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Abstract

Gas networks are used to transport natural gas, which is an important
resource for both residential and industrial customers throughout the
world. The gas network design problem is generally modelled as a non-
convex mixed-integer nonlinear integer programming problem (MINLP).
The challenges of solving the resulting MINLP arise due to the non-
linearity and nonconvexity. In this paper, we propose a framework to
study the “design variant” of the problem in which the variables are
the diameter choices of the pipes, the flows, the potentials, and the
states of various network components. We utilize a nested loop that
includes a two-stage procedure that involves a convex reformulation
of the original problem in the inner loop and an efficient enumera-
tion scheme in the outer loop. We conduct experiments on benchmark
networks to validate and analyze the performance of our framework.
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1 Introduction

Natural gas is a very important and common resource for both residential

and industrial customers around the world. In the United States alone, a total

of 27.7 trillion cubic feet of natural gas were delivered to 77.3 million cus-

tomers in 2020 [1]. To transport natural gas to meet this demand, a natural

gas transportation system has been developed which was worth $187.9 billion

in 2020 [2]. A gas transportation system is usually modeled as a directed graph

where the nodes can be customers with demands, manufacturers with supplies,

or in-nodes that do not have either demands or supplies, while the arcs repre-

sent various system components. Modeling and optimizing gas transportation

systems is very challenging due to the complex nature of the physical prin-

ciples governing the operations of the system components. Generally, these

models involve nonlinear and nonconvex constraints. Even simple models of

the system components lead to challenging problems, as the scale of realistic

instances is quite large compared to what state-of-the-art solvers can tackle.

In general, the system components (the arcs) include pipes, short pipes,

resistors, compressors, valves, and control valves. There are additional com-

ponents such as filters and measuring devices. We omit these additional

components and consider the most common ones. Pipes constitute the major-

ity of the system components. Control valves are sometimes referred to as

regulators as well. Each of the system components serves a different role.

The components can be grouped into passive components and active compo-

nents. Pipes, short pipes, and resistors are passive system components and

do not have on and off states. Compressors, control valves, and valves are

active system components with on and off states. There are several types of

gas network optimization problems. Most problems involve the decision on the
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flowrates in the arcs and the pressures at the nodes. Alternatively, it is some-

times convenient to consider node potentials, which are defined as the squared

pressures. Commonly used benchmarking instances are based on the Belgian

network [3, 4] of size up to 23 nodes and the GasLib networks of various sizes

up to 4197 nodes [5].

In this paper, we study the design problem, which considers a given set of

pipe locations. The main decisions involve choosing the pipe diameters, the

states for valves, compressors, and control valves, and flowrates and potentials

to transport gas to satisfy the given demand and supply scenarios while mini-

mizing the network construction costs. We call this version of design problem

the design-from-scratch variant, different from the reinforcement version. We

do not include any operational costs, such as the operational cost of the com-

pressors. In the design-from-scratch variant, we assume there are no existing

pipes in the network. More details are provided in Section 2. The demand and

supply scenarios are commonly referred to as nominations.

The main contributions of this paper are the following. We propose a

decomposition framework that involves an iterative procedure of solving a

convex integer master problem and a verification subproblem for the solu-

tions obtained from the master problem, and a binary search to minimize the

construction cost of the pipes. We use the GasLib networks to validate our

framework. Our framework is able to effectively solve the design problem on

GasLib-582 network, which contains 582 nodes. To the best of our knowl-

edge, this is the first paper that solves the gas network design problem on

such large-scale instances. Previous literature (reviewed below in Section 2)

on the design-from-scratch version of the problem has not considered any

instance with over 500 nodes, and these works do not simultaneously consider

active elements, discrete diameter choices, and general (non-tree) underlying

networks.
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The structure of the remainder of this paper is as follows. We give a sum-

mary of the relevant literature in Section 2. Section 3 presents the technical

background and a compact formulation for the design problem while Section 4

presents the decomposition framework. Implementation considerations and

numerical experiments to validate the decomposition framework are presented

in Section 5. Lastly, in Section 6, we present concluding remarks and future

research directions.

2 Literature review

Gas network systems have been an important topic of study in the past

several decades. As the relevant literature is rather extensive, here we review

only works that are most closely related to ours. For a detailed review of the

literature, we refer the interested readers to [6] and [7]. In addition, [8] provides

an overview on the modeling and common solution approaches in gas network

systems.

Among the types of problems studied, we focus below on two relevant

problem types, the nomination validation problem and design problem. In the

nomination validation problem, we assume a nomination is given. In the case

where active system components are not considered, the problem aims to eval-

uate whether the existing network topology is feasible with respect to the

given nomination. In the case where active system components are involved,

the problem aims to determine whether there exist feasible configurations for

the active system components along with rest of the components such that

the resulting network is feasible with respect to the nomination. Work in

this area includes [9], [10], [11], [12], [4], [13], [14], [15], and [16]. In partic-

ular, [9] presents a convexification scheme to find the convex hull of a “Y”

junction in the network to deal with the nonconvex constraints arising from
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the governing physical principles. The paper [10] presents four approaches

for solving nomination validation problems. The first approach is a piecewise

linear approximation scheme that utilizes the generalized incremental model

to linearize the nonlinear constraints; the approximation is improved itera-

tively by adding more linearization points. The second approach is a spatial

branch-and-bound algorithm, which iteratively partitions the feasible region

and refines the estimations and relaxations of the original problem in each

partition to obtain dual bounds on the solution. The next approach in [10] is

called RedNLP, a two-stage procedure, in which heuristics and reformulations

are employed to find promising configurations of the active system compo-

nents and the feasibility of configurations is checked in the second stage. The

last approach considered is called the smoothing procedure, commonly used

for mathematical programs with equilibrium constraints, to model the discrete

decisions corresponding to the configurations of the active system components

with continuous variables. Numerical experiments and comparisons across the

four approaches are performed on the GasLib-582 network. Overall, the spatial

branch-and-bound outperforms the other three approaches. The papers by [11]

and [12] consider additional constraints of satisfying heat-power demand and

supply in the nomination validation problem. In both works, an alternating

direction method is applied to a linearized approximation model and numerical

experiments are performed on the GasLib-4197 network.

