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Abstract In this paper, we study properties of general closed convex sets
that determine the closedness and polyhedrality of the convex hull of integer
points contained in it. We first present necessary and sufficient conditions for
the convex hull of integer points contained in a general convex set to be closed.
This leads to useful results for special classes of convex sets such as pointed
cones, strictly convex sets, and sets containing integer points in their interior.
We then present a sufficient condition for the convex hull of integer points in
general convex sets to be a polyhedron. This result generalizes the well-known
result due to Meyer [8]. Under a simple technical assumption, we show that
these sufficient conditions are also necessary for the convex hull of integer
points contained in general convex sets to be a polyhedron.

Keywords Convex Integer Program · Convex Hull · Polyhedron

1 Introduction

An important goal in the study of mathematical programming is to analyze
properties of the convex hull of feasible solutions. The Fundamental Theo-
rem of Integer Programming (see Section 2.5 in [2]), due to Meyer [8], states
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that the convex hull of feasible points in a mixed integer linear set defined
by rational data is a polyhedron. The proof of this result relies on (i) the
Minkowski-Weyl Representation Theorem for polyhedra and (ii) the fact that
the recession cone is a rational polyhedral cone and thus generated by a finite
number of integer vectors. In the world of mixed integer linear programming
(MILP) problems, these sufficient conditions for polyhedrality of the convex
hull of feasible solutions are reasonable since we expect most instances to be
described using rational data.

A convex integer program is an optimization problem where the feasible
region is of the form K ∩ Zn where K ⊆ Rn is a closed convex set and Zn

denotes the set of n-dimensional integral vectors. Let conv(K ∩ Zn) represent
the convex hull of K∩Zn. In this setting we do not have Minkowski-Weyl Rep-
resentation Theorem for K or nice properties of recession cone of K. Therefore
a natural question is to generalize Meyer’s Theorem, in order to understand
properties of the set K that lead to conv(K ∩ Zn) being a polyhedron. Note
that [4] presents condition about the set K ∩Zn (and more generally any sub-
set of Zn) such that elements of K ∩ Zn have a finite integral generating set.
In contrast, here we are interested in properties of the set K that allow us to
deduce that conv(K ∩ Zn) is a polyhedron.

Observe that if conv(K ∩ Zn) is a polyhedron, then conv(K ∩ Zn) is a
closed set. To the best of our knowledge, even the basic question of conditions
that lead to conv(K ∩ Zn) being closed is not well-understood. (See [9] for
some sufficient conditions for closedness of conv(K ∩Zn) when K is a polyhe-
dron that is not necessarily described by rational data). We therefore divide
this paper into two parts: (a) conditions for closedness and (b) conditions for
polyhedrality. All the main results of these two parts are collected in Section
2.

In the first part of this paper (Section 3), we present necessary and sufficient
conditions for conv(K ∩ Zn) to be closed when K contains no lines (Theorem
1). This characterization also leads to useful results for special classes of convex
sets such as sets containing integer points in their interior (Theorem 2), strictly
convex sets (Theorem 3), and pointed cones (Theorem 4). The necessary and
sufficient conditions we present in Theorem 2 generalize the result presented
in [9]. The case where K contains lines is then dealt separately (Theorem 5).

In the second part of this paper (Section 4), we present sufficient condi-
tions for the convex hull of integer points contained in general convex sets to
be polyhedra (Theorem 6). These sufficient conditions generalize the result
presented in [8]. For a general convex set K containing at least one integer
point in its interior, we show that these sufficient conditions are also necessary
for conv(K ∩ Zn) to be a polyhedron (Theorem 6).

We conclude with some remarks in Section 5.
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2 Main results.

2.1 Notation

We denote the standard scalar product on Rn as 〈·, ·〉 and the norm corre-
sponding to this scalar product as ‖ · ‖. For u ∈ Rn and ε > 0, we use the
notation B(u, ε) to denote the set {x ∈ Rn | ‖x − u‖ ≤ ε}. Let K ⊆ Rn.
In this paper K represents the closure of K, int(K) represents the inte-
rior of K, bd(K) denotes the boundary of K, rel.int(K) denotes the rela-
tive interior of K, dim(K) represents the dimension of K, rec.cone(K) rep-
resents the recession cone of K, lin.space(K) represents the lineality space
of K, conv(K) denotes the convex hull of K, conv(K) denotes the closure
of conv(K) and aff(K) represents the affine hull of K. Note that we use the
definition of recession cone for general convex sets given in Section 8 of [10]:
rec.cone(K) = {d ∈ Rn |x+ λd ∈ K ∀x ∈ K, ∀λ ≥ 0}.

2.2 Results on closedness of conv(K ∩ Zn)

Definition 1 (u(K)) Given a convex set K ⊆ Rn and u ∈ K ∩Zn, we define
u(K) = {d ∈ Rn |u+ λd ∈ conv(K ∩ Zn) ∀λ ≥ 0}.

The main result is the following characterization of closedness of conv(K∩Zn).

Theorem 1 Let K ⊆ Rn be a closed convex set not containing a line. Then
conv(K ∩ Zn) is closed if and only if u(K) is identical for every u ∈ K ∩ Zn.

Furthermore, we present some refinements and consequences of this result
when the closed convex set K contains an integer point in its interior (Theorem
2), K is a strictly closed convex set (Theorem 3) and K is a pointed closed
cone (Theorem 4).

Theorem 2 Let K ⊆ Rn be a closed convex set not containing a line and
containing an integer point in its interior. Then the following are equivalent.

1. conv(K ∩ Zn) is closed.
2. u(K) = rec.cone(K) ∀u ∈ K ∩ Zn.
3. The following property holds for every proper exposed face F of K: If F ∩

Zn 6= ∅, then for all u ∈ F ∩ Zn and for all r ∈ rec.cone(F ), {u+ λr |λ ≥
0} ⊆ conv(F ∩ Zn).

Theorem 3 If K ⊆ Rn is a full-dimensional closed strictly convex set, then
conv(K ∩ Zn) is closed.

Theorem 4 Let K be a full-dimensional pointed closed convex cone in Rn.
Then conv(K ∩ Zn) = K. In particular, conv(K ∩ Zn) is closed if and only
if every extreme ray of K is rational scalable (i.e. it can be scaled to be an
integral vector).
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Finally, we present an extension of Theorem 1 for the case of the closed
convex set K contains lines. Given L ⊆ Rn a linear subspace, we denote by
L⊥ the linear subspace orthogonal to L and we denote by PL⊥ the projection
onto the set L⊥. L is said to be a rational linear subspace if there exists a
basis of L formed by rational vectors.

Theorem 5 Let K ⊆ Rn be a closed convex set such that the lineality space
L = lin.space(conv(K ∩ Zn)) is not trivial. Then, conv(K ∩ Zn) is closed if
and only if the following two conditions hold:

1. conv(K ∩ L⊥ ∩ PL⊥(Zn)) is closed.
2. L is a rational linear subspace.

2.3 Results on polyhedrality of conv(K ∩ Zn)

Definition 2 (Thin Convex set) Let K ⊆ Rn be a closed convex set. We
say K is thin if the following holds for all c ∈ Rn: min{〈c, x〉 |x ∈ K} = −∞
if and only if there exist d ∈ rec.cone(K) such that 〈d, c〉 < 0.

The main result is a sufficient and necessary condition for conv(K ∩ Zn)
to be a polyhedron.

Theorem 6 Let K ⊆ Rn be a closed convex set. If K is thin and recession
cone of K is a rational polyhedral cone, then conv(K ∩ Zn) is a polyhedron.
Moreover, if int(K) ∩ Zn 6= ∅ and conv(K ∩ Zn) is a polyhedron, then K is
thin and rec.cone(K) is a rational polyhedral cone.

