In its
basic definition, this problem concerns the coordinated allo-
cation of the finite system resources to a set of concurrently
executing processes, that are competing for the staged acqui-
sition and release of these resources, so that every process
can eventually proceed to its completion. In particular, the
applied control policy must avoid the development of circular
waiting patterns where a subset of processes are waiting upon
each other for the release of the resources that are needed
for their further advancement, a situation characterized as
“deadlock” in the relevant literature.

The study of the deadlock avoidance problem was initiated
in the late 60’s and early 70’s, and it was primarily motivated
by the needs of the resource allocation that was taking place
in the context of the computing technologies emerging at that
time [9], [8], [4], [10]. Some of the main contributions of that
era were (i) the formalization of the concept of deadlock and
of the resource allocation dynamics that lead to its formation
by means of graph-theoretic concepts and structures, and
(ii) the identification of off-line structural conditions and
on-line resource allocation policies that would guarantee
the deadlock-free operation of the underlying system; the
design of the resource allocation processes so that they do
not give rise to any circular waiting patterns is an example
of the aforementioned structural conditions, while Banker’s
algorithm [5] is the best known deadlock avoidance policy
(DAP) of that era. An additional but later development of that

era (late 70’s) was the systematic study of the computational
complexity of the maximally permissive1 deadlock avoidance
policy for any given RAS and the establishment of its NP-
hardness for the majority of RAS behavior [1], [7]. The
problem of deadlock avoidance was subsequently revived
in the late 80’s / early 90’s, primarily in the context of
the resource allocation taking place in flexibly automated
production systems and intelligent transportation systems.
The defining characteristics of these new studies were (i)
the better specificity and tractability / predictability of the
underlying resource allocation processes with respect to their
resource allocation requests, and (ii) the employment of the
simultaneously emerging qualitative Discrete Event Systems
(DES) theory [2] as a powerful and rigorous base for model-
ing, analyzing and eventually controlling the considered RAS
dynamics. The combination of these two effects has led to (a)
a more profound understanding of the process of deadlock
formation and of the RAS structural attributes that facilitate
this process (under various DES-based representations), and
also to (b) a multitude of methodologies that can provide
effective deadlock avoidance policies for many RAS classes.
Most of the developments of this second era of studies on
the problem of deadlock avoidance in sequential RAS, as
well as the spirit that has driven these developments, can be
traced in [14], [16], [12], [11].

The perusal of the available literature on the LES design
for sequential RAS cited in the previous paragraph, will re-
veal that many (actually almost all) of the currently proposed
solutions are of a suboptimal nature, since they tend to trade
off maximal permissiveness for computational efficiency
and ease in the policy development and implementation.
In this work, we take a more aggressive attitude to the
problem, seeking to synthesize maximally permissive LES
for the considered RAS. In particular, we seek to develop
a methodology that will provide the maximally permissive
LES for any given instantiation from the considered RAS
class(es), while controlling to any possible extent the on-
line computational complexity of the policy implementation.
Our intentions are motivated by the following remarks:

• The aforementioned NP-hardness of the maximally

1Maximal permissiveness and all other technical concepts appearing in
this introductory discussion will be systematically / formally defined in the
subsequent sections.

permissive LES for the considered RAS should be
interpreted as a “worst-case” result. On the other hand,
in decision sciences there are quite a few problems
of non-polynomial computational complexity that in
practice demonstrate a much more benign “empirical”
complexity, accepting exact solutions with reasonable
computational effort.

• Furthermore, in many cases, a non-polynomial com-
putational complexity might result from the off-line
computational effort that is necessary for acquiring a
target solution / policy, but the final result might be
adequately compact to enable an efficient / practical on-
line implementation.

In the case of the computation of the maximally permissive
LES for the considered RAS, the solution can be obtained
through the “trimming” of the finite state automaton (FSA)
that models the underlying RAS behavior, while assessing
state reachability and co-reachability with respect to the
RAS empty state. This is a well understood and very
straightforward calculation [2]. The only problem is that
the aforementioned FSA grows exponentially large with
respect to the “size” of the more compact representations
expressing the structure of the corresponding RAS. Yet, as
we will demonstrate in the following, the severity of this
problem is mitigated by the fact that the computation of the
trimmed FSA that characterizes the maximally permissive
LES is an off-line computation, which makes the increased
requirements in terms of time and other computational re-
sources more affordable. On the other hand, any real-time
implementation of the maximally permissive LES essentially
constitutes a mechanism that assesses whether any reachable
RAS state belongs to the aforementioned trimmed automaton
or not, a property known as the state “safety”. The key
thesis of this paper is that in many practical applications
of the considered RAS theory, once the aforementioned
trimmed FSA has been obtained, it is possible to encode
the information necessary to resolve the underlying state
safety problem in a “data structure / mechanism” sufficiently
compact so that the problem can be effectively addressed
within the time and other resource constraints that typically
arise in a real-time computation. This result is enabled by:

1) some topological properties of the underlying state
space and its partition to safe and unsafe subspaces,
that allow the classification of the entire state space
while considering explicitly only a (typically very)
small subset of the underlying state space;

2) the selection of pertinent data structures that will store
the information characterized in step 1 above in a
compact manner, and in a way that facilitates the on-
line processing of this information.

