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Abstract

For mixed-integer programs (MIPs), strong branching is a highly effective variable selection
method to reduce the number of nodes in the branch-and-bound algorithm. Extending it to non-
linear problems is conceptually simple but practically limited. Branching on a binary variable fixes
the variable to 0 or 1, whereas branching on a continuous variable requires an additional decision
to choose a branching point. Previous extensions of strong branching predefine this point and then
solve 2n relaxations where n is the number of candidate variables to branch. We propose extreme
strong branching, which evaluates multiple branching points per variable and jointly selects both
the branching variable and point based on the objective value improvement. This approach resem-
bles the success of strong branching for MIPs while additionally exploiting bound tightening as a
byproduct. For certain types of quadratically constrained quadratic programs (QCQPs), computa-
tional experiments show that the extreme strong branching rule outperforms existing commercial
solvers.

1 Introduction

The strong branching technique has been recognized as one of the most effective variable selection rules
in the branch-and-bound algorithm for solving mixed-integer programs (MIPs) since its introduction
[2]; see also [1, 7]. The method evaluates every fractional variable as a candidate variable to branch
by fixing the candidate variable to either 0 or 1, solving relaxations at two child nodes, and evaluating
the corresponding improvements in the objective function. The final branching variable is selected
based on a composite score that combines the improvements from both branched child nodes, often
measured by the product of the two gains in the child nodes.

Our work investigates whether the success of strong branching can be extended beyond binary
variables. Although the extension to continuous variables is conceptually straightforward, its practical
applicability remains limited and challenging. Unlike the case of branching on binary variables in MIP,
branching on a continuous variable, known as spatial branching [20], requires an additional decision
on the branching point.

Recent advances in spatial branch-and-bound have introduced algorithmic strategies to address
the fundamental challenges of variable and branching point selections. Violation transfer rule was
proposed in [21], which systematically addresses constraint violations through strategic variable se-
lection. The author of [16] developed a geometric approach that partitions the feasible region into
triangles and rectangles, enabling finer spatial decomposition and convexification. Authors of [6] de-
signed a specialized branching strategy for quadratically constrained quadratic programs (QCQPs)
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involving complex variables, addressing the unique difficulties in complex optimization domains. For
bilinear problems, a branching rule that balances the violations across two child nodes was suggested
in [10], while specifically for bilinear bipartite programs (BBPs), authors of [9] designed a branching
rule that leverages second-order cone programming (SOCP) relaxations to guide variable selection
decisions. More recently, a branching rule tailored for nonconvex separable piecewise linear functions
was proposed in [13].

In addition, several works have adapted the strong branching technique from MIP to spatial
branch-and-bound. One such variant is introduced in [4], in which a branching point is defined as a
convex combination of the relaxed solution and the midpoint of a variable’s bound, followed by solving
2n relaxations where n is the number of candidate variables to evaluate the improvement associated
with the preselected branching point for each variable. In [14], the authors proposed a learning-based
approach to estimate both the branching point and branching variable expected to yield the largest
improvement.

Our proposed approach performs an exhaustive search for a branching point for each variable using
binary search while leveraging the bound-tightening technique during this process. This approach has
two main benefits:

1. Bound tightening is performed as part of the branching process. Although this resembles
the spirit of the feasibility-based bound tightening or optimality-based bound tightening im-
plemented in modern global solvers [4, 23], one key distinction is that the bound reduction
here arises directly from evaluating candidate branching points and thus is a byproduct of the
branching process rather than a separate preprocessing or postprocessing step.

2. Since the extreme strong branching rule considers improvement in the objective function value, it
resembles closely the objective-driven rationale that makes strong branching effective in MIP. The
binary search restricts the number of evaluated points, providing an efficient trade-off between
the computational search effort and improvement evaluation.

2 Extreme strong branching algorithm

We consider a general nonlinear programming (NLP) of the form min{c⊤x | x ∈ P}. For simplicity of
presentation, we have considered a linear objective here, but the method holds for nonconvex objective
functions as well.

