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Abstract. Mixed-integer conic programming is a generalization of mixed-integer linear pro-
gramming. In this paper, we present an extension of the duality theory for mixed-integer linear
programming (see [4], [11]) to the case of mixed-integer conic programming. In particular, we con-
struct a subadditive dual for mixed-integer conic programming problems. Under a simple condition
on the primal problem, we show that strong duality holds.
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1. Introduction. One of the fundamental goals of optimization theory is the
study of structured techniques to obtain bounds on the optimal objective function
value for a given class of optimization problems. For a minimization (resp. max-
imization) problem, upper (resp. lower) bounds on the optimal objective function
value are provided by points belonging to the feasible region. Dual bounds, that is,
lower (resp. upper) bounds on the optimal objective function value for a minimization
(resp. maximization) problem are typically obtained by constructing various types of
dual optimizations problems whose feasible solutions provide these bounds. We will
say that a minimization (resp. maximization) problem is finite if its feasible region is
nonempty and the objective function is bounded from below (resp. above). A strong
dual is typically characterized by two properties:

1. The primal program is finite if and only if the dual program is finite.
2. If the primal and the dual are finite, then the optimal objective function

values of the primal and dual are equal.
In the case of linear programming problems and more generally for conic (convex)

optimization problems the dual optimization problem is well understood and plays
a key role in various algorithmic devices [2]. The subadditive dual for mixed-integer
linear programs is also well understood [5, 6, 7, 9, 13]. In this paper, we evaluate
the possibility of extending the subadditive dual to the case of mixed-integer conic
programs.

The rest of the paper is organized as follows. In Section 2, we present the necessary
notation, definitions and the statement of our main result. In Section 3, we verify
the basic weak duality result, that is, the fact that the dual feasible solutions produce
valid bounds. Apart from weak duality, the proof of strong duality relies on the
following additional three results: (i) The finiteness of the primal being equivalent to
the finiteness of its continuous relaxation. (ii) Strong duality for conic programs. (iii)
The possibility of constructing a subadditive function defined over Rm such that it is
dual feasible and matches the value function of the primal on a relevant subset of Rm.
In Section 4, we develop and present (in the case of conic duality) these preliminary
results. In Section 5, we present the proof of the strong duality result. In particular,
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in Section 5.1, we present a sufficient condition for the finiteness of the primal program
being equivalent to the finiteness of the dual program. In Section 5.2, we prove that
under this sufficient condition, if the primal and dual are finite, then their optimal
values must be equal. In Section 6, we discuss valid subadditive inequalities for conic
mixed-integer programs. Finally, in Section 7 we present the dual for an alternative
form of the primal conic mixed-integer program.

2. Notation, definitions and main result. Let A ∈ Rm×n, c ∈ Rn, b ∈ Rm.
Let K ⊆ Rm be a full-dimensional, closed and pointed cone. A conic vector inequality
is defined as follows ([2]):

Definition 2.1 (Conic vector inequality). For a, b ∈ Rm, a �K b if and only if
a− b ∈ K. In addition, we write a �K b whenever a− b ∈ int(K).

A mixed-integer conic programming problem (the primal optimization problem)
is an optimization problem of the following form:

(P)


z∗ = inf ctx

s.t. Ax �K b

xi ∈ Z, ∀i ∈ I,

where I = {1, . . . , n1} ⊆ {1, . . . , n} is the set of indices of integer variables.
Notice that problems of the form of (P) are a generalization of mixed-integer linear

programming problems, which are recovered by setting K = Rm+ . Hence, a natural
way of defining a dual optimization problem for mixed-integer conic programming is
to generalize the well-known subadditive dual for mixed-integer linear programming
(see, for example, [4] and [11]). Consequently, to define the dual of (P), we first
present some notation and definitions that are slight variations of those necessary to
define the subadditive dual for mixed-integer linear programming problems.

Definition 2.2 (Subadditive). Let S ⊆ Rm. A function g : S 7→ R ∪ {−∞} is
said to be subadditive if for all u, v ∈ S such that u+ v ∈ S, the inequality g(u+ v) ≤
g(u) + g(v) holds.

Definition 2.3 (Nondecreasing w.r.t. K). Let S ⊆ Rm. A function g : S 7→
R ∪ {−∞} is said to be nondecreasing w.r.t. K if for all u, v ∈ S such that u �K v,
the inequality g(u) ≥ g(v) holds.

We define the subadditive dual problem for (P) as follows:

(D)



ρ∗ = sup g(b)

s.t. g
(
Ai
)

= −g
(
−Ai

)
= ci, ∀i ∈ I

ḡ
(
Ai
)

= −ḡ
(
−Ai

)
= ci, ∀i ∈ C

g(0) = 0

g ∈ F ,

where C = {n1 + 1, . . . , n} is the set of indices of continuous variables, Ai denotes the

ith column of A, for a function g : Rm 7→ R we write g(d) = lim supδ→0+
g(δd)
δ and

F = {g : Rn 7→ R : g is subadditive and nondecreasing w.r.t. K}.
Notice that when K = Rm+ , we retrieve the subadditive dual for a mixed-integer

linear programming problem. In this paper, we generalize the subadditive dual for
mixed-integer linear programming as presented in Section II.3.3 of [11]. In [4] a
different form of primal is used, and as a consequence, the form of the dual presented
in that paper is slightly different from the dual shown in [11]. In the mixed-integer
linear case both approaches are equivalent.
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In the subadditive duality theory for mixed-integer linear programming (K =
Rm+ ), a sufficient condition to have strong duality is the rationality of the data defining
the problem, that is, A ∈ Qm×n and b ∈ Qm. The main result of this paper is to show
that strong duality for mixed-integer conic programming holds under the following
technical condition

there exists x̂ ∈ Zn1 × Rn2 such that Ax̂ �K b. (∗),

where n2 = n− n1. We state the main result formally next.
Theorem 2.4 (Strong duality). If there exists x̂ ∈ Zn1×Rn2 such that Ax̂ �K b,

then
1. (P) is finite if and only if (D) is finite.
2. If (P) is finite, then there exists a function g∗ feasible for (D) such that

g∗(b) = z∗ and consequently z∗ = ρ∗.
Condition (∗) in the case of mixed-integer conic programs plays the same role as

the assumption of rational data in the case of mixed-integer programs in the proof of
the strong duality result. In particular, we will see in Section 4.1 that both are suffi-
cient conditions for the finiteness of the corresponding convex mixed-integer problem
being equivalent to the finiteness of its continuous relaxation.