3 Closedness of conv(K ∩ Zn)

Before presenting the results of this section, we develop some intuition by
examining some examples.

Example 1 If K is a bounded convex set, then conv(K ∩ Zn) is a polytope.
Therefore properties of the recession cone play an important role in deter-
mining the closedness of conv(K ∩ Zn). Intuitively, it appears that irrational
extreme recession directions of K may cause conv(K ∩ Zn) to be not closed.
However this is not entirely true as illustrated in the next few examples.

1. First consider the set K1 = {x ∈ R2 |x2 −
√

2x1 ≤ 0, x2 ≥ 0}. It is easily
verified that in this case conv(K1∩Z2) is not closed (see Theorem 2, Section
2; also see Figure 1). In particular, the half-line {x ∈ R2 |x2 −

√
2x1 =

0, x2 > 0} is contained in conv(K ∩ Z2) but not in conv(K ∩ Z2). In this
case it is clear that the irrational data describing the polyhedron causes
conv(K1 ∩ Z2) to be not closed.
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Fig. 1 K1 and conv(K1 ∩ Z2).

2. Now consider the set K2 = {x ∈ R2 |x2−
√

2x1 ≤ 0, x2 ≥ 0, x1 ≥ 1}. Notice
that the recession cone of K1 and K2 are the same. In fact (K1 ∩ Z2) =
(K2 ∩ Z2) ∪ {(0, 0)}. However, we can verify (see Theorem 2, Section 2;
also see Figure 2) that conv(K2 ∩ Z2) is closed.

Fig. 2 K2 and conv(K2 ∩ Z2).

We next illustrate a similar observation (i.e. recession cone of K has irra-
tional extreme ray, but conv(K ∩ Zn) is closed) using non-polyhedral sets.

3. Let K3 = {x ∈ R2 |x2 ≥ x2
1}. The recession cone of K3 is {x ∈ R2 |x1 =

0, x2 ≥ 0}. It can be shown that conv(K3 ∩ Z2) is closed (see Theorem 3,
Section 2; also see Figure 3).
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Fig. 3 K3 and conv(K3 ∩ Z2).

4. Now consider the set where we rotate the parabola K3 such that the new
recession cone is {x ∈ R2 |

√
2x1 = x2, x2 ≥ 0}, i.e., consider the set K4 =

{x ∈ R2 | 1√
3

[
−1
√

2√
2 1

]
x ∈ K3}. In this case, even though the recession

cone is a non-rational polyhedral set, it can be verified that conv(K4 ∩Z2)
is closed (see Theorem 3, Section 2).

Observe that all the sets discussed above have polyhedral recession cones.
However, sets whose recession cone are non-polyhedral can also lead to conv(K∩
Zn) being closed.

5. Consider the set K5 = {(0, 0, 1)} ∪ {(0, 1, 1)} ∪
{

( 1
n ,

1
n2 , 1) |n ∈ Z, n ≥ 1

}
.

Then K5 is closed, since it contains all its limit points. Therefore K5 is
a compact set and thus conv(K5) is compact (Theorem 17.2 [10]). There-
fore, K6 = conv

(
{
∑

u∈K5 λuu |λu ≥ 0 ∀u ∈ K5}
)

is a closed convex cone.
Finally, it can be verified that conv(K6 ∩Z3) = K6 is closed (see Theorem
4, Section 2).

3.1 Necessary and sufficient conditions for closedness of conv(K ∩ Zn) for
sets with no lines

In this section we will prove the following result (for definition of u(K) see
Definition 1, Section 2).

Theorem 1 Let K ⊆ Rn be a closed convex set not containing a line. Then
conv(K ∩ Zn) is closed if and only if u(K) is identical for every u ∈ K ∩ Zn.

Note here that when u(K) is identical for every u ∈ K ∩ Zn, Theo-
rem 1 implies that conv(K ∩ Zn) is closed and therefore we obtain u(K) =
rec.cone(conv(K ∩ Zn)) is closed for every u ∈ K ∩ Zn.

It is not difficult to verify that,

conv(K ∩ Zn) = conv

( ⋃
u∈K∩Zn

(u+ u(K))

)
. (1)
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Hence Theorem 1 states that if the recession cone of each u + u(K) is
identical, then the convex hull of their union is closed. Therefore Theorem 1
is very similar in flavor to the following result.

Lemma 1 (Corollary 9.8.1 in [10]) If K1, ..., Km are non-empty closed
convex sets in Rn all having the same recession cone C, then conv(K1 ∪ . . . ∪Km)
is closed and has C as its recession cone.

Note however that Lemma 1 is not directly useful in verifying the ‘sufficient
part’ of Theorem 1 since the number of integer points in a general convex set in
not necessarily finite and thus the union in the right-hand-side of equation (1)
is possibly over a countably infinite number of sets. Lemma 1 does not extend
to infinite unions, in fact it does not hold even if the individual sets are poly-
hedra with the same recession cone. (Consider for example conv(

⋃
i∈Z,i≥1Ki)

where Ki = {(x1, x2) ∈ R2 |x1 = 1
i , x2 ≥ 0}.) However, we note here that the

proof of Theorem 1 presented here will eventually use Lemma 1 is some cases,
by suitably converting the set conv

(⋃
u∈K∩Zn(u+ u(K))

)
to the convex hull

of the union of a finite number of appropriate sets.
We begin by presenting some results that are required for the proof of

Theorem 1.

Lemma 2 (Corollary 8.3.1 in [10]) Let K ⊆ Rn be a convex set. Then

rec.cone(rel.int(K)) = rec.cone(K) ⊇ rec.cone(K).

The following crucial result is a direct consequence of Theorem 3.5 in [6].

Lemma 3 ([6]) Let K ⊆ Rn be a nonempty closed set. Then every extreme
point of conv(K) belongs to K.

Lemma 4 Let U be a n × n unimodular matrix and let K ⊆ Rn be a closed
convex set. Then conv(K ∩ Zn) is closed if and only if conv((UK) ∩ Zn) is
closed.

Theorem 7 (Theorem 18.5 [10]) Let K ⊆ Rn be a closed convex set not
containing a line. Let S be the set of extreme points of K and let D be the
set of extreme rays of rec.cone(K). Then K = conv(S) + cone(D). (Where
cone(D) = {

∑N
i=1 µidi |N ∈ Z+, di ∈ D, µi ≥ 0, ∀ i = 1, . . . , N}.)

A convex set K ⊆ Rn is called lattice-free, if int(K)∩Zn = ∅. A lattice-free
convex set K ⊆ Rn is called maximal lattice-free convex set if there does not
exist a lattice-free convex set K ′ ⊆ Rn satisfying K ′ ) K.

We note here that every lattice-free convex set is contained in a maximal
lattice-free convex set. The following characterization of maximal lattice-free
convex set is from [7]. See also [1] for a related result.

Theorem 8 ([1], [7]) A full-dimensional lattice-free convex set Q ⊆ Rn is
a maximal lattice-free convex set if and only if Q is a polyhedron of the form
Q = P + L, where P is a polytope and L is a rational linear subspace and
every facet of Q contains a point of Zn in its relative interior.
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We now present the proof of the main result of this section.

Proof of Theorem 1 If K ∩ Zn = ∅, then the result is trivial. Therefore, we
will assume that K ∩ Zn 6= ∅.

Let us prove “⇒”. If conv(K ∩ Zn) is closed, then ∀ u ∈ K ∩ Zn, u(K) =
rec.cone(conv(K ∩ Zn)). Thus u(K) is identical for all u ∈ K ∩ Zn.

