Abstract

We present two fully sequential indifference-zone procedures to select the best system from a number of competing simulated systems when best is defined by maximum or minimum expected performance. These two procedures have parabola shaped continuation regions rather than triangular continuation regions employed in several papers. The procedures we present accommodate unequal and unknown variances across systems and the use of common random numbers. However, we assume that basic observations are independent and identically normally distributed. We compare the performance of our procedures with those of other fully sequential procedures available in the literature.

1 Introduction

Among comparison problems we meet in simulation, the problem of finding-the-best is probably the most popular. For the details of different types of comparison problems in simulation, see Goldsman and Nelson (1998). The goal of finding-the-best is to choose the one with the largest or smallest expected performance measure among a finite number of simulated systems. To solve this problem, a number of different approaches have been proposed. The indifference-zone approach tries to choose a system whose performance measure is at least a user-specified constant—called the indifference-zone parameter—better than all the other alternative systems with the probability of correct selection (PCS) no less than a pre-specified amount. The indifference-zone parameter—denoted by δ—is set by the experimenter as the
minimum practical difference worth detecting. If there exist systems whose means are within \(\delta \) of the best, then the experimenter is *indifferent* to which of these is selected. Recent references include Nelson et al. (2001), Boesel et al. (2003), and Kim and Nelson (2001, 2005). On the other hand, Chick (1997) and Chick and Inoue (2001ab) propose completely different procedures from a decision-theoretic point of view and Chen et al. (1997, 2000) propose heuristic procedures that maximize PCS under a budget constraint. Ma and Willemain (2004) present a different approach for finding the best on the basis of expected steady-state performance in steady-state simulation.

In this paper, we restrict our interest to terminating simulation where basic observations are often within-replication averages; therefore, independent and identically distributed (i.i.d.) normality assumption makes sense. One of the most recent statistically valid indifference-zone procedures for i.i.d. normal data is a fully sequential procedure, \(\mathcal{KN} \), proposed by Kim and Nelson (2001). Kim and Nelson (2001) define a fully sequential procedure as the one that takes a single basic observation from each alternative that is still in play at the current stage of sampling and eliminates inferior systems immediately when there is an evidence that they are. Fully sequential procedures have a boundary called a continuation region. Figure 1 shows two different types of continuation regions, \(\mathcal{T} \) and \(\mathcal{P} \) that have triangular and parabolic shapes, respectively. The horizontal axis in Figure 1 represents the stage number and the vertical axis represents the value of a monitoring statistic at each stage. As long as the monitoring statistic stays within the continuation region, sampling continues. When the monitoring statistic exits the continuation region, one system is eliminated depending on which direction—through the upper boundary or the lower boundary—the exit is made.

\(\mathcal{KN} \) is closely related to and derived from a hypothesis test on a drift of a Brownian motion process. Lerche (1986) states that for the known drift of a Brownian motion, a triangular boundary is optimal in a sense that it minimizes a certain type of Bayes risk. However, they show that for the unknown drift of a Brownian motion process, parabolic
boundaries are optimal in terms of the expected value of the specific type of Bayes risk.

From this motivation, Zhu et al. (2005) propose a new fully sequential procedure whose continuation region is parabolic for i.i.d. normal data. However, the procedure assumes known variances which is unlikely to be true in practice. In this paper, we propose two fully sequential indifference-zone procedures for finding-the-best problem, one of which is a natural extension of Zhu et al. (2005). Our procedures have parabolic continuation regions and assume unknown and unequal variances across systems. We compare the performance of the proposed procedures with that of \mathcal{KN}, which is one of the most efficient statistically valid indifference-zone procedures for i.i.d. data in terms of the number of observations required.

There exists another recent ranking and selection (R&S) procedure called $\mathcal{KN}++$ due to Kim and Nelson (2005). This procedure updates variance estimates as more observations become available and is shown to be very effective in terms of the number of observations required. However, it is specifically designed for steady-state simulation that employs the single-replication design and takes individual observations such as individual wait times—that are, at best, stationary and dependent—as basic observations. Though $\mathcal{KN}++$ is asymptotically valid for stationary and dependent data and highly efficient, Malone, Kim,
Goldsman, and Batur (2005) show that K_N^{++} does not always satisfy the PCS requirement and is only heuristic for i.i.d. normal data. Since our interests in this paper are not on procedures whose validity is not established for i.i.d. normal data, we do not consider K_N^{++} when we compare the performance of our procedures to other existing procedures.

The paper is organized as follows: In Section 2, algorithms of the two new procedures are given and we prove that the procedures choose the best or a near-best system with at least a pre-specified PCS. In Section 3, we discuss implementation issues including the determination of the values of parameters for the new procedures. Section 4 provides analytical comparisons among K_N and the two proposed procedures. Section 5 compares the performance of the proposed procedures with that of K_N by empirical studies based on i.i.d. normal data, followed by a conclusion in Section 6.

2 Procedures

We design two fully sequential indifference-zone procedures. Both have the parabolic continuation regions but with different parameters. We assume that there are k systems. The best system is defined as the one with the largest expected performance when the difference between the expected performances of the best and the second best is at least δ. Our procedures guarantee to select the best or a near-best system with a PCS greater than or equal to $1 - \alpha$. If there are inferior systems whose means are within δ of the true best system, then those systems are called “good” systems and the procedures select one of these systems with at least $1 - \alpha$ PCS.

In the procedures, $X_{ij}, i = 1, 2, \ldots, k$ and $j = 1, 2, \ldots$, denotes the jth observation from the ith system and $X_{ij}, j = 1, 2, \ldots$, are assumed to be i.i.d. normally distributed with mean μ_i and variance σ_i^2. The variances are unknown to the experimenter and may be unequal.
2.1 First Procedure

We present the first procedure that we call \mathcal{P}_1.

Procedure \mathcal{P}_1

Setup: Choose nominal PCS $1 - \alpha$, indifference zone δ, and first stage sample size $n_0 \geq 2$.

Then determine λ and ξ referring to **Parameters**.

Initialization: Let $I = \{1, 2, \ldots, k\}$ be the initial set of systems.

Obtain observations $X_{ij}, j = 1, 2, \ldots, n_0$, from each system i.

For all $i \neq \ell$ compute the sample variance of the difference between systems i and ℓ which is

$$S_{i\ell}^2 = \frac{1}{n_0 - 1} \sum_{j=1}^{n_0} \left(X_{ij} - X_{\ell j} - \left[\bar{X}_i(n_0) - \bar{X}_\ell(n_0) \right] \right)^2,$$

where $\bar{X}_i(n_0)$ is the sample average of the first n_0 observations from system i. Let

$$N_{i\ell} = \left\lfloor \frac{(n_0 - 1)^2 S_{i\ell}^4 \xi}{\delta^2} \right\rfloor,$$

where $\lfloor \cdot \rfloor$ indicates truncation of any fractional part. Then, let

$$N_i = \max_{\ell \neq i} N_{i\ell}.$$

Here, $N_i + 1$ is the maximum number of observations that can be taken from system i.

Set the number of observations, r, equal to n_0, and go to the next section.

Screening: Set $I^{\text{old}} = I$. Let

$$I = \left\{ i : i \in I^{\text{old}} \text{ and } \sum_{j=1}^r X_{ij} > \sum_{j=1}^r X_{\ell j} - R_{i\ell}(r), \forall \ell \in I^{\text{old}}, \ell \neq i \right\},$$

where

$$R_{i\ell}(r) = \lambda \sqrt{\max \left\{ \frac{(n_0 - 1)^2 S_{i\ell}^4 \xi}{\delta^2} - r, 0 \right\}}.$$
Stopping Rule: If $|I| = 1$, then stop and select the system $i \in I$ as the best. Otherwise, take one additional observation $X_{i,r+1}$ from each system $i \in I$, and set $r = r + 1$, and go to Screening.

(If the objective is to select a subset of size m containing the best system, then the stopping rule should be $|I| = m > 1$.)

Parameters: The parameter λ is any positive real number. For $1 - \alpha = 0.95$, we recommend taking $\lambda = 0.9268$ as given in Ferebee (1982). Section 3.1 discusses the choice of λ for other values of α. For a given λ value, ξ is calculated as the solution to the equation

$$g(\xi; \lambda, n_0) = \beta,$$

where

$$g(\xi; \lambda, n_0) \equiv \mathbb{E} \left[\frac{1}{2} - \frac{1}{2\sqrt{2\pi}} \exp \left\{ -\frac{\xi^2}{2} \left(\frac{\chi^2_{n_0-1}}{2} \right) \right\} \sum_{n=0}^{\infty} \frac{k_{2n+1}(\lambda)}{\ell_{2n+1}(\lambda)} \frac{2^n n!}{(2n+1)!} \left(\frac{\chi^2_{n_0-1}}{2} \right)^{2n+1} \right].$$

In this function, $k_n(.)$ and $l_n(.)$ are certain Hermite functions which are defined in Lemma 1 and $\chi^2_{n_0-1}$ is a chi-squared random variable with $n_0 - 1$ degrees of freedom. If common random numbers (CRN) are employed, we choose $\beta = \alpha/(k - 1)$ and if systems are simulated independently, use $\beta = 1 - (1 - \alpha)^{1/(k-1)}$. However, this equation does not have a closed form solution. We make a detailed discussion about how to determine the ξ values in Section 3.2.