3. Weak duality. As in the case of mixed-integer linear programming, weak
duality is a straightforward consequence of the definition of the subadditive dual. We
first require a well-known result relating g and ḡ when g is a subadditive function.

Theorem 3.1 ([5], [8], and [11]). If g : Rm 7→ R is a subadditive function such
that g(0) = 0, then ∀ d ∈ Rm with g(d) <∞ and ∀ λ ≥ 0 we have that g(λd) ≤ λg(d).

Proposition 3.2 (Weak duality). For all x ∈ Rn feasible for (P) and for all
g : Rm 7→ R feasible for (D), we have that g(b) ≤ ctx.

Proof. Let u, v ≥ 0 such that x = u− v. We have

g(b) ≤ g(Ax)

= g(Au−Av)

= g

(
n∑
i=1

Aiui +

n∑
i=1

(−Ai)vi

)

= g

(∑
i∈I

Aiui +
∑
i∈I

(−Ai)vi +
∑
i∈C

Aiui +
∑
i∈C

(−Ai)vi

)
≤
∑
i∈I

g(Aiui) +
∑
i∈I

g(−Aivi) +
∑
i∈C

g(Aiui) +
∑
i∈C

g(−Aivi)

≤
∑
i∈I

g(Ai)ui +
∑
i∈I

g(−Ai)vi +
∑
i∈C

g(Ai)ui +
∑
i∈C

g(−Ai)vi

=

n∑
i=1

ciui +

n∑
i=1

(−ci)vi

= ctx.

The first inequality relies on the fact that x satisfies Ax �K b and g is nonde-
creasing w.r.t. K and the second inequality relies on the fact that g is subadditive.
The third inequality is based on the subadditivity of g, the fact that g(0) = 0 and
Theorem 3.1.
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We obtain the following corollary of Proposition 3.2.
Corollary 3.3.
1. If the primal problem (P) is unbounded, then the dual problem (D) is infea-

sible.
2. If the dual problem (D) is unbounded, then the primal problem (P) is infea-

sible.

4. Preliminary results for proving strong duality.

4.1. Finiteness of a convex mixed-integer problem being equivalent to
the finiteness of its continuous relaxation. In this section, we study a sufficient
condition for the finiteness of the primal (P) being equivalent to the finiteness of its
continuous relaxation. This condition is required to show that the primal program is
finite if and only if the dual program is finite.

The main result of this section is a sufficient condition for property

inf{ctx : x ∈ B} = −∞⇔ inf{ctx : x ∈ B ∩ (Zn1 × Rn2)} = −∞ (4.1)

to hold in the context of general convex mixed-integer optimization, that is, when the
feasible region of the primal is of the form B ∩ (Zn1 ×Rn2), where B ⊆ Rn is a closed
convex set and n = n1 + n2.

The next example shows that property (4.1) is not always satisfied, not even when
the feasible set is a polyhedron.

Example 4.1. Consider the polyhedral set B1 = {x ∈ R2 : x2 −
√

2x1 = 0} and
let the objective function be given by c = (1,

√
2). In this case B1 ∩ Z2 = {0, 0}, so

inf{ctx : x ∈ B1∩Zn} = 0. On the other hand, inf{ctx : x ∈ B1} = −∞. Therefore,
the integer programming problem has finite optimal objective function value, but its
relaxation has unbounded objective function value.

When the feasible set is a polyhedron, a well-known sufficient condition for prop-
erty (4.1) to be true is that the polyhedron is defined by rational data. However, the
following example shows that (4.1) is not necessarily true when the convex set B is
full-dimensional, conv(B∩Zn) is a polyhedron and B is conic quadratic representable
using rational data.

Example 4.2. Consider the set

B2 = conv({x ∈ R3 : x3 = 0, x1 = 0, x2 ≥ 0}
∪ {x ∈ R3 : x3 = 0.5, x2 ≥ x21}
∪ {x ∈ R3 : x3 = 1, x1 = 0, x2 ≥ 0}).

Notice B2 is full-dimensional, closed (the sets defining B2 have the same recession
cone) and is defined by rational data. Observe that conv(B2 ∩ Z3) = {x ∈ R3 : x1 =
0, x2 ≥ 0, 0 ≤ x3 ≤ 1} is a polyhedron. Since we have inf{x1 : x ∈ B2} = −∞ and
inf{x1 : x ∈ B2 ∩ Z3} = 0 > −∞, the set B2 does not satisfy property (4.1).

Finally, it can be shown that the set B2 is conic quadratic representable using
rational data, that is, there exists a rational matrix A and a rational vector b such
that

B2 =

{
x ∈ R3 : ∃u A

(
x
u

)
�K b

}
,

where K is a direct product of Lorentz cones (see [2]).
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Before we state the sufficient condition for property (4.1) to hold, we give some
definitions and preliminary results that will be needed to prove the validity of this
condition.

A linear subspace L ⊆ Rn is said to be a rational linear subspace if there exists
a basis of L formed by rational vectors. A convex set B ⊆ Rn is called lattice-free,
if int(B) ∩ Zn = ∅. A lattice-free convex set B ⊆ Rn is called maximal lattice-free
convex set if does not exist a lattice-free convex set B′ ⊆ Rn satisfying B ( B′.