Let us prove “⇐”. Observe that for all u ∈ K ∩ Zn we have that

rec.cone(conv(K ∩ Zn)) ⊆ u(K) ⊆ rec.cone(conv(K ∩ Zn)). (2)

The first inclusion follows directly by definition of rec.cone(conv(K ∩Zn))
and u(K). The second inclusion is due to the fact that for a closed convex set,
its recession cone gives the recession directions for every point in the set.

Assume now that u(K) is identical for every u ∈ K ∩ Zn. We first claim
that u(K) = rec.cone(conv(K ∩ Zn)) ∀ u ∈ K ∩ Zn. Let r ∈ u(K) and x ∈
conv(K ∩ Zn). We can write x =

∑N
i=1 αizi, where zi ∈ K ∩ Zn, αi ≥ 0 for

all i = 1, . . . , N and
∑N

i=1 αi = 1. Since r ∈ zi(K), ∀ i = 1, . . . , N , we have
zi+λr ∈ conv(K∩Zn) for all λ ≥ 0. Since x+λr =

∑N
i=1 αi(zi+λr), we obtain

that x+λr ∈ conv(K∩Zn) for all λ ≥ 0. Thus, u(K) ⊆ rec.cone(conv(K∩Zn))
and by (2) we obtain that

u(K) = rec.cone(conv(K ∩ Zn)) ∀u ∈ K ∩ Zn. (3)

We will now show that conv(K ∩ Zn) is closed. There are two cases:

– Case 1: rel.int(conv(K ∩ Zn)) ∩ Zn 6= ∅. We will verify that conv(K ∩
Zn)⊇conv(K∩Zn). Let u ∈ rel.int(conv(K∩Zn))∩Zn. Since u ∈ rel.int(conv
(K ∩ Zn)) ∩ Zn we obtain that if r ∈ rec.cone(rel.int(conv(K ∩ Zn)), then
u + λr ∈ rel.int(conv(K ∩ Zn)) ⊆ conv(K ∩ Zn) for all λ ≥ 0. Therefore,
rec.cone(rel.int(conv(K ∩ Zn)) ⊆ u(K). Since rec.cone(conv(K ∩ Zn)) =
rec.cone(rel.int(conv(K ∩ Zn)) (by Lemma 2), by using (2) we conclude
that u(K) = rec.cone(conv(K ∩ Zn)). Therefore, by using (3) we obtain
that rec.cone(conv(K ∩Zn)) = rec.cone(conv(K ∩Zn)). Observer that, by
Lemma 3, the extreme points of conv(K ∩ Zn) belong to K ∩ Zn. Since
conv(K ∩ Zn) ⊆ K, it does not contain any lines. Thus, by Theorem 7,
conv(K∩Zn) is given by the convex hull of its extreme points plus its reces-
sion cone. Since the extreme points of conv(K∩Zn) belongs to conv(K∩Zn)
and rec.cone(conv(K ∩ Zn)) = rec.cone(conv(K ∩ Zn)), we obtain that
conv(K ∩ Zn) ⊇ conv(K ∩ Zn). Therefore, conv(K ∩ Zn) is closed.

– Case 2: rel.int(conv(K ∩ Zn)) ∩ Zn = ∅. We will use induction on the
dimension of conv(K ∩ Zn). The base case, dim(conv(K ∩ Zn)) = 1 is
straightforward to verify.
Suppose now the property is true for every closed convex set K ′ such that
dim(conv(K ′∩Zn)) < dim(conv(K∩Zn)) and rel.int(conv(K ′∩Zn))∩Zn =
∅.
First for convenience, notice that we may assume K = K ∩ aff(K ∩ Zn).
Therefore dim(K ∩Zn) = dim(K). Let z ∈ K ∩Zn. We now translate K as
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K−{z} and note that it is sufficient to show that conv(K∩Zn) is closed for
this new set K. Observe that aff(K∩Zn) is a rational linear subspace, since
it is generated by integer vectors. Now by selecting a suitable unimodular
matrix (see [11]) and by the application of Lemma 4, we may assume that
aff(K ∩ Zn) is of the form {x |xi = 0 ∀i = k + 1, ..., n}. Finally, we can
project out the last n− k components (every point in K has zero in these
components) and note that it is sufficient to show that conv(K ∩ Zk) is
closed for this new set K ⊆ Rk. In particular, without loss of generality,
we may assume that conv(K ∩ Zn) is full-dimensional.
Note now that conv(K∩Zn) is lattice-free, and therefore there exists a full-
dimensional maximal lattice-free polyhedron Q ⊆ Rn such that conv(K ∩
Zn) ⊆ Q and Q = P + L, where P is a polytope and L is a rational linear
subspace.
Let Fi, i = 1, . . . , N be the facets of Q such that K ∩Fi ∩Zn 6= ∅. We will
verify that

conv(K ∩ Zn) ∩ Fi = conv(K ∩ Fi ∩ Zn). (4)

Since conv(K ∩ Zn) ∩ Fi is a convex set and contains K ∩ Fi ∩ Zn we
have conv(K ∩ Zn) ∩ Fi ⊇ conv(K ∩ Fi ∩ Zn). On the other hand, let
x ∈ conv(K ∩ Zn) ∩ Fi. Therefore x =

∑M
j=1 αjzj , where zj ∈ K ∩ Zn,

αj ≥ 0 for all j = 1, . . . ,M , and
∑M

j=1 αj = 1. Since K ∩ Zn ⊆ Q and
x ∈ Fi, we must have zj ∈ Fi, ∀, j = 1, . . . ,M , so x ∈ conv(K ∩ Fi ∩ Zn).
Next, for all i = 1, . . . , N , we verify that

u(K ∩ Fi) = u(K) ∩ L ∀ u ∈ K ∩ Fi ∩ Zn. (5)

Let r ∈ u(K ∩ Fi). Then, by definition we have that u + λr ∈ conv(K ∩
Fi ∩ Zn) ∀ λ ≥ 0. By (4), this is equivalent to u+ λr ∈ conv(K ∩ Zn) ∩ Fi

∀ λ ≥ 0. This is also equivalent to u + λr ∈ conv(K ∩ Zn) ∀ λ ≥ 0
and u+ λr ∈ Fi ∀ λ ≥ 0. Thus equivalently we obtain that r ∈ u(K) and
r ∈ rec.cone(Fi). By the form of Q (see Theorem 8) we have, ∀ i = 1, . . . , N ,
that rec.cone(Fi) = rec.cone(Q) = L . We obtain r ∈ u(K)∩L. Therefore,
we conclude u(K ∩ Fi) = u(K) ∩ L.
Since u(K) is identical for all u ∈ K ∩ Zn, (5) implies that u(K ∩ Fi) is
identical for every u ∈ K ∩ Fi ∩ Zn and ∀ i = 1, . . . , N . Moreover, since
conv(K∩Fi∩Zn) ⊆ Fi, we obtain dim(conv(K∩Fi∩Zn)) < dim(conv(K∩
Zn)). So we can use either case 1 or the induction hypothesis to conclude
that conv(K ∩ Fi ∩ Zn) is a closed set.
We now have that u(K ∩ Fi) = rec.cone(conv(K ∩ Fi ∩ Zn)) = u(K) ∩ L
for all i = 1, . . . , N . So the recession cone of conv(K ∩Fi ∩Zn) is the same
for all i = 1, . . . , N . Observe that,

conv(K ∩ Zn) = conv

[
N⋃

i=1

conv(K ∩ Fi ∩ Zn)

]
.
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Since the convex hull of a finite union of closed convex sets with the same
recession cone is closed (Lemma 1), we conclude that conv(K ∩ Zn) is
closed. �

We note here that the condition that K contains no line in the statement
of Theorem 1 is not artificial. This is illustrated in the next Example.