Within a branch-and-bound tree, a subproblem at node k is given by:

min c⊤x

s.t. x ∈ Pk

(1)

where Pk denotes the feasible region, generally nonconvex, defined by the branching decisions taken
along the path to node k. To obtain a dual bound of the problem, we consider Rk, a convex relaxation
of Pk. For a branching decision on variable xi at threshold α, we denote by:

Rk(xi ≤ α) and Rk(xi ≥ α),

the convex relaxation of Pk ∩ {xi ≤ α} and Pk ∩ {xi ≥ α}, respectively.
Our proposed branching algorithm is provided in Algorithm 1 with two subroutines for binary

search (Algorithm 2) and branch score (Algorithm 3). The main algorithm is based on binary search.
During the search, we may obtain a bound reduction. Finally, to choose the best branching variable
and branching point combination, we compute branching scores. Each element is detailed in the
following sections.
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2.1 Binary search

To identify the optimal branching threshold α for variable xi, we employ a binary search over the
interval defined by the current variable bounds [lbi, ubi] for a fixed number of iterations. First, let us
focus on the left child node problem corresponding to solving a relaxed subproblem of the form:

objL(α) = min{c⊤x | x ∈ Rk(xi ≤ α)}.

Since the feasible region Rk(xi ≤ α) expands as α increases, objL(α) is a monotonically non-increasing
function of α. The first iteration begins with α = (lbi + ubi)/2. If the subproblem at this α is feasible
and the optimal objective function value objL(α) does not exceed the tree’s best incumbent objective
value, objub (i.e., the tree’s upper bound), then objL(α) is recorded and α is a candidate for branching
(Algorithm 2 lines 7–9). The search continues to the left for a smaller α. On the other hand, if the
subproblem is infeasible or objL(α) is greater than the tree’s upper bound, the search direction is
reversed to the right for a larger α (Algorithm 2 lines 4–5). We note that in this case, the lower bound
of xi can be updated as further discussed in Section 2.2. This binary search is done until the binary
search iteration limit.

The same binary search procedure is then applied symmetrically to the right child node corre-
sponding to solving a relaxed subproblem of the form objR(α) = min{c⊤x | x ∈ Rk(xi ≤ α)}. We note
that objR(α) is now a monotonically non-decreasing function in α.

After completing the binary search on both the left and right sides, we have a set of candidate
branching points corresponding to different α values evaluated in both left and right directions. If any
α has been explored on only one side, then additional subproblems are solved so that both objL(α) and
objR(α) are available for every candidate α (Algorithm 3 lines 1–2). This ensures a consistent basis
for computing the strong branching scores across the potential branching points, as further discussed
in Section 2.3.

Algorithm 1 Extreme Strong Branching Rule at Node k

Input: The best upper bound of the tree (objub) and optimal objective function value to the relaxation problem at node
k, objp = min{cTx | x ∈ Rk}

Output: The branching variable xi∗ and the branching point α∗

1: α∗ := 0; i∗ := 0; score∗ = −∞;
2: for each i ∈ {1, . . . , n} do
3: lbL = lbR := lbi; ubL = ubR = ubi; BL = BR := {}; OL = OR = {} ▷ BL and BR represent

sets of candidate branching points obtained, and OL and OR represents dictionaries of branching point and optimal
objective function value pairs from solving the left and right child node problems respectively

4: for each iter ∈ {1, . . . , itermax} do
5: binary search(i, ≤, lbL, ubL, ubi, BL, OL)

6: end for
7: for each iter ∈ {1, . . . , itermax} do
8: binary search(i, ≥, ubR, lbR, lbi, BR, OR)

9: end for
10: for each α ∈ BL ∪BR do
11: branch score(i, α) ▷ Compute the branching score for each candidate branching points
12: end for
13: end for
14: return (xi∗ , α

∗)

2.2 Bound reduction

First, we note the following conditions that we can tighten variable bounds.

