1–4:
(a) $\bar{E}F\bar{G}$
(b) EFG
(c) $E \cup F \cup G$
(d) $EF \cup EG \cup FG$ (Remark: $\cup EFG$ is redundant.)
(e) EFG
(f) $\bar{E} \cup F \cup \bar{G} = \bar{E}F\bar{G}$
(g) “at most 1” = “none” \cup “exactly 1” = $\bar{E}F\bar{G} \cup E\bar{F}\bar{G} \cup \bar{E}FG \cup \bar{E}\bar{F}G$
(h) “at most 2” = “all 3” = EFG. □

1–8: (I’ll just do the general case.) Since
\[1 \geq P(E \cup F) = P(E) + P(F) - P(EF), \]
we have
\[P(EF) \geq P(E) + P(F) - 1. \] □

1–14: Let S and F denote “success” and “failure”, respectively.
\[P(A \text{ wins}) = P(S) + P(FFS) + P(FFFFS) + \cdots \]
\[= p + (1-p)(1-p)p + (1-p)^4p \]
\[= p \sum_{i=0}^{\infty} (1-p)^{2i} = \frac{p}{1-(1-p)^2} = \frac{1}{2-p}. \] □

1–20: The number of ways to roll 3 dice is $6^3 = 216$. We want exactly 2 of the dice to have the same value (say, X); let Y be the value on the remaining die.

There are 6 ways to pick X.

5 ways to pick $Y(\neq X)$.

3 ways to scramble two X’s and one Y.

Hence, there are $6 \times 5 \times 3 = 90$ ways to pick two X’s and one Y. So the desired probability is $\frac{90}{216} = \frac{5}{12}$. □
Let A_i be the event that man i gets his own hat, for $i = 1, 2, \ldots, n$. Then

\[
P(\text{None of the men gets his own hat}) = P(A_1 \cup A_2 \cup \cdots \cup A_n) = 1 - P(A_1 \cup \cdots \cup A_n)
\]

\[
= 1 - \left[\sum_{i=1}^{n} P(A_i) - \sum_{i<j} P(A_iA_j) + \sum_{i<j<k} P(A_iA_jA_k) + \cdots + (-1)^{n+1} P(A_1A_2\cdots A_n) \right]
\]

\[
= 1 - \left[n \cdot \frac{1}{n} - \frac{n}{2} \cdot \frac{1}{n(n-1)} + \frac{n}{3} \cdot \frac{1}{n(n-1)(n-2)} + \cdots + (-1)^{n+1} \frac{1}{n!} \right]
\]

\[
= \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^n \frac{1}{n!}.
\]

Note that this quantity goes to $1/e$ as $n \to \infty$. \hfill \Box

Let W be the event that a white ball is selected. Then by Bayes Theorem, we have

\[
P(T|W) = \frac{P(W|T)P(T)}{P(W|T)P(T) + P(W|H)P(H)}
\]

\[
= \frac{1}{5} \cdot \frac{1}{2} = \frac{22}{12} \cdot \frac{1}{2} = 12 \cdot \frac{1}{37}.
\]

Thus, A is correct! \hfill \Box

Label A, B, and C as the events that prisoners A, B, C die, respectively. Whatever happens, the jailer will tell prisoner A that either B or C won’t die. Without loss of generality, let J_B be the event that the jailer says “B won’t die”. We are therefore looking for the conditional probability that A dies. By Bayes Theorem,

\[
P(A|J_B) = \frac{P(J_B|A)P(A)}{P(J_B|A)P(A) + P(J_B|B)P(B) + P(J_B|C)P(C)}
\]

\[
= \frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3}}
\]

\[
= \frac{1}{3}.
\]

Thus, A is correct! \hfill \Box

$X \sim \text{Bin}(3, 0.7)$. Then $P(X = k) = \binom{3}{k} (0.7)^k (1 - 0.7)^{3-k}$, $k = 0, 1, 2, 3$. \hfill \Box
2–8: We have
\[P(X = b) = \begin{cases} 1/2, & \text{if } b = 0 \text{ or } 1 \\ 0, & \text{otherwise} \end{cases}. \]

\[\square \]

