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Abstract. The classical Canonical Correlation Analysis (CCA) identifies
the correlations between two sets of multivariate variables based on their
covariance, which has been widely applied in diverse fields such as com-
puter vision, natural language processing, and speech analysis. Despite
its popularity, CCA can encounter challenges in explaining correlations
between two variable sets within high-dimensional data contexts. Thus,
this paper studies Sparse Canonical Correlation Analysis (SCCA) that en-
hances the interpretability of CCA. We first show that SCCA generalizes
three well-known sparse optimization problems, sparse PCA, sparse SVD,
and sparse regression,which are all classified asNP-hard problems.This re-
sult motivates us to develop strong formulations and efficient algorithms.
Our main contributions include (i) the introduction of a combinatorial
formulation that captures the essence of SCCA and allows the develop-
ment of approximation algorithms; (ii) the derivation of an equivalent
mixed-integer semidefinite programming model that facilitates a special-
ized branch-and-cut algorithm with analytical cuts; and (iii) the estab-
lishment of the complexity results for two low-rank special cases of SCCA.
The effectiveness of our proposed formulations and algorithms is validated
through numerical experiments.

1 Introduction

The Canonical Correlation Analysis (CCA), proposed by H. Hotelling [18], aims
to identify the correlations between two sets of multivariate variables based on
their covariance. Since then, CCA has become a powerful statistical technique
used for multivariate data analysis, with its applications across diverse fields such
as computer vision [19], natural language processing [32], and speech analysis [16].
Despite its popularity, CCA can encounter challenges in explaining correlations
between two variable sets within high-dimensional data contexts, such as genomic
datasets [30]. In contrast, Sparse Canonical Correlation Analysis (SCCA), which
seeks sparse linear combinations of these variable sets, offers substantially en-
hanced interpretability [35, 36, 38].

Formally, this paper studies the SCCA problem:

v∗ := max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1, ‖x‖0 ≤ s1, ‖y‖0 ≤ s2

}
,

(SCCA)

where s1 ≤ n, s2 ≤ m are positive integers and

(
B A

A⊤ C

)
denotes a covariance

matrix of (n + m) random variables. Specifically, B and C are the covariance
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matrices of then andm randomvariables, respectively, andA ∈ R
n×m is the cross-

covariancematrix between n andm random variables. Hence,

(
B A

A⊤ C

)
,B,C are

positive semidefinitematrices of size (n+m), n, andm, respectively.Here,matrices
B,C can be singular, i.e., some random variables may be dependent on others. In
fact, the covariance matrices B,C are often low-rank, especially within the high-
dimension low-sample size data context (see, e.g., the gene expression data in [35]).

The SCCA problem generalizes three widely-studied sparsity-constrained op-
timization problems as special cases, which are sparse PCA [2, 10, 22], sparse SVD
[23, 35], and sparse regression [3, 17]. To be specific, when n = m, s1 = s2, B,C
are identity matrices, and A is a positive semidefinite matrix, SCCA reduces to
the classic sparse PCA problem; whenB,C are identity matrices, SCCA becomes
the sparse SVD problem; and when A is rank-one, Section 4 shows that SCCA is
equivalent to two sparse linear regression subproblems.

1.1 Main contributions

SCCA is generally NP-hard, given that its special cases, sparse PCA, sparse SVD,
and sparse regression are all classified as NP-hard problems. We are motivated to
develop efficient formulations and algorithms for SCCA through a mixed-integer
optimization lens. Themain contributions, along with the structure of the remain-
der of this paper, are the following:

(i) In Section 2, we present an exact semidefinite programming (SDP) reformu-
lation and derive a closed-form optimal value of classic CCA problem. We
also develop an equivalent combinatorial formulation of SCCA;

(ii) Section 3 derives an equivalent mixed-integer SDP (MISDP) reformulation
for SCCA. When applying the Benders decomposition approach, instead of
solving the large-scale SDPs, we design a customized branch-and-cut algo-
rithm with closed-form cuts, which can successfully solve SCCA to optimal-
ity;

(iii) When the covariance matrix

(
B A

A⊤ C

)
is low-rank, Section 4 studies the

complexity of two special cases of SCCA; and
(iv) Section 5 numerically test the proposed formulations and algorithms.

1.2 Relevant literature

SCCA. To the best of our knowledge, the work [30] was the first paper that in-
troduced the concept of SCCA to select only small subsets of variables to better
explain the relationship between many genetic loci and gene expression pheno-
types. A handful subset of features enhances interpretability, a desirable property,
especially in complex data analysis, which has been successfully demonstrated in
Sparse PCA [20]. To obtain sparse canonical loadings (x,y), [33] first applied elas-
tic net penalty to the classical CCA via an iterative regression procedure. In a sem-
inal work on SCCA [35], the authors proposed a rigorous formulation by enforcing
the ℓ1 constraints on variables (x,y) and developed a penalized matrix decompo-
sition method to solve the penalized CCA problem. Then, extensive research has
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focused on various penalty norm functions to obtain sparse canonical loadings (see,
e.g., [7, 15, 21, 33, 36]). In particular, [7] penalized multiple canonical loadings by
ℓ1 norm and computed the sparse solution by the linearized Bregman method. It
should be noted that under the assumption that the leading canonical loadings are
sparse, [5, 13, 14] established theoretical guarantees of iterative approaches for es-
timating sparse solutions. Another research direction in SCCA introduced penalty
functions based on group structural information of input data and developed group
SCCA methods [24, 25]. For a comprehensive overview of CCA and SCCA meth-
ods, we refer readers to the survey by [38] and the references therein. These ap-
proaches, however, do not strictly enforce the exact sparsity requirement but only
approximate the sparsity requirement (i.e., the ℓ0 norm) by a convex function. An-
other relevant work [34] introduced binary variables to recast SCCA as a mixed-
integer nonconvex program under the assumption of positive definite matrices
B,C, based onwhich they designed a branch-and-bound algorithm.Different from
the literature, our work does not require positive definiteness assumption of matri-
cesB,C and we are able to obtain mixed-integer conic and semidefinite program-
ming reformulations, allowing for better exact and approximation algorithms.

Connections to and differences with sparse PCA and sparse SVD. Analogous to
SCCA, both sparse PCA [10, 20] and sparse SVD [23] select small subsets of vari-
ables to improve the interpretability of dimensionality reduction methods: PCA
and SVD. Considerable investigation has been conducted on solving sparse PCA
and sparse SVD from three angles: convex relaxations [9–11], approximation algo-
rithms [4, 6, 23], and exact algorithms [2, 22, 23]. As mentioned before, in sparse
PCA and sparse SVD, the covariance matrices B,C are identity. Such a setting
dramatically simplifies the subset selection problems of sparse PCA and sparse
SVD compared to that of SCCA, as in these problems, it suffices to focus on the
selection of a submatrix of the matrixA. Specifically, it is shown in [8, 22, 29] that
sparsePCA reduces to selecting a principal submatrix ofA tomaximize the largest
eigenvalue(s) and sparse SVD reduces to selecting a possibly non-symmetric sub-
matrix of A to maximize the largest singular value(s) [23]. Quite differently, the
combinatorial reformulation (1) of SCCA aims to simultaneously select a sized-
(s1×s1) principal submatrix ofB, a sized-(s2×s2) principal submatrix ofC, and
a sized-(s1× s2) submatrix ofA. These fundamental differences in the underlying
formulations of sparse PCA and sparse SVD preclude the direct application of
their existing algorithms to the SCCA.