In the light of the above remarks, the rest of the pa-
per is organized as follows: Section II provides a formal
characterization of the RAS class considered in this pa-
per and of the problem of maximally permissive, liveness-
enforcing supervision arising in this class. It also provides
the aforementioned topological properties of the RAS state

space that will enable the subsequent developments of the
paper. Section III presents the main results of the paper by
detailing the methodological approach pursued in this work.
Section IV demonstrates the applicability of the approach by
implementing it on an example problem instance borrowed
from the literature, and it also discusses our experiences
with implementations involving larger and/or more complex
RAS configurations. Finally, Section V concludes the paper
by summarizing its contributions and outlining some further
extensions of theoretical and practical interest.

II. THE CONSIDERED RAS CLASS AND THE MAXIMALLY
PERMISSIVE LIVENESS-ENFORCING SUPERVISION

PROBLEM

The considered RAS For the sake of simplicity and
specificity, we present the main results of this paper in
the context of the Conjunctive / Disjunctive (C/D) class of
the RAS taxonomy presented in [14]. We notice, however,
that the presented ideas and results are extensible to more
complex classes of that taxonomy.

A Conjunctive / Disjunctive Resource Allocation Sys-
tem (D/C-RAS) is formally defined by a 4-tuple Φ =<
R, C,P, D >, where: (i) R = {R1, . . . , Rm} is the set of
the system resource types. (ii) C : R → Z+ – the set of
strictly positive integers – is the system capacity function,
characterizing the number of identical units from each re-
source type available in the system. Resources are assumed
to be reusable, i.e., each allocation cycle does not affect their
functional status or subsequent availability, and therefore,
C(Ri) ≡ Ci constitutes a system invariant for each i. (iii)
P = {Π1, . . . ,Πn} denotes the set of the system process
types supported by the considered system configuration. Each
process type Πj is a composite element itself, in particular,
Πj =< Sj ,Gj >, where: (a) Sj = {Ξj1, . . . ,Ξj,lj} denotes
the set of processing stages involved in the definition of
process type Πj , and (b) Gj is an acyclic digraph with its
node set, Vj , being bijectively related to the set Sj . Let V↗j
(resp., V↘j) denote the set of source (resp., sink) nodes of
Gj . Then, any path from some node vs ∈ V↗j to some node
vf ∈ V↘j defines a process plan for process type Πj . Also,
in the following, we shall let Ξ ≡

⋃n
j=1 Sj and ξ ≡ |Ξ|.

(iv) D :
⋃n
j=1 Sj →

∏m
i=1{0, . . . , Ci} is the resource

allocation function associating every processing stage Ξjk
with the resource allocation vector D(Ξij) required for its
execution. At any point in time, the system contains a certain
number of (possibly zero) instances of each process type
that execute one of the corresponding processing stages.
A process instance executing a non-terminal stage Ξij ∈
Vi\V↘i , must first be allocated the resource differential
(D(Ξi,j+1) − D(Ξij))+ in order to advance to (some of)
its next stage(s) Ξi,j+1, and only then it will release the
resource units |(D(Ξi,j+1)−D(Ξij))−|, that are not needed
anymore. The considered resource allocation protocol further
requires that no resource type Ri ∈ R is over-allocated with
respect to its capacity Ci at any point in time.

The Deterministic FSA abstracting the D/C-RAS dy-

namics The dynamics of the D/C-RAS Φ =< R, C, P, D >,
described in the previous paragraph, can be further formal-
ized by a Deterministic Finite State Automaton (DFSA) [2],
G(Φ) = (S,E, f, s0, SM), that is defined as follows:

1) The state set S consists of ξ-dimensional vectors s. The
components s[q], q = 1, . . . , ξ, of s are in one-to-one
correspondence with the RAS processing stages, and
they indicate the number of process instances executing
the corresponding stage in the considered RAS state.
Hence, S consists of all the vectors s ∈ (Z+

0)ξ that
further satisfy

∀i = 1, . . . ,m,
ξ∑
q=1

s[q] ·D(Ξq)[i] ≤ Ci (1)

where, according to the adopted notation, D(Ξq)[i]
denotes the allocation request for resource Ri that is
posed by stage Ξq .

2) The event set E is the union of the disjoint event sets
E↗, Ē and E↘, where:

a) E↗ = {erp : r = 0, Ξp ∈
⋃n
j=1 V

↗
j }, i.e.,

event erp represents the loading of a new process
instance that starts from stage Ξp.

b) Ē = {erp : ∃j ∈ 1, . . . , n s.t. Ξp is a suc-
cessor of Ξr in graph Gj}, i.e., erp represents

the advancement of a process instance executing
stage Ξr to a successor stage Ξp.

c) E↘ = {erp : Ξr ∈
⋃n
j=1 V

↘
j , p = 0}, i.e,

erp represents the unloading of a finished process
instance after executing its last stage Ξr.

3) The state transition function f : S×E → S is defined
by s′ = f(s, erp), where the components s′[q] of the
resulting state s′ are given by:

s′[q] =

 s[q]− 1 if q = r
s[q] + 1 if q = p
s[q] otherwise

Furthermore, f(s, erp) is a partial function defined
only if the resulting state s′ ∈ S.