To prove that the procedure satisfies the PCS requirement, we need the following three lemmas:

Lemma 1 (Ferebee 1982) Let $W(t, \Delta)$ be a Brownian motion process on $[0, +\infty)$ with a drift $\Delta > 0$. Consider the parabola $y = a\sqrt{s-t}, 0 \leq t \leq s, a > 0$. Let R be $(-y, y)$ and T the first time that $W(t, \Delta) \notin R$. That is,

$$T = \inf\{t : 0 \leq t \leq s \text{ and } |W(t, \Delta)| = a\sqrt{s-t}\}.$$
Then,
\[
\Pr\{W(T, \Delta) < 0\} = \frac{1}{2} - \frac{1}{2\sqrt{2\pi}} \exp\{-s\Delta^2/2\} \sum_{n=0}^{\infty} \left(\frac{k_{2n+1}(a) - 2^nn!}{l_{2n+1}(a)(2n+1)!} (\Delta\sqrt{s})^{2n+1} \right),
\]
where \(k_n(\cdot)\) and \(l_n(\cdot)\) are certain Hermite functions which are defined as
\[
k_n(x) = \mathbb{E}[(Z + x)^n] \quad \text{and} \quad l_n(x) = \mathbb{E}[(Z + x)^n \frac{1}{2} \text{sgn}(Z + x)]
\]
for \(n = 0, 1, \ldots\), where \(Z\) is a standard \(N(0, 1)\) random variable.

Let \(\phi(x)\) and \(\Phi(x)\) be the pdf and cdf of \(N(0, 1)\). Then, one can get the recurrence relations
\[
k_{n+1}(x) = xk_n(x) + nk_{n-1}(x),
\]
\[
l_{n+1}(x) = xl_n(x) + nl_{n-1}(x), \quad n \geq 1,
\]
where
\[
k_0(x) = 1, l_0(x) = \Phi(x) - \frac{1}{2}, k_1(x) = x, \quad \text{and} \quad l_1(x) = x \left(\Phi(x) - \frac{1}{2} \right) + \phi(x).
\]

Lemma 2 (Jennison et al. 1980) Suppose that a continuation region \(R\) is \((-g(t), g(t))\) given by a non-negative function \(g(t), t \geq 0\). Consider two processes: a continuous process \(W(t, \Delta), t \geq 0\), with \(\Delta > 0\) and a discrete process obtained by observing \(W(t, \Delta)\) at a random, increasing sequence of times \(\{t_i : i = 1, 2, \ldots\}\) taking values in a given countable set. Let \(\tau_C = \inf\{t > 0 : W(t, \Delta) \notin R\}\) and \(\tau_D = \inf\{t_i : W(t_i, \Delta) \notin R\}\) and assume that \(\tau_D < \infty\) almost surely. Note that \(\tau_D \geq \tau_C\). The error probabilities are
\[
\Pr\{\mathcal{E}_C\} \equiv \Pr\{W(\tau_C, \Delta) \leq -g(\tau_C)\} = \Pr\{W(\tau_C, \Delta) < 0\},
\]
\[
\Pr\{\mathcal{E}_D\} \equiv \Pr\{W(\tau_D, \Delta) \leq -g(\tau_D)\} = \Pr\{W(\tau_D, \Delta) < 0\}.
\]
Consider an outcome \(\{(b(t); t \geq 0), \{t_i\}\}\) where \(b(t)\) is the path of a Brownian motion. The conditional distribution of \(\{t_i\}\) given \(W(t, \Delta) = b(t), t \geq 0\), is the same as that given \(W(t, \Delta) = -b(t), t \geq 0\). Under these conditions,
\[
\Pr\{\mathcal{E}_D\} \leq \Pr\{\mathcal{E}_C\}.
\]
Lemma 1 gives the probability of incorrect selection for a continuous Brownian motion process with a drift. However, in our procedure we only observe the process at integer times. When each observation is i.i.d. normally distributed, the partial sums of the differences behave like Brownian motion process with drift at each integer point but Brownian motion with drift is still only an approximation for our discrete process. However, Lemma 2 states that under very general conditions, the probability of incorrect selection does not increase when the Brownian motion process is observed at discrete times compared to the case where the process is observed continuously; thus, procedures designed for continuous Brownian motion process with a drift provide an upper bound on the probability of incorrect selection for a discrete process.

Lemma 3 (Tamhane 1977) Let V_1, V_2, \ldots, V_k be independent random variables, and let $g_j(v_1, v_2, \ldots, v_k), j = 1, 2, \ldots, p$, be nonnegative, real-valued functions, each one nondecreasing in each of its arguments. Then,

$$E[\prod_{j=1}^{p} g_j(V_1, V_2, \ldots, V_k)] \geq \prod_{j=1}^{p} E[g_j(V_1, V_2, \ldots, V_k)].$$

Without loss of generality, we assume that $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_k$. Now, we present the main result.

Theorem 1 Let $X_j = (X_{1j}, X_{2j}, \ldots, X_{kj})'$ be a vector of observations across all k systems. Suppose that X_1, X_2, \ldots are distributed i.i.d. multivariate normal with mean vector μ and covariance matrix Σ, where μ is an unknown vector with the property $\mu_1 \geq \mu_2 + \delta$ and Σ is an unknown, positive definite matrix. Then, P_1 selects system 1 with probability greater than or equal to $1 - \alpha$.

Proof: Consider two systems, 1 and i, such that $\mu_1 \geq \mu_i + \delta$. Select a value of ξ such that $g_1(\xi; \lambda, n_0) = \beta$ for some $0 < \beta < 1/2$. Let

$$T = \min\{r : r \geq n_0 \text{ and } -R_{1i}(r) < \sum_{j=1}^{r}(X_{1j} - X_{ij}) < R_{1i}(r) \text{ is violated}\}.$$
Notice that \(T \) is the stage at which the procedure terminates. Let \(ICS_i \) be the event of incorrect selection when only two systems, 1 and \(i \), are considered. Then,

\[
\Pr\{ICS_i\} = \Pr\left\{ \sum_{j=1}^{T} (X_{1j} - X_{ij}) < -\lambda \sqrt{\max \left\{ \frac{(n_0 - 1)^2 S_{1i}^4 \xi}{\delta^2}, T, 0 \right\}} \right\} \\
= \Pr\left\{ \sum_{j=1}^{T} \left(\frac{X_{1j} - X_{ij}}{\sigma_{1i}} \right) < -\lambda \sqrt{\max \left\{ \frac{(n_0 - 1)^2 S_{1i}^4 \xi}{\delta^2 \sigma_{1i}^2}, \frac{T}{\sigma_{1i}^2}, 0 \right\}} \right\} \\
\leq \Pr_{SC}\left\{ \sum_{j=1}^{T} \left(\frac{X_{1j} - X_{ij}}{\sigma_{1i}} \right) < -\lambda \sqrt{\max \left\{ \frac{(n_0 - 1)^2 S_{1i}^4 \xi}{\delta^2 \sigma_{1i}^2}, \frac{T}{\sigma_{1i}^2}, 0 \right\}} \right\} \\
= E\left[\Pr_{SC}\left\{ \sum_{j=1}^{T} \left(\frac{X_{1j} - X_{ij}}{\sigma_{1i}} \right) < -\lambda \sqrt{\max \left\{ \frac{(n_0 - 1)^2 S_{1i}^4 \xi}{\delta^2 \sigma_{1i}^2}, \frac{T}{\sigma_{1i}^2}, 0 \right\}, S_{1i}} \right\} \right] \\
\leq E\left[\Pr_{SC}\left\{ \sum_{j=1}^{T} \left(\frac{X_{1j} - X_{ij}}{\sigma_{1i}} \right) < 0 \mid S_{1i} \right\} \right],
\]

where \(\sigma_{1i}^2 = \text{Var}(X_{1j} - X_{ij}) \) and “SC” denotes the slippage configuration \(\mu_1 = \mu_i + \delta \).

Since \((X_{1j} - X_{ij})/\sigma_{1i}, j = 1, 2, \ldots \) are i.i.d. \(N(\delta/\sigma_{1i}, 1) \) random variables under the SC, \(\sum_{j=1}^{T} (X_{1j} - X_{ij})/\sigma_{1i} \) behaves like a Brownian motion process with drift \(\delta/\sigma_{1i} \) at integer points. Therefore, if we let

\[
a = \lambda, \quad s = \frac{(n_0 - 1)^2 S_{1i}^4 \xi}{\delta^2 \sigma_{1i}^2} \quad \text{and} \quad t = \frac{r}{\sigma_{1i}^2}, \quad r = n_0, \ldots, N_{1i} + 1,
\]

then by Lemma 1 and 2 we get

\[
E\left[\Pr_{SC}\left\{ \sum_{j=1}^{T} \left(\frac{X_{1j} - X_{ij}}{\sigma_{1i}} \right) < 0 \mid S_{1i} \right\} \right] \leq E\left[\frac{1}{2} - \frac{1}{2\sqrt{2\pi}} \exp \left\{ -\frac{(n_0 - 1)^2 S_{1i}^4 \xi}{\sigma_{1i}^2} \right\} \sum_{n=0}^{\infty} \left(\frac{k_{2n+1}(\lambda)}{\ell_{2n+1}(\lambda)} \right) \frac{2^n n!}{(2n+1)!} \left(\frac{(n_0 - 1) S_{1i}^2 \xi}{\sigma_{1i}^2} \right)^{2n+1} \right].
\]