Example 2 Consider the set K7 = {(x1, x2) ∈ R2 | 0.5 ≤ x2 −
√

2x1 ≤ 0.7}
which contains a line and let u ∈ K7∩Z2. Since bd(K7)∩Z2 = ∅, we have that
u ∈ int(K7). Since u ∈ int(K7), it can be verified that u(K7) = rec.cone(K7)
(see Lemma 8 in Section 3.2). Thus u(K7) is identical for all u ∈ K7 ∩ Z2.
However, conv(K7 ∩ Z2) is not closed, since conv(K7 ∩ Z2) = int(K7). To see
this, first observe that the lines defining the boundary of K7 do not contain any
integer point, so conv(K7∩Z2) ⊆ int(K7). The other inclusion is a consequence
of the Dirichlet Diophantine Approximation Theorem.

3.2 Closedness of conv(K ∩ Zn) where int(K) ∩ Zn 6= ∅

In this section, we simplify the conditions of Theorem 1 for the case where
int(conv(K∩Zn))∩Zn 6= ∅. We will assume that K is full-dimensional through-
out this section. In particular if K is not full-dimensional, then by application
of Lemma 4 as in the proof of Theorem 1, we can modify K and subsequently
apply projection to achieve full-dimensionality of K and K ∩ Zn.

In this section, we prove the following result.

Theorem 2 Let K ⊆ Rn be a closed convex set not containing a line and
containing an integer point in its interior. Then the following are equivalent.

1. conv(K ∩ Zn) is closed.
2. u(K) = rec.cone(K) ∀u ∈ K ∩ Zn.
3. The following property holds for every proper exposed face F of K: If F ∩

Zn 6= ∅, then for all u ∈ F ∩ Zn and for all r ∈ rec.cone(F ), {u+ λr |λ ≥
0} ⊆ conv(F ∩ Zn).

Theorem 2 converts the question of verification of closedness of conv(K ∩
Zn) to the verification of a somewhat simpler property of the faces of the set
K. To see a simple application of Theorem 2 consider the cases (1.) and (2.)
presented in Example 1. Note that both K1 and K2 contain integer points in
their interior and conv(K∩Zn) is full-dimensional. In (1.), the facet F := {x ∈
R2 |x2 =

√
2x1, x2 ≥ 0} contains only the point (0, 0) and thus does not satisfy

the property presented in Theorem 2. Hence we deduce that conv(K1 ∩ Zn)
is not closed. On the other hand, since the facet {x ∈ R2 |x2 =

√
2x1, x2 ≥

0, x1 ≥ 1} contains no integer point and all other faces of K2 also satisfy the
property presented in Theorem 2, we can deduce that conv(K2∩Zn) is closed.

We note that Theorem 2 generalizes sufficient conditions for closedness of
conv(K ∩Zn) presented in [9]. [9] shows that conv(K ∩Zn) is closed if K is a
polyhedron that contains no lines, rec.cone(K) is full-dimensional and every



Convex Hulls of Convex IPs 11

face of K satisfies the conditions described in the statement of Theorem 2.
We note here that Theorem 2 is not true if the condition int(K) ∩ Zn 6= ∅ is
removed. The set K10 in Example 4 (Section 4) illustrates this.

Before we present the proof of Theorem 2, we first present a sequence of
preliminary lemmas.

The following lemma is a direct consequence of the Dirichlet Diophantine
Approximation Theorem (see Theorem 6.1 in [11]) and was proven in this form
in [1].

Lemma 5 ([1]) If x ∈ Zn and r ∈ Rn, then for all ε > 0 and γ ≥ 0, there
exists a point of Zn at a distance less than ε from the half line {x+λr |λ ≥ γ}.

Lemma 6 Let V ⊆ Rn be a linear subspace of Rn of dimension m. Let
{a1, . . . , am} be a basis of V . Then there exists δ > 0 such that if bi ∈
B(−ai, δ)∩V , for i = 1, . . . ,m, then we have 0 ∈ conv({b1, . . . , bm, a1, . . . , am}).

Proof Without loss of generality, we may assume V = Rn and that {a1, . . . , an}
is the canonical basis of Rn. Let δ > 0, such that δ < 1

n . For i = 1, . . . , n,
consider bi ∈ B(−ai, δ), that is, there exist vi ∈ Rn with ‖vi‖ ≤ 1 such that
bi = −ai + δvi.

Let µ ∈ Rn be the vector with all components equal to 1 and let λ =
µ− δ

∑n
i=1 vi. Since δ < 1

n and ‖vi‖ ≤ 1, we have that λ ≥ 0. We observe that

0 = λ− µ+ δ

n∑
i=1

vi =
n∑

i=1

λiai +
n∑

i=1

µibi.

Thus, we conclude 0 ∈ conv({b1, . . . , bn, a1, . . . , an}). �

We will call a vector r ∈ Rn rational scalable if there exists λ ∈ R \ {0}
such that λr ∈ Zn.

Lemma 7 Let r ∈ Rn be a vector that is not rational scalable and γ > 0. Let
P be the projection of the set {x ∈ Zn | 〈x, r〉 ≥ γ} on the subspace r⊥ := {x ∈
Rn | 〈x, r〉 = 0}. Then for all ε > 0, 0 ∈ conv(B(0, ε) ∩ P).

Proof Let V be the linear subspace of r⊥ generated by int(B(0, ε)) ∩ P and
let m = dim(V ). Notice that since r is not rational scalable, by Lemma 5
we have that m ≥ 1. Let {a1, . . . , am} ⊆ int(B(0, ε)) ∩ P be a basis of V .
For i = 1, . . . ,m, let xi ∈ Zn such that ai is the projection on r⊥ of xi. Let
δ > 0 be such that if bi ∈ B(−ai, δ) ∩ V , for i = 1, . . . ,m, then we have
0 ∈ conv({b1, . . . , bm, a1, . . . , am}) (Lemma 6).

Since {−a1, . . . ,−am} ⊆ int(B(0, ε)) there exists r > 0 such that r ≤ δ
and for all i = 1, . . . ,m, B(−ai, r) ⊆ B(0, ε). Since −xi ∈ Zn, by Lemma
5 we obtain that for all i = 1, . . . ,m there exists bi ∈ P at distance less or
equal than r from −ai. Thus, we have bi ∈ B(−ai, δ) ∩ V and therefore, by
the selection of δ, we obtain that

0 ∈ conv({b1, . . . , bm, a1, . . . , am}) ⊆ conv(B(0, ε) ∩ P).

�
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Lemma 8 Let K ⊆ Rn be a closed convex set, let u ∈ K ∩ Zn and let d =
{u+ λr |λ > 0} ⊆ int(K). Then {u} ∪ d ⊆ conv(K ∩ Zn).

Proof If r is rational scalable, then the result is straightforward. Suppose there-
fore that r is not rational scalable. Also without loss of generality we may
assume ‖r‖ = 1.

Observe that u ∈ conv(K ∩ Zn). Therefore it is sufficient to show that for
γ > 0, u+ γr ∈ conv(K ∩ Zn). Note now that d = {u+ λr |λ > 0} ⊆ int(K),
is equivalent to ∃ε > 0 such that B(u + λr, ε) ⊆ K ∀λ ≥ γ. Without loss of
generality we may assume that u = 0. We will show then that there exists µ ≥
γ such that µr ∈ conv(K∩Zn). Let P be the projection of {x ∈ Zn | 〈r, x〉 ≥ γ}
on the linear subspace {x ∈ Rn | 〈r, x〉 = 0}.