The design problem can be divided into the reinforcement problem and the

design-from-scratch problem. In the reinforcement problem, it is assumed that

an existing topology is given. The problem considers the options to install addi-

tional system components, mostly pipes and compressors, to satisfy a given

nomination while minimizing the construction costs of the new system com-

ponents. The cost of a new pipe is usually a function of its diameter and,
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as a result, diameter selection becomes a decision for the pipes. The design-

from-scratch problem assumes no existing pipes in the network and makes

decisions on the diameters for all pipes. In both the reinforcement problem

and the design-from-scratch problem, the diameter choices can be continu-

ous or discrete. Recent works that study the reinforcement problem include

[17], [18], [19], [3], [20], and [21]. In particular, [17] considers the reinforcement

problem with continuous diameters and utilizes a two-stage formulation. The

first-stage problem is a convex nonlinear program to compute favorable diam-

eter choices and flowrates, while the second-stage problem checks whether the

first-stage solution is feasible with respect to the nomination by solving for the

potential at each node. This convex program was formally introduced in [22]

and adapted to solve a network problem in [23]. The numerical experiments

were performed on the Belgian network. The work in [18] considers also a

reinforcement problem with discrete diameters. To deal with the nonconvexity

from the governing physical principles, the paper considers reformulations and

a convex relaxation which is second-order cone representable. These authors

also utilize perspective strengthening that is studied in [24] and [25] to enhance

the relaxation. Numerical experiments were performed on both Belgian and

GasLib networks. For the design-from-scratch problem, [19] considers discrete

diameter choices without any active components. A bilevel formulation is pro-

posed and in solving the formulation, the discrete variables corresponding to

the discrete diameter choices are first transformed to continuous variables. Sub-

sequently, the lower-level problem is reformulated via conjugate duality while

a trust region algorithm is developed for the upper-level problem. Numeri-

cal experiments were performed using two networks of size up to 14 nodes.

The paper by [3] studies a variant of the design-from-scratch problem with

continuous diameter choices and solve the model by a bundle method with a
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generalized gradient. Numerical experiments are performed with the Belgian

network. Both [20] and [21] consider the problem on a tree-shaped network.

The paper [20] considers continuous diameter and “approximate discrete diam-

eter” obtained from the optimal continuous diameter. Theauthors develop an

iterative procedure to solve the problem; their approach contracts the tree

(network) converting the original tree into a single equivalent arc. Numeri-

cal illustrations of this procedure were performed on networks of size up to

36 nodes. In addition to solving the design problem, [21] proposes a tractable

framework to consider infinitely many demand scenarios such that the diameter

choices are feasible for all demand scenarios on a tree-shaped network.

As water flow is governed by similar physical equations as gas flow does

due to their fluid nature, the water network design problem shares common

characteristics as the gas network design problem. We refer interested readers

to an overview of water network design problem in [26] and some modeling

and solution techniques in [27], [28], and [29].

3 Problem description

3.1 Technical background

In this section, we provide necessary technical background on gas networks

that we will need for our formulations later. For more details, we refer the

interested readers to [5], [8], [10], and [30]. For the remainder of this paper, we

use a directed graph G = (V,A) to represent a gas network, where each arc

a ∈ A represents a system component of the network and each node v ∈ V can

be a customer, a manufacturer, or an in-node. For each node v ∈ V we track

its pressure pv and potential πv, where the pressure and potential are related
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by the equation:

πv = p2v. (1)

We denote lower and upper bounds on the potential at a node v by πmin
v and

πmax
v , respectively.

3.1.1 Pipes

As mentioned earlier, the majority of the arcs in gas networks are pipes. A

pipe a = (v, w) is specified by its length l, diameter D, and material properties.

The flowrate in arc a, denoted as qa, is upper bounded by a value qmax
a which is

determined by the cross-sectional area, A := πD2/4, and material properties.

We assume a linear relation between the value of qmax
a and the cross-sectional

area, i.e.,

qmax
a ∝ A. (2)

The gas flow in pipe a = (v, w) is described by a set of partial differential

equations derived from conservation of mass and conservation of momentum

which, under certain assumptions, can be simplified to

πv − πw = p2v − p2w = αa|qa|qa, (3)

where αa is the pressure loss coefficient. The pressure loss coefficient, αa,

depends on the material and diameter of the pipe and a few properties of

natural gas. As pipes allow bi-directional flow, the sign of the potential drop

depends on the direction of the flow resulting in the absolute value of the

flowrate variable qa in the equation.
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3.1.2 Short pipes

Short pipes are used for modeling purposes to handle complicated contract

situations and are modeled as lossless pipes, i.e., a short pipe a is a regular

pipe with αa = 0.

3.1.3 Resistors

Resistors are commonly used to model pressure or potential drop. In this

work, we assume resistors behave in the same way as pipes in terms of potential

drop. We refer to [10] for alternative ways to model resistors.

3.1.4 Compressors

Compressors are used to increase the potential along an arc. There are

many models proposed for compressors. In this paper, we adopt the model used

in [17]. For a compressor a = (v, w), we use a binary variable za to indicate

the on and off states where za = 1 indicates the compressor is on and za = 0

otherwise. When the compressor is on, it allows flow from v to w and increases

the potential from v to w. When it is off, it does not allow any flow. As a

result, we have the following relations for a compressor:

πv − πw ≤ 0, qa ≥ 0, if za = 1, (4)

qa = 0, if za = 0. (5)

Additionally, there are limits on the potential ratio as follows:

κmin
a πv ≤ πw ≤ κmax

a πv, (6)
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where κmin
a = 1 and κmax

a ≥ 1 are typical for a compressor (see [18]). Further-

more, when a compressor a = (v, w) is on, it can impose additional bounds

on the potentials at nodes v and w. We denote those bounds by (πmin
v )′ and

(πmax
w )′.

3.1.5 Valves

Valves are incorporated in the network to join or separate two nodes. Valves

have the states of being open and closed. They allow bi-directional flow when

they are open. A binary variable za is used to model the states of valves. For

a valve a = (v, w), za = 1 indicates the valve is open and za = 0 otherwise.

When a valve is open, the potentials at the two end nodes have to be equal.

When a valve is closed, it does not allow any flow. Formally, the constraints

for a valve a = (v, w) are expressed as follows:

πv = πw, qa arbitrary, if za = 1, (7)

qa = 0, πv, πw arbitrary, if za = 0. (8)

3.1.6 Control valves

Contrary to a compressor, the presence of a control valve in the network

results in potential relief. We adopt a similar model that is used for compres-

sors. For a control valve a = (v, w), a binary variable za is used to indicate its

states. When it is on, it allows flow from v to w and causes a potential relief

from v to w. When it is off, it does not allow any flow. We have the following

model for the control valve:

πv − πw ≥ 0, qa ≥ 0, if za = 1, (9)

qa = 0, if za = 0. (10)
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The limits on the potential relief are given by

κmin
a πv ≤ πw ≤ κmax

a πv, (11)

where κmin
a > 0 and κmax

a ≤ 1 are typical for a control valve (see [18]). A

control valve (v, w) can impose additional bounds on the potentials at nodes

v and w when it is on. Similar to compressors, we denote those bounds by

(πmin
v )′ and (πmax

w )′.