4) The initial state s0 = 0, which corresponds to the
situation when the system is empty of any process
instances.

5) The set of marked states SM is the singleton {s0}, and
it expresses the requirement for complete process runs.

Let f̂ denote the natural extension of the state transition
function f to S × E∗; i.e., for any s ∈ S and the empty
event string ε,

f̂(s, ε) = s (2)

while for any s ∈ S, σ ∈ E∗ and e ∈ E,

f̂(s, σe) = f(f̂(s, σ), e) (3)

In Equation 3 it is implicitly assumed that f̂(s, σe) is
undefined if any of the one-step transitions that are involved
in the right-hand-side recursion are undefined.

The behavior of RAS Φ is modeled by the language L(G)
generated by DFSA G(Φ), i.e., by all strings σ ∈ E∗ such

that f̂(s0, σ) is defined. Furthermore, the reachable subspace
of G(Φ) is the subset Sr of S defined as follows:

Sr ≡ {s ∈ S : ∃σ ∈ L(G) s.t. f̂(s0, σ) = s} (4)

We also define the safe subspace of G(Φ), Ss, by:

Ss ≡ {s ∈ S : ∃σ ∈ E∗ s.t. f̂(s, σ) = s0} (5)

In the following, we shall denote the complements of Sr
and Ss with respect to S by Sr̄ and Ss̄, respectively, and we
shall refer to them as the unreachable and unsafe subspaces.
Finally, Sxy , x ∈ {r, r̄}, y ∈ {s, s̄}, will denote the
intersection of the corresponding sets Sx and Sy .

The target behavior of G(Φ) and the structure of
the maximally permissive LES The desired (or “target”)
behavior of RAS Φ is expressed by the marked language
Lm(G), which is defined by means of the set of marked
states SM , as follows:

Lm(G) ≡ {σ ∈ L(G) : f̂(s0, σ) ∈ SM}
= {σ ∈ L(G) : f̂(s0, σ) = s0} (6)

Equation 6, when combined with all the previous defini-
tions, further implies that the set of states that are accessible
under Lm(G) is exactly equal to Srs. Hence, starting from
state s0, a maximally permissive liveness-enforcing supervi-
sor (LES) must allow / enable a system-enabled transition
to a next state s if and only if (iff) s belongs to Ss. This
characterization of the maximally permissive LES ensures its
uniqueness for any given D/C-RAS instantiation. It also im-
plies that the policy can be effectively implemented through
any mechanism that recognizes and rejects the unsafe states
that are accessible through one-step transitions from Srs.
As we shall see in the following, this last observation can
decrease substantially the set of unsafe states that must be
explicitly considered in the design of any mechanism that
will implement that maximally permissive LES. We conclude
this section by discussing an additional property of the
considered RAS that will prove very useful in the efficient
implementation(s) of the maximally permissive LES sought
in this work.

Some monotonicities observed by the state safety and
unsafety concepts It should be clear from the previous
discussion that the ability of the activated processes in
a given D/C-RAS state s ∈ S to proceed to comple-
tion, depends on the existence of a sequence < s(0) ≡
s, e(1), s(1), e(2), s(2), . . . , s(n−1), e(n), s(n) ≡ s0 >, such
that at every state s(i), i = 0, 1 . . . , n − 1, the free (or
“slack”) resource capacities at that state enable the job
advancement corresponding to event e(i+1). Furthermore, if
such a terminating sequence exists for a given state s, then
the event feasibility condition defined by Equation 1 implies
that this sequence will also provide a terminating sequence
for every other state s′ ≤ s, where the inequality is taken
component-wise. On the other hand, if state s possesses no
terminating sequences, then it can be safely inferred that
no such terminating sequences will exist for any other state
s ≤ s′ (since, otherwise, there should also exist a terminating

sequence for s, according to the previous remark). The
next proposition provides a formal statement to the above
observations; these results are well known in the literature,
and therefore, their formal proof is omitted.

Proposition 1: Consider the (partial) ordering relationship
“≤” imposed on the state space S of a given D/C-RAS Φ
that is defined as follows:

∀s, s′ ∈ S, s ≤ s′ ⇐⇒ (∀i = 1, . . . ξ, s[i] ≤ s′[i]) (7)

Then,
1) s ∈ Ss ∧ s′ ≤ s =⇒ s′ ∈ Ss
2) s ∈ Su ∧ s ≤ s′ =⇒ s′ ∈ Su

�
In the light of Proposition 1, next we define the concepts

of maximal safe state and minimal unsafe state, that will
play an important role in the subsequent developments:

Definition 1: Let s < s′ (resp. s > s′) denote the fact
that s ≤ s′ (resp. s ≥ s′) and there is at least a pair of
components s[i], s′[i] for which the corresponding inequality
is strict. Then, given an LC-RAS Φ = (R, C,P, D),

1) a reachable safe state s ∈ Srs is maximal iff ¬∃ a
reachable safe state s′ ∈ Srs such that s′ > s;

2) a reachable unsafe state s ∈ Srs̄ is minimal iff ¬∃ a
reachable unsafe state s′ ∈ Srs̄ such that s′ < s.