Remark 1. If the problem min{cTx | x ∈ Rk(xi ≤ α)} is infeasible or has an optimal objective value
greater than the current upper bound of the branch-and-bound tree, then the lower bound of xi is at
least α.
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An analogous statement holds for the opposite branch: if min{cTx | x ∈ Rk(xi ≥ α)} is infeasible
or has an optimal objective value greater than the current upper bound of the branch-and-bound tree,
then the upper bound of xi is at most α.

These observations provide a natural search direction for selecting the branching point α in Sec-
tion 2.1. If the conditions of Remark 1 hold for the left branch, then values greater than the current α
may be considered, knowing that xi ≥ α must hold. If the conditions of Remark 1 are not applicable,
then values smaller than the current α may be considered for a potential bound tightening.

Algorithm 2 function binary search(i, ⋄, p1, p2, bi, B, O)

1: α := (p1 + p2)/2 ▷ Compute the midpoint of the current interval as the next branching point
2: obj := min{cTx | x ∈ Rk(xi ⋄ α)} or ∞ if infeasible
3: if obj > objub then ▷ If the subproblem’s objective value exceeds the current best upper bound
4: p1 := α ▷ Shift the search direction towards the other side of the feasible region per Section 2.1
5: bi := α ▷ Update the corresponding bound on variable xi per Section 2.2
6: else
7: p2 := α ▷ Otherwise, continue the search direction towards the same side of the feasible region
8: O(α) := obj ▷ Record the optimal objective function value of this α
9: B := B ∪ {α} ▷ Add α to potential branching point
10: end if

2.3 Branching score

For each candidate threshold α generated during binary search, we compute a branching score to assess
its effectiveness. Since we have explored different α’s for the left and right child nodes, we might need
to solve additional optimization problems to know the optimal objective function values for all α’s
that were considered. The score is defined as:

score = max{objL − objp, ϵ} ·max{objR − objp, ϵ},

where objp is the optimal objective function value of the relaxation at node k and ϵ > 0 is a small
stability constant. The branching variable and the branching point pair (i∗, α∗) with the highest
branching score are selected as the branching decision at node k.

Algorithm 3 function branch score(i, α)

1: if α is a key in OL then objL = OL(α) else objL = min{cTx | x ∈ Rk(xi ≤ α)}
2: if α is a key in OR then objR = OR(α) else objR = min{cTx | x ∈ Rk(xi ≥ α)}
3: scorenew := max{objL − objp, ϵ} ·max{objR − objp, ϵ}
4: if scorenew > score∗ then i∗ = i, α∗ := α, and score∗ = scorenew

Illustrative example We illustrate the extreme strong branching rule applied for a single variable xi
with bounds [0, 1]. Figure 1 visualizes iteration steps taken in Algorithm 1. The algorithm iteratively
evaluates candidate branching points for the left child node problem (xi ≤ α) using binary search.
Whenever points resulting in subproblems exceed the current best upper bound objUB, bounds of xi
are updated, and the remaining feasible region is considered for deciding a new candidate branching
point. The same technique is applied for the right child node problem (xi ≥ α). Finally, branching
scores are calculated to select the branching variable and branching point.
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Figure 1: Illustrative example of extreme strong branching for a single variable xi. The x-axis represents
candidate branching points α ∈ [0, 1], and the y-axis shows the objective function value of the relaxed subproblem
when branching at that point. The horizontal dashed line is the current best upper bound of the branch-and-
bound tree, objUB . The procedure begins by exploring the left side (xi ≤ α). At iter L1, the left side problem is
solved at the midpoint α = 0.5. Because the problem is feasible and objL(0.5) < objUB , the algorithm continues
to the left for a smaller α value. Hence, at iter L2, the left side is solved for the midpoint between 0 and the
previous α value 0.5 is solved. We note that objL(0.25) > objUB , which implies xi ≥ 0.25. Hence, the left
shaded area updates the lower bound of xi. Per the algorithm, the direction is switched so we explore a larger
value of α. At iter L3 with α = (0.25 + 0.5)/2 = 0.375, objL(0.375) < objUB again, so at iter L4, we explore
a smaller value of α = (0.25 + 0.375)/2 = 0.3125. Once the left-side search terminates, the algorithm proceeds
to the right side (xi ≥ α). The first right side iteration also starts at α = 0.5 and subsequently moves towards
larger α values whenever the right side problem remains feasible and below the upper bound. Otherwise, we
evaluate smaller α values and tighten the upper bound of the variable. Shaded regions indicate these tightened
bounds. After completing both left and right side binary searches, we have a set of candidate branching points.
Finally, we solve the left or right child problems for these candidate points if they have not been solved before.
These are marked by dashed circles around the dot.