Notations: The following notation is used throughout the paper. We use bold
lower-case letters (e.g., x) and bold upper-case letters (e.g., X) to denote vectors
and matrices, respectively, and we use corresponding non-bold letters (e.g., xi)
to denote their components. We let Sn,Sn

+,Sn
++ denote the set of all the n × n

symmetric real matrices, the set of all the n× n symmetric positive semidefinite
matrices, and the set of all the n×n symmetric positive definite matrices, respec-
tively. We let I denote the identity matrix and let 0 denote the vector or matrix
with all-zero entries. We let Rn

+ denote the set of all n-dimensional nonnegative
vectors. We let [n] := {1, 2, · · · , n}, [s, n] := {s, s + 1, · · · , n}. Given a matrix
A ∈ R

n×m and two subsets S ⊆ [n], T ⊆ [m], we letA† denote the pseudo inverse
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of matrix A, let AS,T denote a submatrix of A with rows and columns indexed
by sets S, T , respectively, and let (AS,T )

† denote the pseudo inverse of submatrix
AS,T . For a set S and an integer k, we define the set S+ k := {i+ k|i ∈ S}. Given
a vector a ∈ R

n and a subset S ⊆ [n], we let aS denote a subvector of a in the
subset S. We define [λ]+ := max{λ, 0}. We let σmax(·) denote the largest singular
value function and let λmax(·) denote the largest eigenvalue value function.

2 A combinatorial reformulation of SCCA

This section introduces an equivalent combinatorial optimization reformulation
of SCCA. This reformulation serves as the foundation for developing two effective
approximation algorithms to solve SCCA in Section 5.

2.1 An exact semidefinite programming representation of CCA

To begin with, let us focus on the classic CCA problem, which refers to SCCA
without zero-norm constraints, as defined below:

max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1

}
. (CCA)

This formulation of CCA can be regarded as a quadratically constrained quadratic

program concerning the variables

(
x

y

)
∈ R

n×m. We next define three-block ma-

trices of size (n+m) below that aid in the presentation of our results.

Ã =

(
0 A/2

A⊤/2 0

)
, B̃ =

(
B 0
0 0

)
, C̃ =

(
0 0
0 C

)
.

By introducing a size-(n+m) matrix variableX =

(
x

y

)(
x

y

)⊤

and removing

the rank-one constraint on X, we can obtain an SDP relaxation of (CCA), as
described below

max
X∈Sm+n

+

{
tr
(
ÃX

)
: tr
(
B̃X

)
≤ 1, tr

(
C̃X

)
≤ 1
}
. (SDP Relaxation)

Next, let us present a key lemma regarding properties of block matrices being
positive semidefinite, fundamental for reformulating the SCCA.

Lemma 1 ([12]). For any symmetric block matrix

(
B A

A⊤ C

)
∈ Sn+m, the fol-

lowings are equivalent:

(i) The block matrix is positive semidefinite;
(ii) B ∈ Sn

+, (I −BB†)A = 0, C −A⊤B†A ∈ Sm
+ ; and

(iii) C ∈ Sm
+ , (I −CC†)A⊤ = 0, B −AC†A⊤ ∈ Sn

+.

Inspired by Lemma 1, we hereby establish the equivalence between CCA and
its SDP Relaxation. Remarkably, both of these problems achieve the same optimal
value, namely σmax(

√
B†A

√
C†).
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Proposition 1. For the CCA, we have the following results.

(i) Both CCA and its SDP Relaxation have an optimal value σmax(
√
B†A

√
C†);

(ii) A pair of optimal solutions (x∗,y∗) to CCA satisfies

x∗ =
√
B†q, y∗ =

√
C†p,

where q ∈ R
n,p ∈ R

m denote a pair of leading singular vectors of matrix√
B†A

√
C†; and

(iii) An optimal solution X∗ to the SDP Relaxation is

X∗ =

(
x∗

y∗

)(
x∗

y∗

)⊤

.

Proof. See Appendix A.1. ⊓⊔
The proof of Proposition 1 motivates the following observation on the optimal

values of CCA and SCCA.

Observation 1 The optimal value of CCA is upper bounded by 1, so is the optimal
value of SCCA.

Proof. Since matrix

(
B A

A⊤ C

)
denotes a covariance matrix of a subset of variables

and thus is always positive semidefinite. According to Lemma 1, we have that

B � AC†A⊤ =⇒ I �
√
B†AC†A⊤

√
B†,

which means that σmax

(√
B†A

√
C†
)
≤ 1 must hold. ⊓⊔

It is noteworthy that the results presented in Proposition 1 are established
through a distinct methodology. This methodology leverages the positive semidef-
inite condition of block matrices, as shown in Lemma 1, and incorporates duality
theory. This approach differs from most prior research [26, 31, 38], which proved
Part (i) of Proposition 1 by relying on the singular value decomposition and as-
suming that matrices B and C are positive definite (i.e., full rank). To the best
of our knowledge, [7] showed parts (i) and (ii) of Proposition 1 for a special low-
rank CCA problem, where the authors assumed that the covariance matrices are
defined as A = UV ⊤, B = UU⊤, and C = V V ⊤. Remarkably, Proposition 1
extends this result to a more general scenario whereB andC are not constrained
to be strictly positive definite andA is not constrained to directly depend onB,C,
allowing for rank deficiencies and flexible data structure.

2.2 An equivalent formulation of SCCA

In this subsection, we transformSCCA into a combinatorial optimization problem,
according to the insights provided by Proposition 1.

Theorem 1. The SCCA is equivalent to the following combinatorial optimiza-
tion:

v∗ := max
S1⊆[m],|S1|≤s1,

S2⊆[n],|S2|≤s2

{
σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)}

. (1)
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Proof. By introducing the subsets (S1, S2) to denote the supports of variables
(x,y) in SCCA, then we can remove the zero-norm constraints on (x,y) and
reformulate SCCA as

v∗ := max
S1⊆[m],|S1|≤s1,

S2⊆[n],|S2|≤s2

max
x∈R

|S1|,

y∈R
|S2|

{
x⊤AS1,S2

y : x⊤BS1,S1
x ≤ 1,y⊤CS2,S2

y ≤ 1
}
.

(2)

Following from the Part (i) in Proposition 1, we can show that for any subsets
S1 ⊆ [n], S2 ⊆ [m], the following identity holds.

max
x∈R

|S1|,y∈R
|S2|

{
x⊤AS1,S2

y : x⊤BS1,S1
x ≤ 1,y⊤CS2,S2

y ≤ 1
}

= σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
.