By Lemma 7, we have that 0 =
∑p

i=1 λiv
i where vi ∈ P∩B(0, ε), 0 < λi ≤ 1

for all i = 1, . . . , p,
∑p

1=1 λi = 1. Let v1, . . . , vp be the projection of the integer
points u1, . . . , up where, for all i = 1, . . . , p, we have ui = vi + µir ∈ Zn and
µi ≥ γ. For all i = 1, . . . , p, since the distance between vi and the half-
line {λr |λ ≥ 0} is less than ε and µi ≥ γ, we obtain that ui ∈ {λr |λ ≥
γ}+B(0, ε) ⊆ K. Therefore ui ∈ K ∩ Zn.

Now observe that

p∑
i=1

λi(vi + µir) =
p∑

i=1

λiv
i + r

p∑
i=1

λiµi = r

p∑
i=1

λiµi.

Since
∑p

i=1 λi = 1, we obtain that
∑p

i=1 λiµi ≥ γ. Thus, a point of the
form µr where µ ≥ γ belongs to conv(K ∩ Zn), completing the proof. �

Now we have all the tools needed to verify Theorem 2.

Proof of Theorem 2. Let u ∈ int(K) ∩ Zn. Then we claim that u(K) =
rec.cone(K). Observe first that since K is closed, we obtain that u(K) ⊆
rec.cone(K). Let r ∈ rec.cone(K). Now observe that since u ∈ int(K) ∩ Zn,
{u + λr |λ > 0} ⊆ int(K). Thus by Lemma 8, the half-line line {u + λr |λ ≥
0} ⊆ conv(K ∩ Zn). Thus, r ∈ u(K), completing the proof of the claim.

Now observe Theorem 1 implies (2.) ⇒ (1.) and the above claim together
with Theorem 1 implies (1.) ⇒ (2.). We now verify (1.) ⇐⇒ (3.).

Let us prove “⇐”. Assume that every exposed face of K satisfies the con-
dition. We will verify that conv(K ∩ Zn) is closed. By Theorem 1, it is suffi-
cient to show that u(K) is identical for every u ∈ K ∩ Zn. Observe that we
have verified that u(K) = rec.cone(K) ∀u ∈ int(K) ∩ Zn. Therefore, it re-
mains to be shown that u(K) = rec.cone(K) for all u ∈ bd(K). Consider any
u ∈ bd(K) and let r ∈ rec.cone(K). Then either u+ λr ∈ int(K) for all λ > 0
or r ∈ rec.cone(F ) for some proper exposed face F . In the first case by Lemma
8, the half-line line {u + λr |λ ≥ 0} ⊆ conv(K ∩ Zn). In the second case, by
the condition, we have that {u+ λr |λ ≥ 0} ⊆ conv(F ∩Zn) ⊆ conv(K ∩Zn).
Thus u(K) = rec.cone(K), completing the proof.

Let us prove “⇒”. Let conv(K ∩ Zn) be closed. Then by Theorem 1, we
know that u(K) is closed and identical for all u ∈ K ∩ Zn. Since we have
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verified that u(K) = rec.cone(K) for all u ∈ int(K) ∩ Zn, we obtain that
u(K) = rec.cone(K) for all u ∈ K ∩ Zn. Now examine any proper exposed
face of F . If F ∩ Zn 6= ∅, u ∈ F ∩ Zn and r ∈ rec.cone(F ), then we have
that r ∈ rec.cone(K) and thus {u + λr |λ ≥ 0} ⊆ conv(K ∩ Zn). Therefore,
it remains to verify that conv(K ∩ Zn) ∩ F = conv(F ∩ Zn) to complete the
proof. Clearly conv(F ∩Zn) ⊆ conv(K∩Zn)∩F . If x ∈ conv(K∩Zn)∩F , then
x is a convex combination of z1, . . . , zp where zi ∈ K ∩ Zn for i ∈ {1, . . . , p}.
However, since x ∈ F , zi ∈ F for all i ∈ {1, ..., p}. Thus, x ∈ conv(F ∩ Zn),
completing the proof. �

3.3 Closedness of conv(K ∩ Zn) where K is a strictly convex set

A set K ⊆ Rn is called a strictly convex set, if K is a convex set and for all
x, y ∈ K, λx+ (1− λ)y ∈ rel.int(K) for λ ∈ (0, 1).

Theorem 3 If K ⊆ Rn is a full-dimensional closed strictly convex set, then
conv(K ∩ Zn) is closed.

Proof First note that if K is bounded or if K ∩Zn = ∅, then conv(K ∩Zn) is
closed. Therefore we assume that K is unbounded and K ∩ Zn 6= ∅.

We first verify that K does not contain a line. Assume by contradiction
that K contains a line in the direction r 6= 0. Examine x ∈ bd(K). Then
points of the form x+ λr and x− λr belong to K, where λ > 0. In particular,
x + λr, x − λr ∈ bd(K) since x ∈ bd(K). However this contradicts the fact
that K is strictly convex.

Consider a point u ∈ K ∩ Zn. Let r ∈ rec.cone(K). Since K is strictly
convex, we obtain that that set {u+ λr |λ > 0} is contained in the interior of
K. Therefore, by Lemma 8 we obtain that the set {u+λr |λ ≥ 0} is contained
in conv(K ∩Zn). Thus, u(K) = rec.cone(K) for all u ∈ K ∩Zn. Therefore, by
Theorem 1 we obtain that conv(K ∩ Zn) is closed. �

Thus in the case of full-dimensional closed strictly convex set K, conv(K ∩
Zn) is closed independent of the recession cone. The sets K3 and K4 in Ex-
ample 1 are examples of this fact.

It is easily verified that every face of K is zero-dimensional, i.e. a single
point. Therefore in fact the statement of Theorem 3 follows straightforwardly
from Theorem 2 in the case when K is not lattice-free. It turns out that
if K ⊆ Rn is a full-dimensional unbounded closed strictly convex set and
K ∩ Zn 6= ∅, then K is not lattice-free. The proof would follow from Lemma
5.

3.4 Closedness of conv(K ∩ Zn) where K is a full-dimensional pointed closed
convex cone

In this section we prove the following result.
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Theorem 4 Let K be a full-dimensional pointed closed convex cone in Rn.
Then conv(K ∩ Zn) = K. In particular, conv(K ∩ Zn) is closed if and only if
every extreme ray of K is rational scalable.

Proof We first verify that conv(K ∩ Zn) = K. By convexity of K, we obtain
that conv(K∩Zn) ⊆ K. Since K is also closed, we obtain that conv(K∩Zn) ⊆
K. Now, let r ∈ int(K). Clearly, we have d = {0+λr |λ > 0} ⊆ int(K). So, by
Lemma 8 , we obtain {0}∪d ⊆ conv(K ∩Zn). Hence, int(K) ⊆ conv(K ∩Zn).
Since K is a full-dimensional closed convex set, we have K = int(K). Thus,
by taking the closure on both sides of the inclusion int(K) ⊆ conv(K ∩ Zn),
we obtain K ⊆ conv(K ∩ Zn).

We now verify that conv(K ∩ Zn) is closed if and only if all the extreme
rays of K are rational scalable rays. Suppose conv(K ∩ Zn) is closed. Then
conv(K∩Zn) = K. If r is any extreme ray of K, then observe that K\{λr |λ >
0} is a convex set. Since {λr |λ > 0} ⊆ conv(K∩Zn), there must be an integer
point in the set {λr |λ > 0}. In other words, r is rational scalable.

Now assume that every extreme ray of K is rational scalable. Let R be the
set of all extreme rays of K. Then observe that

K = cone(R) ⊆ conv(K ∩ Zn) ⊆ K,

where the first equality follows from Theorem 7. Thus, conv(K ∩ Zn) = K or
equivalently conv(K ∩ Zn) is closed. �

We note here that K6 in Example 1 is an example for a non-polyhedral cone
where each extreme ray is rational scalable. Therefore conv(K6 ∩ Z3) = K6.