Since \((n_0 - 1) S_{1i}^2 / \sigma_{1i}^2 \) is chi-square distributed with \(n_0 - 1 \) degrees of freedom, the expectation above is equivalent to

\[
E\left[\frac{1}{2} - \frac{1}{2\sqrt{2\pi}} \exp \left\{ -\frac{\xi}{2 (\lambda_{n_0 - 1})^2} \right\} \sum_{n=0}^{\infty} \left(\frac{k_{2n+1}(\lambda)}{\ell_{2n+1}(\lambda)} \right) \frac{2^n n!}{(2n+1)!} \left(\lambda_{n_0 - 1}^2 \xi \right)^{2n+1} \right]. \quad (2)
\]
Notice that (2) is the \(g(\xi; \lambda, n_0) \) function, and this expectation is equal to \(\beta \) by the way we choose \(\xi \). Therefore,

\[
\Pr\{\text{ICS}_i\} \leq \beta. \tag{3}
\]

Now, assume that we have \(k \geq 2 \) systems, and let ICS be the event that an incorrect selection is made by the procedure. If we set \(\beta = \alpha/(k-1) \), then by the Bonferroni inequality we get

\[
\Pr\{\text{ICS}\} \leq \sum_{i=2}^{k} \Pr\{\text{ICS}_i\} \leq \sum_{i=2}^{k} \frac{\alpha}{k-1} = \alpha.
\]

The above inequality holds whether CRN is employed or systems are simulated independently. However, if systems are simulated independently (\(\Sigma \) is a diagonal matrix in that case), a tighter boundary can be achieved, and its proof goes as follows:

\[
\Pr\{\text{CS}\} \geq \Pr\left\{ \bigcap_{i=2}^{k} \text{CS}_i \right\}
\]

because the intersection event requires system 1 to eliminate each inferior system \(i \) individually, whereas in reality some system \(\ell \neq 1, i \) could eliminate \(i \). Thus,

\[
\Pr\{\text{CS}\} \geq \Pr\left\{ \bigcap_{i=2}^{k} \text{CS}_i \right\} = \mathbb{E} \left[\Pr\left\{ \bigcap_{i=2}^{k} \text{CS}_i \bigg| X_{11}, \ldots, X_{1,N_1+1} \right\} \right] = \mathbb{E} \left[\prod_{i=2}^{k} \Pr\{\text{CS}_i| X_{11}, \ldots, X_{1,N_1+1}\} \right], \tag{4}
\]

where the last equality follows because the events are conditionally independent. Clearly, (4) does not increase if we assume the slippage configuration, so we do so from here on.

Now, notice that \(\Pr\{\text{CS}_i| X_{11}, \ldots, X_{1,N_1+1}\} \) is nondecreasing in \(X_{1j}, j = 1, \ldots, N_1 + 1 \). Therefore, by Lemma 3,

\[
(4) \geq \prod_{i=2}^{k} \mathbb{E} [\text{Pr}_{\text{SC}} \{\text{CS}_i| X_{11}, \ldots, X_{1,N_1+1}\}] = \prod_{i=2}^{k} \mathbb{E} [1 - \text{Pr}_{\text{SC}} \{\text{ICS}_i\}]
\]
\[\geq \prod_{i=2}^{k}(1 - \beta) \]
\[= \left\{1 - \left(1 - (1 - \alpha)^{1/(k-1)}\right)\right\}^{k-1} = 1 - \alpha, \]

where the last inequality comes from (3). \(\square \)

Corollary 1 If \(\mu_1 < \mu_2 + \delta \), then with probability \(\geq 1 - \alpha \) the proposed procedure selects one of the systems whose means are within \(\delta \) of \(\mu_1 \).

Proof: The proof is similar to that of Corollary 1 of Kim and Nelson (2001). \(\square \)

Corollary 1 guarantees that the proposed procedure will choose one of the “good” systems with at least \(1 - \alpha \) guarantee when an alternative is less than \(\delta \) better than the other alternatives.

2.2 Second Procedure

In this section, rather than presenting the second procedure that we call \(P_2 \), we only describe the differences between \(P_1 \) and \(P_2 \), and give the full details in the Appendix.

Basically, \(P_2 \) is a natural extension of Zhu et al. (2005) to unknown variance case. It is very similar to \(P_1 \) but \(P_2 \) takes a different continuation region \(R_{i\ell}(r) \) and parameter \(\xi \). More specifically, in **Screening** the continuation region \(R_{i\ell}(r) \) for \(P_2 \) is defined as

\[R_{i\ell}(r) = \lambda S_{i\ell} \sqrt{n_0 - 1} \sqrt{\max \left\{ \frac{(n_0 - 1) S_{i\ell}^2 \xi}{\delta^2} - r, 0 \right\}}, \]

and **Parameters** needs to be revised as follows: \(\lambda = 0.3 \) is recommended for \(1 - \alpha = 0.95 \)—the detail of the choice of \(\lambda \) is discussed in Section 3.1—and the constant \(\xi \) is the solution to the equation

\[h(\xi; \lambda, n_0) = \beta, \quad (5) \]

where

\[h(\xi; \lambda, n_0) \equiv \mathbb{E} \left[\frac{1}{2} - \frac{1}{2\sqrt{2\pi}} \exp \left\{ -\chi^2_{n_0-1}/2 \right\} \sum_{n=0}^{\infty} \frac{k_{2n+1}(\lambda \sqrt{\chi^2_{n_0-1}})}{\ell_{2n+1}(\lambda \sqrt{\chi^2_{n_0-1}})} \frac{2^n n!}{(2n+1)!} \left(\sqrt{\chi^2_{n_0-1} \xi} \right)^{2n+1} \right]. \]
Theorem 2 Under the same assumptions as in Theorem 1, P_2 selects system 1 with probability greater than or equal to $1 - \alpha$.

The theorem is proven in the Appendix.

3 Design of the Procedures

In this section, we discuss the implementation issues of P_1 and P_2. The main issues involve the determination of λ and ξ. Besides the user-specified parameters δ, α, and n_0 that are required by all the indifference-zone procedures, P_1 and P_2 require two additional parameters (λ, ξ). The parameter λ is another user-specified parameter but ξ is obtained from Equation (1) or (5). Procedure KN also requires two parameters, say, c and η. The parameters c and η of KN are similar to λ and ξ, respectively. The constant c in KN is restricted to any positive integer, and the unique solution of η exists in a closed form with the choice of $c = 1$ (Kim and Nelson 2001). However, in our procedures, λ can be any positive real number and the solution ξ to Equation (1) or (5) does not exist in a closed form. Therefore, in this section, we discuss which values of λ to choose and how to determine ξ quickly such that it satisfies Equation (1) or (5).

3.1 Choice of λ

Our work is based on Ferebee (1982) that presents a statistical procedure that determines whether the drift of a Brownian motion process is positive or negative when variance is known. They derive the expected first exit time of the process through a parabolic boundary, and recommend that one chooses the value of λ that minimizes the expected first exit time when the drift is zero. Zhu et al. (2005) also determined the values of λ in this manner.

In our case, due to unknown variances, we doubt if there exists a closed form of the expected first exit time. Therefore, we find a value λ that minimizes the area of the continuation region, which is proportional to the product of the vertical and horizontal intercepts.
Kim and Nelson (2001) also used the area of their continuation region to find the best choice of c. For example, in P_1, since the product of the horizontal and vertical intercepts is equal to $\lambda \xi^{3/2} (n_0 - 1)^3 S_{d1}^6 / \delta^3$, we only need to consider how $\lambda \xi^{3/2}$ changes with respect to λ since n_0, δ, and S_{d1}^2 are not affected by the choice of λ. In P_2, we also get the area of the continuation region proportional to $\lambda \xi^{3/2}$. Recall that λ can be arbitrarily chosen as any real positive number while ξ is the solution to $g(\xi; \lambda, n_0) = \beta$ or $h(\xi; \lambda, n_0) = \beta$ where β is either $\alpha / (k - 1)$ or $1 - (1 - \alpha)^{1/(k-1)}$ depending on the use of CRN.

Figure 2 shows the graph of $\lambda \xi^{3/2}$ versus λ when $n_0 = 10$ and $\beta = 0.05$ in P_1. As n_0 increases, the graph becomes even flatter around its minimum, especially, for $0.9 < \lambda < 1.6$. When β decreases due to a decrease in α or increase in k, the graph tends to shift to the right. The range of α of general interest is $0.01 \leq \alpha \leq 0.1$ and this leads to the range of β as $0 < \beta \leq 0.1$. For this range of β, the minimum of $\lambda \xi^{3/2}$ is still achieved around $\lambda = 1.0$. Since we usually take n_0 larger than 10—in this paper we recommend $n_0 = 24$, which will be discussed in next subsection—and the graph does not dramatically shift to the right when β changes, we recommend taking $\lambda = 0.9268$ for all values of α. This is also the choice of Ferebee (1982) when $\beta = 0.05$.

Figure 3 shows the graph of $\lambda \xi^{3/2}$ versus λ when $n_0 = 24$ and $\beta = 0.05$ in P_2. The minimum is achieved around $\lambda = 0.3$. Unlike P_1, as n_0 decreases, the graph of P_2 becomes flatter around its minimum—we conjecture that this reverse tendency is due to the difference in Equations (1) and (5). For $0 < \beta \leq 0.01$ the minimum is still achieved around $\lambda = 0.3$; therefore, we recommend taking $\lambda = 0.3$ for all values of α.