Finally, in the sequel, the set of maximal reachable safe states
will be denoted by S̄rs, and the set of minimal reachable
unsafe states will be denoted by S̄rs̄.

III. THE PROPOSED APPROACH

Outlining the proposed approach As observed in Sec-
tion II, the effective implementation of the maximally per-
missive LES for any given D/C-RAS, Φ, is equivalent to the
recognition and the blockage of transitions from the safe
to the unsafe region of the underlying state space S. In
the following, we shall refer to the reachable unsafe states
s ∈ Srs̄ that are reachable from the safe subspace Srs
through a single transition, as “boundary” reachable unsafe
states, and we shall denote the relevant set by Sbrs̄. Then,
in principle, an implementation of the maximal LES for any
given D/C-RAS Φ can be based on the explicit computation
/ enumeration and storage of the set Sbrs̄; starting from the
initial state s0, any transition s′ = f(s, e) that is system-
enabled according to Equation 1, should be admissible by
the maximally permissive LES iff s′ 6∈ Sbrs̄. A practical
implementation of such a control scheme will require (a)
the effective computation of the set Sbrs̄ and (b) its storage
in such a manner that the test s′ 6∈ Sbrs̄ is tractable within the
time budget constraints that are enforced by the “embedded /
real-time” nature of the implemented supervisor. The rest of
this section discusses how to facilitate these two requirements
and render the above control scheme a viable solution for
many practical application contexts.

An efficient computation of the set Sbrs̄ Given a D/C
RAS Φ =< R, C,P, D >, the computation of the set Sbrs̄
essentially requires (i) the computation of the reachable state
space Sr of the corresponding DFSA G(Φ), (ii) the trimming

of this state space with respect to its initial state s0 = 0, in
order to obtain the sets Srs and Srs̄, and (iii) the extraction
of Sbrs̄ from Srs̄ by identifying all those states s ∈ Srs̄
that are accessible from Srs through a single transition. All
these three steps are performed off-line, during the controller
design process, and therefore, they are more amenable to the
complications arising from the expected (very) large sizes of
the set Sr and its aforementioned derivatives. Next we report
a particular algorithm for the generation and storage of Sr
that has been found to be especially efficient in our compu-
tational studies. This algorithm provides an enumeration of
Sr, by first identifying, as an intermediary step, all the states
corresponding to a feasible resource allocation, according to
the prevailing resource capacity constraints (c.f., Eq. 1); we
shall refer to these RAS states as “valid” states, and the
corresponding state set will be denoted by Sv . Once Sv has
been constructed, a subsequent procedure filters out from it
the set of reachable states Sr. Hence, the whole computation
is organized naturally into two major procedures: (a) that of
generating state set Sv , and (b) that of reducing Sv to Sr.

To describe the first of the aforementioned procedures, let
us denote by Kij the maximum number of process instances
that can execute concurrently a processing stage Ξij without
violating the capacity restrictions imposed by the resources
involved in the execution of this stage. In the following
discussion we shall also use Ξkij to denote the existence of k
active process instances at the processing stage Ξij , and sij
to denote the state component corresponding to processing
stage Ξij . Given a resource allocation state s, we shall say
that (the “process load” indicated by) Ξk

′

i′j′ can be added to
state s iff si′j′ = 0 and the state s′ ≡ {∀(i, j) 6= (i′, j′) :
s′ij = sij and s′i′j′ = k} does not violate any resource
capacity. The proposed algorithm enumerates the set of valid
states, Sv , starting with state s0 ≡ 0, and subsequently
considering for every generated state s ∈ Sv , the possibility
of adding Ξk

′

i′j′ to it, for all i, j and k′. This enumeration
is systematized and facilitated by the following two data
structures:

• A composite data structure called Nodes, that supports
the generation and processing of a single state s in the
overall enumeration process. This data structure consists
of the following two components:

– s: the vector representation of state s.
– Ls : a list containing all the “process loads” Ξkij

that can be added to state s.
• The queue, Q, of the “unprocessed” state nodes; a state

node Nodes is considered processed, if all the state
nodes resulting by the additions indicated in its list Ls,
have been constructed and added to Q.

The complete algorithm for generating the valid state
space Sv is provided in Figure 1. Next, we highlight the
main steps in the algorithm: Since every processing stage
Ξij can have up to Kij active jobs added to the empty
state s0, the list Ls0 , constructed in step 3, contains all the
possible states having only one active process stage, and

Input: Representation of a given resource allocation system
Φ.
Output: The list of states that constitutes the valid state
space Sv .