Plugging the result above into the inner maximization problem in (2), we complete
the proof. ⊓⊔

The combinatorial formulation (1) presents significant computational difficul-
ties when attempting to solve SCCA. The primary obstacles are two-fold: first,
simultaneously selecting submatrices from thematricesA,B,C requires a sophis-
ticated optimization across multiple dimensions. Second, the selection criterion is
particularly complex, as it involves optimizing the largest singular value of the
product of the selected submatrix of A and the square root of pseudo-inverse
submatrices of B and C. These complexities necessitate effective optimization
solution procedures to address the high-dimensional and non-convex nature of the
problem.

As a side product of Observation 1, the optimal value of SCCA is trivially
upper bounded by 1.

Observation 2 The optimal value of SCCA satisfies v∗ ≤ 1.

3 Reformulating SCCA as a mixed-integer semidefinite
program (MISDP)

This section formulates an equivalent Mixed-Integer Semidefinite Programming
(MISDP) formulation for the SCCA problem. This reformulation serves as the
foundation for developing a branch-and-cut algorithm to solve the problem effec-
tively.

3.1 Valid inequalities for SCCA

We prove that there exists a bounded optimal solution (x∗,y∗) of the SCCA. To
be specific, we show that there exists an optimal solution (x∗,y∗) of the SCCA
satisfying the constraints ‖x∗‖22 ≤ M1 and ‖y∗‖22 ≤ M2, where M1 and M2 are
finite-valued parameters.
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Proposition 2. The SCCA admits an optimal solution (x∗,y∗) satisfying ‖x∗‖22 ≤
M1 and ‖y∗‖22 ≤ M2, where M1 := 1/λr(B) + 1/(λr(B)smin(B)) and M2 :=
1/λr̂(C) + 1/(λr̂(C)smin(C))with λr(B), λr̂(C) being the smallest nonzero eigen-
values of matrices B,C and smin(R) being the smallest nonzero singular value of
all the submatrices of the zero eigenvectors of matrix R.

Proof. See Appendix A.2. ⊓⊔
The proof of Proposition 2 is straightforward in the case when B and C are

of full rank as in this case the feasible region is a bounded set. In order to prove
the result in the case when B is not full-rank, one has to show that it is possible
to construct sparse solutions that are not “too far” away.

In fact, the bounds M1,M2 in Proposition 2 also hold for any given feasible
subsets (S1, S2) of SCCA (1).

Corollary 1. For any given feasible subsets (S1, S2) of SCCA 1, there exists a
SCCA feasible solution (x,y) such that the supports of x,y are S1, S2, respec-
tively and we have that ‖x‖22 ≤ M1 and ‖y‖22 ≤ M2, where M1,M2 are defined in
Proposition 2.

3.2 An equivalent MISDP formulation

While the combinatorial formulation (1) is elegant in its structure, it poses signifi-
cant challenges when attempting to solve it to optimality using branch-and-bound
based methods. To fill this gap, in this subsection, we derive an equivalent MISDP
formulation for SCCA, amenable for developing exact methods.

It is convenient to define the following notation. LetMii be defined as follows:

Mii =

{
M1, ∀i ∈ [n],

M2, ∀i ∈ [n+ 1, n+m].

Theorem 2. The SCCA is equivalent to the following MISDP:

v∗ := max
X∈Sn+m

+
,

z∈Z

{tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1, Xii ≤ Miizi, ∀i ∈ [n+m]}.

(3)
where the feasible set of variables z is defined asZ := {z ∈ {0, 1}n+m :

∑
i∈[n] zi ≤

s1,
∑

i∈[n+1,n+m] zi ≤ s2}.

Proof. For the SCCA (2), according to Proposition 1, the innermaximization prob-
lem admits an exact semidefinite programming formulation. Using the variables
z ∈ Z to describe the set constraints in SCCA (2), we can reformulate it as

v∗ := max
z∈Z

max
X∈Sn+m

+

{
tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1,

Xii(1− zi) = 0, ∀i ∈ [m+ n]
}
.

(4)
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Proposition 2 shows that there is an optimal solution (x∗,y∗) to SCCA that
satisfies ‖x∗‖22 ≤ M1 and ‖y∗‖22 ≤ M2. Based on this, we can construct an optimal
solution (z∗,X∗) for SCCA (4) by letting

X∗ =

(
x∗

y∗

)(
x∗

y∗

)⊤

, zi =

{
1 if x∗

i 6= 0

0 if x∗
i = 0

, ∀i ∈ [n], zi+n =

{
1 if y∗i 6= 0

0 if y∗i = 0
, ∀i ∈ [m],

where the optimal solution X∗ satisfies the following inequalities

X∗
ii = (x∗

i )
2 ≤ M1zi, ∀i ∈ [n], X∗

(i+n)(i+n) = (y∗i )
2 ≤ M2zi+n, ∀i ∈ [m].

This allows us to recast the SCCA (4) into an MISDP formulation (3). ⊓⊔
Note that the proposed MISDP formulation (3) is of size (n +m) × (n +m)

since our matrix variable X replaces

(
x

y

)(
x

y

)⊤

in SCCA. Relaxing the binary

variables in SCCA (3) to be continuous, we obtain an upper bound of SCCA (3),
i.e., v∗ ≤ v̂

v̂ := max
X∈Sn+m

+
,z∈Ẑ

{tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1, Xii ≤ Miizi, ∀i ∈ [n+m]}.

(5)

where Ẑ := {z ∈ [0, 1]n+m :
∑

i∈[n] zi ≤ s1,
∑

i∈[n+1,n+m] zi ≤ s2}. This SDP

relaxation (5) can be directly solved by commercial solvers such as MOSEK or
SDPT3.

3.3 Developing a branch-and-cut algorithm with closed-form cuts

By dualizing the inner maximization problem over X in the MISDP (3), in this
subsection, we derive an equivalentmixed-integer linear program for SCCA, which
motivates us to develop a branch-and-cut algorithm.

By separating the binary variables z, we rewrite the MISDP (3) as

v∗ := max
z∈Z,v

{v : v ≤ f(z)}, (6)

where the function f(z) is defined as

f(z) := max
X∈Sn+m

+

{
tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1, Xii ≤ Miizi, ∀i ∈ [n+m]

}
.

(7)
By introducing the Lagrangian multipliers (θ1, θ2,λ), the Lagrangian dual of the
maximization problem (7) can be written as

f(z) = min
θ1≥0,θ2≥0,

λ∈R
n+m
+

max
X∈Sn+m

+

tr(ÃX)− θ1 tr(B̃X)− θ2 tr(C̃X) + θ1 + θ2,

−
∑

i∈[n+m]

λiXii +
∑

i∈[n+m]

λiMiizi

= min
θ1≥0,θ2≥0,

λ∈R
n+m
+

{
θ1 + θ2 +

∑

i∈[n+m]

λiMiizi :

(
θ1B −A/2

−A⊤/2 θ2C

)
� −Diag(λ)

}
,

(8)
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where the strong duality holds due to the function f(z) being concave, bounded,

and thus continuous in the set Ẑ and Slater condition holds for any interior point
z in the set Ẑ.