3.2 Choice of ξ

Once we pick a value for λ, we can determine the value of ξ from Equation (1) or (5) for given n_0 and β in P_1 or P_2, respectively. Since the expectations are not analytically solvable and quite complicated to be solved by numerical integration, we find them by simulation. More specifically, for given n_0 and λ, we generated four million chi-squared random variables
Figure 2: $\lambda \xi^{3/2}$ vs λ when $n_0 = 10$ and $\beta = 0.05$ in P_1.

Figure 3: $\lambda \xi^{3/2}$ vs λ when $n_0 = 24$ and $\beta = 0.05$ in P_2.
Figure 4: $g(\xi; \lambda, n_0)$ versus ξ graph when $n_0 = 10$ and $\lambda = 0.9268$ in P_1.

to estimate the expectation in Equation (1) or (5) at different values of ξ and created tables of $g(\xi; \lambda, n_0)$ and $h(\xi; \lambda, n_0)$ with respect to ξ from 0.01 to 1 for P_1 and from 0.01 to 7 for P_2 with an increment of 0.01. Then, one can find ξ at which the estimated expectation is equal to β by doing interpolation.

The difficulty in determination of ξ is that the existence of ξ is not guaranteed for all possible values of β, especially, for small β. The parameter β, determined by α and k, gets smaller and approaches to zero as k increases. Therefore, we also need $g(\xi; \lambda, n_0)$ or $h(\xi; \lambda, n_0)$ to decrease as ξ increases in order to guarantee that ξ exists such that $g(\xi; \lambda, n_0)$ or $h(\xi; \lambda, n_0)$ is equal to β for all possible values of β. However, $g(\xi; \lambda, n_0)$ and $h(\xi; \lambda, n_0)$ for some n_0 values do not approach to zero as ξ increases. Instead, they have a non-zero positive minimum which we denote as β_{min}. This implies that if β is smaller than β_{min}, then ξ does not exist such that $g(\xi; \lambda, n_0) = \beta$ or $h(\xi; \lambda, n_0) = \beta$. Since ξ can be computed up to a quite small β for $n_0 > 15$ in P_2, this problem is more severe in P_1 compared to P_2. For example, Figure 4 shows that when $n_0 = 10$ and $\lambda = 0.9268$, β_{min} is 0.0076 for P_1. This implies that if $\alpha = 0.05$, then ξ for P_1 is determined only up to $k = 7$ in which case $\beta = \alpha/(k-1) \simeq 0.0083$.\[15]
Figure 5: η^2 versus ξ graph when $n_0 = 20$, $\lambda = 0.9268$, and $0.002050 < \beta < 0.05$ in P_1.

Kim and Nelson (2001) show that the parameter η when $c = 1$ is determined by

$$\eta = \frac{1}{2} \left[(2\beta)^{-2/(n_0-1)} - 1 \right],$$

and we observed that η^2 and ξ seem to have an approximate linear relationship for the range of β where we are able to get ξ from $g(\xi; \lambda, n_0) = \beta$ or $h(\xi; \lambda, n_0) = \beta$, that is, for the range of β greater than or equal to β_{min}. Figure 5 shows an example of the linear relationship between η^2 and ξ when $n_0 = 20$, $\lambda = 0.9268$, and $0.002050 < \beta < 0.05$ in P_1. Similarly, Figure 6 shows the linear relationship between η^2 and ξ when $n_0 = 10$, $\lambda = 0.3$, and $0.00244 < \beta < 0.05$ in P_2. We observed a similar linear relationship for all other n_0 values. We will use this linear relationship to get ξ for $\beta < \beta_{min}$.

We will add one more subscript to ξ and η and use ξ_β and η_β to represent values of ξ and η at specific β, respectively. As shown in Figure 7, we use the points $(\eta_\alpha^2, \xi_\alpha)$ and $(\eta_{\beta_{min}}^2, \xi_{\beta_{min}})$ to determine the line

$$Y - \xi_\alpha = (x - \eta_\alpha^2) \frac{\xi_{\beta_{min}} - \xi_\alpha}{\eta_{\beta_{min}}^2 - \eta_\alpha^2}. $$
Figure 6: \(\eta^2 \) versus \(\xi \) graph when \(n_0 = 10, \lambda = 0.3, \) and \(0.00244 < \beta < 0.05 \) in \(P_2 \).

If the linear tendency continues, \(\xi_\beta \) values for \(\beta < \beta_{\text{min}} \) can be approximated by

\[
Y = (\eta_\beta^2 - \eta_\alpha^2) \left(\frac{\xi_{\beta_{\text{min}}}}{\eta_{\beta_{\text{min}}}^2} - \frac{\xi_\alpha}{\eta_\alpha^2} \right) + \xi_\alpha.
\]

Therefore, for the approximation of \(\xi \) for \(\beta < \beta_{\text{min}} \), we only need the information about the coordinates of two points: \((\eta_\alpha^2, \xi_\alpha)\) and \((\eta_{\beta_{\text{min}}}^2, \xi_{\beta_{\text{min}}})\). The values of \(\eta \) can be easily computed from Equation (6) and the values of \(\xi_\alpha \) and \(\xi_{\beta_{\text{min}}} \) for the popular choices of \(n_0 \) and \(\alpha \) when \(n_0 = 10, 15, 20, 24 \) and \(\alpha = 0.01, 0.025, 0.05, 0.10 \) can be found in Table 1 for \(P_1 \) and in Table 2 for \(P_2 \).

Table 3 shows the actual \(\xi_\beta \) found from \(g(\xi; n_0, \lambda) = \beta \) and approximate \(\xi_\beta \) from the linear relationship when \(n_0 = 20 \) and \(\lambda = 0.9268 \) in \(P_1 \). The approximation errors are quite small for the range of \(\beta_{\text{min}} < \beta \leq \alpha \). Though there is an approximate linear tendency between \(\eta^2 \) and \(\xi \) for all \(n_0 \) and \(\beta_{\text{min}} < \beta \leq 0.05 \), it does not necessarily guarantee the linear tendency for \(\beta < \beta_{\text{min}} \) and a deviation from the linearity assumption is possible as \(\beta \) gets smaller than \(\beta_{\text{min}} \). When \(n_0 = 24, \xi \) is determined up to a quite small \(\beta \) by Equations (1) and (5). Therefore, we recommend using 24 as the initial sample size in order to make sure that the linear relationship holds up to a quite small \(\beta \).
Figure 7: Linearity relationship between η_α^2 and ξ_α.

Table 1: $\xi_{\beta_{\min}}$ and ξ_α values when $\lambda = 0.9268$, $n_0 = 10, 15, 20, 24$, and $\alpha = 0.01, 0.025, 0.05, 0.10$ in \mathcal{P}_1.

<table>
<thead>
<tr>
<th>n_0</th>
<th>$1 - \beta_{\min}$</th>
<th>$\xi_{\beta_{\min}}$</th>
<th>$\xi_{0.01}$</th>
<th>$\xi_{0.025}$</th>
<th>$\xi_{0.05}$</th>
<th>$\xi_{0.10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.9924</td>
<td>0.49</td>
<td>0.3500</td>
<td>0.1744</td>
<td>0.09554</td>
<td>0.04556</td>
</tr>
<tr>
<td>15</td>
<td>0.9956</td>
<td>0.17</td>
<td>0.09474</td>
<td>0.05366</td>
<td>0.03194</td>
<td>0.01720</td>
</tr>
<tr>
<td>20</td>
<td>0.9980</td>
<td>0.10</td>
<td>0.04282</td>
<td>0.02618</td>
<td>0.01686</td>
<td>0.008229</td>
</tr>
<tr>
<td>24</td>
<td>0.99954</td>
<td>0.10</td>
<td>0.02742</td>
<td>0.01755</td>
<td>0.01</td>
<td>0.005457</td>
</tr>
</tbody>
</table>

Table 2: $\xi_{\beta_{\min}}$ and ξ_α values when $\lambda = 0.3$, $n_0 = 10, 15, 20, 24$, and $\alpha = 0.01, 0.025, 0.05, 0.10$ in \mathcal{P}_2.

<table>
<thead>
<tr>
<th>n_0</th>
<th>$1 - \beta_{\min}$</th>
<th>$\xi_{\beta_{\min}}$</th>
<th>$\xi_{0.01}$</th>
<th>$\xi_{0.025}$</th>
<th>$\xi_{0.05}$</th>
<th>$\xi_{0.10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.9976</td>
<td>6.14</td>
<td>2.49</td>
<td>1.3167</td>
<td>0.7543</td>
<td>0.3809</td>
</tr>
<tr>
<td>15</td>
<td>0.99973</td>
<td>4.11</td>
<td>0.84</td>
<td>0.5062</td>
<td>0.3196</td>
<td>0.1763</td>
</tr>
<tr>
<td>20</td>
<td>0.99996</td>
<td>2.96</td>
<td>0.46</td>
<td>0.2956</td>
<td>0.1947</td>
<td>0.1116</td>
</tr>
<tr>
<td>24</td>
<td>0.99999</td>
<td>2.30</td>
<td>0.3329</td>
<td>0.2196</td>
<td>0.1476</td>
<td>0.08608</td>
</tr>
</tbody>
</table>
Table 3: Actual and approximate ξ_β values when $n_0 = 20$ and $\lambda = 0.9268$ in P_1.