1) Sv ← ∅; Q← ∅
2) Insert s0 into Sv
3) Ls0 = {Ξkij : ∀ = i ∈ {1, . . . , n},∀j ∈
{1, . . . , li},∀k ∈ {1, · · · ,Kij}}

4) Add Nodes0 ≡ (s0, Ls0) to Q
5) while(Q 6= ∅)

a) Nodes ≡ (s, Ls)← Pop Q
b) for each Ξrpq ∈ Ls

i) s∗ ← Add(s,Ξrpq)
ii) Ls∗ ← {Ξkij : Ξkij can be added to state s∗ ∧

((i > p) ∨ ((i = p) ∧ (j > q)))}
iii) Push Nodes∗ ≡ (s∗, Ls∗) to queue Q
iv) Insert s∗ into Sv

6) Return Sv

Fig. 1. The algorithm constructing the set of valid states Sv .

with this processing stage set to all the possible numbers
of active jobs that it can have. On the other hand, the
while loop in Step 5 operates as follows: Step 5a extracts
a node (s, Ls) stored in queue Q for further processing. For
every element Ξrpq in list Ls, Step 5b(i) constructs a new
state s∗ from Ξrpq and s in the manner described above,
i.e., s∗ = {∀(i, j) 6= (p, q) : s∗ij = sij and s∗pq = r}.
Step 5b(ii), constructs the list Ls∗ for the node Nodes∗
corresponding to state s∗ constructed in step 5b(i). This list
contains all Ξkij that satisfy the following properties: First,
they can be added to state s∗, which means that s∗ij = 0 but
having k jobs at Ξij concurrently with all the active jobs
at state s∗ will not violate any resource capacities. Second,
the index (

∑i−1
a=0 la + j) of processing stage Ξij in the state

vector is strictly greater than the index (
∑p−1
a=0 la + q) of

the processing stage Ξpq in the state vector, which is true
iff (i > p) ∨ ((i = p) ∧ (j > q)). The first condition
essentially filters the set of processing stages to detect those
which can have active jobs concurrently with the active jobs
in s∗. The second condition is necessary in order to avoid the
generation of a state more than once. Step 5b(iii) queues the
constructed node Nodes∗ for further processing. The loop is
terminated when all the state nodes entered in queue Q have
been processed. It should be clear from the above, that at
this point, all the valid states have been generated.

Regarding the (time) complexity of the algorithm of Fig-
ure 1, first we notice that Step 5a as well as Steps 5b(i)
through 5b(iv) are executed O(|Sv|) times. On the other
hand, the running time of Steps 5a, 5b(iii) and 5b(iv) is O(1).
The running time of Step 5b(i) is O(ξ). The running time
of Step 5b(ii) is O(

∑n
i=1

∑li
j=1Kij). Therefore the overall

running time of the algorithm is O((ξ +
∑n
i=1

∑li
j=1Kij) ·

|Sv|). Since, practically, (ξ +
∑n
i=1

∑li
j=1Kij) � |Sv|, we

can say that the running time of the algorithm is O(|Sv|).

Input: The set of valid states Sv .
Output: The set of states that constitutes the reachable
subspace Sr.

1) Initialize L with the elements of the input set Sv
2) Sort L in ascending order. /*The empty state

s0will be the first state.*/
3) ∀i, isReachable(i)← 0; reachableStack ← ∅
4) push L(0) onto reachableStack; isReachable(s0) =

1
5) while reachableStack 6= ∅

a) s← pop reachableStack
b) Identify all the events that can be executed from

s, and generate the corresponding list of its
sucessor states, Ns

c) For each state s′ ∈ Ns
• if isReachable(s′) = 0

– push s′ onto reachableStack
– isReachable(s′)← 1

6) Sr = {s ∈ Sv : isReachable(s) = 1}.
7) Return Sr

Fig. 2. The algorithm extracting the set Sr from the set of valid states
Sv .

The reader should also notice that whenever a state s is
processed by the above algorithm, it is guaranteed that it
will not be considered again. Therefore, we do not need
to keep a processed state in the core memory, but we can
simply save it (as soon as it is declared “processed”) in a
file on the hard disk.2 This remark further implies that the
memory consumption of the above algorithm is mainly due
to the maintenance of the queue of unprocessed states, Q. But
this consumption is quite controllable: whenever Q becomes
relatively large, we can write some of the states in a file on
the hard disk, remove them from the memory, process the rest
of the states, and finally, re-load the saved file into the queue
and continue processing these additional states. Working in
this way, we have been able to process D/C-RAS Φ with
extremely large state spaces.

The second procedure that filters the set of valid states,
Sv , to extract the set of reachable states, Sr, is presented
in Figure 2. In this procedure, L is a list of states,
reachableStack is a stack of states, and isReachable is a
binary array whose length equals the length of L, and such
that isReachable(i) = 1 iff L(i) is a reachable state. Then, it
should be obvious from the reading of the provided pseudo-
code, that the procedure essentially implements a “reaching
scheme” that marks all the reachable states in the provided
set Sv while starting from the initial state s0.

The (time) complexity of the procedure depicted in Fig-
ure 2 can be characterized as follows: Let t̄ be the maximum
number of transitions that emanate from any given state s ∈
Sr. It is easy to see that t̄ is upper-bounded by

∑n
i=1 |V

↗
i |+∑n

i=1

∑
v∈Vi\V↘i

outdegree(v)+
∑n
i=1 |V

↘
i |, according to

2Continuous writing on the hard disk is not encouraged though. So, we
buffer the processed states and write them to the hard disk in batches.

the notation introduced in Section II, and therefore, it relates
polynomially to the parameters defining the size of the un-
derlying RAS. The while loop in Step 5 is executed O(|Sr|)
times. Step 5c is executed O(t̄) times in a single iteration
of the while loop. Checking the if-condition inside Step 5c
upon any given state s′ takes O(log(|Sr|)) time, using binary
search. So, the overall complexity of the above algorithm is
O(t̄ · |Sr| · log(|Sr|)). Finally, given all the previous analysis,
we can see that the overall complexity of the combined
execution of the algorithms described in Figures 1 and 2, is
O(t̄·|Sr|·log(|Sr|)+(ξ+

∑n
i=1

∑li
j=1Kij)·|Sv|). Practically

|Sv| ≈ O(|Sr|), t̄� |Sr| and (ξ+
∑n
i=1

∑li
j=1Kij)� |Sv|.