Below, we derive the closed-form expression of the function f(z) with the given
binary variable z ∈ Z. This allows us to reformulate SCCA (6) as a mixed-integer
linear program with exponentially many linear constraints and an efficient sepa-
ration oracle.

Proposition 3. The SCCA (6) is equivalent to

v∗ := max
z∈Z,v

{
v : v ≤ σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
+

∑

i∈S1∪(S2+n)

λ∗Miizi : ∀S1 ⊆ [n], |S1| ≤ s1, S2 ⊆ [m], |S2| ≤ s2

}
,

(9)

where for a pair of subsets (S1, S2), the scalar λ∗ is defined as the largest positive
eigenvalue of matrix D⊤

2 D
−1
1 D2 −D3 with

D1 :=

(
θ∗1BS1,S1

−AS1,S2
/2

−A⊤
S1,S2

/2 θ∗2CS2,S2

)
, D2 :=

(
θ∗1BS1,[n]\S1

−AS1,[m]\S2
/2

−A⊤
S2,[n]\S1

/2 θ∗2CS2,[m]\S2

)
,

and

D3 :=

(
θ∗1B[n]\S1,[n]\S1

−A[n]\S1,[m]\S2
/2

−A⊤
[n]\S1,[m]\S2

/2 θ∗2C[m]\S2,[m]\S2

)
,

where θ∗1 = θ∗2 = σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
/2.

Proof. See Appendix A.3. ⊓⊔
We note that SCCA (9) can be implemented via a delayed cut-generation pro-

cedure. That is, at each feasible branch-and-bound node with a binary solution ẑ,
let S1 := {i : ẑi = 1, ∀i ∈ [n]} and S2 := {i − n : ẑi = 1, ∀i ∈ [n + 1, n + m]}.
Then we can compute the corresponding scalar λ∗ and generate the following valid
inequality based on (9):

v ≤ σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
+

∑

i∈S1∪(S2+n)

λ∗Miizi.

4 Low-rank SCCA

In practice, it is common that the sample covariance matrix

(
B A

A⊤ C

)
exhibits

low-rank characteristics. This phenomenon is especially prominent when dealing
with high-dimensional, low-sample size data (e.g., gene expression data [35]). In
this section, we study two special cases of low-rank SCCA and their computational
complexities.
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4.1 Special Case I: SCCA with low-rank covariance matrices

In this section, we show that the computational complexity of SCCA is contingent
upon the ranks of the covariance matrices B and C. To be more precise, when
the sparsity level s1 (or s2) is equal to or greater than the rank of the covari-
ance matrix B (or C), the imposition of a zero-norm constraint over x (or y) in
SCCA becomes redundant. Consequently, lower ranks in the covariance matrices
correspond to better computational complexity in solving SCCA.

Theorem 3. Suppose r := rank(B) and r̂ := rank(C), then the SCCA takes a
complexity of O(nr−1mr̂−1 + nr−1 +mr̂−1). The following results hold:

(i) When s1 ≥ r and s2 ≥ r̂, the SCCA problem is equivalent to CCA, i.e.,

v∗ := max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1

}
; (10)

(ii) When s1 ≥ r and s2 < r̂, the SCCA problem can be reduced to

v∗ := max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1, ‖y‖0 ≤ s2

}
; (11)

(iii) When s1 < r and s2 ≥ r̂, the SCCA problem can be reduced to

v∗ := max
x∈Rn,y∈Rm

{
x⊤Ay : x⊤Bx ≤ 1,y⊤Cy ≤ 1, ‖x‖0 ≤ s1

}
. (12)

Proof. See Appendix A.4. ⊓⊔
The proof of Theorem 3 implies that CCA admits an optimal sparse solu-

tion (x∗,y∗) satisfying ‖x∗‖0 ≤ r and ‖y∗‖0 ≤ r̂, provided that B,C are of
rank-r, r̂, respectively. Thus, Theorem 3 establishes a sufficient condition (i.e.,
s1 ≤ r, s2 ≤ r̂) about when CCA can be equivalent to SCCA. Besides, Theorem 3
implies the complexity of solving SCCA, as summarized below.

Corollary 2. Suppose r := rank(B) and r̂ := rank(C). There exists an algorithm
that can find an optimal solution to SCCA in O(nr−1mr̂−1) time complexity.

4.2 Special Case II: SCCA with a rank-one cross-covariance matrix

In this subsection, we study the other interesting low-rank special case of SCCA
where the cross-covariance matrix A is rank-one. For this special case, we prove
its NP-hardness with reduction to the sparse regression problem.

We observe that SCCA can be separable over variablesx andy for the rank-one
A. In fact, suppose that A = ab⊤, then SCCA is equivalent to

v∗ := max
x∈Rn,y∈Rm

{
x⊤ab⊤y : x⊤Bx ≤ 1,y⊤Cy ≤ 1, ‖x‖0 ≤ s1, ‖y‖0 ≤ s2

}

(13)
which can be equivalently the product of the optimal values of the following two
subproblems:

vx := max
x∈Rn

{a⊤x : x⊤Bx ≤ 1, ‖x‖0 ≤ s1},

vy := max
y∈Rm

{b⊤y : y⊤Cy ≤ 1, ‖y‖0 ≤ s2}.
(14)
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That is, the identity v∗ = vxvy holds. According to Proposition 2, introducing bi-
nary variables, we can reformulate two subproblems (5) as mixed-integer convex
quadratic programs. Consequently, the rank-one SCCA problem, as formulated in
(13), simplifies to two mixed-integer convex quadratic programs. This simplifica-
tion ismuchmore tractable compared to addressing theMISDP (3), which involves
a large-sized positive semidefinite variableX of dimension (n+m)× (n+m). Our
numerical findings confirm the reduced complexity of the rank-one SCCA model.

Next, we show that each subproblem in (14) can be reduced to the classic sparse
regression problem [1, 27] and is thus NP-hard as shown below.

Theorem 4. When matrixA := a⊤b is rank-one, each maximization problem in
(14) is NP-hard.

Proof. See Appendix A.5. ⊓⊔
Theorem 4 links the maximization problem (14) and the well-known sparse

regression problem, implying that even solving the rank-one SCCA problem (13)
is NP-hard. This also suggests employing strong perspective formulations (see,
e.g., [1, 37]) when solving the subproblems (14), which are shown to be stronger
and easier to solve than the SDP relaxation (5) in our numerical study.

5 Numerical results

This section tests the numerical performance of our formulations and algorithms
on synthetic data. All the experiments are conducted in Python 3.6 with calls to
Gurobi 9.5.2 and MOSEK 10.0.29 on a PC with 10-core CPU, 16-core GPU, and
16GB of memory.