<table>
<thead>
<tr>
<th>β</th>
<th>Act. ξ_β</th>
<th>Appr. ξ_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.0169</td>
<td>0.0169</td>
</tr>
<tr>
<td>0.025321</td>
<td>0.0260</td>
<td>0.0260</td>
</tr>
<tr>
<td>0.016952</td>
<td>0.0323</td>
<td>0.0330</td>
</tr>
<tr>
<td>0.012741</td>
<td>0.0378</td>
<td>0.0389</td>
</tr>
<tr>
<td>0.010206</td>
<td>0.0423</td>
<td>0.0440</td>
</tr>
<tr>
<td>0.008512</td>
<td>0.0466</td>
<td>0.0485</td>
</tr>
<tr>
<td>0.007301</td>
<td>0.0498</td>
<td>0.0526</td>
</tr>
<tr>
<td>0.006391</td>
<td>0.0535</td>
<td>0.0564</td>
</tr>
<tr>
<td>0.005683</td>
<td>0.0566</td>
<td>0.0598</td>
</tr>
<tr>
<td>0.005116</td>
<td>0.0590</td>
<td>0.0631</td>
</tr>
<tr>
<td>0.004652</td>
<td>0.0618</td>
<td>0.0662</td>
</tr>
<tr>
<td>0.004265</td>
<td>0.0645</td>
<td>0.0691</td>
</tr>
<tr>
<td>0.003938</td>
<td>0.0669</td>
<td>0.0718</td>
</tr>
<tr>
<td>0.003657</td>
<td>0.0689</td>
<td>0.0744</td>
</tr>
<tr>
<td>0.003414</td>
<td>0.0713</td>
<td>0.0769</td>
</tr>
<tr>
<td>0.003201</td>
<td>0.0736</td>
<td>0.0793</td>
</tr>
<tr>
<td>0.003013</td>
<td>0.0758</td>
<td>0.0816</td>
</tr>
<tr>
<td>0.002846</td>
<td>0.0772</td>
<td>0.0838</td>
</tr>
<tr>
<td>0.002696</td>
<td>0.0789</td>
<td>0.0860</td>
</tr>
<tr>
<td>0.002561</td>
<td>0.0810</td>
<td>0.0881</td>
</tr>
<tr>
<td>0.00244</td>
<td>0.0840</td>
<td>0.0901</td>
</tr>
<tr>
<td>0.002329</td>
<td>0.0868</td>
<td>0.0920</td>
</tr>
<tr>
<td>0.002228</td>
<td>0.0893</td>
<td>0.0939</td>
</tr>
<tr>
<td>0.002135</td>
<td>0.0935</td>
<td>0.0957</td>
</tr>
<tr>
<td>0.002050</td>
<td>0.0975</td>
<td>0.0975</td>
</tr>
</tbody>
</table>

4 Analytical Comparisons of the Continuation Regions

In this section, we perform analytical comparisons among the parabolic regions of P_1 and P_2 and the triangular region of KN. We will use $R(t)$ to denote the generic continuation region, and H and V to denote intercepts of $R(t)$ with the horizontal and vertical axes, respectively.

Kim and Nelson (2001) state that if the experimenter has no idea whether there are a few dominant systems or a number of close competitors, the choice of $c = 1$ appears to be a good compromise solution. Hence, we will take $c = 1$ throughout this paper. The triangular
continuation region for \mathcal{KN} when $c = 1$ is defined as

$$R(t)_{\mathcal{KN}} = \left(-\frac{\eta(n_0 - 1)S_{\delta}^2}{\delta} + \frac{\delta}{2}t, \frac{\eta(n_0 - 1)S_{\delta}^2}{\delta} - \frac{\delta}{2}t \right), \quad 0 \leq t \leq \frac{2\eta(n_0 - 1)S_{\delta}^2}{\delta^2}.$$

Then, the intercepts of \mathcal{KN}, \mathcal{P}_1, and \mathcal{P}_2 are

$$V_{\mathcal{KN}} = \frac{\eta(n_0 - 1)S_{\delta}^2}{\delta}, \quad H_{\mathcal{KN}} = \frac{2\eta(n_0 - 1)S_{\delta}^2}{\delta^2},$$

$$V_{\mathcal{P}_1} = \frac{\lambda_1\sqrt{\xi_1(n_0 - 1)}S_{\delta}^2}{\delta}, \quad H_{\mathcal{P}_1} = \frac{\xi_1(n_0 - 1)^2S_{\delta}^4}{\delta^2},$$

$$V_{\mathcal{P}_2} = \frac{\lambda_2\sqrt{\xi_2(n_0 - 1)}S_{\delta}^2}{\delta}, \quad H_{\mathcal{P}_2} = \frac{\xi_2(n_0 - 1)^2S_{\delta}^4}{\delta^2}.$$

The analysis in this section is based on ξ_1, ξ_2, and η values assuming that systems are simulated independently and $1 - \alpha = 0.95$. The results are slightly affected if CRN is employed.

Given that all three procedures are statistically valid, we prefer the one with smaller V and smaller H since it will provide a tighter screening step and guarantee that the procedure ends earlier if sampling continues to the end stage. More specifically, a smaller V means tighter screening at the beginning; therefore, a procedure with smaller V will work efficiently if there exist a few dominant systems. However, if all systems are close to the best system (e.g., the SC), then each system is likely to take a number of observations close to H and a procedure with a smaller H will be preferred. Therefore, if the continuation region of a procedure is strictly inside of that of another procedure, then it is clear that the former will dominate the latter. For the comparison, we will focus on the values of H and V and the shape of the continuation regions.

\mathcal{P}_1 vs. \mathcal{KN}: One can easily compute the ratio of vertical intercepts of \mathcal{KN} and \mathcal{P}_1. The ratio $V_{\mathcal{KN}}/V_{\mathcal{P}_1}$ is equal to $\eta/(\lambda_1\sqrt{\xi_1})$. Table 4 shows the ratios of $V_{\mathcal{KN}}$ and $V_{\mathcal{P}_1}$ for $n_0 = 10, 24$ and $k = 2, 5, 10, 25, 100, 200, 400$. From these results, we conjecture that \mathcal{P}_1 has a tighter screening at the beginning than \mathcal{KN}. This tightness tends to be stronger as the number of systems k increases, but not always.
\[\sum_{j=1}^{r_i}(X_{kj} - X_{ij}) \]

Figure 8: Continuation regions of \(\mathcal{P}_1 \) and \(\mathcal{K}\mathcal{N} \).

\[\sum_{j=1}^{r_i}(X_{kj} - X_{ij}) \]

Figure 9: Continuation regions of \(\mathcal{P}_2 \) and \(\mathcal{K}\mathcal{N} \) for large \(k \).
Table 4: $V_{K\mathcal{N}}/V_{P_1}$ when $n_0 = 10, 24$ and $k = 2, 5, 10, 25, 100, 200, 400$.

<table>
<thead>
<tr>
<th></th>
<th>$n_0 = 10$</th>
<th>$n_0 = 24$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>1.166</td>
<td>1.196</td>
</tr>
<tr>
<td>$k = 5$</td>
<td>1.260</td>
<td>1.295</td>
</tr>
<tr>
<td>$k = 10$</td>
<td>1.218</td>
<td>1.366</td>
</tr>
<tr>
<td>$k = 25$</td>
<td>1.264</td>
<td>1.434</td>
</tr>
<tr>
<td>$k = 100$</td>
<td>1.269</td>
<td>1.476</td>
</tr>
<tr>
<td>$k = 200$</td>
<td>1.270</td>
<td>1.433</td>
</tr>
<tr>
<td>$k = 400$</td>
<td>1.271</td>
<td>1.437</td>
</tr>
</tbody>
</table>

Now, consider the horizontal intercepts of the two procedures. The ratio $H_{K\mathcal{N}}/H_{P_1}$ is equal to $2\eta/((n_0 - 1)S^2_{\bar{u}}\xi_1)$. Since $S^2_{\bar{u}}$ is random, it is hard to evaluate this ratio. However, in general, when $S^2_{\bar{u}} > 1$, this ratio is less than one and H_{P_1} is larger than $H_{K\mathcal{N}}$.

From this analysis, one can conjecture that P_1 starts with a tighter screening than $K\mathcal{N}$ but after some point, the screening of $K\mathcal{N}$ becomes tighter as one can see in Figure 8. It implies that when k is large and there exist a number of dominant systems, P_1 is expected to be more efficient due to its tighter screening at the beginning. However, under a configuration close to the SC where the procedure is likely to continue to the end stage, we expect $K\mathcal{N}$ to be more efficient than P_1.

P_2 vs. $K\mathcal{N}$: The ratio $V_{K\mathcal{N}}/V_{P_2}$ is equal to $\eta/(\lambda_2\sqrt{\xi_2})$. Table 5 shows $V_{K\mathcal{N}}/V_{P_2}$ and $H_{K\mathcal{N}}/H_{P_2}$ ratios for $n_0 = 10, 24$ and $k = 2, 5, 10, 25, 100, 200, 400$. The numbers in the table imply that P_2 is tighter than $K\mathcal{N}$ at the beginning of the procedure and it becomes much more tighter as k increases.

The ratio $H_{K\mathcal{N}}/H_{P_2}$ is equal to $2\eta/\xi_2$. $H_{K\mathcal{N}}$ is always smaller than H_{P_2} when $n_0 = 10$. However, when $n_0 = 24$, $H_{K\mathcal{N}}$ is larger than H_{P_2} for $k < 50$. Therefore, when $n_0 = 24$ and k is small (say $k < 50$), P_2 is likely to beat $K\mathcal{N}$ because both V and H of P_2 are smaller than those of $K\mathcal{N}$—implying that it is possible that the continuation region of P_2 is inside that of $K\mathcal{N}$. On the other hand, as one can see in Table 5, for large k ($k \geq 50$), there does not exist a uniform superiority between $K\mathcal{N}$ and P_2 because one has a smaller V but the other has a
smaller H. Figure 9 demonstrates possible continuation regions of these two procedures for large k. From this figure, we conjecture that P_2 will show better performance than KN in general due to a tighter initial screening. However, when most systems are close to the best system like the SC where the procedure is likely to end around H, it is possible that KN beats P_2.