Therefore, we can roughly say that the practical complexity
of the algorithm is O(|Sr| · log(|Sr|).

Once Sr has been constructed, its partitioning to Srs and
Srs̄ can be performed through a reaching scheme similar to
that performed by the algorithm of Figure 2, where, however,
the search for feasible transitions emanating from each state
is in the reverse direction (i.e., across its incoming arcs in the
relevant state transition diagram). Due to space limitations,
we omit the detailed description of the relevant algorithm,
and we only notice that this step can be supported with
complexity O(t̄r · |Sr| · log(|Sr|)), where t̄r denotes the
maximum number of transitions that can lead into any given
state s ∈ Ss. Finally, the extraction of the set Sbrs̄ from Srs̄
can be performed straightforwardly by an algorithm that, for
every state s ∈ Srs̄, it generates all the states s′ that are ac-
cessible from s through a single reverse transition, and rejects
s iff all the generated states s′ belong in Srs̄. Foregoing the
implementational details of this algorithm, we simply notice
that it can be implemented with a computational complexity
of O(t̄r · |Srs̄| · log(|Srs̄|)).

Obtaining a more compressed characterization of the
set Sbrs̄ The explicit data that is necessary for the complete
characterization of the set Sbrs̄ can be further compressed,
with respect to the explicit enumeration of the set obtained
through the computation discussed in the previous paragraph.
This compression can be attained on the basis of the follow-
ing two observations:

Observation 1: Proposition 1 and Definition 1, provided
in Section II, imply that we can assess membership into Sbrs̄
for any given state s ∈ Sr, by (i) explicitly storing only
the subset of its minimal elements S

b

rs̄, and (ii) checking
whether there exists a state s′ ∈ Sbrs̄ such that s ≥ s′.

Observation 2: If a certain component q is equal to zero
for every state s ∈ S

b

rs̄, then this component does not
contribute any significant information in the state compar-
isons for the evaluation of the membership discussed in
Observation 1 above, and therefore, it can be neglected
during the execution of these comparisons. The (state) vector
set that is obtained from the elements of S

b

rs̄ after the
elimination of their redundant components, will be denoted
by P (S

b

rs̄).
Observation 1 enables the further ”thinning” of the set of

boundary reachable unsafe states Sbrs̄, by retaining only its
minimal elements, while Observation 2 supports a dimen-

sionality reduction – or “projection” – of the elements of
this ”thinned” set. From a computational standpoint, both
of these steps involve the post-processing of the set Sbrs̄
through some very simply and efficient computation.3 On
the other hand, as it will be demonstrated in Section IV,
each of these two effects can lead to an extensive (frequently
dramatic) reduction of the information that must be explicitly
stored and processed for the effective implementation of the
proposed control scheme. In fact, for many practical cases,
a simple array-based storage of the elements of P (S

b

rs̄)
will be quite adequate for effecting the on-line computation
that is involved in the implementation of the maximal LES
described in the previous paragraphs. However, in the rest of
this section, we also discuss an additional data structure that
can lead to more efficient storage of the set P (S

b

rs̄) and to
more expedient algorithms for the on-line test suggested by
Observation 1.

Storage and on-line processing of the set P (S
b

rs̄)
through n-ary decision diagrams The (n-ary) decision
diagrams proposed in the context of this work for the storage
and on-line processing of the set P (S

b

rs̄), is an adaptation
of the concept of the binary decision diagram (BDD) that
has been used for the efficient storage and manipulation of
boolean functions [3]. They can be systematically introduced
by first defining the (n-ary) decision tree for the storage of
k l-dimensional vectors {v1,v2, . . . ,vk}: This tree has a
dummy root node, n0, of depth 0, and l layers of nodes
with corresponding depths from 1 to l. Each of the layers
numbered from 1 to l corresponds to one of the l dimensions
of vectors vi. Starting with node n0 as the single node
of layer 0, the tree nodes at each of the remaining layers
are defined recursively as follows: The children of a node
n at layer l(n) ∈ {0, . . . , l − 1} correspond to all the
possible values of coordinate l(n) + 1 in the vector subset
of {v1,v2, . . . ,vk} that is obtained by fixing the first l(n)
coordinates at the values specified by the path from the root
node n0 to node n. The coordinate value that corresponds
to each node n in layers 1 to l, according to this node
generation scheme, is characterized as the “content” of n.
Obviously, the nodes generated for layer l according to the
previous recursion have no children, and they constitute the
tree leaf nodes. Furthermore, it should be clear that in the
decision tree constructed according to the aforestated rule,
every vector vi, i = 1, . . . , k, is represented by the path to
one of the tree leaf nodes.