3.5 Closedness of conv(K ∩ Zn) where K contains lines

Given a set K and a half-line d = {u + λr |λ ≥ 0} we say K is coterminal
with d if

sup{µ |µ > 0, u+ µr ∈ K} =∞.

This definition is originally presented in [6]. Given a closed convex set K, a
face F of K is called extreme facial ray of K if F is a closed half-line.

In this section, we will verify the following result.

Theorem 5 Let K ⊆ Rn be a closed convex set such that the lineality space
L = lin.space(conv(K ∩ Zn)) is not trivial. Then, conv(K ∩ Zn) is closed if
and only if the following two conditions hold:

1. conv(K ∩ L⊥ ∩ PL⊥(Zn)) is closed.
2. L is a rational linear subspace.

Note that when L is a rational linear subspace (otherwise we already know
that conv(K∩Zn) is not closed), we obtain that PL⊥(Zn) is a lattice. Therefore,
if the set K ∩ L⊥ does not contain any line, then we can characterize the
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closedness of conv(K∩L⊥∩PL⊥(Zn)) using the properties we have for convex
sets not containing lines (these results can be easily extended for a general
lattice).

Before presenting the proof of Theorem 5, we describe some useful corol-
laries.

Corollary 1 Let K be a closed convex set and let rec.cone(K) be a rational
polyhedral cone. Then conv(K ∩ Zn) is closed.

Proof Observe that if K ∩Zn = ∅, the result is trivial. We assume for the rest
of the proof that K ∩ Zn 6= ∅.

Let L = lin.space(K). Since L is rational, lin.space(conv(K ∩ Zn)) = L.
Therefore, by Theorem 5, we only need to verify that conv(K∩L⊥∩PL⊥(Zn))
is closed.

Notice that the set K ∩ L⊥ does not contain any line. To simplify the
proof, by using Lemma 4 we may assume without loss of generality that L⊥ =
{x ∈ Rn |xi = 0 ∀i = k + 1, . . . , n}. Thus, it is sufficient (after projecting
out the last n − k components) to show that conv(K ′ ∩ Zk) is closed, where
K ′ ⊆ Rk is a closed convex set not containing any line and rec.cone(K ′) is
a rational polyhedral cone. However, note now that u(K ′) ⊇ rec.cone(K ′) ⊇
rec.cone(conv(K ′ ∩Zk)) ⊇ u(K ′) for all u ∈ K ′ ∩Zn, where the first inclusion
is due to the fact that rec.cone(K ′) is a rational polyhedral cone, the second
inclusion is due to the fact that K ′ is closed and the last inclusion is the same
as (2). Thus u(K ′) is closed and identical for all u ∈ K ′ ∩ Zk. Therefore, by
Theorem 1 we conclude that K ′ is closed which completes the proof. �

Corollary 2 If lin.space(K) is not a rational linear subspace and int(K) ∩
Zn 6= ∅, then conv(K ∩ Zn) is not closed.

Proof By Lemma 8, we conclude lin.space(conv(K ∩ Zn)) = lin.space(K),
which completes the proof. �

Next we present some results needed to verify Theorem 5. The crucial
results needed are the following theorems from [5].

Theorem 9 ([5]) If A ⊆ Rn is a closed set not containing a line, then
conv(A) is closed if and only if A is coterminal with all the extreme facial
rays of conv(A).

Theorem 10 ([5]) Let A ⊆ Rn such that L = lin.space(conv(A)) is not
trivial. Then, conv(A) is closed if and only if

1. The set PL⊥(A) is coterminal with every extreme facial ray of conv(A)∩L⊥.
2. For every extreme point z of conv(A) ∩ L⊥, conv(A ∩ (z + L)) = z + L.

The following straightforward lemmas, that we present without any proofs,
show some properties of the projection operation.

Lemma 9 Let A,B ⊆ Rn and denote L ⊆ lin.space(conv(A)). We have the
following:
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1. PL⊥(B) ⊆ PL⊥(B).
2. PL⊥(conv(B)) = conv(PL⊥(B)).
3. PL⊥(conv(A)) = conv(A) ∩ L⊥.
4. PL⊥(conv(A)) = conv(PL⊥(A)).

Lemma 10 Let K ⊆ Rn be a closed convex set. Denote L = lin.space(conv(K∩
Zn)). Then PL⊥(K∩Zn) = PL⊥(K)∩PL⊥(Zn). In particular, PL⊥(K∩Zn) =
K ∩ L⊥ ∩ PL⊥(Zn).

We now have all the tools for proving Theorem 5.

Proof of Theorem 5 Observe that if K ∩ Zn = ∅, the result is trivial. We
assume for the rest of the proof that K ∩ Zn 6= ∅.

Claim 1: If L is a rational linear subspace, then (1.) of Theorem 5 is equiv-
alent to (1.) of Theorem 10 with A = K ∩ Zn. Since L is a rational linear
subspace, PL⊥(Zn) is a lattice and therefore PL⊥(Zn) is a closed set. Hence
K ∩ L⊥ ∩ PL⊥(Zn) is a closed set. Moreover, by Lemma 10, we have that

K ∩ L⊥ ∩ PL⊥(Zn) = PL⊥(K ∩ Zn). (6)

Thus, PL⊥(K∩Zn) is closed and conv(K∩L⊥∩PL⊥(Zn)) is closed if and only
if conv(PL⊥(K ∩ Zn)) is a closed set. Since PL⊥(K ∩ Zn) is closed, we may
apply Theorem 9 to PL⊥(K∩Zn) to obtain that conv(PL⊥(K∩Zn)) is closed if
and only if the set PL⊥(K ∩Zn) is coterminal with every extreme facial ray of
conv(PL⊥(K∩Zn)). By Lemma 9, conv(PL⊥(K∩Zn)) = PL⊥(conv(K∩Zn)) =
conv(K∩Zn)∩L⊥. Therefore, conv(K∩L⊥∩PL⊥(Zn)) is closed if and only if
PL⊥(K∩Zn) is coterminal with every extreme facial ray of conv(K∩Zn)∩L⊥.

Observe that since the set conv(K ∩ Zn) ∩ L⊥ does not contain any lines,
it must have at least one extreme point.

Let us prove “⇒”. Suppose conv(K ∩ Zn) is closed. Then, by Theorem 10
for every extreme point z of conv(K ∩ Zn) ∩ L⊥ we have that conv(K ∩ Zn ∩
(z + L)) = z + L. Thus z + L is the convex hull of some nonempty subset of
integer points and therefore L is a rational linear subspace. This proves (2.)
of Theorem 5. Moreover, since L is a rational linear subspace, we have (1.) of
Theorem 5 by Claim 1.