The following result is from [10]. See also [1] for a related result.
Theorem 4.3 ([10]). Every lattice-free convex set is contained in some maximal

lattice-free convex set. A full-dimensional lattice-free convex set B ⊆ Rn is a maximal
lattice-free convex set if and only if B is a polyhedron of the form B = P + L, where
P is a polytope, L is a rational linear subspace and every facet of B contains a point
of Zn in its relative interior.

We require a Corollary of Theorem 4.3.
Corollary 4.4. Let B ⊆ Rn be a full-dimensional convex set. Let n1 + n2 = n.

If int(B) ∩ (Zn1 × Rn2) = ∅, then there exists a polytope P ⊆ Rn and a rational
subspace L ⊆ Rn such that Q = P +L satisfies int(Q)∩ (Zn1 ×Rn2) = ∅ and B ⊆ Q.

Proof. Let p : Rn 7→ Rn1 denote the projection on to the first n1 components
and intRn1 (p(B)) denote the interior of p(B) with respect to Rn1 . By Theorem 6.6
of [12] and since rel.int(B) = int(B), we obtain that rel.int(p(B)) = p(rel.int(B)) =
p(int(B)). Thus, dim(p(B)) = n1. Therefore, intRn1 (p(B)) = rel.int(p(B)) = p(int(B)).

We show next that intRn1 (p(B)) ∩ Zn1 = ∅. Since intRn1 (p(B)) = p(int(B)), if
x ∈ intRn1 (p(B)), then there exists y ∈ Rn2 such that (x, y) ∈ int(B). Hence, since
int(B) ∩ (Zn1 × Rn2) = ∅, we obtain that x /∈ Zn1 . Thus, p(B) is a full-dimensional
lattice-free convex set of Rn1 . Therefore, by Theorem 4.3, there exists a polytope
P1 ⊆ Rn1 and a rational subspace L1 ⊆ Rn1 such that Q1 = P1 + L1 satisfies
intRn1 (Q1) ∩ Zn1 = ∅ and p(B) ⊆ Q1.

Now,

B ⊆ p(B)× Rn2

⊆ Q1 × Rn2

= (P1 + L1)× Rn2

= [P1 × {0}] + [L1 × Rn2 ].

So, by considering, P = P1 × {0}, L = L1 × Rn2 and Q = P + L, and observing
that int(Q) = intRn1 (Q1)× Rn2 , we arrive at the desired conclusion.

The sufficient condition for (4.1) to hold is stated in the following result. The
proof of this result is modified from a result in [3].

Proposition 4.5. Let n1 + n2 = n and let B ⊆ Rn be a convex set such that
int(B) ∩ (Zn1 × Rn2) 6= ∅. Then

inf{ctx : x ∈ B} = −∞⇔ inf{ctx : x ∈ B ∩ (Zn1 × Rn2)} = −∞.

Proof.
(⇐) Clearly, if inf{ctx : x ∈ B ∩ (Zn1 × Rn2)} = −∞, then we must have that

inf{ctx : x ∈ B} = −∞.
(⇒) Suppose inf{ctx : x ∈ B ∩ (Zn1 × Rn2)} = d > −∞. We will show that

inf{ctx : x ∈ B} > −∞. Assume for a contradiction that inf{ctx : x ∈ B} = −∞.
Consider the set B≤ = B ∩ {x ∈ Rn : ctx ≤ d}. Notice that since int(B) ∩ (Zn1 ×
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Rn2) 6= ∅, we obtain that B is a full-dimensional set. Also, by assumption, we have
that B * {x ∈ Rn : ctx ≥ d}. Therefore, int(B) ∩ {x ∈ Rn : ctx < d} 6= ∅.
This implies that int(B≤) = int(B) ∩ {x ∈ Rn : ctx < d} 6= ∅ and thus B≤ is a
full-dimensional set.

Moreover, we have that int(B≤)∩ (Zn1×Rn2) = ∅, since int(B≤)∩ (Zn1×Rn2) =
(int(B≤)∩B)∩ (Zn1×Rn2) ⊆ int(B≤)∩ (B∩{x ∈ Rn : ctx ≥ d}) ⊆ {x ∈ Rn : ctx <
d} ∩ {x ∈ Rn : ctx ≥ d} = ∅. Hence, by Corollary 4.4 there exists a full-dimensional
polyhedron Q = {x ∈ Rn : atkx ≤ bk, k ∈ {1, . . . , q}} such that Q = P + L, where P
is a polytope and L a rational linear subspace, int(Q)∩ (Zn1 ×Rn2) = ∅ and B≤ ⊆ Q.

Since int(B) ∩ (Zn1 × Rn2) 6= ∅, we obtain that B * Q. Therefore, there exists
x0 ∈ B \Q, that is, x0 ∈ B and atjx0 > bj , for some j ∈ {1, . . . , q}. Notice that, since

B≤ ⊆ Q, we have that x0 /∈ B≤. Thus, we obtain that ctx0 > d.
On the other hand, since Q ⊆ {x ∈ Rn : atjx ≤ bj}, we have that sup{atjx :

x ∈ Q} < ∞. Therefore, since rec.cone(Q) = L, we must have atjr = 0, for all
r ∈ rec.cone(Q). Hence, inf{atjx : x ∈ Q} > −∞, implying that there exists M > 0
such that Q ⊆ {x ∈ Rn : atjx ≥ bj −M}.

Let {xn}∞n=1 ⊆ B≤ such that limn→∞ ctxn = −∞ and let λn ∈ (0, 1] such that
yn = (1− λn)x0 + λnxn satisfies ctyn = d.

Notice that

atjyn − bj = (1− λn)atjx0 + λna
t
jxn − bj

≥ (1− λn)(atjx0 − bj)− λnM
= (atjx0 − bj)− λn[(atjx0 − bj) +M ],

(4.2)

where the inequality follows from the fact that {xn}∞n=1 ⊆ B≤ ⊆ Q ⊆ {x ∈ Rn :
atjx ≥ bj −M}.