P_1 Vs. P_2: The ratio V_{P_1}/V_{P_2} is equal to $(\lambda_1 \sqrt{\xi_1})/(\lambda_2 \sqrt{\xi_2})$. Table 6 shows the ratios of V_{P_1} and V_{P_2} for $n_0 = 10, 24$ and $k = 2, 5, 10, 25, 100, 200, 400$. The numbers in the table imply that P_2 is a little bit tighter than P_1 either when $n_0 = 10$ or when $n_0 = 24$ and k is large, but V of P_1 is not significantly different from that of P_2.

The ratio H_{P_1}/H_{P_2} is equal to $\xi_1(n_0 - 1)S^2_{\alpha}/\xi_2$. Although S^2_{α} is random, it is clear that this ratio will be greater than one in general. Actually, it can be quite large because of
(n_0 - 1) and S_{it}^2 factors, implying that H of \(P_1 \) is likely to be a lot more larger than that of \(P_2 \).

As a result, we can say that except the case when \(n_0 = 24 \) and \(k \) is small, \(P_2 \) is likely to outperform \(P_1 \) because both \(V \) and \(H \) of \(P_2 \) are smaller than those of \(P_1 \). When \(n_0 = 24 \) and \(k \) is small, \(P_1 \) has a little bit tighter screening than \(P_2 \) at the beginning. However, \(H_{P_1} \) is usually much larger than \(H_{P_2} \) given that \(n_0 \) is larger than 10 and \(S_{it}^2 \) is likely to be larger than one. This can overshadow the advantage of \(P_1 \) having a smaller \(V_{P_1} \). Thus, it is not clear which procedure will do better for small \(k \).

5 Experimental Results

In this section, we compare the experimental results of \(KN \), \(P_1 \), and \(P_2 \) based on i.i.d. normal data. In Kim and Nelson (2001), the performance of \(KN \) procedure is compared to that of Rinott’s (1978) procedure and a two-stage screen-and-select procedure proposed by Nelson, Swann, Goldsman, and Song (2000), which are both statistically valid indifference-zone selection procedures. The performance is evaluated in terms of the sample average of the total number of basic observations required by each procedure when all the procedures achieve the nominal PCS. These results show that \(KN \) procedure is highly efficient for finding the best system compared to the other two procedures. Therefore, we use \(KN \) as our benchmark for comparison and test the performance of our procedures on the same scenarios Kim and Nelson (2001) used.

Two configurations of the true means are employed: slippage configuration (SC) and monotonically decreasing mean (MDM) configuration. For each mean configuration, three variance configurations are tested: increasing variance (IV), decreasing variance (DV), and common variance (CV). When we combine these configurations, we get a total of six different configurations. The particular mean and variance values that we used for experiments are given in Table 7. Notice that system 1 is set to be the best system.

The nominal PCS is set at \(1 - \alpha = 0.95 \). As suggested in Section 3, \(\lambda \) and \(n_0 \) are set
Table 7: The configurations of means and variances used in the experiments.

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-CV</td>
<td>(\mu_1 = \delta, \mu_2 = \mu_3 = \ldots = 0)</td>
<td>(\sigma_1^2 = \sigma_2^2 = \ldots = 1)</td>
</tr>
<tr>
<td>MDM-CV</td>
<td>(\mu_i = \delta - (i-1)\delta, i \geq 1)</td>
<td>(\sigma_1^2 = \sigma_2^2 = \ldots = 1)</td>
</tr>
<tr>
<td>MDM-IV</td>
<td>(\mu_i = \delta - (i-1)\delta, i \geq 1)</td>
<td>(\sigma_i^2 = 1 + (i-1)\delta, i \geq 1)</td>
</tr>
<tr>
<td>MDM-DV</td>
<td>(\mu_i = \delta - (i-1)\delta, i \geq 1)</td>
<td>(\sigma_i^2 = 1 / (1 + (i-1)\delta), i \geq 1)</td>
</tr>
<tr>
<td>SC-IV</td>
<td>(\mu_1 = \delta, \mu_2 = \mu_3 = \ldots = 0)</td>
<td>(\sigma_i^2 = 1 + (i-1)\delta, i \geq 1)</td>
</tr>
<tr>
<td>SC-DV</td>
<td>(\mu_1 = \delta, \mu_2 = \mu_3 = \ldots = 0)</td>
<td>(\sigma_i^2 = 1 / (1 + (i-1)\delta), i \geq 1)</td>
</tr>
</tbody>
</table>

to \(\lambda = 0.9268 \) for \(P_1 \) and 0.3 for \(P_2 \), and \(n_0 = 24 \) for all configurations, respectively. Each result is obtained from 500 macro-replications of the entire experiment. In order to check if each procedure is statistically valid, we record the actual PCS for each configuration. If all procedures seem statistically valid, the comparison will be done based on the sample average of the total number of observations required. With 500 macro-replications, first two digits of these sample averages are statistically meaningful.

Our experimental results support that both \(P_1 \) and \(P_2 \) are statistically valid since the actual PCS are all higher than the nominal PCS when systems are simulated independently, as shown in Table 8. For \(P_2 \), we observed that there were a few configurations where the actual PCS were lower than 0.95 when we made 500 macro-replications. However, when the number of macro-replications was increased to 5000, the actual PCS of \(P_2 \) were all over 0.95. The numbers in Table 8 are from 500 macro-replications except the actual PCS of \(P_2 \) for \(k = 2 \) and 5 that are from 5000 macro-replications. The actual PCS increase when CRN is employed though we did not report them in this paper. Therefore, \(KN \), \(P_1 \), and \(P_2 \) are all statistically valid and from now on, we will focus on the comparison among three procedures based on sample sizes required until we reach a decision.

We categorize our experimental results into two cases: independent and correlated cases.
In the independent case, all systems are simulated independently. In the correlated case, a constant correlation factor, ρ, is used between all pairs of systems.

5.1 Independent Case

We first compare the performance of the two new procedures with KN when systems are simulated independently. Overall, P_2 shows the best performance among three in terms of the total number of observations required. However, the computational time needed to search for the ξ_2 parameter for a given β is very long compared to that of ξ_1 unless a table for ξ_2 already exists. Therefore, if the gain in the simulation time when P_2 is applied is not significant enough to compensate the time loss in computing the ξ_2 parameter, one may prefer to use P_1, which also shows better performance than KN under MDM configurations when k is large.

P_1 vs. KN: Table 9 shows the sample average of the total number of observations taken in KN, P_1, and P_2 when $n_0 = 24$, $\delta = 1/\sqrt{n_0}$, and $1 - \alpha = 0.95$ as a function of k. The results of KN are taken from Kim and Nelson (2001). Numbers in boldface represent the cases that P_1 or P_2 shows better performance—i.e., spends a smaller number of observations—than KN. Numbers in a box show which procedure among those three spends the smallest observations for each configuration.

When $k = 2$ or 5, KN is superior to P_1. However, as k increases, we observe that P_1 defeats KN in all the MDM configurations and SC with decreasing variances. As expected in Section 4, this is due to the fact that P_1 has a tighter screening at the beginning and this tightness becomes even stronger as k increases. Therefore, under MDM configurations with large k, P_1 does a better job in detecting inferior systems early. Similarly, under SC, if we have decreasing variances as means become inferior, it is easier to detect inferior systems due to low variances of inferior systems. These low variances help P_1 to eliminate inferior systems early in the experiment and, thus, to show better performance than KN in SC-DV. However, in the SC-CV and SC-IV, most of elimination events are likely to take place at a
Table 8: Estimated PCS in \mathcal{KN}, \mathcal{P}_1, and \mathcal{P}_2 when $n_0 = 24$, $\delta = 1/\sqrt{n_0}$, and $1 - \alpha = 0.95$ as a function of k when systems are simulated independently.

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{KN}</th>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
<th>\mathcal{KN}</th>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
<th>\mathcal{KN}</th>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
<th>\mathcal{KN}</th>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>0.958 0.958 0.954 0.960 0.954 0.960</td>
<td>0.982 0.982 0.968 0.972 0.968 0.972</td>
<td>0.957 0.957 0.952 0.954 0.952 0.954</td>
<td>0.960 0.960 0.960 0.960 0.960 0.960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.958 0.958 0.954 0.960 0.954 0.960</td>
<td>0.982 0.982 0.968 0.972 0.968 0.972</td>
<td>0.957 0.957 0.952 0.954 0.952 0.954</td>
<td>0.960 0.960 0.960 0.960 0.960 0.960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 5$</td>
<td>0.960 0.988 0.986 0.982 0.958 0.972</td>
<td>0.982 0.992 0.992 0.996 0.972 0.986</td>
<td>0.962 0.987 0.988 0.989 0.960 0.963</td>
<td>0.960 0.960 0.960 0.960 0.960 0.960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.964 0.992 0.994 0.996 0.958 0.968</td>
<td>0.970 0.996 0.994 0.998 0.986 0.974</td>
<td>0.978 0.988 0.998 0.996 0.966 0.972</td>
<td>0.968 0.968 0.968 0.968 0.968 0.968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 10$</td>
<td>0.964 0.998 1.000 1.000 0.950 0.982</td>
<td>0.992 1.000 0.998 1.000 0.984 0.980</td>
<td>0.962 0.996 1.000 0.998 0.964 0.984</td>
<td>0.968 0.968 0.968 0.968 0.968 0.968</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.956 0.998 1.000 1.000 0.960 0.996</td>
<td>0.980 1.000 1.000 1.000 0.982 1.000</td>
<td>0.948 0.998 1.000 0.998 0.950 0.992</td>
<td>0.956 0.956 0.956 0.956 0.956 0.956</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Sample average of the total number of observations in \mathcal{KN}, \mathcal{P}_1, and \mathcal{P}_2 when $n_0 = 24$, $\delta = 1/\sqrt{n_0}$, and $1 - \alpha = 0.95$ as a function of k.