We generate random instances by fixing the dimensions n,m and the sparsity
levels s1, s2. For each instance, given parameters (n,m, s1, s2), we first generate

the covariance matrix

(
B0 A0

(A0)⊤ C0

)
as follows;

(i) B0 ∈ Sn
++: Let B̂ consist of n× n elements generated from a normal distri-

bution N (0, 1), and let B0 = B̂B̂⊤ + I;

(ii) C0 ∈ Sm
++: Let Ĉ consist of m ×m elements generated from a normal dis-

tribution N (0, 1), and let C0 = ĈĈ⊤ + I; and
(iii) A0 ∈ R

n×m := λB0uv⊤C0: We generate λ uniformly from (0, 1), and
vectors u,v are generated from a normal distribution N (0, 1) that satisfy
‖u‖0 = s1, ‖v‖0 = s2, u

⊤B0u = 1 and v⊤C0v = 1.

Next, we sample N = 5, 000 data points {(ui,vi)}i∈[N ] ∈ R
n × R

m from the

normal distribution with zero mean and the covariance

(
B0 A0

(A0)⊤ C0

)
. Then, let

us estimate A0,B0,C0 by sample covariance matrices below

A =
∑

i∈[N ]

uiv
⊤
i , B =

∑

i∈[N ]

uiu
⊤
i , C =

∑

i∈[N ]

viv
⊤
i .
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The numerical results are presented in Table 1 that include multiple instances
with various parameters (n,m, s1, s2). Throughout, the computational time is in
seconds, the time limit is one hour, and the dashed line “-” denotes the unsolved
case within the time limit. First, based on the combinatorial formulation (1),
we consider using the greedy and local search algorithms to approximately solve
SCCA, and their detailed implementation can be found in Appendix B. Note that
we let LB denote the lower bound obtained from the approximation algorithm. In
Table 1, we define gap(%):= (v̂ − v∗)/v∗ to be the optimality gap of the upper
bound in (5), and we replace v∗ with the best lower bound when v∗ is not available.
It is seen that the greedy and local search algorithms are quite scalable, and the
SDP relaxation (5) yields a tight upper bound with an optimality gap at most
8.16%. We apply a branch-and-cut algorithm to solve SCCA (9) via the delayed
cut generation procedure, which can handle the case up to size 20 in Table 1.
One reason may be because SCCA (9) has a weak relaxation bound. Therefore,
although our proposed cut in Section 3 admits closed form, the branch-and-cut
algorithm explores a considerable amount of nodes before termination.

Table 1. Solving SCCA with synthetic data

Greedy Local search SDP relaxation (5) SCCA (9)

n m s1 s2 LB time(s) LB time(s) v̂ gap(%) time(s) v∗ time(s)

10 10 5 5 0.244 1 0.244 1 0.247 1.33 1 0.244 26

20 20 5 5 0.244 1 0.244 1 0.256 1.23 1 0.244 2217

20 20 10 10 0.275 1 0.275 1 0.278 1.23 1 0.275 3562

40 40 5 5 0.695 1 0.695 1 0.701 0.83 1 - -

40 40 10 10 0.705 1 0.705 1 0.708 0.45 1 - -

40 60 5 10 0.707 1 0.707 1 0.714 0.93 1 - -

40 60 10 5 0.704 1 0.704 1 0.708 0.65 1 - -

60 60 5 5 0.720 1 0.720 1 0.727 0.86 14 - -

60 60 10 10 0.714 1 0.714 1 0.721 1.00 12 - -

80 80 5 5 0.395 1 0.395 1 0.427 8.16 56 - -

80 80 10 10 0.399 1 0.399 1 0.428 7.36 62 - -

100 100 5 5 0.942 1 0.942 1 0.944 0.23 257 - -

100 100 10 10 0.940 1 0.940 1 0.942 0.23 313 - -

120 120 5 5 0.479 1 0.479 1 0.517 7.90 1360 - -

120 120 10 10 0.501 1 0.501 1 0.942 7.86 1569 - -

The complexity analysis of low-rankSCCA in Section 4 indicates that rank-one
SCCA (13) can be more tractable, as we decompose it into two subproblems in
(14). By approximating A with a rank-one matrix that consists of leading singu-
lar value and vectors, Table 2 presents the numerical results for solving rank-one
SCCA (13). In addition to the SDP relaxation (5), we consider the strong per-
spective formulations of subproblems (14) to provide an upper bound for rank-one
SCCA (13) (see, e.g., [1, 37]), denoted by Perspective in Table 2. We also com-
pute its optimality gap and compare it with SDP relaxation (5). It is obvious that
perspective relaxation is computationally efficient and yields smaller optimality
gaps, which solves all the testing cases in 15 seconds with an optimality gap of up
to 11.3%. As previously mentioned in Section 4.2, we can solve two mixed-integer
quadratic programs below via Gurobi to find the optimal value of rank-one SCCA
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(13), i.e., v∗ := vxvy, where the performance can be found in the last column of
Section 4.2. We see that we can solve size-100× 100 rank-one SCCA (13).

Table 2. Solving rank-one SCCA with synthetic data

Greedy Local Search SDP relaxtion (5) Perspective SCCA (13)

n m s1 s2 LB time(s) LB time(s) gap(%) time(s) gap(%) time(s) v∗ time(s)

50 50 10 10 0.382 1 0.382 1 3.79 6 2.44 1 0.382 30

50 50 20 20 0.409 1 0.409 1 2.81 7 1.74 1 0.409 293

100 100 10 10 0.928 1 0.928 1 0.79 492 0.47 1 0.928 81

100 100 20 20 0.943 1 0.943 2 0.49 685 0.31 1 0.943 3463

200 200 10 10 0.549 1 0.549 1 - - 7.38 1 - -

200 200 20 20 0.524 1 0.524 5 - - 9.70 1 - -

300 300 10 10 0.874 1 0.874 1 - - 2.56 6 - -

300 300 20 20 0.878 1 0.878 9 - - 2.49 8 - -

400 400 10 10 0.840 1 0.840 2 - - 4.43 9 - -

400 400 20 20 0.842 1 0.842 14 - - 4.34 10 - -

500 500 10 10 0.701 1 0.701 2 - - 11.3 14 - -

500 500 20 20 0.710 6 0.710 59 - - 10.9 15 - -

Acknowledgements: The authors would like to thank Rahul Mazumder for in-
troducing the problem to us and for sharing data and references.
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Appendix A: Proofs

A.1 Proof of Proposition 1

Proof. The proof includes three parts.
Part (i).Toprove the equivalence betweenCCAand its SDP Relaxation, let us in-
troduce the Lagrangianmultiplies θ1 ≥ 0, θ2 ≥ 0 corresponding to two constraints
in SDP Relaxation, which leads to the following Lagrangian dual problem

min
θ1≥0,θ2≥0

{
θ1 + θ2 : θ1B̃ + θ2C̃ � Ã

}
= min

θ1≥0,θ2≥0

{
θ1 + θ2 :

(
θ1B

A
−2

A⊤

−2 θ2C

)
� 0

}

(15)

where the equation results from the definition of block matrices Ã, B̃, and C̃.
Given the nonzero matrices A 6= 0,B 6= 0,C 6= 0 and positive semidefinite ma-
tricesB � 0,C � 0, following Lemma 1, we must have θ2C−A⊤(θ1B)†A/4 � 0
and θ1B −A(θ2C)†A⊤/4 � 0, implying that either θ1 = 0 or θ2 = 0 is infeasible
to the minimization problem above. That is, θ1 > 0 and θ2 > 0 must hold.