On the other hand, by definition of λn, we have that λn = d−ctx0

ctxn−ctx0
and thus

limn→∞ λn = 0. Hence, by (4.2), for sufficiently large N , we obtain that atjyN > bj .
Also, since B is a convex set and yN is a convex combination of x0, xN ∈ B we obtain
that yN ∈ B. Thus, yN ∈ B≤ ⊆ Q, a contradiction with atjyN > bj . Therefore, we
must have inf{ctx : x ∈ B} > −∞.

The condition that there exists a mixed-integer feasible solution in the interior of
the continuous relaxation is crucial for Proposition 4.5. This is illustrated in Example
4.1 and Example 4.2, where B1 and B2, respectively, do not satisfy property (4.1).
Finally, observe that the converse of Proposition 4.5 is not true; consider any lattice-
free rational unbounded polyhedron.

4.2. Strong duality for conic programming. In mixed-integer linear pro-
gramming, the proof of strong duality for the corresponding subadditive dual relies
on the existence of a strong duality result for linear programming. Unfortunately,
unlike the case of linear programming, strong duality for conic programming requires
some additional assumptions. Therefore, it is not surprising that we require the extra
condition (∗) to prove strong duality for mixed-integer conic programming. We recall
the duality theorem for conic programming ([2]).

Theorem 4.6 (Duality for conic programming). Let A ∈ Rm×n, c ∈ Rn, b ∈ Rm.
Let K ⊆ Rm be a full-dimensional, closed and pointed cone. Denote K∗ = {y ∈ Rm :
ytx ≥ 0, ∀x ∈ K}, the dual cone of K. Then:

1. (Weak duality) For all x ∈ {x ∈ Rn : Ax �K b} and y ∈ {y ∈ Rm : Aty =
c, y �K∗ 0} we have that bty ≤ ctx.
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2. (Strong duality) If there exists x̂ ∈ Rn such that Ax̂ �K b and inf{ctx :
Ax �K b} > −∞, then

inf{ctx : Ax �K b} = max{bty : Aty = c, y �K∗ 0}.

4.3. Value function of (P). In this section we study some properties of the
value function of (P). The motivation is the following: we will verify that the value
function satisfies all the properties of the feasible functions of the dual (D), except
that it might not be defined over all of Rm.

We begin with some notation. For u ∈ Rm, let S(u) = {x ∈ Rn : Ax �K u, xi ∈
Z, ∀ i ∈ I} be the feasible region with right-hand-side u and let P (u) = {x ∈ Rn :
Ax �K u} be its continuous relaxation. Let Ω = {u ∈ Rm : S(u) 6= ∅}. Notice that
since 0 ∈ S(0), we have that Ω 6= ∅.

Definition 4.7 (Value function of (P)). The value function of a mixed-integer
conic program is the function f : Ω 7→ R ∪ {−∞}, defined as

f(u) = inf{ctx : x ∈ S(u)}.

We show next some basic properties of the value function.
Proposition 4.8. Let f : Ω 7→ R ∪ {−∞} be the value function of (P), then
1. f is subadditive on Ω.
2. f is nondecreasing w.r.t. K on Ω.
3. If f(0) = 0, then f(Ai) = −f(−Ai) = ci, ∀ i ∈ I.
4. If f(0) = 0, then f(Ai) = −f(−Ai) = ci, ∀ i ∈ C.
5. Let u ∈ Ω. If f(u) > −∞, then f(0) = 0.

Proof.
1. Let u1, u2 ∈ Ω, x1 ∈ S(u1) and x2 ∈ S(u2). By additivity of �K , we have that
x1+x2 ∈ S(u1+u2). This implies that ctx1+ctx2 ≥ f(u1+u2). By taking the
infimum over xi ∈ S(ui), i = 1, 2 we conclude that f(u1)+f(u2) ≥ f(u1+u2).

2. Let u1, u2 ∈ Ω, u1 �K u2. Let x ∈ S(u1). By transitivity of �K , we have that
x ∈ S(u2). Therefore, S(u1) ⊆ S(u2), and thus we obtain that f(u1) ≥ f(u2).

3. For i ∈ I and α ∈ {−1, 1}, since the vector xi = α, xj = 0,∀j 6= i is
feasible for (P) with right-hand-side b = αAi, we have that f(αAi) ≤ αci.
Since f is subadditive, we obtain 0 = f(0) ≤ f(αAi) + f(−αAi). Therefore,
αci ≤ −f(−αAi) ≤ f(αAi) ≤ αci, and thus we obtain that f(αAi) = αci.
Equivalently, for i ∈ I, we have that f(Ai) = ci and f(−Ai) = −ci.

4. For i ∈ C and δ ∈ R, since the vector xi = δ, xj = 0,∀j 6= i is fea-
sible for (P) with right-hand-side b = δAi, we have that f(δAi) ≤ δci.
Since f is subadditive, we obtain 0 = f(0) ≤ f(δAi) + f(−δAi). There-
fore, δci ≤ −f(−δAi) ≤ f(δAi) ≤ δci, so, f(δAi) = δci. This implies that

f(Ai) = lim supδ→0+
f(δAi)
δ = ci and f(−Ai) = lim supδ→0+

f(δ(−Ai))
δ = −ci.

Therefore, for i ∈ C, f(Ai) = ci and f(−Ai) = −ci.
5. We verify the contrapositive of this statement. Assume f(0) < 0. Then there

exists x̄ ∈ S(0) such that ctx̄ < 0. For all λ ∈ Z+, we have that λx̄ ∈ S(0)
and ct(λx̄) = λctx̄ < 0. Let x ∈ S(u). By additivity of �K , we have that
x+ λx̄ ∈ S(u) for all λ ∈ Z+. Since ct(x+ λx̄) = ctx+ λctx̄, we obtain that
f(u) = −∞.

Since the value function f might not be defined over Rm, it is not necessarily a
feasible solution to the dual. In the next section, we will construct a new function that
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is equal to f on b, is finite-valued over Rm, and continues to satisfy all the conditions
of the dual (D). The following corollary of Proposition 4.8 and the subsequent two
propositions are crucial in this construction.