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{KN}</th>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
<th>\mathcal{KN}</th>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
<th>\mathcal{KN}</th>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
<th>\mathcal{KN}</th>
<th>\mathcal{P}_1</th>
<th>\mathcal{P}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>158 158 175 147 175 147</td>
<td>187 187 207 167 207 167</td>
<td>172 172 185 154 185 154</td>
<td>725 448 523 380 940 575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>158 158 175 147 175 147</td>
<td>187 187 207 167 207 167</td>
<td>172 172 185 154 185 154</td>
<td>725 448 523 380 940 575</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 10$</td>
<td>1727 761 981 630 2868 1149</td>
<td>1861 710 910 615 3049 1185</td>
<td>1689 695 890 612 2758 1124</td>
<td>1727 761 981 630 2868 1149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1727 761 981 630 2868 1149</td>
<td>1861 710 910 615 3049 1185</td>
<td>1689 695 890 612 2758 1124</td>
<td>1727 761 981 630 2868 1149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 25$</td>
<td>5015 1333 2009 1157 13399 2312</td>
<td>5109 1217 1647 1091 14154 2241</td>
<td>4705 1185 1639 1072 12336 2252</td>
<td>5015 1333 2009 1157 13399 2312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5015 1333 2009 1157 13399 2312</td>
<td>5109 1217 1647 1091 14154 2241</td>
<td>4705 1185 1639 1072 12336 2252</td>
<td>5015 1333 2009 1157 13399 2312</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k = 100$</td>
<td>23956 3483 6312 3215 189401 5331</td>
<td>24634 3303 4682 3101 19276 4990</td>
<td>21123 3235 4653 3052 170987 5210</td>
<td>23956 3483 6312 3215 189401 5331</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
stage close to the end of the procedure. We have seen that the screening of \mathcal{P}_1 is tighter than that of $\mathcal{K}\mathcal{N}$ only at the beginning of experimentation, but it soon becomes loose and its horizontal-intercept is usually larger than that of $\mathcal{K}\mathcal{N}$. Therefore, $\mathcal{K}\mathcal{N}$ tends to show better performance under these configurations.

The superiority of \mathcal{P}_1 is most noticeable under MDM-IV. Under MDM-DV, it is already easy to detect inferior systems due to their small variances. Thus, having a tighter continuation region does not help that much, and $\mathcal{K}\mathcal{N}$ and \mathcal{P}_1 show similar performance. However, under MDM-IV where it is more difficult to detect inferior systems due to their high variances, the tightness of \mathcal{P}_1 stands out and helps \mathcal{P}_1 to outperform $\mathcal{K}\mathcal{N}$.

\mathcal{P}_2 vs. $\mathcal{K}\mathcal{N}$: When $k = 2$, $\mathcal{K}\mathcal{N}$ is better than \mathcal{P}_2 under all configurations we tested. This is because $V_{\mathcal{K}\mathcal{N}} < V_{\mathcal{P}_2}$—i.e. $\mathcal{K}\mathcal{N}$ has a tighter screening—although $H_{\mathcal{K}\mathcal{N}} > H_{\mathcal{P}_2}$ when k is small. However, for $k \geq 5$, \mathcal{P}_2 outperforms $\mathcal{K}\mathcal{N}$ in all configurations as expected in Section 4 because $V_{\mathcal{K}\mathcal{N}}$ becomes greater than $V_{\mathcal{P}_2}$ as k increases although $H_{\mathcal{K}\mathcal{N}}$ becomes slightly less than $H_{\mathcal{P}_2}$.

In Table 5, we observe that when $n_0 = 10$, the ratio $V_{\mathcal{K}\mathcal{N}}/V_{\mathcal{P}_2}$ increases as k increases. However, due to the sharp decrease in the ratio $H_{\mathcal{K}\mathcal{N}}/H_{\mathcal{P}_2}$, $\mathcal{K}\mathcal{N}$ shows better performance than \mathcal{P}_2 under SC for some values of k, especially when k is large as expected in Section 4. But, in practice the SC configuration is unrealistic when k is large.

\mathcal{P}_1 vs. \mathcal{P}_2: From Section 4, we know that when $n_0 = 10$, the continuation region of \mathcal{P}_2 is inside that of \mathcal{P}_1. Hence, \mathcal{P}_2 is expected to show better performance compared to \mathcal{P}_1 under all configurations and the experimental results support this. When $n_0 = 24$ and $k > 150$, we observe a similar result. However, when $n_0 = 24$ and $k \leq 150$, since $V_{\mathcal{P}_1}$ is slightly less than $V_{\mathcal{P}_2}$, it is probable that under some configurations \mathcal{P}_1 beats \mathcal{P}_2. As shown in Table 9 when $k = 25$ or $k = 100$ under SC-DV, \mathcal{P}_2 requires slightly more observations than \mathcal{P}_1.

28
Table 10: Sample average of the total number of observations in \mathcal{KN}, P_1, and P_2 when $n_0 = 24$, $\delta = 1/\sqrt{n_0}$, $1 - \alpha = 0.95$, and $k = 25$ as a function of ρ.

<table>
<thead>
<tr>
<th>$\rho = 0.02$</th>
<th>\mathcal{KN}</th>
<th>SC-CV</th>
<th>MDM-CV</th>
<th>MDM-IV</th>
<th>MDM-DV</th>
<th>SC-IV</th>
<th>SC-DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>4926</td>
<td>1313</td>
<td>1965</td>
<td>1143</td>
<td>13241</td>
<td>2304</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>5001</td>
<td>1194</td>
<td>1628</td>
<td>1074</td>
<td>14226</td>
<td>2178</td>
<td></td>
</tr>
<tr>
<td>$\rho = 0.25$</td>
<td>\mathcal{KN}</td>
<td>3804</td>
<td>1093</td>
<td>1554</td>
<td>983</td>
<td>10736</td>
<td>1792</td>
</tr>
<tr>
<td>P_1</td>
<td>3873</td>
<td>1017</td>
<td>1286</td>
<td>949</td>
<td>11021</td>
<td>1634</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>3513</td>
<td>1001</td>
<td>1290</td>
<td>912</td>
<td>10047</td>
<td>1715</td>
<td></td>
</tr>
<tr>
<td>$\rho = 0.50$</td>
<td>\mathcal{KN}</td>
<td>2564</td>
<td>870</td>
<td>1118</td>
<td>813</td>
<td>7750</td>
<td>1288</td>
</tr>
<tr>
<td>P_1</td>
<td>2426</td>
<td>823</td>
<td>949</td>
<td>786</td>
<td>8001</td>
<td>1119</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>2349</td>
<td>825</td>
<td>961</td>
<td>779</td>
<td>7225</td>
<td>1243</td>
<td></td>
</tr>
<tr>
<td>$\rho = 0.75$</td>
<td>\mathcal{KN}</td>
<td>1289</td>
<td>682</td>
<td>749</td>
<td>667</td>
<td>4960</td>
<td>822</td>
</tr>
<tr>
<td>P_1</td>
<td>1125</td>
<td>659</td>
<td>692</td>
<td>649</td>
<td>4927</td>
<td>728</td>
<td></td>
</tr>
<tr>
<td>P_2</td>
<td>1218</td>
<td>663</td>
<td>698</td>
<td>655</td>
<td>4479</td>
<td>812</td>
<td></td>
</tr>
</tbody>
</table>

5.2 Correlated Case

We tested four different correlation factors (ρ): 0.02, 0.25, 0.50, and 0.75. Kim and Nelson (2001) showed that a minimum correlation required for a CRN case to beat an independent case is approximately 0.02 for a triangular continuation region. We found that when $\rho = 0.02$, both procedures P_1 and P_2 also spend slightly smaller but very close number of observations on average compared to their independent cases in most of the configurations. Thus, the correlation in the amount of 0.02 still seems to be an approximate minimum amount of correlation required for the new procedures with CRN to be as efficient as independent cases. For $\rho = 0.25$, 0.50, or 0.75, all experiment designs show a lot better performance compared to their independent cases, and the average total number of observations reduces as the correlation factor increases. The simulation results of \mathcal{KN}, P_1, and P_2 for different ρ values when $n_0 = 24$, $\delta = 1/\sqrt{n_0}$, $1 - \alpha = 0.95$, and $k = 25$ are given in Table 10.