2–14: \(X \sim \text{Bin}(3, 1/2) \). Then \(P(X = k) = \binom{6}{k} (1/2)^k \), which is maximized by \(k = 3 \).
\[\square \]

2–22: Let \(X \) be the number of trials until \(H \) first appears. Then \(X \sim \text{Geom}(0.5) \), and so
\[P(X = 5) = (1 - 0.5)^4(0.5) = 1/32. \]
\[\square \]

2–23: In order for the \(r \)th \(H \) to appear exactly on the \(n \)th trial,
(i) Exactly \(r - 1 \) \(H \)'s must appear during the first \(n - 1 \) trials. This has probability \(\binom{n - 1}{r - 1} p^{r-1} q^{n-r} \) (think Binomial), AND
(ii) The \(n \)th trial must be \(H \). This has probability \(p \).
Since (i) and (ii) are independent, we get the desired result by multiplying the probabilities.
\[\square \]

2–33: (a) \(1 = \int_{-1}^{1} f(x) \, dx = c \int_{-1}^{1} (1 - x^2) \, dx \). Hence, \(c = 3/4 \).
\[\square \]

(b) For \(-1 \leq x \leq 1\),
\[F(x) = \int_{-\infty}^{x} f(t) \, dt = \int_{-1}^{x} \frac{3}{4} (1 - t^2) \, dt = \frac{3}{4} \left(\frac{2}{3} + x - \frac{x^3}{3} \right). \]
Further, \(F(x) = 1 \) for \(x > 1 \) and \(F(x) = 0 \) for \(x < 0 \).
\[\square \]

2–39:
\[\mathbb{E}[X] = \sum_{x} x P(X = x) = 1(1/2) + 2(1/3) + 24(1/6) = 31/6. \]
\[\square \]

2–53: Let \(X \sim U(0, 1) \). Then \(f(x) = 1, \ 0 \leq x \leq 1 \). So,
\[\mathbb{E}[X^n] = \int_{0}^{1} x^n \cdot 1 \, dx = \frac{1}{n + 1} \]
\[\text{Var}(X^n) = \mathbb{E}[X^{2n}] - (\mathbb{E}[X^n])^2 = \frac{1}{2n + 1} - \frac{1}{(n + 1)^2}. \]
\[\square \]
2–60: Let \(X \sim U(0, 1) \). Then
\[
M_X(t) = \mathbb{E}[e^{tX}] = \int_{\mathbb{R}} e^{tx} f(x) \, dx = \int_0^1 e^{tx} \, dx = \frac{1}{t}(e^t - 1).
\]
So
\[
\mathbb{E}[X] = \left. \frac{d}{dt} M_X(t) \right|_{t=0} = \left. \frac{te^t - e^t - 1}{t^2} \right|_{t=0} = \frac{te^t}{2t} \bigg|_{t=0} = \frac{1}{2}.
\]
where the third equality holds by the L’Hospital’s rule. □

Similarly, \(\text{Var}(X) = 1/12 \). □

3: A: test positive; B: test negative; E: contains oil; F: no oil

\[
P(E) = 0.6; \ P(F) = 0.4; \ P(A|E) = 0.9; \ P(B|E) = 0.1; \ P(B|F) = 0.8; \ P(A|F) = 0.2.
\]

So
\[
P(E|A) = \frac{P(A|E)P(E)}{P(A|E)P(E) + P(A|F)P(F)} = \frac{0.9 \times 0.6}{0.9 \times 0.6 + 0.2 \times 0.4} = 0.871. \quad \square
\]

4: (Think Geometric.)

\[
P(k\text{th shock kills the machine})
\]
\[
= P((k\text{th shock causes damage}) \cap (\text{first } k-1 \text{ shocks cause exactly 4 damages}))
\]
\[
= 0.1 \times \binom{k-1}{4} (0.1)^4 (0.9)^{k-5}, \quad k \geq 5. \quad \square
\]