Corollary 4.9. Let K1 ⊆ Rp, K2 ⊆ Rq be full-dimensional closed and pointed
convex cones. Let S(u, v) = {(x, y) ∈ R(p+q) : Ax + Cy �K1 u, Fy �K2 v, xi ∈
Z,∀ i ∈ Ip, yi ∈ Z,∀ i ∈ Iq}, where Ip ⊆ {1, . . . , p}, Iq ⊆ {1, . . . , q}, and let
Ωp = {u ∈ Rp : S(u, 0) 6= ∅}. Let

G(u, v) = inf{ctx+ dty : (x, y) ∈ S(u, v)}.

Consider g : Ωp 7→ R defined as g(u) = G(u, 0). Then
1. g is subadditive on Ωp.
2. g is nondecreasing w.r.t. K1 on Ωp.
3. If G(0, 0) = 0, then g(Ai) = −g(−Ai) = ci, ∀ i ∈ Ip and g(Ai) = −g(−Ai) =

ci, ∀ i ∈ {1, . . . , p} \ Ip.
Proof.
1. Observe that, by (1.) of Proposition 4.8, G is subadditive on its domain. Let
u1, u2 ∈ Ωp. Then

g(u1 + u2) = G[(u1, 0) + (u2, 0)] ≤ G(u1, 0) +G(u2, 0) = g(u1) + g(u2),

where the inequality is a consequence of G being subadditive.
2. Observe that, by (2.) of Proposition 4.8, G is nondecreasing w.r.t. K1×K2 on

its domain. Also, u1 �K1
u2 if and only if (u1, 0) �K1×K2

(u2, 0). Therefore,
if u1 �K1

u2, then g(u1) = G(u1, 0) ≥ G(u2, 0) = g(u2), as desired.
3. If G(0, 0) = 0, then, by (3.) and (4.) of Proposition 4.8, for α ∈ {−1, 1} we

obtain that g(αAi) = G(αAi, 0) = αci, ∀ i ∈ Ip and g(αAi) = G(αAi, 0) =
αci, ∀ i ∈ {1, . . . , p} \ Ip.

The next proposition states a sufficient condition for Ω = Rm to hold, that is,
S(b) 6= ∅ for all b ∈ Rm.

Proposition 4.10. If there exists x̂ ∈ Rn such that Ax̂ �K 0, then ∀ b ∈ Rm,
there exists x ∈ Zn1 × Rn2 such that Ax �K b.

Proof. Let b ∈ Rm. It is sufficient to prove that there exists x ∈ Zn such that
Ax �K b. We will show this next. Since Ax̂ �K 0, there exists ε > 0 such that
B(Ax̂, ε) ⊆ K, where B(Ax̂, ε) is the open ball of radius ε around Ax̂. Therefore, by
continuity of Ax and density of Qn in Rn, there exists q ∈ Qn such that Aq ∈ B(Ax̂, ε).
This implies, by a suitable positive scaling of q, that there exists z ∈ Zn such that
Az ∈ int(K). Hence, there exists δ > 0 such that B(Az, δ) ⊆ K. For M ∈ N
sufficiently large, we obtain that Az − b

M ∈ B(Az, δ) ⊆ K. Thus, scaling by M > 0,
we obtain that A(Mz)− b ∈ int(K), that is, A(Mz) �K b, as desired.

The following result gives a condition such that if the primal is finite for some
right-hand-side b, then it is also is finite for every right-hand-side u ∈ Ω.

Proposition 4.11. If there exists x̂ ∈ Zn1 × Rn2 such that Ax̂ �K b and
f(b) > −∞, then ∀ u ∈ Ω we have that inf{ctx : x ∈ P (u)} > −∞. In particular,
∀ u ∈ Ω, we have that f(u) > −∞.

Proof. Since {x ∈ Rn : Ax �K b} = int(P (b)), we have that int(P (b)) ∩ (Zn1 ×
Rn2) 6= ∅. Therefore, since f(b) > −∞, by Proposition 4.5, we obtain that inf{ctx :
x ∈ P (b)} > −∞. This implies, by (2.) of Theorem 4.6, that the set {y : Aty =
c, y �K∗ 0} is nonempty.
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Let u ∈ Ω and let ȳ ∈ {y : Aty = c, y �K∗ 0}. By (1.) of Theorem 4.6 we obtain
that inf{ctx : x ∈ P (u)} ≥ utȳ, as required.

5. Strong duality. For ease of exposition, we recall next the main result of this
paper.

Theorem 2.4 (Strong duality). If there exists x̂ ∈ Zn1×Rn2 such that Ax̂ �K b,
then

1. (P) is finite if and only if (D) is finite.
2. If (P) is finite, then there exists a function g∗ feasible for (D) such that

g∗(b) = z∗ and, consequently, z∗ = ρ∗.

We will prove Theorem 2.4 in the following two subsections.

5.1. Finiteness of the primal being equivalent to the finiteness of the
dual. In this section we present a sufficient condition for the following to hold: (P)
is finite if and only if (D) is finite. Observe that essentially we need conditions under
which the converse of Corollary 3.3 holds.

We begin by showing that ‘a part’ of the converse of Corollary 3.3 holds generally.
The proof is modified from a result in [4].

Proposition 5.1. If the primal problem is infeasible, then the dual is unbounded
or infeasible.