Interestingly, when systems are simulated independently, P_1 worked better than \mathcal{KN} only under all the MDM configurations and some SC with decreasing variances for $k \geq 10$. However, as ρ increases, P_1 shows better performance than \mathcal{KN} under more configurations.
For example, when $\rho = 0.75$, P_1 outperforms KN in all the configurations. In Section 4, we show that the ratio of vertical intercepts of KN and P_1 is $V_{KN}/V_{P_1} = \eta/(\lambda_1\sqrt{\xi_1})$ and does not depend on sample variance of the difference between two systems $S^2_{i\ell}$. Therefore, this ratio will not change with the use of CRN. However, the horizontal intercepts of KN and P_1 (H_{KN} and H_{P_1}) are a function of $S^2_{i\ell}$ and $S^4_{i\ell}$, respectively. This implies that if there is a decrease in $S^2_{i\ell}$ due to the use of CRN, then the decrease in H_{P_1} will be much larger than that in H_{KN}. This explains why P_1 catches up the performance of KN even under SC when the effect of CRN becomes larger.

The performance of P_2 is better than that of KN under all configurations for all values of ρ we tested.

For small ρ, P_2 is still better than P_1 like the independent case. However, as ρ increases, P_1 starts to show slightly better results than P_2. This is again because of the fact that the horizontal intercepts of P_1 and P_2 (H_{P_1} and H_{P_2}) are a function of $S^4_{i\ell}$ and $S^2_{i\ell}$, respectively.

6 Conclusion

In this paper, we propose two fully sequential procedures with parabolic boundaries for i.i.d. normal data when variances are unknown and unequal. Our procedures are appropriate for the use in simulation environments unlike the procedure due to Zhu et al. (2005) that assumes known variances. The procedures allow for the use of CRN. The P_1 procedure shows competitive performance compared to KN, and the superiority of P_1 is more noticeable when k is large and/or the effect of CRN is stronger. Therefore, we recommend that one uses KN when k is small but P_1 when k is larger than ten and/or CRN is employed. The P_2 procedure is better than both KN and P_1 when the total number of observations required is considered as the only criterion. However, the disadvantage of P_2 is that the computational time of the ξ parameter is very long compared to that of the ξ parameter in P_1. Therefore, if the gain in the simulation time when P_2 is applied is significant enough to compensate the time loss in computing the ξ parameter, one might prefer to use P_2.
Acknowledgement

We appreciate very useful and helpful comments from Dr. David Goldsman. This material was supported by the National Science Foundation under Grant Number DMI-0400260.

Appendix

Procedure \mathcal{P}_2

Setup: Choose nominal level of PCS $1 - \alpha$, indifference zone δ, and first stage sample size $n_0 \geq 2$. Then determine λ and ξ referring to Parameters.

Initialization: Let $I = \{1, 2, \ldots, k\}$ be the initial set of systems.

Obtain observations $X_{ij}, j = 1, 2, \ldots, n_0$, from each system i.

For all $i \neq \ell$ compute the sample variance of the difference between systems i and ℓ which is

$$S_{i\ell}^2 = \frac{1}{n_0 - 1} \sum_{j=1}^{n_0} \left(X_{ij} - \bar{X}_i(n_0) - \bar{X}_\ell(n_0) \right)^2.$$

Let

$$N_{i\ell} = \left\lfloor \frac{(n_0 - 1)S_{i\ell}^2\xi}{\delta^2} \right\rfloor,$$

where $\lfloor \cdot \rfloor$ indicates truncation of any fractional part. Then, let

$$N_i = \max_{\ell \neq i} N_{i\ell}.$$

Here, $N_i + 1$ is the maximum number of observations that can be taken from system i.

Set the number of observations, r, equal to n_0, and go to the next section.

Screening: Set $I^{\text{old}} = I$. Let

$$I = \left\{ i : i \in I^{\text{old}} \text{ and } \sum_{j=1}^{r} X_{ij} > \sum_{j=1}^{r} X_{\ell j} - R_{i\ell}(r), \forall \ell \in I^{\text{old}}, \ell \neq i \right\},$$
where
\[R_{i\ell}(r) = \lambda S_{i\ell} \sqrt{n_0 - 1} \max \left\{ \frac{(n_0 - 1)S_{i\ell}^2 \xi}{\delta^2} - r, 0 \right\}. \]

Stopping Rule: If \(|I| = 1\), then stop and select the system \(i \in I\) as the best. Otherwise, take one additional observation \(X_{i,r+1}\) from each system \(i \in I\), and set \(r = r + 1\), and go to Screening.

(If the objective is to select a subset of size of \(m\) containing the best system, then the stopping rule should be \(|I| = m > 1\).)

Parameters: The parameter \(\lambda\) is any positive real number. For \(1 - \alpha = 0.95\), we recommend taking \(\lambda = 0.3\). Section 3.1 discusses the choice of \(\lambda\) for other values of \(\alpha\). For a given \(\lambda\) value, \(\xi\) is calculated as the solution to the equation
\[h(\xi; \lambda, n_0) = \beta, \tag{7}\]

where
\[h(\xi; \lambda, n_0) \equiv E \left[\frac{1}{2} - \frac{1}{2\sqrt{2\pi}} \exp \left\{ -\frac{\chi^2}{2} \sum_{n=0}^{\infty} \frac{k_{2n+1}(\lambda \sqrt{\chi_n})^2}{\ell_{2n+1}(\lambda \sqrt{\chi_n})} \frac{2^n n!}{(2n + 1)!} \left(\sqrt{\chi_n} \right)^{2n+1} \right\} \right]. \]

Now we prove that \(P_2\) also provides the predetermined probability of correct selection.

Proof of Theorem 2: Consider two systems 1 and \(i\) such that \(\mu_1 \geq \mu_i + \delta\). Select a value of \(\xi\) such that \(h(\xi; \lambda, n_0) = \beta\) for some \(0 < \beta < 1/2\). Let
\[T = \min \{ r : r \geq n_0 \text{ and } -R_{1i}(r) < \sum_{j=1}^{r} (X_{1j} - X_{ij}) < R_{1i}(r) \text{ is violated} \}. \]

Notice that \(T\) is the stage at which the procedure terminates. Let \(ICS_i\) be the event of incorrect selection when only two systems, 1 and \(i\), are considered. Then,
\[
\Pr \{ ICS_i \} = \Pr \left\{ \sum_{j=1}^{T} (X_{1j} - X_{ij}) < -\lambda S_{1i} \sqrt{n_0 - 1} \max \left\{ \frac{(n_0 - 1)S_{1i}^2 \xi}{\delta^2} - T, 0 \right\} \right\} = \Pr \left\{ \sum_{j=1}^{T} \left(\frac{X_{1j} - X_{ij}}{\sigma_{1i}} \right) < -\frac{S_{1i}}{\sigma_{1i}} \sqrt{n_0 - 1} \max \left\{ \frac{(n_0 - 1)S_{1i}^2 \xi}{\delta^2} - T, 0 \right\} \right\}
\]
\[
\begin{align*}
\Pr_{SC} \left\{ \sum_{j=1}^{T} \left(\frac{X_{ij} - X_{ij}}{\sigma_{1i}} \right) < -\lambda \frac{S_{1i}}{\sigma_{1i}} \sqrt{n_{0} - 1} \left[\max \left\{ \frac{(n_{0} - 1)S_{1i}^{2} \xi}{\delta^{2}} - T, 0 \right\} \right] \right\} \\
= E \left\{ \Pr_{SC} \left\{ \sum_{j=1}^{T} \left(\frac{X_{ij} - X_{ij}}{\sigma_{1i}} \right) < -\lambda \frac{S_{1i}}{\sigma_{1i}} \sqrt{n_{0} - 1} \left[\max \left\{ \frac{(n_{0} - 1)S_{1i}^{2} \xi}{\delta^{2}} - T, 0 \right\} \right] \right\} \right\} \\
\leq E \left\{ \Pr_{SC} \left\{ \sum_{j=1}^{T} \left(\frac{X_{ij} - X_{ij}}{\sigma_{1i}} \right) < 0 \right\} \right\} \right\}.
\end{align*}
\]

If we let
\[
a = \lambda \sqrt{n_{0} - 1} \frac{S_{1i}}{\sigma_{1i}}, \quad s = \left(\frac{n_{0} - 1}{\delta^{2}} \right) S_{1i}^{2} \xi, \quad t = n_{0}, \ldots, N_{1i} + 1,
\]
then by using Lemma 1 and 2 we get
\[
E \left\{ \Pr_{SC} \left\{ \sum_{j=1}^{T} \left(\frac{X_{ij} - X_{ij}}{\sigma_{1i}} \right) < 0 \right\} \right\} \leq E \left[\frac{1}{2} - \frac{1}{2 \sqrt{2\pi}} \exp \left\{ -\left(\frac{n_{0} - 1}{\delta^{2}} \right) S_{1i}^{2} \xi \right\} \frac{2^{n} n!}{\ell_{2n+1}^{\lambda} \left(\lambda \sqrt{\frac{\chi^{2}_{n-1}}{\delta^{2}}} \right)^{2n+1}} \right].
\]

Since \((n_{0} - 1)S_{1i}^{2}/\sigma_{1i}^{2}\) is chi-square distributed with \(n_{0} - 1\) degrees of freedom, the expectation above is equivalent to
\[
E \left[\frac{1}{2} - \frac{1}{2 \sqrt{2\pi}} \exp \left\{ -\left(\frac{n_{0} - 1}{\delta^{2}} \right) S_{1i}^{2} \xi \right\} \frac{2^{n} n!}{\ell_{2n+1}^{\lambda} \left(\lambda \sqrt{\frac{\chi^{2}_{n-1}}{\delta^{2}}} \right)^{2n+1}} \right].
\]

Notice that (9) is \(h(\xi; \lambda, n_{0})\). So, this expectation is equal to \(\beta\).

The proof beyond this point is same as that of Theorem 1. \(\square\)

References