3.2 Design problem

We consider the design of a gas network for a given set of pipe locations

(arcs), whose diameters we must decide. As discussed in the previous section,

we have different system components and thus we divide the arc set A into

A = Ap ∪Asp ∪Ar ∪Acp ∪Av ∪Acv where Ap, Asp, Ar, Acp, Av, and Acv are

the set of pipes, short pipes, resistors, compressors, valves, and control valves,

respectively. We consider discrete diameter choices in our setting and denote

the diameter choices by the set [n] := {1, 2, . . . , n}. We use binary variables

za,i, a ∈ Ap and i ∈ [n], to model the discrete diameter choices of the pipes. We

further denote the length and diameter of the pipe a ∈ Ap with the diameter

choice i ∈ [n] by la and Da,i, respectively, and we use the same cost function,

fa,i, that is used in [17] and [18], namely

fa,i = la(1.04081
−6D2.5

a,i + 11.2155). (12)

The cost function, fa,i, can be computed before the execution of the design

problem and is thus considered given. Additionally, there is a trade-off in

the selection of the diameters. A larger diameter, on one hand, leads to a
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smaller potential drop coefficient and a higher maximum flowrate, while, on the

other hand, leads to a larger cost fa,i. We introduce a flow direction variable

xdir
a ∈ {0, 1} for a ∈ Ap ∪ Asp ∪ Ar ∪ Av to account for the bidirectional

flow. Recall that compressors and control valves only allow one flow direction.

For a pipe a ∈ Ap, as a result of the multiple diameter choices, we have

multiple flowrate variables qa,i for each i ∈ [n]. We decompose the flow into

positive flow and negative flow, i.e., for a ∈ Ap, qa,i = q+a,i − q−a,i and for

a ∈ Asp ∪ Ar ∪ Av, qa = q+a − q−a . The maximum flowrate limit qmax
a can be

defined individually for each diameter choice i as qmax
a,i by relation (2). Similarly,

the potential drop coefficients αa,i can be computed for each diameter choice.

Furthermore, for a node v ∈ V, we denote the set of incoming arcs and outgoing

arcs by Ain(v) and Aout(v), respectively, i.e., Ain(v) = {a ∈ A|a = (w, v)} and

Aout(v) = {a ∈ A|a = (v, w)}. We use dv to denote the demand or supply at

a node v ∈ V.

With this notation and technical background, we give a MINLP formulation

to the design problem:

min
z,q+,q−,π,xdir

∑
a∈Ap

∑
i∈[n]

fa,iza,i, (13)

s.t.
∑

a∈Ain(v)\Ap

q+a −
∑

a∈Ain(v)\Ap∪Acp∪Acv

q−a

−

 ∑
a∈Aout(v)\Ap

q+a −
∑

a∈Aout(v)\Ap∪Acp∪Acv

q−a


+

∑
i∈[n]

∑
a∈Ain(v)∩Ap

(q+a,i − q−a,i)−
∑
i∈[n]

∑
a∈Aout(v)∩Ap

(q+a,i − q−a,i) = dv, v ∈ V,

(14)

πmin
v ≤ πv ≤ πmax

v , v ∈ V, (15)

xdira ∈ {0, 1}, a ∈ Ap ∪Asp ∪Av ∪Ar, (16)

0 ≤ q−a,i, q
+
a,i ≤ qmax

a,i za,i, i ∈ [n], a ∈ Ap, (17)
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πv − πw =
∑
i∈[n]

αa,i(q
+
a,i)

2 −
∑
i∈[n]

αa,i(q
−
a,i)

2, a ∈ Ap, (18)

0 ≤ q+a,i ≤ qmax
a,i xdira , a ∈ Ap, i ∈ [n], (19)

0 ≤ q−a,i ≤ qmax
a,i (1− xdira ), a ∈ Ap, i ∈ [n], (20)∑

i∈[n]

za,i = 1, a ∈ Ap, (21)

πv = πw, a ∈ Asp, (22)

0 ≤ q+a ≤ qmax
a xdira , a ∈ Asp, (23)

0 ≤ q−a ≤ qmax
a (1− xdira ), a ∈ Asp, (24)

πv − πw = αa(q
+
a )2 − αa(q

−
a )2, a ∈ Ar, (25)

0 ≤ q+a ≤ qmax
a xdira , a ∈ Ar, (26)

0 ≤ q−a ≤ qmax
a (1− xdira ), a ∈ Ar, (27)

κmin
a πv −M(1− za) ≤ πw ≤ κmax

a πv +M(1− za), a ∈ Acp ∪Acv,

(28)

0 ≤ q+a ≤ qmax
a za, a ∈ Acp ∪Acv, (29)

(πmin
v )′ −M(1− za) ≤ πv, a = (v, w) ∈ Acp ∪Acv, (30)

πw ≤ (πmax
w )′ +M(1− za), a = (v, w) ∈ Acp ∪Acv, (31)

πv − πw ≤ M(1− za), a ∈ Av, (32)

πv − πw ≥ −M(1− za), a ∈ Av, (33)

0 ≤ q−a , q+a ≤ qmax
a za, a ∈ Av, (34)

0 ≤ q+a ≤ qmax
a xdira , a ∈ Av, (35)

0 ≤ q−a ≤ qmax
a (1− xdira ), a ∈ Av. (36)

Note that we omit the subscripts for the variables under the “min” and

variables z could either be the diameter choices of the pipes or the states of

the compressors, the valves, and the control valves. In this model, the objec-

tive function (13) minimizes the construction cost of the pipes, also known as

the budget. The scalar M represents a large number. For the constraints that
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involve M , we can alternatively write them in a nonlinear fashion, which elim-

inates the need for big-Ms. In particular, for constraints (28) and (30)-(31),

we have

zaκ
min
a πv ≤ πw, a ∈ Acp ∪Acv, (37)

zaπw ≤ κmax
a πv, a ∈ Acp ∪Acv, (38)

za(π
min
v )′ ≤ πv, a ∈ Acp ∪Acv, (39)

zaπw ≤ (πmax
w )′, a ∈ Acp ∪Acv,, (40)

and for constraints (32)-(33), we have

(πv − πw)za = 0, a ∈ Av. (41)

We group the constraints in blocks with block names and provide a sum-

mary in Table 1. We will refer to the corresponding set of constraints by their

block name.

Constraints Block names Explanations

(14) Flow conserv Flow conservation
(15)-(16) Bound Bounds on potentials (15); binary directions (16)

(17)-(21) Pipe
Flow limits on diameter choices (17); potential drop (18);
flow limits on directions (19)-(20); diameter selection (21)

(22)-(24) Short pipe Potential (22); flow limits on directions (23)-(24)
(25)-(27) Resistor Potential drop (25); flow limit on directions (26)-(27)

(28)-(31)
Comp and Depend on on/off states; Potential increase/relief limit (28);
cont valve flow limit (29); additional bounds (30)-(31)

(32)-(36) Valve
Depend on on/off states; Potential (32)-(33);
flow limit (34); flow limits on directions (35)-(36)

(29), (37)-(40)
Comp and

Same as Comp and cont valve block
cont valve nl

(34)-(36), (41) Valve nl Same as Valve block

Table 1: Constraint blocks
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Note that the above formulation can be extended to the reinforcement

problem by considering, for each existing pipe, an additional diameter choice

with no cost along with potential loss equation (3) in which the potential loss

coefficient is computed based on the diameter of the existing pipe.

4 Decomposition framework

We now present a decomposition framework to solve the design problem.