Proof. If the dual problem is feasible, then we need to verify that it is unbounded.
Define G : Rm 7→ R as G(d) = min{x0 : Ax + x0d �K d, xi ∈ Z, i ∈ I, x0 ∈ Z+}.
Notice G(d) ∈ {0, 1} for all d ∈ Rm, because x = 0 and x0 = 1 is always a feasible
solution. We have that G(d) = 0 if and only if {x : Ax �K d, xi ∈ Z, i ∈ I} 6= ∅.
Hence, for d1, d2 ∈ Rm, G(d1) = G(d2) = 0 implies G(d1 + d2) = 0. Therefore, we
obtain that G is subadditive. Also, for d1, d2 ∈ Rm such that d1 �K d2, we have that
G(d1) = 0 implies G(d2) = 0. Hence, we obtain that G is nondecreasing w.r.t. K. For
i ∈ I, α ∈ {−1, 1}, we obtain that G(αAi) = 0, because xi = α, xj = 0,∀j 6= i is a
feasible solution when d = αAi. Similarly, for i ∈ C, we have that G(Ai) = G(−Ai) =
0. Moreover, G(0) = 0 and since the primal is infeasible, we obtain that G(b) = 1.

Let g be a feasible solution for the dual. Then g + λG is also a feasible solution
for the dual for all λ ≥ 0. Since [g+λG](b) = g(b) +λ for all λ ≥ 0, we conclude that
the dual is unbounded.

Proposition 5.2. If there exists x̂ ∈ Zn1 ×Rn2 such that Ax̂ �K b, then (P) is
finite if and only if (D) is finite.

Proof.

(⇐) Assume that the dual is finite. Then, by Proposition 5.1, we obtain that the
primal is feasible. Thus, Corollary 3.3 implies that the primal is finite.

(⇒) Assume that the primal is finite. Corollary 3.3 implies that if the dual is
feasible then the dual cannot be unbounded. We next verify that dual is indeed
feasible.

First observe that since int(P (b))∩ (Zn1 ×Rn2) 6= ∅ and f(b) > −∞ hold, by the
application of Proposition 4.5, we obtain that inf{ctx : Ax �K b} > −∞.

Since inf{ctx : Ax �k b} is finite and there exists x̂ such that Ax̂ �K b, by the
application of (2.) of Theorem 4.6, we obtain that the set {y ∈ Rm : Aty = c, y �K∗

0} is nonempty. Let ŷ ∈ {y ∈ Rm : Aty = c, y �K∗ 0}. Then the function g(u) = ŷtu
is a feasible solution of (D), so the dual problem is feasible.

Notice that Proposition 5.2 gives a proof for (1.) of Theorem 2.4. In the next
section, we will refine the second half of the proof of Proposition 5.2, to show that
when there exists x̂ ∈ Zn1 ×Rn2 such that Ax̂ �K b and the primal is finite, not only
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is the dual finite, but also its optimal objective function value is equal to that of the
primal.

5.2. Feasible optimal solution for (D). In this section, we construct a feasible
optimal solution for the dual problem (D). The next proposition shows how this can
be done.

Proposition 5.3. If there exists x̂ ∈ Zn1 × Rn2 such that Ax̂ �K b and (P) is
finite, then there exists a function g∗ : Rm 7→ R, feasible for (D) such that g∗(b) = z∗

and consequently z∗ = ρ∗.

Proof. Let f be the value function of (P). By Proposition 4.11, we obtain that
f(u) > −∞ for all u ∈ Ω. Therefore, f : Ω 7→ R is a well defined function.

If Ω = Rn, then by Proposition 4.8, f : Rn 7→ R is feasible for the dual (D).
Moreover, by definition of f , f(b) = z∗. Thus, by considering g∗ = f , we obtain that
g∗(b) = z∗, as desired.

If Ω ( Rn, then we will use f to construct g∗ : Rm 7→ R feasible for the dual (D)
such that g∗(b) = f(b).

For λ ≥ 0 denote fR(λb) = inf{ctx : x ∈ P (λb)}. By Proposition 4.5, we
have that fR(b) > −∞. Therefore, since fR(λb) = λfR(b) we obtain that fR(λb) =
λfR(b) > −∞, for all λ ≥ 0. Notice also that for all y ∈ Z we have that yb ∈ Ω,
implying that f(yb) > −∞ for all y ∈ Z.

Denote X(u) = {(x, y) ∈ Rn+1 : Ax − yb �K u, y ≥ 0, xi ∈ Z,∀ i ∈ I, y ∈ Z}.
Now we will show how to construct g∗. We have to consider three cases. For each of
these three cases we give a different construction of g∗ and show that g∗(0) = 0 and
g∗(b) = f(b).

Case 1: f(b) ≥ 0 and fR(b) ≥ 0. Define

g∗(u) = inf{ctx+ [f(b)− fR(b)]y : (x, y) ∈ X(u)}.

First we prove that g∗(0) = 0. Let (x, y) ∈ X(0). Then we have

ctx+ [f(b)− fR(b)]y ≥ f(yb) + f(b)y − fR(b)y

= [f(yb)− fR(yb)] + f(b)y

≥ 0.

By considering the feasible solution (0, 0), with objective value 0, we conclude
that g∗(0) = 0.

Now we prove that g∗(b) = f(b). Let (x, y) ∈ X(b) with y ≥ 1. Then we have

ctx+ [f(b)− fR(b)]y ≥ f((y + 1)b) + f(b)y − fR(b)y

= [f((y + 1)b)− fR((y + 1)b)] + fR(b) + f(b)y

≥ f(b)y

≥ f(b).

On the other hand, notice that (x, 0) ∈ X(b) if and only if x ∈ S(b). For (x, 0) ∈
X(b) we have ctx + [f(b) − fR(b)]0 = ctx. Therefore, by taking the infimum over
(x, 0) ∈ X(b), we conclude that g∗(b) = f(b).

Case 2: f(b) ≤ 0 and fR(b) ≤ 0. In this case, define

g∗(u) = inf{ctx− 2fR(b)y : (x, y) ∈ X(u)}.
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First we prove that g∗(0) = 0. Let (x, y) ∈ X(0). Then we have

ctx− 2fR(b)y ≥ f(yb)− fR(b)y − fR(b)y

= [f(yb)− fR(yb)]− fR(b)y

≥ 0.

By considering the feasible solution (0, 0), with objective value 0, we conclude
that g∗(0) = 0.