According to Lemma 1, the block matrix

(
B A

A⊤ C

)
is positive semidefinite,

implying that (I −CC†)A⊤ = 0, (I −BB†)A = 0. Then, it is easy to show

(
I − θ2C(θ2C)†

) A⊤

2
= 0, ∀θ2 > 0.

Given θ1, θ2 > 0 and using Lemma 1, the result above allows us to further simplify
the right-hand side minimization problem in (15) to

min
θ1≥0,θ2≥0

{
θ1 + θ2 : 4θ1θ2B � AC†A⊤

}

= min
θ1≥0,θ2≥0

{
θ1 + θ2 : 4θ1θ2 ≥ σ2

max

(√
B†A

√
C†
)}

= σmax

(√
B†A

√
C†
)
,

where the first equation is because

4θ1θ2B � AC†A⊤ ⇐⇒ 4θ1θ2I �
√
Λ−1Q⊤AC†A⊤Q

√
Λ−1

⇐⇒ 4θ1θ2 ≥ λmax

(√
Λ−1Q⊤AC†A⊤Q

√
Λ−1

)

⇐⇒ 4θ1θ2 ≥ λmax

(√
C†A⊤B†A

√
C†
)
⇐⇒ 4θ1θ2 ≥ σ2

max

(√
B†A

√
C†
)
,

where we let B = QΛQ⊤ denote the eigendecomposition of matrix B with Λ

containing all the positive eigenvalues.
As a result, the dual problem of SDP Relaxation admits an optimal value

ofσmax

(√
B†A

√
C†
)
, which gives anupper boundof theCCAand its SDP Relaxation.

Next, we construct their optimal solutions, which exactly attain this upper bound.
Thus, this upper bound is achievable and equals their optimal values.
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Part (ii). For the CCA, let us consider a part of optimal solutions (x∗,y∗) below

x∗ =
√
B†q, y∗ =

√
C†p,

with q ∈ R
n,p ∈ R

m denoting a pair of leading singular vectors of matrix√
B†A

√
C†.

First, (x∗,y∗) is feasible to the CCA as

(x∗)⊤Bx∗ = q⊤
√
B†B

√
B†q ≤ q⊤q = 1, (y∗)⊤Cy∗ = p⊤

√
C†C

√
C†p ≤ p⊤p = 1,

where the inequalities stem fromthe facts that I �
√
B†B

√
B† and I �

√
C†C

√
C†.

On the other hand, according to the definitions of q,p, we can show that
(x∗,y∗) is optimal to the CCA, i.e.,

(x∗)⊤Ay∗ = q⊤
√
B†A

√
C†p = σmax

(√
B†A

√
C†
)
.

Part (iii). In a similar vein, we can show that X∗ =

(
x∗

y∗

)(
x∗

y∗

)⊤

is optimal to

SDP Relaxation with the optimal value σmax

(√
B†A

√
C†
)
. ⊓⊔

A.2 Proof of Proposition 2

Proof. Let (x∗,y∗) denote an optimal solution to SCCA. We bound ‖x∗‖2 first
and the same technique can be also straightforwardly applied to bound ‖y∗‖2.

For matrix B ∈ Sn
+ of rank r, we let {qi}i∈[n] ∈ R

n denote the eigenvectors
corresponding to n eigenvalues λ of B such that λ1 ≥ . . . ≥ λr > λr+1 = . . . =
λn = 0. Thus, {qi}i∈[n] are orthonormal and span the space of Rn. Hence, there

exists α ∈ R
n such that x∗ =

∑
i∈[n] αiqi. Given that (x∗)⊤Bx∗ ≤ 1, we have

∑

i∈[r]

α2
i λi ≤ 1.

Hence, the values of {αi}i∈[r] are bounded. On the other hand, let us define a
subset S ⊆ [n] of size at most s1 such that x∗

i 6= 0 for each i ∈ S and x∗
j = 0 for

each j ∈ [n]\S. Then for each j ∈ [n]\S, we arrive at the following linear system:
∑

j∈[r+1,n]

αj q̂j = −
∑

i∈[r]

αiq̂i, (16)

where q̂i denote a subvector of qi with indices [n] \ S for each i ∈ [n]. For a fixed
{αi}i∈[r], since the linear system (16) is nonempty, we let Q̄ᾱ = q̄ denote its mini-

mal linear subsystem such that a submatrix Q̄ is non-singular and the index set Ŝ
of ᾱ is a subset of [n]\S. Thus, we can construct an alternative solution α̂ such that

α̂i =





αi, if i ∈ [r],

(Q̄−1q̄)i, if i ∈ Ŝ,

0, otherwise,
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and x̂ =
∑

i∈[n] α̂iqi. According to Lemma 1, we have

x̂⊤Bx̂ ≤ 1, x̂⊤Ay∗ = (x∗)⊤Ay∗,

i.e., (x̂,y∗) is also optimal to SCCA. Hence,

‖x̂‖2 ≤
√
‖Q̄−1q̄‖22 +

∑

i∈[r]

α2
i

Note that
∑

i∈[r] α
2
i ≤ 1/λr and

‖Q̄−1q̄‖22 ≤ ‖Q̄−1‖22‖q̄‖22 ≤
1

smin(B)

1

λr

where smin(B) denotes the smallest nonzero singular values of all the submatrices
of [qr+1, . . . , qn]. In summary, we have

‖x̂‖2 ≤
√
1/λr + 1/(λrsmin(B)).

This completes the proof. ⊓⊔

A.3 Proof of Proposition 3

Proof. First, for any binary variable z ∈ Z, suppose S1 := {i : zi = 1, ∀i ∈ [n]},
S2 := {i−n : zi = 1, ∀i ∈ [n+1, n+m]}, and T ⊆ [n+m] denotes the support of
z. Then following the proof of Proposition 1, we can construct a rank-one optimal

solution X∗ :=

(
x∗

y∗

)(
x∗

y∗

)⊤

to the maximization problem below that admits

the optimal value σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
, i.e.,

max
X∈Sn+m

+

{tr(ÃX) : tr(B̃X) ≤ 1, tr(C̃X) ≤ 1, Xii = 0, ∀i ∈ [n+m] \ T }

= σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)

≥ f(z),

where the inequality is because the maximization problem above relaxes the valid
constraints Xii ≤ Mii for all i ∈ T in maximization problem (7). The result in
Corollary 1 suggests that x∗,y∗ can be bounded and their two norms must not
exceedM1,M2, which means that the optimal solutionX∗ satisfies theXii ≤ Mii

for all i ∈ T . Therefore, X∗ is feasible and optimal to maximization problem (7)
and we have that

f(z) := σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
.

According to strong duality, the minimization problem (8) admits an opti-

mal value σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
. Next, we construct its optimal

solution (θ∗1 , θ
∗
2 ,λ

∗).
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For any given ǫ > 0, we let θ∗1 = f(z)/2, θ∗2 = f(z)/2, λ̂i(ǫ) =
ǫ

Mii|T | for all

i ∈ T , and λ̂i(ǫ) = λ∗(ǫ) for all i ∈ [n] \ T , where

λ∗(ǫ) :=

[
λmax

(
D⊤

2

(
D1 +Diag

(
λ̂T (ǫ)

))−1

D2 −D3

)]

+

.