The decomposition consists of three major components: primal bound loop,

binary search on budget, and initial budget search. Before we present the

details on each component, we introduce more background on the convex pro-

gram introduced in [22] and adapted in [23], which was mentioned briefly in

literature review.

4.1 CVXNLP

The convex program is called (CVXNLP) in [31]; we adopt the same name.

We base the discussions of (CVXNLP) on a gas network in contrast to a water

network in [31] in this section for completeness. For a network with only pipes,

i.e., A = Ap, (CVXNLP) is closely related to the following set of network

analysis equations:

πv − πw = sgn(qa)ϕ(|qa|), a ∈ Ap, (42)∑
a∈Ain(v)

qa −
∑

a∈Aout(v)

qa = dv, v ∈ V, (43)

where sgn(·) is the sign function and ϕ(·) is the potential loss function. In the

network analysis equations, (42) is the potential drop equation and (43) is the
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flow conservation. (CVXNLP) is formally given by

min
q+,q−

∑
a∈Ap

Φ(q+a ) + Φ(q−a ), (44)

s.t.
∑

a∈Ain(v)

(q+a − q−a )−
∑

a∈Aout(v)

(q+a − q−a ) = dv, v ∈ V, (45)

0 ≤ q−a , q
+
a , a ∈ Ap, (46)

where Φ(·) is defined by

Φ(q) =

∫ q

0

ϕ(q′)dq′. (47)

(CVXNLP) is formally linked to the network analysis equations by the

following theorem.

Theorem 1 If the potential loss function ϕ(·) is strictly monotonically increasing

function of flowrate, q, with ϕ(0) = 0, then there exists a solution (π, q) to the

network analysis equations if and only if there exists a solution (q̂+, q̂−, λ̂, µ̂+, µ̂−)

to (CVXNLP) where λ, µ+, and µ− are dual variables to the flow conservation

constraint (45) and bounds constraints (46), respectively.

Proof The proof is adapted from a proof in [31] and can be found in Appendix A.

□

The monotonicity assumption needed for the theorem to hold is com-

monly satisfied by gas networks. In addition, as a result of the equivalence

between (CVXNLP) and the network analysis equations stated in Theorem 1,

we can solve the convex (CVXNLP) in lieu of the nonconvex network analy-

sis equations and obtain a solution (π, q). As there are no bounds enforced in

the network analysis equations for π, we have to perform an additional step

to verify that π satisfies the corresponding bounds.
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4.2 Primal bound loop

The equivalence discussed in Section 4.1 motivates us to develop a decom-

position procedure that solves a variant of (CVXNLP) as a master problem,

while a subproblem is used to check for feasibility. We call this procedure the

primal bound loop, which checks whether a budget C is feasible with respect to

a nomination. The master problem, denoted by (Pm), is based on (CVXNLP)

and is as follows:

(Pm) min
z,q+,q−

∑
i∈[n]

∑
a∈Ap

αa,i

3
(q+a,i)

3 +
αa,i

3
(q−a,i)

3 +
∑
a∈Ar

αa

3
(q+a )

3 +
αa

3
(q−a )

3,

(48)

s.t. (14), (17), (21), (29), (34),

0 ≤ q−a , q
+
a ≤ qmax

a , a ∈ Asp ∪Ar, (49)∑
a∈Ap

∑
i∈[n]

fa,iza,i ≤ C. (50)

In this model, the objective function (48) extends (CVXNLP) to account for

multiple flow variables q+a,i for a ∈ Ap and i ∈ [n]. Constraint (14) is the

flow conservation. Constraints (17) and (21) on the pipes ensure one diameter

choice is selected and the corresponding flow limit is enforced. Constraints (29)

and (34) on the active system components ensure flows are only allowed when

the corresponding binaries are on. Constraint (49) enforces the flow limit on

the short pipes and resistors. The last constraint (50) is a budget constraint

on the construction cost of pipes.

The above model differs from (CVXNLP) mainly in two ways. Firstly,

we have introduced the diameter choices, za,i for a ∈ Ap and i ∈ [n] and

configurations for the active system components, za for a ∈ Acp∪Acv∪Av. If the

diameter choices and configurations of the active system components are fixed,
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(Pm) resembles the original (CVXNLP). Secondly, we have a constraint to

upper bound the construction cost of pipes by the budget C. We hope to obtain

favorable diameter choices and active system component configurations from

solving this modified (CVXNLP) due to the equivalence between (CVXNLP)

and the network analysis equations shown in Theorem 1. In the solution of

(Pm), we denote the optimal diameter choices by z∗a,i for a ∈ Ap and i ∈ [n]

and the optimal active system configurations by z∗a for a ∈ Acp∪Acv ∪Av. We

can then compute the potential loss coefficient and the flow limit of each pipe

as follows:

αa =
∑
i∈[n]

αa,iz
∗
a,i, a ∈ Ap, (51)

qmax
a =

∑
i∈[n]

qmax
a,i z∗a,i, a ∈ Ap. (52)

For the subproblem, denoted by (Ps), since we have additional active system

components for which the constraints governing their corresponding potential

changes are not included in network analysis equations, we solve a variant

of the nomination validation problem, instead of performing simple bound

violation verifications, to check if the diameter choices and configurations of

the active system components are feasible with respect to the nomination. (Ps)

is given by:

(Ps) Find q+, q−, xdir, π, (53)

s.t. Flow conserv,

Bound,

Pipe,

Short pipe,
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Resistor,

Comp and cont valve( nl),

Valve( nl).

In this nomination validation problem, we solve a feasibility problem with

seven blocks of constraints that are simplified from the blocks in Table 1. We

list the changes to the constraints as follows.

Flow conserv: with the diameter choices fixed, we only need two flow

variables, q+a and q−a , for each pipe a ∈ Ap and the simplified flow conservation

constraint is given by:

∑
a∈Ain(v)

q+a −
∑

a∈Ain(v)\Acp∪Acv

q−a −

 ∑
a∈Aout(v)

q+a −
∑

a∈Aout(v)\Acp∪Acv

q−a

 = dv, v ∈ V.

(54)

Pipe: with the diameter choices determined, we compute the potential loss

coefficients and flow limits, and we write the potential loss constraints as

πv − πw = αa(q
+
a )

2 − αa(q
−
a )

2, a ∈ Ap, (55)

and use the computed flow limits qmax
a from (52) as:

0 ≤ q+a ≤ qmax
a xdir

a , a ∈ Ap, (56)

0 ≤ q−a ≤ qmax
a (1− xdir

a ), a ∈ Ap. (57)

Comp and cont valve( nl): we fix the compressor and control valve con-

figurations obtained in (Pm). The constraints are then linear and free of

M .
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Valve( nl): we fix the valve configurations obtained in (Pm). The

constraints are then linear and free of M .

There are no changes to other constraints.