Now we prove that g∗(b) = f(b). Let (x, y) ∈ X(b) with y ≥ 1. Then we have

ctx− 2fR(b)y ≥ f((y + 1)b)− fR(b)y − fR(b)y

= [f((y + 1)b)− fR((y + 1)b)]− fR(b)(y − 1)

≥ 0

≥ f(b).

For (x, 0) ∈ X(b) we have ctx− 2fR(b)0 = ctx. Therefore, by taking the infimum
over (x, 0) ∈ X(b), we conclude that g∗(b) = f(b).

Case 3: f(b) ≥ 0 and fR(b) ≤ 0. In this case, define

g∗(u) = inf{ctx+ [f(b)− 2fR(b)]y : (x, y) ∈ X(u)}.

First we prove that g∗(0) = 0. Let (x, y) ∈ X(0). Then we have

ctx+ [f(b)− 2fR(b)]y ≥ f(yb)− fR(b)y + [f(b)− fR(b)]y

= [f(yb)− fR(yb)] + [f(b)− fR(b)]y

≥ 0.

By considering the feasible solution (0, 0), with objective value 0, we conclude
that g∗(0) = 0.

Now we prove that g∗(b) = f(b). Let (x, y) ∈ X(b) with y ≥ 1. Then we have

ctx+ [f(b)− 2fR(b)]y ≥ f((y + 1)b)− fR(b)y + [f(b)− fR(b)]y

= [f((y + 1)b)− fR((y + 1)b)] + fR(b) + [f(b)− fR(b)]y

≥ fR(b)(1− y) + yf(b)

≥ yf(b)

≥ f(b).

For (x, 0) ∈ X(b) we have ctx+ [f(b)− 2fR(b)]0 = ctx. Therefore, by taking the
infimum over (x, 0) ∈ X(b), we conclude that g∗(b) = f(b).

We show next that in all the three cases described above, we have that g∗ is
feasible for the dual (D). Observe that since Ax̂− b �K 0; 1 > 0, by the application
of Proposition 4.10, we obtain that X(u) 6= ∅ for all u ∈ Rm. Moreover, since
g∗(0) = 0, we have that g∗(u) > −∞ for all u ∈ Rm (Proposition 4.11). Thus, we
have defined a function g∗ : Rm 7→ R. Finally, by Corollary 4.9, observe that g∗

satisfies all the constraints of the dual (D). In conclusion, g∗ is feasible for the dual
(D) and g∗(b) = f(b) = z∗, thus completing the proof.

Notice that Proposition 5.3 gives a proof for (2.) of Theorem 2.4.
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6. Valid inequalities. A valid inequality for the feasible region of the primal
(P) (that is, S(b)) is a linear inequality πtx ≥ π0 such that for all x ∈ S(b), we
have πtx ≥ π0. In the case of mixed-integer linear programs defined by rational
data (K = Rm+ , A ∈ Qm×n, and b ∈ Qm) it can be shown that all interesting valid
inequalities πtx ≥ π0 for S(b) are of the form∑

i∈I
g(Ai)xi +

∑
i∈C

g(Ai)xi ≥ g(b),

where g is feasible for the dual (D) with c = π and g(b) ≥ π0 (see [4], [5] and [7]).
Similarly, in the case of mixed-integer conic programming we can use subadditive

functions that are nondecreasing with respect to K to generate valid inequalities. In
particular, Proposition 3.2 (Weak duality) and Theorem 2.4 (Strong duality) yield
the following corollary.

Corollary 6.1.
1. Assume that the problems (P) and (D) are both feasible. If g is feasible for

the dual (D), then the inequality
∑
i∈I g(Ai)xi +

∑
i∈C g(Ai)xi ≥ g(b) is a

valid inequality for S(b).
2. Assume there exists x̂ ∈ Zn1 × Rn2 such that Ax̂ �K b. Given a valid in-

equality πtx ≥ π0 for S(b), then there exists g ∈ F satisfying g(0) = 0,
g(Ai) = −g(−Ai) = πi ∀i ∈ I, g(Ai) = −g(−Ai) = πi ∀i ∈ C, and g(b) ≥ π0.
Then,

∑
i∈I g(Ai)xi +

∑
i∈C g(Ai)xi ≥ g(b) is a valid inequality for S(b) that

is equivalent to or dominates πtx ≥ π0.
In [13], it is shown that in the case of pure integer linear programs, given a rational

left-hand-side matrix A, there exists a finite set of subadditive functions that yields
the subadditive dual for any choice of the right-hand-side b. Such a result is unlikely
in the integer conic setting since, in general, the convex hull of feasible points is not
necessarily a polyhedron. The following example illustrates this behavior.

Example 6.2. Let S ⊆ R2 be the epigraph of the parabola x2 = x21, that is,
S = {x ∈ R2 : x21 ≤ x2}. It is well-known that S is a conic quadratic representable
set ([2]). Indeed, we have

S =

x ∈ R2 :

1 0
0 1

2
0 1

2

(x1
x2

)
�L3

 0
1
2
− 1

2

 ,

where L3 = {x ∈ R3 |
√
x21 + x22 ≤ x3} is the Lorentz cone in R3.

On the other hand, we have that conv(S ∩ Z2) is a nonpolyhedral closed convex
set; also see [3]. In fact, we have

conv(S ∩ Z2) =
⋂
n∈Z
{x ∈ R2 : x2 − (2n+ 1)x1 ≥ −(n2 + n)},

where all these inequalities define facets of conv(S ∩ Z2).
By (2.) of Corollary 6.1, we have that for all n ∈ Z, there exists a subadditive

function gn : R3 7→ R, such that gn is nondecreasing w.r.t. L3, gn(0) = 0, for
α ∈ {−1, 1}

gn

α
1

0
0

 = −α(2n+ 1), gn

α
0

1
2
1
2

 = α, and gn

 0
1
2
− 1

2

 ≥ −(n2 + n).
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Moreover, for this particular case, we explicitly present these functions. For all
n ∈ Z, the function gn can be defined as gn (y) = dµtnye, where µn ∈ L3 is given by
µn = (−(2n+ 1), 1− (n2 + n), 1 + (n2 + n))t.