3 Branch-and-bound implementation

We developed a custom branch-and-bound framework, building upon the Julia package BranchAndBound.jl
[15]. Our implementation is designed to solve a general QCQPs of the form:

min
x

x⊤Q0x+ p⊤0 x

s.t. x⊤Qkx+ p⊤k x ≤ rk, ∀k ∈ [m]

lb ≤ x ≤ ub

(2)

where Q0, Qk ∈ Rn×n, p0, pk ∈ Rn, and lb, ub are lower and upper bounds on the variable x ∈ Rn.
To obtain a high-quality feasible solution, we first run the global solver BARON [18] (version

25.3.19) for 60 seconds and pass its best incumbent solution as the initial primal heuristic to our
branch-and-bound. This practice is similar to the standard practice of providing the best-known
heuristic to isolate the evaluation of the dual bound improvement [10].

The dual bound at each node is obtained by constructing a McCormick relaxation of the QCQP
[17]. Specifically, each bilinear term xixj is replaced with an auxiliary variable wij and the following
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McCormick inequalities are added:

wij − lbjxi − lbixj + lbilbj ≥ 0 ∀i, j ∈ [n]

wij − ubjxi − lbixj + lbiubj ≤ 0 ∀i, j ∈ [n]

wij − lbjxi − ubixj + ubilbj ≤ 0 ∀i, j ∈ [n]

wij − ubjxi − ubixj + ubiubj ≥ 0 ∀i, j ∈ [n].

(3)

Hence, each node in the branch-and-bound tree builds a McCormick relaxation of (2) with different
local bounds of lb and ub.

We use the best-bound rule for node selection, that is, we select the node with the smallest
objective function value for a minimization problem.

Once a node has been branched on, its two child nodes are added to the candidate pool while the
original parent node is no longer considered. To reduce the computational overhead, the upper bound
problem is solved every 10 iterations. Finally, Ipopt [22] (version 3.14.17) was used as a local NLP
solver to solve (2) and HiGHS [12] (version 1.11.0) was used as an LP solver to solve the McCormick
relaxation with (3). At each node, a new LP model was built without warm starting the solver with
any solutions obtained from solving LPs at different nodes. The maximum iteration of the branch-
and-bound algorithm was limited to 100,000.

4 Computational results

We evaluate the effectiveness of the proposed extreme strong branching rule in two settings: (i) bench-
mark QCQP instances from the literature [5], and (ii) an application-driven problem from structural
engineering, namely the finite element model (FEM) updating problem [19, 8]. All branch-and-bound
implementations were coded in the Julia language version 1.11, and experiments were executed on a
personal MacBook Air equipped with an Apple M3 chip (8-core CPU) with 8 gigabytes of RAM. We
report the following metrics for performance:

• Remaining optimality gap: using the best incumbent objective function value (z∗), we compute

the remaining optimality gap as |z∗−zlb|
|z∗| (%) where zlb denotes the lower bound on the objective

function value obtained by different methods.