Note that this nomination validation problem is still nonconvex due to

constraint (55) and the potential loss constraint for resistors. There can be two

outcomes from solving this subproblem (Ps). If it is infeasible, we can add an

integer no-good cut to the master problem (Pm) of the form:

∑
a∈Acp∪Acv∪Av,z∗

a=0

za +
∑

a∈Acp∪Acv∪Av,z∗
a=1

(1− za)

+
∑
i∈[n]

∑
a∈Ap,z∗

a,i=0

za,i +
∑
i∈[n]

∑
a∈Ap,z∗

a,i=1

(1− za,i) ≥ 1. (58)

If it is feasible, we call budget C a feasible budget with respect to the

nomination.

The iterative procedure terminates when we obtain a feasible budget or

when the master problem (Pm) becomes infeasible after adding some integer

no-good cuts. In the latter case, we call budget C an infeasible budget.

4.3 Binary search on budget

As the goal of this design problem is to minimize the construction cost of

the network, we propose a binary search procedure to do so. A feasible budget

from the primal bound loop provides an upper bound, C, on the budget while

an infeasible budget provides a lower bound, C, on the budget. We present

the binary search in Algorithm 1. For the termination conditions of the binary

search in Line 1, we consider a time limit, absolute gap εe, i.e, C −C < εe, or

relative gap εr, i.e., (C − C)/C < εr.
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Algorithm 1: Binary search of budget

1 Input: Initial budget C, upper bound C = ∞ and valid lower bound
C by budget initialization ▷ see Section 4.4

while not terminated do
2 Solve problems (Pm) and (Ps) with budget C ▷ primal bound

loop

if C is a feasible budget then
3 if C < C then C = C;
4 if C/2 ≤ C then C = (C + C)/2;
5 else C = C/2;

6 else if C is an infeasible budget then
7 if C > C then C = C;

8 if 2C ≥ C then C = (C + C)/2;
9 else C = 2C;

10 else ▷ primal bound loop terminated due to time limit

11 if 2C ≥ C then C = (C + C)/2;
12 else C = 2C;

13 end

14 end

4.4 Initial budget search

To obtain a better initial starting budget for the binary search, we pro-

pose the following initial budget search procedure. This procedure is again an

iterative procedure involving a master problem and a subproblem. The master

problem, denoted by (Im), is given by

(Im) min
z

∑
a∈Ap

∑
i∈[n]

fa,iza,i, (59)

s.t. (21),

za,i ∈ {0, 1}, a ∈ Ap, i ∈ [n] (60)

za ∈ {0, 1}, a ∈ Acp. (61)

In this model, the objective function (59) is the same as the design model which

minimizes the construction cost of the pipes. Constraint (21) allows exactly
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one diameter choice for each pipe to be selected. In (Im), we only consider

the selection of diameter choices and configurations of the compressors. This

integer program aims to obtain the cheapest construction cost of the pipes

along with the compressor configurations, and can be solved very quickly due

to the much smaller feasible space and simpler structure compared to (Pm).

We can similarly compute the potential loss coefficients and flow limits based

on the optimal diameter choices as shown in (51) and (52).

The subproblem is a variant of the nomination validation problem which

includes the configurations of valves and control valves to check if the diameter

choices and compressor configurations are feasible with respect to the nomi-

nation. The subproblem, denoted by (Is), is the same as (Ps), except for the

constraints on the control valves and the valves since we do not obtain config-

urations for them from the master problem (Im) in contrast to (Pm). We list

the changes from (Ps) to obtain (Is).

Variables: we add the binary variables for the on and off states of control

valves and valves.

Constraints: Comp and cont valve( nl): we fix the configurations of

compressors obtained in (Im) and consequently the constraints for compressors

are now linear and free of M . For the control valves, our preliminary studies

suggest the use of comp and cont valve nl block.

Valve( nl): Our preliminary studies suggest the use of Valve nl block

for valves.

There are no changes to other constraints.

Solving the subproblem (Is) has two outcomes. If the cheapest diameter

choices and compressor configurations are infeasible with respect to the nom-

ination, we add an integer no-good cut for that set of diameter choices and

compressor configurations similar to (58) to the master problem (Im) and
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resolve. Otherwise, we obtain the optimal budget, i.e., the optimal budget for

this nomination is the corresponding objective value of (Im). The initial budget

search procedure can be run for a certain time or a fixed number of itera-

tions. It produces an objective value below which there is no feasible budget,

thus producing an initial dual bound. This lower bound on the optimal objec-

tive function value of the network design problem can be used to initialize the

binary search.

5 Numerical experiments

5.1 Instances

Our numerical experiments are based on the GasLib library networks. In a

preliminary study, we concluded that the design problem based on the largest

GasLib-4197 network remains challenging to solve with our framework. As a

result, we consider GasLib-11, GasLib-24, GasLib-40, GasLib-134, and GasLib-

582 networks. Note that GasLib-11, GasLib-24, and GasLib-40 are considered

to be simple test networks while GasLib-134 and GasLib-582 are considered to

be the realistic networks by [5]. The size of the networks is given in Tables 2

and 3. Depending on the nomination, a source node may have zero supply and

a sink node may have zero demand.

Name Nodes Sources Sinks In-nodes

GasLib-11 11 3 3 5
GasLib-24 24 3 5 16
GasLib-40 40 3 29 8
GasLib-134 134 3 45 86
GasLib-582 582 31 129 422

Table 2: Nodes in GasLib networks

For the smaller networks of GasLib-11, GasLib-24, and GasLib-40, there

is one nomination given along with the network. For the larger networks



Springer Nature 2021 LATEX template

24 Gas network design

Name Pipes Short pipes Resistors Compressors Control valves Valves

GasLib-11 8 0 0 2 0 1
GasLib-24 19 1 1 3 1 0
GasLib-40 39 0 0 6 0 0
GasLib-134 86 45 0 1 1 0
GasLib-582 278 269 8 5 23 26

Table 3: Arcs in GasLib networks

of GasLib-134 and GasLib-582, there are numerous nominations given. For

GasLib-134 network, the nominations are named after the day on which the

nomination is based and we pick two nominations. The nominations given with

the GasLib-582 network are divided into five categories, namely, warm, mild,

cool, cold, and freezing, to simulate the temperature conditions. There are two

observations about the nominations. Firstly, as temperature conditions change

from warm to freezing, the nominations become more demanding. There are

more sinks with positive demands and the magnitudes of demands increase.

Secondly, the nominations from the same temperature category vary much less

compared to nominations across temperature categories. Therefore, we pick

one nomination from each temperature category for the experiments. For all

networks, we vary the nomination by stress levels similar to [18]. In particu-

lar, we use the stress levels {0, 1, 0.5, 1.0, 1.5, 2.0} and multiply the demand

dv for each v ∈ V in a nomination by each stress level to create an instance.

For each pipe, based on the diameter given in the GasLib networks, we use

multipliers from the set {0.8, 1.0, 1.3, 1.5} to create 4 different diameter

choices.