Let us prove “⇐”. Now suppose (1.) and (2.) of Theorem 5. Then by
Claim 1, we have (1.) of Theorem 10. We will prove (2.) of Theorem 10,
that is, for every extreme point z of conv(K ∩ Zn) ∩ L⊥, we have conv(K ∩
Zn ∩ (z + L)) = z + L. We first prove that (z + L) ∩ K ∩ Zn 6= ∅. Since
conv(K ∩ Zn) ∩ L⊥ = conv(PL⊥(K ∩ Zn)), by Lemma 3 we have that z ∈
PL⊥(K ∩ Zn), and therefore there exists l ∈ L such that z + l ∈ K ∩ Zn.
Hence, (z+L)∩K ∩Zn 6= ∅. Now let {l1, . . . , lp} ⊆ Zn be a basis of L and let
w ∈ (z+L)∩K ∩Zn. Since L ⊆ lin.space(K) for all λ1, . . . , λp ∈ Z, the points
w,w + λ1l1, . . . , w + λplp belong to (z + L) ∩K ∩ Zn. Thus, by convexity of
conv((z+L)∩K∩Zn), for all λ1, . . . , λp ∈ R, the points w,w+λ1l1, . . . , w+λplp
belong to conv((z + L) ∩ K ∩ Zn). Hence, conv((z + L) ∩ K ∩ Zn) contains
an affine subspace whose dimension is the same as dimension of z + L. Since
conv(K∩Zn∩(z+L)) ⊆ z+L, we obtain that conv(K∩Zn∩(z+L)) = z+L.
Thus we obtain (2.) of Theorem 10. Therefore, conv(K ∩ Zn) is closed. �
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4 Polyhedrality of conv(K ∩ Zn)

We use the following notation in this section. Let K ⊆ Rn be a nonempty
closed convex set. Then σK : Rn → R∪{+∞} defined as σK(a) = sup{〈a, x〉 |x ∈
K} is the support function of K. Given a cone T , we represent its polar by
T ∗. In particular, (rec.cone(K))∗ = {d ∈ Rn | 〈d, u〉 ≤ 0 ∀u ∈ rec.cone(K)}.

Let us develop some intuition regarding the question of polyhedrality of
conv(K ∩ Zn). Suppose for simplicity that K contains no lines, K is full-
dimensional and int(K)∩Zn is non-empty. Then by Theorem 2, we obtain that
a necessary condition for conv(K ∩Zn) to be closed is that rec.cone(conv(K ∩
Zn)) = rec.cone(K). Therefore, in this setting, if we require conv(K ∩ Zn)
to be a rational polyhedron, it is necessary that K has a rational polyhedral
recession cone. However, this is not sufficient. Consider the case of the parabola
K3 presented in Example 1. It is easy to verify that conv(K3 ∩ Z2) is not a
polyhedron. To see what is ‘going wrong’, observe that min{x1 |x ∈ K3} =
−∞, even though (−1, 0) is orthogonal to the all vectors in the recession cone.
Intuitively, this causes conv(K3 ∩ Z2) to have an infinite number of extreme
points. This motivates the definition of ‘thin set’ (see Definition 2, Section
2). In terms of its support function and the polar of its recession cone, a
closed convex set K is thin if and only if the following holds for all c ∈ Rn:
σK(c) < +∞ if and only if c ∈ (rec.cone(K))∗.

In this section we verify the following result.

Theorem 6 Let K ⊆ Rn be a closed convex set. If K is thin and recession
cone of K is a rational polyhedral cone, then conv(K ∩ Zn) is a polyhedron.
Moreover, if int(K) ∩ Zn 6= ∅ and conv(K ∩ Zn) is a polyhedron, then K is
thin and rec.cone(K) is a rational polyhedral cone.

Since every polyhedron is a thin set, Theorem 6 generalizes the result
in [8]. We present a simple example illustrating Theorem 6 when K is not a
polyhedral set.

Example 3 Consider the set K8 = {(x1, x2) ∈ R2
+ |x1x2 ≥ 1}. It is straightfor-

ward to verify that K8 is thin and rec.cone(K8) = {(y1, y2) ∈ R2 | y1 ≥ 0, y2 ≥
0} is a rational polyhedron. Thus, conv(K8 ∩Z2) = {(x1, x2) |x1 ≥ 1, x2 ≥ 1}
is a polyhedron. On the other hand observe that while each of the sets K1, K2,
K3, K4, K6 in Example 1 contains integer points in its interior, none of them
are both thin and have rational polyhedral recession cone. Thus by Theorem
6, the convex hull of integer points in all these sets is non-polyhedral.

4.1 Sufficient conditions for conv(K ∩ Zn) to be polyhedral

The following variant of Gordan-Dickson’s Lemma is from [3].

Lemma 11 Let m ∈ N and X ⊆ Zm and assume there exists x0 ∈ Zm such
that x ≥ x0 for every x ∈ X. Then there exists a finite set Y ⊆ X such that
for every x ∈ X there exists y ∈ Y satisfying y ≤ x.
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Proposition 1 (Sufficient Condition) If K is thin and recession cone of
K is a rational polyhedral cone, then conv(K ∩ Zn) is a polyhedron.

Proof Observe that if K ∩ Zn = ∅, then conv(K ∩ Zn) = ∅ is a polyhedron.
Therefore, assume for the rest of the proof that K∩Zn 6= ∅. Since rec.cone(K)
is a rational polyhedron, we obtain rec.cone(conv(K ∩ Zn)) = rec.cone(K).
Choose an integer matrix A ∈ Zm×n such that

rec.cone(K) = {x ∈ Rn |Ax ≥ 0}.

For i = 1, . . . ,m let ai ∈ Rn denote the ith row of A. Since K is thin, for all
i = 1, . . . ,m we have inf{〈ai, x〉 |x ∈ K} > −∞, so we obtain inf{〈ai, x〉 |x ∈
K ∩ Zn} > −∞. Thus, by defining the vector x0 ∈ Zm as follows

(x0)i = inf{〈ai, x〉 |x ∈ K ∩ Zn}, ∀ i = 1, . . . ,m

we conclude that Ax ≥ x0 for every x ∈ K ∩ Zn. Therefore, by applying
Lemma 11 to the set {Ax |x ∈ K ∩ Zn} ⊆ Zm, we obtain that there exists
a finite set Y ⊆ K ∩ Zn such that for every x ∈ K ∩ Zn there exists y ∈ Y
satisfying Ay ≤ Ax. To prove that conv(K∩Zn) is a polyhedron, it is sufficient
to show that

conv(K ∩ Zn) = conv(Y ) + rec.cone(K).

Let x ∈ K ∩ Zn and y ∈ Y as above, that is, such that A(x − y) ≥ 0. We
have x − y ∈ rec.cone(K). This shows K ∩ Zn ⊆ Y + rec.cone(K) and yields
the inclusion conv(K ∩ Zn) ⊆ conv(Y ) + rec.cone(K). The reverse inclusion
conv(Y ) + rec.cone(K) ⊆ conv(K ∩ Zn) follows directly from the fact Y ⊆
K ∩ Zn and that rec.cone(conv(K ∩ Zn)) = rec.cone(K). �

We note here that the proof technique of Proposition 1 was suggested by an
anonymous referee.

4.2 Necessary conditions for conv(K ∩ Zn) to be polyhedral

We begin with a few lemmas before presenting the ‘necessary direction’ of
Theorem 6.

Lemma 12 Let Q ⊆ Rn be a full-dimensional maximal lattice free convex set
and let 〈c, x〉 ≤ d be a valid inequality for Q. Then there exists δ > 0 such that
〈c, x〉 ≥ d− δ is a valid inequality for Q.

Proof Assume by contradiction that inf{〈c, x〉 |x ∈ Q} = −∞. Since Q is a
polyhedron (by Theorem 8), we obtain that there exists a recession direction
r of Q such that 〈r, c〉 < 0. However, because rec.cone(Q) = lin.space(Q), we
have that −r is a recession direction of Q. Then sup{〈c, x〉 |x ∈ Q} = +∞,
contradicting the assumption that 〈c, x〉 ≤ d is a valid inequality for Q. �
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Lemma 13 If K ⊆ Rn is thin and T ⊆ Rn is a closed subset of K such that
rec.cone(T ) = rec.cone(K), then T is thin.