The decision tree described in the previous paragraph
is converted to a decision diagram, by iteratively identi-
fying and eliminating duplicate sub-graphs in the gener-
ated structure, while starting from the last layer l. Two
subgraphs – or sub-diagrams – originating at given layer
i ∈ {1, . . . , l} are considered duplicate if (i) they are
isomorphic and (ii) each isomorphically related pair of
nodes has the same content. Figure 3 exemplifies the
above definitions by depicting the decision tree and the
corresponding decision diagram that store the vector set

3Once again, we forego the relevant details due to space limitations.

(b) The corresponding decision diagram

3

1

1

2

2 1

2

1 3 1

11 0

n0

3

1

1

2

2 1

2

n0

13

10

(a) The decision tree

Fig. 3. A decision tree and the corresponding decision diagram storing the
vector set {[1, 2, 1, 1], [2, 1, 1, 1], [1, 1, 3, 2], [1, 2, 3, 0]}.

Input: The decision diagram of a vector set V and a vector
v′.
Output: A boolean variable indicating whether there is a
vector v ∈ V such that v ≤ v′.

1) l̄ := dim(v); EXIT := FALSE
2) Push (n0, 0) on SearchStack
3) while (SearchStack 6= ∅ ∧ ¬EXIT)

a) (n, l)← pop SearchStack
b) l := l + 1
c) For each child n′ of n
• if (content(n′) ≤ v′[l] ∧ ¬EXIT)

– if l = l̄ then EXIT := TRUE
– else push (n′, l) onto SearchStack

4) Return EXIT

Fig. 4. An algorithm that takes as input the decision diagram of a vector
set V and a vector v′, and checks whether there is a vector v ∈ V such
that v ≤ v′.

{[1, 2, 1, 1], [2, 1, 1, 1], [1, 1, 3, 2], [1, 2, 3, 0]}.
Space limitations do not allow a detailed, formal descrip-

tion of the algorithms that construct the decision tree and
the corresponding decision diagram for a given vector set
V . However, Figure 4 provides an algorithm that takes as
input the decision diagram of a vector set V and a vector
v′, and it checks whether there is a vector v ∈ V such
that v ≤ v′. Starting with the root dummy node n0, this
algorithm essentially performs a depth-first search for a path
to a leaf node, such that, at every layer j = 1, . . . , l, it
engages a node with content no greater than the value of
component v′[j]. If such a path is identified, the algorithm
returns ‘TRUE’, (i.e., ∃v ∈ V such that v ≤ v′, namely,
the vector defined by the node contents of the constructed
path). In the opposite case, the algorithm returns ‘FALSE’.
Obviously, the worst case computational complexity of this
algorithm is O(n̄), where n̄ denotes the number of nodes in
the decision diagram of V .

IV. A CASE STUDY

In this section we consider the application of the method-
ology developed in the earlier parts of this work, to the

17

R

R

R R

R

R

R R

R R R

RRRR R

C = C = C = 1

Π :

Π :

Π : Ξ

Ξ Ξ Ξ

Ξ

ΞΞΞ

ΞΞΞΞΞ

ΞΞΞ

1

2

3

11

12

21 22 23

31 32 33 34 35

3 4 6 71 2 5C = C = C = C = 2

1

4

6 2

2

7

5

3

2 5 2

3 7 2 6 1

1413

16 18

15

Fig. 5. The D/C-RAS considered in the example of Section IV.

synthesis of the maximal permissive LES of the D/C-RAS
depicted in Figure 5. As it can be seen in Figure 5, the
depicted D/C-RAS has seven resource types, {R1, . . . , R7},
with the corresponding capacities annotated at the bottom
of the figure. It also has three process types, {Π1,Π2,Π3},
with their corresponding digraphs Gi, i = 1, 2, 3, structured
as indicated in the figure. Each of the nodes in each digraph
Gi is labelled by the corresponding processing stage Ξij of
process type Πi, while the resource allocation request of that
stage, D(Ξij), is indicated below the node (in this example,
each processing stage requests only a single unit from a
single resource type for its execution).

The D/C-RAS depicted in Figure 5 constitutes a repre-
sentation in the formalism introduced in Section II, of the
resource allocation dynamics that take place in a flexible
manufacturing system configuration originally introduced in
[6]. Since its original introduction in [6], this RAS configura-
tion has functioned as a “benchmark” case for many studies
on the problem of deadlock avoidance (e.g., c.f. [11]). Hence,
it is currently known that this RAS has a reachable state
space Sr consisting of 26750 states, of which 21581 are
safe and 5169 are unsafe. The perusal of the literature will
also reveal that among the existing approaches to the LES
synthesis for sequential RAS, the one that has managed to
provide an LES that comes quite close to the maximally
permissive while maintaining a compact representation for
the resultant supervisor, is that presented in [15]. More
specifically, this approach has managed to synthesize an
LES that admits 21562 of the 21581 safe states, while
imposing 19 linear inequalities on the system state (see also
the discussion provided in [11]). On the other hand, the
computational effort required by the methodology of [15]
is quite intensive, since the aforementioned inequalities are
developed through an iterative scheme that involves the re-
generation of the reachability space and its re-classification
into safe and unsafe sub-spaces after the introduction of each
new inequality in the synthesized supervisor.