5.2 Implementation considerations and settings

We first provide some notes on the implementation of the primal bound

loop. As the objective function (48) in the master problem (Pm) is cubic in

the flow variables, there are several possible ways to implement it:
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• There are nonlinear mixed integer program solvers that can take the master

problem (Pm) as it is, for example, BARON [32, 33] and SCIP [34, 35].

• The cubic objective function is second-order cone representable. For each of

the cubic terms in the flow variable, we can introduce an additional variable.

Consequently, we obtain a constraint in the form of q3 ≤ t where q represents

the flow variable and t represents the new variable that is an upper bound

to q3 and we can write the second-order cone representation of q3 ≤ t by

s ≥ 0, s+ q ≥ 0, (s+ q)2 ≤ w, w2 ≤ t(s+ q). (62)

The resulting second-order cone program can be handled by specialized

solvers such as MOSEK [36].

• To take advantage of the Gurobi’s [37] improved capability in solving

quadratic programs, for each of the cubic terms in the flow variable q in the

objective function, we introduce an additional variable qqua with qqua = q2.

Consequently, we have a bilinear term qqqua in the objective function with

an additional constraint. The constraint qqua = q2 can be re-written into the

convex constraint qqua ≥ q2. Moreover, for the pipes, as we have binary vari-

ables corresponding to the diameter choices, the convex constraint qqua ≥ q2

can be strengthened to qquaz ≥ q2 by perspective strengthening (see [24])

where z represents the binary variable for the diameter choice.

We implemented all three methods. Even though the original cubic formu-

lation (used with BARON 22.9.1 [38] and SCIP 7.0.1 [35]) and the second-order

cone formulation (used with MOSEK 9.3.10 [36]) are convex, these solvers tend

to be slower due to the presence of the binary variables. On the other hand,

Gurobi 9.5.1 [37] is able to handle the reformulation of the cubic objective

function well. As a result, we decided to use Gurobi 9.5.1 to solve (Pm) and
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(Ps). This also gives us the opportunity to study the impact of perspective

strengthening on the computational speed.

In addition, since we only use the values of the binary variables of the pipe

diameter choices and active system component configurations from the master

problem (Pm) to fix the corresponding variables in the subproblem (Ps), we

do not need to solve the master problem (Pm) to optimality. We can either set

a time limit or a non-default optimality gap and we opt to use a time limit of

60 seconds.

We run the experiments on a computer with an Intel i7 CPU (4.20GHz)

with 16 GB RAM. The computer runs the Ubuntu 20.04 LTS operating system.

The framework is coded in Python with Pyomo. We use Gurobi 9.5.1 to solve

problems (Im) and (Is) as well. Algorithm 2 shows the exact steps we use to

solve the problem combining the procedures from the primal bound loop, the

binary search on budget, and the initial budget search.

Algorithm 2: Overall procedure

1 Initial budget search (Im) and (Is) is run for 10 min. ▷ Initial

budget search phase

if a feasible budget is obtained then terminate with the optimal
budget for this nomination;

2 else ▷ Binary search phase

3 Set starting budget based on the returned value from initial
budget search;
Binary search is run for 5 hr; for each candidate budget, primal
bound loop (Pm) and (Ps) is run for 45 min to check if the
budget is feasible.

4 end

5 return C and C from binary search

A note on the time limit for the initial budget search. We performed studies

to extend the time limit to longer than 10 min and the improvement on the
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returned value is not significant. As a result, we decided to limit the initial

budget search to 10 minutes.

5.3 Results

In this section, we present the computational results. In addition to the

results from our proposed framework, we provide some discussions about the

MINLP formulations and another approach adapted from [18] using a compu-

tational study on nomination warm 31 from GasLib-582, which comes from the

least demanding temperature categories. The papers by [18] and [20] are two

recent works on gas network expansion. The work of [20] specifically considers a

tree-like network while the GasLib-582 network contains cycles. Although [18]

mainly focuses on the reinforcement problem, the approach can be modified

to tackle the design problem.

Recall that the MINLP formulations comprise an objective function

(13) along with constraint blocks Flow conserv, Bound, Pipe, Short pipe,

Resistor, Comp and cont valve or Comp and cont valve nl, and Valve or

Valve nl. In particular, we have two different MINLP formulations, one

utilizing Comp and cont valve and Valve blocks while the other utilizing

Comp and cont valve nl and Valve nl blocks. Solvers that can solve non-

convex MINLPs are considered. Note that CPLEX currently only supports

nonconvexity in the objective function and hence is not applicable. We also dis-

covered that Gurobi at times returns solutions with large constraint violations

for this MINLP formulation. As a result, we focused on SCIP and BARON

and we report the results on solving the MINLP formulation with BARON,

which performed better in our tests.
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5.3.1 Small networks

We consider the small networks of GasLib-11, GasLib-24, and GasLib-40

in this section. Based on the upper bound C and lower bound C from the

procedure described in Algorithm 2, we define the percentage gap by

gap =
C − C

C
× 100%. (63)

We present the detailed results in Tables 4 to 9. In particular, Tables 4 to 6

report the bounds C and C in 109, percentage gap, and time information from

the framework with and without perspective strengthening and better result

from solving the two MINLP formulations with BARON as a comparison. We

also show the time it takes to reach 20% optimality gap “20%” in a bracket

after the time for instances with optimality gaps larger than zero, but less

than 20% at termination. The column “Imp” reports the improvement in the

gaps from the perspective strengthening formulation. Additionally, we make

the better upper bound C between our framework and BARON bold. The

iteration information is reported in Tables 7 to 9. The column “Initial bud-

get” indicates whether the nomination is solved by the initial budget search

procedure outlined in Section 4.4. The columns “Binary search” and “Primal

bound” report the number of budget checked and the number of no-good cuts

(58) added.

For the smaller networks, we see the performance of the proposed frame-

work is comparable to BARON up to stress level of 1.0. For the larger stress

levels, the framework returns larger gaps. It is challenging to prove an infeasi-

ble budget because of the large combinatorial space created from the diameter

choices and the configurations of the active system components. Nonetheless,

as the size of the network and stress level increase in GasLib-40, we see that
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BARON cannot close the gap to obtain the optimal solution. In addition, the

perspective strengthening formulation provides improvements of about 40% on

average in few instances while the number of budget checked remains the same

in most instances. However, the master problem (Pm) with the perspective

formulation tends to be more difficult to solve as fewer numbers of no-good

cuts are added for the same stress level in all three networks.

5.3.2 GasLib-134

For the GasLib-134 network, we pick nominations 2011-11-27 and 2016-

01-11. The results are reported in identical format as the smaller networks in

Tables 10 to 13 and we use the same definition for percentage gap from (63).

For both nominations, we see that with smaller stress levels, the problems can

be directly solved by the initial budget search procedure which outperforms

BARON. As the stress levels increase, although BARON returns solutions with

optimality gaps, it takes shorter time for BARON to reach 20% optimality

gaps. For this network, however, the perspective strengthening formulation

does not show any improvements except in only one instance. Note that the

networks are generally independent and although the size of the network is a

significant factor in the difficulty of the instances, there are other factors. We

observe larger number of budgets checked and no-good cuts added than those

in a smaller GasLib-40, but the trend of number of budget checked and no-good

cuts across different stress levels is the same as that in the smaller networks.