It is easy to compute that θ∗1+θ∗2+
∑

i∈[n+m] λ̂i(ǫ)Miizi = f(z)+ ǫ. Thus, for any

ǫ > 0, if (θ∗1 , θ
∗
2 , λ̂(ǫ)) were feasible, then it is an ǫ-optimal solution to theminimiza-

tion problem (8). It remains to verify the feasibility of the solution (θ∗1 , θ
∗
2 , λ̂(ǫ)),

i.e., checking the constraint below

(
θ∗1B −A/2

−A⊤/2 θ∗2C

)
+Diag

(
λ̂(ǫ)

)
� 0.

By performing the permutation of the rows and columns of the above matrix, it
is sufficient to show that the new block matrix

(
D1 +Diag

(
λ̂T (ǫ)

)
D2

D⊤
2 D3 + λ∗(ǫ)I

)
� 0, (17)

is positive semidefinite.

Since

(
BS1,S1

−AS1,S2
/2

−A⊤
S1,S2

/2 CS2,S2

)
is a principal submatrix of a positive semidef-

initematrix

(
B −A/2

−A⊤/2 C

)
, it is also positive semidefinite.According toLemma1

and the fact that θ∗1 = θ∗2 = σmax

(√
(BS1,S1

)†AS1,S2

√
(CS2,S2

)†
)
/2, the matrix

D1 is also positive semidefinite. As ǫ > 0, the matrixD1 +Diag
(
λ̂T (ǫ)

)
must be

positive definite, which means that

(
I −

(
D1 +Diag

(
λ̂T (ǫ)

))(
D1 +Diag

(
λ̂T (ǫ)

))−1
)
D2 = 0.

Besides, according to the definition of λ∗(ǫ), we obtain

D3 + λ∗(ǫ)I −D⊤
2

(
D1 +Diag

(
λ̂T (ǫ)

))−1

D2 � 0.

Taking these results together, according to Lemma 1, the constraint in (17) must

hold for a given solution (θ∗1 , θ
∗
2 , λ̂(ǫ)). Since the objective value corresponding

to (θ∗1 , θ
∗
2 , λ̂(ǫ)) is at most ǫ larger than the optimal value of problem (8), letting

ǫ → 0 and using the closedness of the feasible set in problem (8), we can confirm
the optimality of (θ∗1 , θ

∗
2 ,λ

∗) with λ∗
i = 0 for all i ∈ T andλ∗

i = λ∗ for all i ∈ [n]\T .
Given the closed-form optimal solution to problem (8), the rest of the proof

follows from [23][theorem 7]. ⊓⊔
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A.4 Proof of Theorem 3

Proof. The proof is split into three parts.
Part (i). It suffices to prove that CCA admits an optimal solution (x∗,y∗)

satisfying ‖x∗‖0 ≤ r and ‖y∗‖0 ≤ r̂. Then, (x∗,y∗) is also feasible and optimal to
SCCA, which implies the equivalence between SCCA and CCA.

First, according to Part (ii) in Proposition 1, we can obtain a closed-form op-
timal solution (x̂, ŷ) for the CCA. By adjusting (x̂, ŷ), we will construct a new
optimal sparse solution (x∗,y∗) satisfying ‖x∗‖0 ≤ r and ‖y∗‖0 ≤ r̂.

For matrix B ∈ Sn
+, we let {qi}i∈[n−r] ∈ R

n denote the eigenvectors corre-
sponding to (n − r) zero eigenvalues of B. Thus, {qi}i∈[n−r] are orthonormal.
There exists a size-(n− r) subset S ⊆ [n] such that the subvectors {(qi)S}i∈[n−r]

are linearly independent, where (qi)S denotes the subvector of qi indexed by S for
each i ∈ [n− r]. As a result, there exist a vector (γ1, · · · , γn−r)

⊤ such that

x̂S =
∑

i∈[n]

γi(qi)S . (18)

Let us now construct solution x∗

x∗ = x̂−
∑

i∈[n−r]

γiqi,

where x∗
i = 0 for all i ∈ S based on the equation (18) and |S| = n− r, implying

‖x∗‖0 ≤ r. In addition, we show that the new solution x∗ is still optimal to CCA.
First, x∗ is feasible since

(x∗)⊤B(x∗) = x̂⊤Bx̂ ≤ 1,

where the equation is due to Bqi = 0 for all i ∈ [n− r].

Given the positive semidefinite block matrix

(
B A

A⊤ C

)
, using Part (ii) of

Lemma 1, the identity (I − BB†)A = 0 is equivalent to
∑

i∈[n−r] qiq
⊤
i A = 0.

Then, for each i ∈ [n− r], multiplying q⊤
i on both sides of this equation leads to

q⊤
i

( ∑

j∈[n−r]

qjq
⊤
j A

)
A = q⊤

i 0 =⇒ q⊤
i A = 0,

where the result follows from q⊤
i qj = 0 for any i 6= j. Then, we can show the

optimality of the new solution x∗:

(x∗)⊤Aŷ = x̂⊤Aŷ +
∑

i∈[n−r]

βiq
⊤
i Aŷ = x̂⊤Aŷ.

Similarly, we can also construct an optimal sparse solution y∗ by leveraging ŷ
and eigenvectors of zero eigenvalues of C such that ‖y∗‖0 ≤ s2.

Therefore, there exists an optimal solution (x∗,y∗) to the CCA whose zero
norms are bounded fromabove by r, r̂, respectively. Adding the constraints ‖x‖0 ≤
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r, ‖y‖0 ≤ r̂ to the CCA does not affect the optimality, which gives an equivalent
formulation (10) of CCA.

Part (ii). Suppose that (x̃, ỹ) denotes an optimal solution to problem (11).
When s1 ≥ r, following the proof of Part (I), x̃, we can construct another optimal
solution x∗ whose zero norm is bounded by r and (x∗, ỹ) is feasible and optimal
to SCCA.

Part (iii). Similarly, we can reduce SCCA to problem (12). We thus complete
the proof. ⊓⊔

A.5 Proof of Theorem 4

Proof. Let us first consider the maximization problem over x in (14), i.e.,

vx := max
x∈Rn

{a⊤x : x⊤Bx ≤ 1, ‖x‖0 ≤ s1}. (19)

Then, we derive a combinatorial optimization reformulation of problem (19) based
on the result below.

Claim 1 For any subset S ⊆ [n],maxx∈R|S|{a⊤
Sx : x⊤BS,Sx ≤ 1} =

√
a⊤
S (BS,S)†aS.