The method presented in this work manages to provide a
compact implementation of the maximally permissive LES,

Fig. 6. The decision diagram storing vector set P (S
b
rs̄) for the example of

Section IV. The white, gray and black nodes correspond to nodes having
“content” values of 0, 1 and 2, respectively.

while generating the underlying reachability space only once.
The proposed “thinning” of the set Srs̄ to its boundary
elements reduces this set from 5169 to 4211 states, and
the subsequent extraction of the minimal elements from this
last set leaves us with only 34 states! In these 34 states,
three components are identically zero,4 which also leads to
a dimensionality reduction of these vectors from 16 to 13
dimensions. The decision diagram that stores the resultant
vector set P (S

b

rs̄) has 151 nodes and it is depicted in
Figure 6.

We conclude this section by noticing that preliminary
experimentation with other D/C-RAS configurations has pro-
vided results of a nature similar to those presented above.
The proposed method has consistently been able to process
state spaces of millions of states, eventually compressing the
information necessary for the on-line implementation of the
corresponding maximally permissive LES into less than a
hundred vectors of small dimensionality.

V. CONCLUSIONS

This work has proposed a novel approach for the synthesis
of maximally permissive LES for sequential RAS, and it has
demonstrated the ability of this method to provide effectively
computable and practically implementable solutions for RAS
with (very) large state spaces. This capability arises from
the development of an efficient customized algorithm for
the enumeration of the underlying state space, and from

4In this example, the removed components correspond to the terminal
processing stages of each process type Πi, i = 1, 2, 3. The irrelevance of
these three components in the determination of state (un-)safety is naturally
interpreted by the fact the corresponding process instances will always
be able to advance out of the system, and therefore, they will never get
entangled in a deadlock.

the ability to encode the information that is necessary for
on-line implementation of the maximally permissive LES
in a very compact manner, by taking advantage of certain
topological properties of the underlying state space and
employing pertinent data structures. A possible extension
of the presented work is through the development of al-
ternative methods for effecting even more compact storage
and efficient on-line processing of the information necessary
for the recognition of boundary unsafe states, based on
classification theory. Another extension is the modification
of the method presented in this work in order to facilitate the
storage and processing of state vectors that include symbolic
information, like the state vectors that have been employed in
the past for the compact encoding of the dynamics of AGV
and monorail systems.5 Both of these tasks are part of our
ongoing investigations.

ACKNOWLEDGEMENT

This work was partially supported by NSF grants CMMI-
0619978 and CMMI-0928231.

REFERENCES

[1] T. Araki, Y. Sugiyama, and T. Kasami. Complexity of the deadlock
avoidance problem. In 2nd IBM Symp. on Mathematical Foundations
of Computer Science, pages 229–257. IBM, 1977.

[2] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems (2nd ed.). Springer, NY,NY, 2008.

[3] E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, Cambridge, MA, 1999.

[4] E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks.
Computing Surveys, 3:67–78, 1971.

[5] E. W. Dijkstra. Cooperating sequential processes. Technical report,
Technological University, Eindhoven, Netherlands, 1965.

[6] J. Ezpeleta, J. M. Colom, and J. Martinez. A Petri net based deadlock
prevention policy for flexible manufacturing systems. IEEE Trans. on
R&A, 11:173–184, 1995.

[7] E. M. Gold. Deadlock prediction: Easy and difficult cases. SIAM
Journal of Computing, 7:320–336, 1978.

[8] A. N. Habermann. Prevention of system deadlocks. Comm. ACM,
12:373–377, 1969.

[9] J. W. Havender. Avoiding deadlock in multi-tasking systems. IBM
Systems Journal, 2:74–84, 1968.

[10] R. D. Holt. Some deadlock properties of computer systems. ACM
Computing Surveys, 4:179–196, 1972.

[11] Z. Li, M. Zhou, and N. Wu. A survey and comparison of Petri net-
based deadlock prevention policies for flexible manufacturing systems.
IEEE Trans. Systems, Man and Cybernetics – Part C: Applications and
Reviews, 38:173–188, 2008.

[12] S. Reveliotis. Algebraic deadlock avoidance policies for sequential
resource allocation systems. In M. Lahmar, editor, Facility Logistics:
Approaches and Solutions to Next Generation Challenges, pages 235–
289. Auerbach Publications, 2007.

[13] S. A. Reveliotis. Conflict resolution in AGV systems. IIE Trans.,
32(7):647–659, 2000.

[14] S. A. Reveliotis. Real-time Management of Resource Allocation
Systems: A Discrete Event Systems Approach. Springer, NY, NY, 2005.

[15] M. Uzam and M. Zhou. An iterative synthesis approach to Petri net-
based deadlock prevention policy for flexible manufacturing systems.
IEEE Trans. on Systems, Man and Cybernetics – Part A: Systems and
Humans, 37:362–371, 2007.

[16] M. Zhou and M. P. Fanti (editors). Deadlock Resolution in Computer-
Integrated Systems. Marcel Dekker, Inc., Singapore, 2004.

5Certain components of these state vectors encode the vehicle direction
of motion; c.f. [13], [14].