5.3.3 GasLib-582

For GasLib-582 network, we pick nominations warm 31, mild 3838,

cool 2803, cold 4218, and freezing 188. In this set of experiments, we discover

that BARON is able to obtain a lower bound and constantly improve it, but

it tends to be slower in finding a feasible solution to close the gap after hours
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Stress
Without perspective strengthening With perspective strengthening

Initial
budget

Binary
search

Primal
bound

Initial
budget

Binary
search

Primal
bound

0.1 Yes - - Yes - -
0.5 Yes - - Yes - -
1.0 Yes - - Yes - -
1.5 No 12 37423 No 12 31080
2.0 No 9 36156 No 10 20257

Table 7: Iteration information for GasLib-11

Stress
Without perspective strengthening With perspective strengthening

Initial
budget search

Binary
search

Primal
bound

Initial
budget search

Binary
search

Primal
bound

0.1 Yes - - Yes - -
0.5 Yes - - Yes - -
1.0 Yes - - Yes - -
1.5 Yes - - Yes - -
2.0 No 11 17873 No 11 10239

Table 8: Iteration information for GasLib-24

Stress
Without perspective strengthening With perspective strengthening

Initial
budget search

Binary
search

Primal
bound

Initial
budget search

Binary
search

Primal
bound

0.1 Yes - - Yes - -
0.5 Yes - - Yes - -
1.0 No 13 596 No 13 326
1.5 No 11 494 Yes 11 322
2.0 No 10 302 No 10 321

Table 9: Iteration information for GasLib-40

of computation. On the other hand, our framework is very efficient in finding

feasible solutions. As a result, we decide to run BARON for 45 minutes before

the binary search phase, i.e., before step 2 in Algorithm 2 and we report the

better lower bound C between our framework and BARON.

We first briefly recap the approach proposed in [18] where the authors

construct a convex mixed-integer second-order cone (MISOC) relaxation of

the reinforcement formulation, and fix all the binary decision variables after

solving the relaxation to obtain a nomination validation problem. The resulting

nonlinear program is then solved by a solver to obtain a solution if the nonlinear
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Stress
Without perspective strengthening With perspective strengthening

Initial
budget search

Binary
search

Primal
bound

Initial
budget search

Binary
search

Primal
bound

0.1 Yes - - Yes - -
0.5 Yes - - Yes - -
1.0 No 15 10681 No 15 10152
1.5 No 11 9857 Yes 11 4325
2.0 No 11 8760 No 9 3511

Table 12: Iteration information for GasLib-134 and nomination 2011-11-27

Stress
Without perspective strengthening With perspective strengthening

Initial
budget search

Binary
search

Primal
bound

Initial
budget search

Binary
search

Primal
bound

0.1 Yes - - Yes - -
0.5 Yes - - Yes - -
1.0 Yes - - Yes - -
1.5 No 12 10046 Yes 12 4358
2.0 No 11 8962 No 11 3512

Table 13: Iteration information for GasLib-134 and nomination 2016-01-11

program is feasible. If the nonlinear program is infeasible, then the authors

propose to use any feasible solutions to the relaxation. We adapt a similar

MISOC relaxation for the pipes and resistors. We leave the details of this

relaxation in Appendix B. In our computations, following the procedure and

solving the nomination validation problem did not yield feasible solutions for

nomination warm 31 with any stress levels.

Next, we present the results from our framework in Tables 14 to 18. We

combine the computational results and the iteration information into one table

in this section. In the “Iteration” column, the first number is the number of

budget checked and the second number is the number of no-good cuts added.

Everything else follows identical format as discussed previously. Additionally,

Table 19 summarizes the gaps across different nominations and stress levels.

From the results, we see that our framework is able to find a feasible budget

for all 25 instances. In particular, it provides an optimal budget for twelve

instances and a budget with less than 20% gaps for another six instances.
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There are a few instances where we reached the time limit with large gaps.

We mark these instances in bold. These instances are with higher stress levels

and/or worse temperature conditions. As we increase the stress level and/or

deteriorate the temperature conditions (from warm to freezing) making the

nominations more demanding, we observe that it becomes more difficult to

find feasible solutions in the primal bound loops to prove a feasible budget

and thus close the gap by binary search. The primal bound loops hit the time

limit much more often. In addition, for all instances, we are not able to prove

infeasible budget from the primal bound loop. While a large number of binary

solutions are feasible to the master problem (Pm), each integer no-good cut

only invalidates one of them. As a result, the lower bounds on budget, C, are

almost the same across different nominations and stress levels.

Furthermore, the perspective strengthening is shown to be effective in

closing the gaps for higher stress levels. There is no instance for which

the implementation without perspective strengthening achieves better gaps

than the implementation with perspective strengthening. The average and

largest improvements from perspective strengthening are about 55% (excluding

the instances that are solved to optimality both with and without perspec-

tive strengthening) and 97%, respectively. The improvements are all due to

obtaining better feasible solutions.

Similar to the results on other GasLib networks, we see that, with more

demanding nominations and larger stress levels, fewer budget are checked and

no-good cuts added. However, for instances with larger gaps (for example,

those that are marked in bold), many diameter choices and configurations of

the active system components can be evaluated relatively fast to be infeasible

in the subproblem (Ps) resulting in large number of no-good cuts added for

every budget checked. Overall, the initial budget search procedure is effective
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as some of these challenging instances are solved with the procedure while a

lower bound is provided to other instances to assess the quality of the feasible

solutions obtained by the primal bound loop.

6 Conclusion

In conclusion, we studied the gas network design problem, where diame-

ter choices of pipes and active system component configurations are decided.

We proposed a decomposition framework to solve the problem. In particular,

in the primal bound loop of the framework, for a given budget, we modify

a convex NLP formulation to construct master problems to obtain favorable

diameter choices and active system component configurations, and validate

their feasibility in the subproblem. Binary search is performed as an outer loop

to minimize the budget. We also proposed a procedure to obtain a good ini-

tial budget for the binary search. The proposed framework was tested on the

various GasLib networks and instances were created from combining nomina-

tions under different temperature conditions and stress level multipliers. The

computational results show that the framework is effective in solving most

instances, especially for the large GasLib-582 network, when combined with

BARON for obtaining lower bounds.