Proof. Given A = ab⊤, since the matrix

(
B ab⊤

b⊤a C

)
is positive semidefinite,

using Lemma 1, the identity (I −BS,SB
†
S,S)aSb

⊤ = 0 must hold for any subset

S. As a result, we have aS −BS,SB
†
S,SaS = 0 as vector b is nonzero.

Next, the Lagrangian dual of the problem maxx∈R|S|{a⊤
Sx : x⊤BS,Sx ≤ 1}

can be written as

max
x∈R|S|

{a⊤
Sx : x⊤BS,Sx ≤ 1} = min

µ≥0
max
x∈R|S|

a⊤
Sx+ µ− µx⊤BS,Sx

= min
µ≥0

µ+
a⊤
SB

†
S,SaS

4µ
=
√
a⊤
S (BS,S)†aS ,

where the second equation builds on the identity aS − BS,SB
†
S,SaS = 0 and

optimal solution x∗ =
B

†
S,S

aS√
a⊤

S
(BS,S)†aS

. ⋄
Suppose that an optimal solution to problem (19) admits the support S∗.

According to Claim 1, we have

vx := max
S⊆[n],|S|≤s

√
a⊤
S (BS,S)†aS =

√
a⊤
S∗(BS∗,S∗)†aS∗ .

On the other hand, the Lagrangian dual of problem (19) can be written as

vx ≤ min
λ∈R+

max
x∈Rn

{a⊤x+ λ− λx⊤Bx : ‖x‖0 ≤ s1}

= min
λ∈R+

max
S⊆[n],|S|≤s

λ+
a⊤
S (BS,S)

†aS

4λ
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≤ max
S⊆[n],|S|≤s

λ∗ +
a⊤
S (BS,S)

†aS

4λ∗
=
√
a⊤
S∗(BS∗,S∗)†aS∗ ≤ vx,

where the first equation is due to Claim 1, the second inequality is by plugging

the feasible solution λ∗ =

√
a⊤

S∗ (BS∗,S∗ )†aS∗

2 into minimization problem, and the
last equation is from the optimality of subset S∗. Since both left-hand and right-
hand sides above equal vx, the strong duality of problem (19) holds, and all the
inequalities abovemust attain the equalities. That is, problem (19) is equivalent to

vx = min
λ∈R+

max
x∈Rn

{a⊤x+ λ− λx⊤Bx : ‖x‖0 ≤ s1}.

Since the outer minimization is a one-dimensional convex program that can be
solved efficiently, as a result, for any given λ > 0, the inner maximization is equiv-
alent to solving

max
x∈Rn

{a⊤x− λx⊤Bx : ‖x‖0 ≤ s1}. (20)

Next, let us consider the NP-hard sparse regression problem (see, e.g., [28]),
which admits

min
β∈Rn

{
‖v −Ux‖22 : ‖x‖0 ≤ s

}
⇐⇒ max

x∈Rn

{
2v⊤Ux− x⊤U⊤Uβ : ‖x‖0 ≤ s

}
,

(21)

where data matrix U consists of observations of n variables and vector v denotes
the corresponding response variables.

Suppose that in the problem (20), let us define λB = U⊤U and a = 2U⊤v.
Then using the singular value decomposition ofmatrixU , we see that the following
equation still holds.

aS −BS,SB
†
S,SaS = 0, ∀S ⊆ [n].

Thus, for any given λ > 0, the maximization problem (20) is equivalent to the
sparse regression problem (21). This shows that problem (19) is NP-hard.

Similarly, the maximization problem over y in (14) can also be reduced to the
sparse regression problem. ⊓⊔

Appendix B: Implementations of greedy and local search
algorithms

This section presents the detailed implementations of greedy and local search
algorithms based on the formulation (1).
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Algorithm 1 Greedy algorithm for SCCA (1)

1: Input: Matrices A ∈ R
m×n, B ∈ Sm

+ , C ∈ Sm
+ and integers s1 ∈ [n], s2 ∈ [m]

2: Compute (i∗, j∗) ∈ argmaxi∈[m],j∈[n]

√
(Bii)†Aij

√
(Cjj)†

3: Define subsets Ŝ1 := {i∗} and Ŝ2 := {j∗}
4: for ℓ = 2, · · · ,max{s1, s2} do

5: if ℓ ≤ min{s1, s2} then

6: i∗ ∈ argmaxi∈[n]\Ŝ1
σmax

(√
(B

Ŝ1∪{i},Ŝ1∪{i})
†A

Ŝ1∪{i},Ŝ2

√
(C

Ŝ2,Ŝ2
)†
)

7: Update Ŝ1 := Ŝ1 ∪ {i∗}

8: j∗ ∈ argmax
j∈[m]\Ŝ2

σmax

(√
(B

Ŝ1,Ŝ1
)†A

Ŝ1,Ŝ2∪{j}

√
(C

Ŝ2∪{j},Ŝ2∪{j})
†
)

9: else if s1 ≤ s2 then

10: j∗ ∈ argmax
j∈[m]\Ŝ2

σmax

(√
(B

Ŝ1,Ŝ1
)†A

Ŝ1,Ŝ2∪{j}

√
(C

Ŝ2∪{j},Ŝ2∪{j})
†
)

11: Update Ŝ2 := Ŝ2 ∪ {j∗}
12: else

13: i∗ ∈ argmax
i∈[n]\Ŝ1

σmax

(√
(B

Ŝ1∪{i},Ŝ1∪{i})
†A

Ŝ1∪{i},Ŝ2

√
(C

Ŝ2,Ŝ2
)†
)

14: Update Ŝ1 := Ŝ1 ∪ {i∗}
15: end if

16: end for

17: Output: Ŝ1, Ŝ2

Algorithm 2 Local search algorithm for SSVD (1)

1: Input: Matrices A ∈ R
m×n, B ∈ Sm

+ , C ∈ Sm
+ and integers s1 ∈ [n], s2 ∈ [m]

2: Initialize (Ŝ1, Ŝ2) as the output of greedy Algorithm 1
3: do

4: for each pair (i1, j1) ∈ Ŝ1 × ([n] \ Ŝ1) do

5: if σmax

(√
(B

Ŝ1∪{j1}\{i1},Ŝ1∪{j1}\{i1}
)†A

Ŝ1∪{j1}\{i1},Ŝ2

√
(C

Ŝ2,Ŝ2
)†
)

>

σmax

(√
(B

Ŝ1,Ŝ1
)†A

Ŝ1,Ŝ2

√
(C

Ŝ2,Ŝ2
)†
)
then

6: Update Ŝ1 := Ŝ1 ∪ {j1} \ {i1}
7: end if

8: end for

9: for each pair (i2, j2) ∈ Ŝ2 × ([m] \ Ŝ2) do

10: if σmax

(√
(B

Ŝ1∪{j1}\{i1},Ŝ1∪{j1}\{i1}
)†A

Ŝ1∪{j1}\{i1},Ŝ2

√
(C

Ŝ2,Ŝ2
)†
)

>

σmax

(√
(B

Ŝ1,Ŝ1
)†A

Ŝ1,Ŝ2

√
(C

Ŝ2,Ŝ2
)†
)
then

11: Update Ŝ2 := Ŝ2 ∪ {j2} \ {i2}
12: end if

13: end for

14: while there is still an improvement
15: Output: Ŝ1, Ŝ2
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