Proof Suppose inf{〈c, x〉 |x ∈ T} is unbounded. Then, inf{〈c, x〉 |x ∈ K} is
unbounded. Since K is thin, there exists d ∈ rec.cone(K) = rec.cone(T ) such
that 〈d, c〉 < 0. If inf{〈c, x〉 |x ∈ T} is bounded, then 〈d, c〉 ≥ 0 for all d ∈
rec.cone(T ). �

Proposition 2 (Necessary Condition) Let K ⊆ Rn be a a closed convex
set such that int(K)∩Zn 6= ∅. If conv(K ∩Zn) is a polyhedron, then K is thin
and rec.cone(K) is a rational polyhedral cone.

Proof Let P = {x ∈ Rn | 〈ai, x〉 ≤ bi, i = 1, . . . ,m} be a description of
conv(K ∩ Zn). Note that P is a rational polyhedron. We will show first that
for all i = 1, . . . ,m, we have sup{〈ai, x〉 |x ∈ K} < ∞. Let i ∈ {1, ...,m}
and assume by contradiction that sup{〈ai, x〉 |x ∈ K} = ∞. Consider the set
Ki = K ∩{x ∈ Rn | 〈ai, x〉 ≥ bi}. Notice that int(K)∩Zn 6= ∅, so K must be a
full-dimensional set. Also, by assumption, we have K * {x ∈ Rn | 〈ai, x〉 ≤ bi}.
Therefore it can be verified that int(K) ∩ {x ∈ Rn | 〈ai, x〉 > bi} 6= ∅. This
implies int(Ki) = int(K) ∩ {x ∈ Rn | 〈ai, x〉 > bi} 6= ∅ and thus Ki is of full
dimension.

Moreover, we have int(Ki)∩Zn = (int(Ki)∩K)∩Zn ⊆ int(Ki)∩P = ∅, so
Ki is a lattice-free set. Hence, there exists a full-dimensional maximal lattice-
free polyhedron Q = {x ∈ Rn | 〈cj , x〉 ≤ dj , j = 1, . . . , q} such that Ki ⊆ Q.

Since K is not lattice-free we obtain that K * Q. Therefore there exists
x0 ∈ K \Q, that is, x0 ∈ K, 〈ai, x0〉 < bi, and there exists j ∈ {1, . . . , q} such
that 〈cj , x0〉 > dj . By Lemma 12, there exists δ > 0 such that x ∈ Q implies
〈cj , x〉 ≥ dj − δ.

Let {xn}n≥1 ⊆ Ki such that limn→∞〈ai, xn〉 = ∞ and λn ∈ (0, 1) such
that the point yn = (1−λn)x0 +λnxn satisfies 〈ai, yn〉 = bi. Since x0, xn ∈ K,
by convexity of K, we have yn ∈ K. Therefore we obtain that yn ∈ Ki.

On the other hand,

〈cj , yn〉 − dj = (1− λn)〈cj , x0〉+ λn〈cj , xn〉 − dj

≥ (1− λn)(〈cj , x0〉 − dj)− λnδ

= (〈cj , x0〉 − dj)− λn[(〈cj , x0〉 − dj) + δ].
(7)

where the inequality follows from the fact that {xn}n≥1 ⊆ Ki ⊆ Q ⊆ {x ∈
Rn : 〈cj , x〉 ≥ dj − δ}.

Notice that, by definition, λn = bi−〈ai,x0〉
〈ai,xn〉−〈ai,x0〉 and thus limn→∞ λn = 0.

Hence, by 7, for sufficiently large n, we have 〈cj , yn〉 > dj , a contradiction with
the fact yn ∈ Ki ⊆ Q. So, we must have sup{〈ai, x〉 | x ∈ K} < ∞, for all
i ∈ {1, ...,m}.

We conclude that there exist numbers bi, for all i = 1, . . . ,m, with bi ≤
bi < ∞ such that K ⊆ P ′ := {x | 〈ai, x〉 ≤ bi, i = 1, . . . ,m}. Hence, since
P ⊆ K ⊆ P ′, we have rec.cone(K) = {x | 〈ai, x〉 ≤ 0, i = 1, . . . ,m}, so
rec.cone(K) is a rational polyhedral cone. Moreover, every polyhedron is thin,
so by Lemma 13, we conclude K is also thin, as desired. �
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We note here that the addition technical condition that int(K) ∩ Zn 6= ∅
in Proposition 2 is not artificial. We illustrate this with examples next.

Example 4 1. Here is an example that shows that conv(K ∩ Zn) can be a
polyhedron and yet it is not thin, since it is lattice-free. Consider the set

K9 := conv({(x1, x2, x3) ∈ R3 |x3 = 0, x1 = 0, x2 ≥ 0}
∪ {(x1, x2, x3) ∈ R3 |x3 = 0.5, x2 ≥ x2

1}
∪ {(x1, x2, x3) ∈ R3 |x3 = 1, x1 = 0, x2 ≥ 0}).

Observe that conv(K9 ∩Z3) = {(x1, x2, x3) ∈ R3 |x1 = 0, x2 ≥ 0, 0 ≤ x3 ≤
1} is a polyhedron. However note that K9 is not thin since rec.cone(K9) =
{λ(0, 1, 0) |λ ≥ 0} and inf{〈(−1, 0, 0), x〉 |x ∈ K9} = −∞ but 〈(0, 1, 0), (−1,
0, 0)〉 = 0. Finally note that K9 is lattice-free.

2. Here is an example that shows that conv(K∩Zn) can be a polyhedron and
yet rec.cone(K) is not a rational polyhedral cone, since it is lattice-free.
Consider the set

K10 := conv({(x1, x2, x3) ∈ R3 |x2 −
√

2x1 = 0, x3 = 0}
∪ {(x1, x2, x3) ∈ R3 |x2 −

√
2x1 = 1, x3 = 0.5}

∪ {(x1, x2, x3) ∈ R3 |x2 −
√

2x1 = −1, x3 = 0.5}
∪ {(x1, x2, x3) ∈ R3 |x2 −

√
2x1 = 0, x3 = 1}).

Then K10 ∩ Z3 = {(0, 0, 0), (0, 0, 1)} and thus conv(K10 ∩ Z3) is a polyhe-
dron. However, note that rec.cone(K10) is not a rational polyhedral cone.
Also observe that K10 is lattice-free.

5 Remarks

We first remark that all the key results in this paper (Theorem 1, Theorem
2, Theorem 3, Theorem 4, Theorem 5, Theorem 6) hold if we replace Zn by
any general lattice Γ ⊆ Rn and investigate the closedness and polyhedrality
of conv(K ∩ Γ ).

It is possible to relax the requirement of conv(K ∩Zn) being a polyhedron
and ask the question when conv(K ∩ Zn) is locally polyhedron, i.e., the inter-
section of conv(K ∩ Zn) with any polytope is also a polytope. To the best of
our knowledge the most general sufficient conditions known for conv(K ∩ Zn)
to be locally polyhedral are presented in [9] for the case where K is general
polyhedron (not necessary rational). Coming up with necessary and sufficient
conditions for conv(K ∩ Zn) to be locally polyhedron in the case where K is
a general convex set is an interesting open question.

Another important question is determining necessary and sufficient condi-
tions for the following optimization problem

z∗ =min〈d, x〉
s.t. x ∈ K ∩ Zn,

(8)
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to be solvable, i.e., if z∗ is bounded and K ∩ Zn 6= ∅ implies there exists
x∗ ∈ K ∩ Zn such that 〈d, x∗〉 ≤ 〈d, x〉 ∀x ∈ K ∩ Zn. Clearly if conv(K ∩ Zn)
is a rational polyhedron, then the optimization problem is solvable for any d.
Another sufficient condition that can be easily verified is that d is a rational
vector. However, finding general necessary and sufficient conditions for (8) to
be solvable is a challenging question.
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