There are a few future directions that could be explored. The cost of oper-

ating the network may be an interest from an operator’s perspective. Our

framework can be adapted and applied to incorporate the cost of operations

with simple modifications.
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Appendix A Proof of Theorem 1

Proof We first consider the if part. Suppose that (q̂+, q̂−, λ̂, µ̂+, µ̂−) solves

(CVXNLP). Consider the first-order stationary conditions for (CVXNLP) as follows:

ϕ(q̂+a )− µ̂+
a − λ̂v + λ̂w = 0, a = (v, w) ∈ Ap, (A1)

ϕ(q̂−a )− µ̂−
a + λ̂v − λ̂w = 0, a = (v, w) ∈ Ap, (A2)

q̂+a , µ̂+
a ≥ 0, a = (v, w) ∈ Ap, (A3)

q̂+a · µ̂+
a = 0, a = (v, w) ∈ Ap, (A4)

q̂−a , µ̂−
a ≥ 0, a = (v, w) ∈ Ap, (A5)

q̂−a · µ̂−
a = 0, a = (v, w) ∈ Ap, (A6)∑

a∈Ain(v)

(q̂+a − q̂−a )−
∑

a∈Aout(v)

(q̂+a − q̂−a ) = dv, v ∈ V. (A7)

First, it cannot happen that q̂+a , q̂−a > 0 for any a ∈ Ap, otherwise, we can define

q̃+a = max{q̂+a − q̂−a , 0}, q̃−a = max{0, q̂−a − q̂+a }, (A8)

where q̃+a ≤ q̂+a and q̃−a ≤ q̂−a . The new flow values q̃+a and q̃−a are feasible and because

of the strict monotonicity of ϕ(·), they result in a smaller objective value which

contradicts the optimality of q̂+ and q̂−. Furthermore, the complementary slackness

conditions imply that, if q̂+a (or q̂−a ) > 0, then µ̂+
a (or µ̂−

a ) = 0. If q̂+a = q̂−a = 0 for

some a, then adding (A1) and (A2) gives

µ̂+
a + µ̂−

a = 0 =⇒ µ̂+
a = µ̂−

a = 0. (A9)
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Consequently, we can simplify (A1) and (A2) by differentiating the cases on q+a

and q−a to be

ϕ(q̂+a )− λ̂v + λ̂w = 0, a = (v, w) : q̂+a > 0, (A10)

ϕ(q̂−a ) + λ̂v − λ̂w = 0, a = (v, w) : q̂−a > 0, (A11)

λ̂v − λ̂w = 0, a = (v, w) : q̂+a = q̂−a = 0. (A12)

Now define (π, q) as

πv = λ̂v, v ∈ V, (A13)

qa = q̂+a − q̂−a , a ∈ Ap, (A14)

and we see (π, q) satisfies the network analysis equations.

Now we consider the only if part. Suppose that (π, q) solves the network analysis

equations. We define the following:

q̂+a = max{0, qa}, a ∈ Ap, (A15)

q̂−a = |min{0, qa}|, a ∈ Ap, (A16)

λ̂v = πv, v ∈ V, (A17)

µ̂+
a = max{0, πw − πv + ϕ(q̂+a )}, a = (v, w) ∈ Ap, (A18)

µ̂−
a = max{0, πv − πw + ϕ(q̂−a )}, a = (v, w) ∈ Ap. (A19)

Then (q̂+, q̂−, λ̂, µ̂+, µ̂−) satisfies the first-order stationary conditions. To see

this, we first verify that, when qa ≥ 0, then q̂+a = qa ≥ 0 and q̂−a = 0. From the

potential loss equation (42) in network analysis equations, we have that: πv − πw =

ϕ(qa) = ϕ(q̂+a ). Consequently, we have

µ̂+
a = max{0, πw − πv + ϕ(q̂+a )} = 0, (A20)

µ̂−
a = max{0, πv − πw + ϕ(q̂−a )} = max{0, ϕ(q̂+a ) + ϕ(0)} = ϕ(q̂+a ) ≥ 0, (A21)

and

ϕ(q̂+a )− µ̂+
a − λ̂v + λ̂w = ϕ(q̂+a )− 0− πv + πw = 0, (A22)
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ϕ(q̂−a )− µ̂−
a + λ̂v − λ̂w = ϕ(0)− ϕ(q̂+a ) + πv − πw = 0. (A23)

Similarly, we can verify for qa < 0. Furthermore, the strict monotonically increas-

ing property of ϕ(·) implies the convexity of Φ(·). The constraints in (CVXNLP)

are linear and thus (CVXNLP) is convex. The satisfaction of the first-order sta-

tionary conditions is necessary and sufficient for (π, q) to be an optimal solution to

(CVXNLP) and it is the unique optimal solution due to the convexity. □

Appendix B Mixed-integer second-order cone

(MISOC) relaxation

The relaxations are constructed for the pipes and resistors. For the pipes,

instead of decomposing the flow variables qa,i into q+a,i and q−a,i, we define two

binary variables x+
a and x−

a for the flow directions and enforce x+
a + x−

a = 1.

If x+
a = 1, then qa,i ≥ 0 and if x−

a = 1, then qa,i < 0. In addition, we create

multiple potential variables πv,i and πw,i for a = (v, w) ∈ Ap and i ∈ [n]. Now

consider a pipe a = (v, w) and a diameter choice i, we can write the potential

loss as

(x+
a − x−

a )(πv,i − πw,i) = αa,iq
2
a,i. (B24)

The left-hand side of (B24) is bilinear. If we define γa,i = (x+
a −x−

a )(πv,i −

πw,i), we can write the standard McCormick relaxation for γa,i = (x+
a −

x−
a )(πv,i − πw,i) by

γa,i ≥ πw,i − πv,i + (πmin
v − πmax

w )(x+
a − x−

a + 1), (B25)

γa,i ≥ πv,i − πw,i + (πmax
v − πmin

w )(x+
a − x−

a − 1), (B26)

γa,i ≥ πw,i − πv,i + (πmax
v − πmin

w )(x+
a − x−

a + 1), (B27)

γa,i ≥ πv,i − πw,i + (πmin
v − πmax

w )(x+
a − x−

a − 1). (B28)
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With γa,i defined, constraint (B24) can be written as γa,i = αa,iq
2
a,i and

can be further relaxed to become convex as follows:

γa,i ≥ αa,iq
2
a,i. (B29)

Applying perspective strengthening to the relaxed constraint gives

za,iγa,i ≥ αa,iq
2
a,i. (B30)

Now the potential loss constraint (18) for pipes becomes

πv − πw =
∑
i∈[n]

γa,i. (B31)

We can create similar relaxations for the resistors. For a resistor a =

(v, w) ∈ Ar, we have

γa ≥ πw − πv + (πmin
v − πmax

w )(x+
a − x−

a + 1), (B32)

γa ≥ πv − πw + (πmax
v − πmin

w )(x+
a − x−

a − 1), (B33)

γa ≥ πw − πv + (πmax
v − πmin

w )(x+
a − x−

a + 1), (B34)

γa ≥ πv − πw + (πmin
v − πmax

w )(x+
a − x−

a − 1), (B35)

γa ≥ αaq
2
a. (B36)

Additionally, the binary variables xdir
a in constraints (19)-(20) and (26)-(27)

that govern flow limits on directions are replaced by x+
a and x−

a correspond-

ingly. We keep the rest of constraints unchanged and obtain a convex MISOC

relaxation of the design problem as a result.
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