5: (Conditional probability.) Let \(X \) be the time a typical item lasts, and let \(A \) (resp., \(B \)) be the events that the item came from the first (resp., second) vendor. Then
\[
P(X \geq 12) = P(X \geq 12|A)P(A) + P(X \geq 12|B)P(B)
\]
\[
= 0.5(e^{-12 \times 0.10} + e^{-12 \times 0.08}) = 0.342. \quad \square
\]

6: Let \(X_1 \) and \(X_2 \) be lifetimes of products from the first and second vendors, respectively. Since \(X_1 \sim \text{Exp}(\lambda) \) and \(X_2 \sim \text{Erlang}_2(\mu) \), we have \(\mathbb{E}[X_1] = 1/\lambda = 10 \) and \(\mathbb{E}[X_2] = 2/\mu = 10 \). Thus, \(\lambda = 0.1 \) and \(\mu = 0.2 \). This immediately implies that
\[
P(X_1 \geq 8) = e^{-0.1 \times 8} = 0.449
\]
\[
P(X_2 \geq 8) = \sum_{i=0}^1 \frac{e^{-0.2 \times 8} (0.2 \times 8)^i}{i!} = 2.6e^{-1.6} = 0.525.
\]
Hence the second vendor should be chosen. □

7:
(a) \[\sum_{i=k}^{n} \binom{n}{i} p^i (1 - p)^{n-i}. \] □

(b) Set \(p = e^{-t} \). Then \[\sum_{i=2}^{3} \binom{n}{i} p^i (1 - p)^{n-i} = 3e^{-2t} - 2e^{-3t}. \] □

(c) Set \(p = e^{-3} \). Then the total cost is
\[0p^3 + 75 \left(\frac{3}{1} \right) p^2(1-p) + (75 \times 2 + 1000) \left(\frac{3}{2} \right) p^1(1-p)^2 + (75 \times 3 + 1000)(1-p)^3 = 1206.6. \] □

8: Let \(X \) be a lifetime of the machine, and \(X_i \) be that of the \(i \)th component, where \(X_i \sim \text{Exp}(0.1) \), \(i = 1, 2, 3 \). Then
\[
P(X > x) = P(\min(X_1, X_2, X_3) > x) = P(X_1 > x, X_2 > x, X_3 > X) = \prod_{i=1}^{3} P(X_i > x) = e^{-0.3x}.
\]
This implies that \(X \sim \text{Exp}(0.3) \), and so the mean lifetime of the machine is \(1/0.3 \).

9: Let \(X \) be the number of operating machines after 10 hours. The probability that a typical machine is alive after 10 hours is \(e^{-10 \times 0.125} = 0.2865 \). Then clearly, \(X \sim \text{Bin}(10, 0.2865) \). Hence, \(\mathbb{E}[X] = np = 2.865 \), and \(\text{Var}(X) = npq = 2.044 \). □

10:
\[
P(Z > x) = \sum_{k=1}^{\infty} P(Z > x | N = k) P(N = k) = \sum_{k=1}^{\infty} \sum_{i=0}^{k-1} e^{-\lambda x} \frac{(\lambda x)^i}{i!} (1 - p)^{k-i} p = \sum_{i=0}^{\infty} e^{-\lambda x} \frac{(\lambda x)^i}{i!} p \sum_{k=i+1}^{\infty} (1 - p)^{k-1} = \sum_{i=0}^{\infty} e^{-\lambda x} \frac{(\lambda x)^i}{i!} (1 - p)^{i} = e^{-\lambda x} e^{(1-p)\lambda x} \sum_{i=0}^{\infty} e^{-(1-p)\lambda x} \frac{(1 - p)^{i}}{i!} = e^{-\lambda x}.\]
Hence, Z has an exponential distribution with parameter $p\lambda$. \hfill \blacklozenge

11: Let A (resp., B) be lifetime of battery A (resp., B). Then

$$
P(B > A) = \int_0^\infty P(B > A|A = x)f_A(x) \, dx
= \int_0^\infty e^{-\lambda_2 x} \lambda_1 e^{-\lambda_1 x} \, dx
= \frac{\lambda_1}{\lambda_1 + \lambda_2} = 0.455. \hfill \blacklozenge
$$