Therefore, we conclude that we can write the convex hull of the integer points in
S in terms of an infinite number of linear inequalities given by subadditive functions
that are nondecreasing w.r.t. L3, that is

conv(S ∩ Z2) =
⋂
n∈Z

x ∈ R2 : gn

1
0
0

x1 + gn

0
1
2
1
2

x2 ≥ gn
 0

1
2
− 1

2

 .

Finally, notice that since conv(S∩Z2) is a nonpolyhedral set, it cannot be described
in terms of a finite number of linear inequalities.

7. Primal problems with particular structure. It is sometimes convenient
to write the dual for specially structured problems like the ones with some nonnegative
variables, with some equality constraints, etc. Finding the appropiate version of the
dual and showing that it satisfies strong duality, using the results of this paper, is
a relatively simple exercise. We illustrate this for problems with some nonnegative
variables. This problem is given by

(P ′)


z′ = inf ctx

s.t. Ax �K b

xi ∈ R+, ∀i ∈ J
xi ∈ Z, ∀i ∈ I.

A subadditive dual for (P ′) is given by

(D′)



ρ′ = sup g(b)

s.t. g
(
Ai
)
≤ ci, ∀i ∈ I ∩ J

ḡ
(
Ai
)
≤ ci, ∀i ∈ C ∩ J

g
(
Ai
)

= −g
(
−Ai

)
= ci, ∀i ∈ I \ J

ḡ
(
Ai
)

= −ḡ
(
−Ai

)
= ci, ∀i ∈ C \ J

g(0) = 0

g ∈ F .

We formally state this result as a corollary of Theorem 2.4.
Corollary 7.1.
1. (Weak duality) For all x ∈ Rn feasible for (P ′) and for all g : Rm 7→ R

feasible for (D′), we have g(b) ≤ ctx.
2. (Strong duality) If there exists x̂ ∈ Zn1 × Rn2 such that Ax̂ �K b and x̂i > 0

for all i ∈ J , then
(a) (P ′) is finite if and only if (D′) is finite.
(b) If (P ′) is finite, then there exists a function g∗ feasible for (D′) such that

g∗(b) = z′ and consequently z′ = ρ′.
Proof. The proof of weak duality is just a slight modification of the proof of weak

duality for (P) and (D) (Proposition 3.2). We now verify the strong duality result.
We want to show that a strong dual of (P ′) is given by (D′). Let q = |J | and let

l : J 7→ {1, . . . , q} be a bijection. Notice that we can write (P ′) in the form of (P) as
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follows

(P ′′)


z∗ = inf ctx

s.t.

[
A
E

]
x �K×Rq

+

(
b
0

)
xi ∈ Z, ∀i ∈ I,

where E ∈ Rq×n is the matrix whose columns are defined next: for i /∈ J the column
is the 0 vector and for i ∈ J , the column is el(i) (the l(i)th vector of the canonical
basis of Rq).

By Theorem 2.4, the problem

(D′′)



ρ∗ = sup G(b, 0)

s.t. G
(
Ai, el(i)

)
= −G

(
−Ai,−el(i)

)
= ci, ∀i ∈ I ∩ J

Ḡ
(
Ai, el(i)

)
= −Ḡ

(
−Ai,−el(i)

)
= ci, ∀i ∈ C ∩ J

G
(
Ai, 0

)
= −G

(
−Ai, 0

)
= ci, ∀i ∈ I \ J

Ḡ
(
Ai, 0

)
= −Ḡ

(
−Ai, 0

)
= ci, ∀i ∈ C \ J

G(0) = 0

G : Rm+q 7→ R s.t. G is subadditive

and nondecreasing w.r.t K × Rq+,

is a strong dual for (P ′′).
Let G∗ : Rm+q 7→ R be the function given by Theorem 2.4, that is, G∗ is feasible

for (D′′) and G∗(b, 0) = z∗. For x ∈ Rm, define g∗(x) = G∗(x, 0). Notice that
g∗(0) = G∗(0, 0) = 0. Also, since G∗ is subadditive, we obtain that g∗ is subadditive.
Since x �K y implies (x, 0) �K×Rq

+
(y, 0), we have that g is nondecreasing w.r.t

K. For i ∈ I ∩ J , since G∗ is nondecreasing w.r.t K × Rq+, we have that g∗(Ai) =
G∗(Ai, 0) ≤ G∗(Ai, el(i)) = ci. Similarly, for i ∈ C ∩ J and δ ≥ 0, we have that
g∗(δAi) ≤ G∗(δAi, δel(i)). Hence, by definition of ḡ∗ and Ḡ∗, we obtain that ḡ∗(Ai) ≤
Ḡ∗(Ai, el(i)) = ci. Therefore, we have that g∗ is feasible for (D′).

Finally, since g∗(b) = G∗(b, 0) = z∗, we conclude that (D′) is a strong dual of
(P ′), as desired.

We note here that Corollary 7.1 allows us to consider a somewhat simpler form of
dual for the problem (P ′) than the one given directly by Theorem 2.4. In particular,
the feasible functions of (D′) have a domain of smaller dimension than the feasible
functions of (D) and some of the constraints in (D′) are less restrictive than the
corresponding constraints in (D).
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[1] A. Basu, M. Conforti, G. Cornuéjols, and G. Zambelli, Maximal lattice-free convex sets in
linear subspaces, Mathematics of Operations Research 35 (2010), 704–720.

[2] A. Ben-Tal and A. Nemirovski, Lectures on modern convex optimization: analysis, algorithms,
and engineering applications, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 2001.

[3] S. S. Dey and D. Morán R., Some properties of convex hulls of integer points contained in
general convex sets, Mathematical Programming (2011), 1–20, 10.1007/s10107-012-0538-7.



Strong Dual for Conic Mixed-Integer Programs 15
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