• Solution time in seconds: The total elapsed time is measured in wall-clock seconds. For any
instance unsolved within the time limit, the maximum time (3600 seconds) allowed is reported.

• Number of nodes solved: When using the custom branch-and-bound algorithm, we record the
number of nodes processed in the tree. Commercial solvers that also rely on branch-and-bound
tree search provide this metric in their logs.

4.1 Benchmark QCQP instances

While the proposed rule was tested on a diverse set of QCQP instances, it proved especially effective
for BBPs such as pooling problems and water management problems, which are the primary focus of
our computational analysis. We considered problems with the number of variables at most 100. For
these instances, to evaluate the effectiveness of the branching strategy, we compared three rules, where
two rules were from previous literature on spatial branching. Both methods first consider the current
infeasible relaxed solution x∗. We have not solved these with commercial solvers like Gurobi, as such
solvers are highly optimized for standard instances.
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• basic: This is a basic version of the spatial strong branching. For each candidate branching
variable xi∗ , a branching point is considered as a weighted combination of the midpoint of a
variable’s bound and the current relaxed solution. A branching score is computed following
Algorithm 3 and a variable with the highest branching score is selected to branch [4].

• balance: The branching point and the branching variable pair are selected based on the rule
specifically for bilinear problems [10].

• esb: The branching variable and branching point are selected according to our proposed extreme
strong branching rule in Algorithm 1.

Table 1 summarizes instances for which all three branching rules solved to 0.1%-optimality within
the time limit. There are 35 instances of these and are grouped into four categories according to
their solution time range. We report the number of instances solved (# opt) as well as the arithmetic
and geometric means of the solution times (Tari and Tgeo, respectively). Overall, the esb rule is the
only branching strategy that solves all of these instances under 100 seconds. While the balance rule
performs competitively on some of the easier instances, we note that it requires solution time above
100 or even 1000 seconds for several of the more challenging instances. Both the arithmetic and
geometric averages on the solution time of all instances also verify that esb rule consistently performs
better. Table 2 provides the average remaining optimality gap for instances that were unsolved by at
least one of the branching rules. For these more difficult instances, esb rule also provides the smallest
remaining gap.

Detailed results are provided in Table 5 in Appendix A, where we further note that the esb rule
explores drastically fewer nodes on average, which may not benefit much for problems requiring a
relatively small-sized tree, but can outweigh the computational overhead for problems requiring a
larger-sized tree by other rules.

Table 1: Average solve times for solved MINLP instances

basic balance esb

Time Range # opt Tari Tgeo # opt Tari Tgeo # opt Tari Tgeo

(0, 10] 17 5.09 5.07 20 4.08 3.97 19 4.09 3.88
(10, 100] 11 48.16 43.06 11 21.20 18.54 16 22.05 19.39
(100, 1000] 6 413.75 327.06 3 163.40 143.37 0 n/a n/a
(1000, 3600] 1 2099.35 2099.35 1 1221.00 1221.00 0 n/a n/a
All 35 148.52 24.11 35 57.89 10.33 35 12.30 8.09

Table 2: Average remaining optimality gap for unsolved MINLP instances

# inst basic balance esb

9 48.11% 51.21% 8.81%

4.2 Model updating problem

For FEM updating instances with 10 instances each from 16-story and 18-story structures [19, 8],
we compared the entire branch-and-bound scheme with the extreme strong branching rule against
directly solving it with a general-purpose commercial solver Gurobi [11] (version 12.0.1). The absolute
constraint violation was set to 10−9 for Gurobi. Other parameters were kept as the default parameters.
For both methods, we set a time limit of 3600 seconds.
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Table 3 summarizes the number of instances solved to 0.1%-optimality within the time limit (#
opt), along with the arithmetic and geometric means of the solution times. The performance of the
branch-and-bound scheme with our proposed extreme strong branching rule solves a larger number of
instances (8 out of 20), exceeding Gurobi (5 solved). Table 4 summarizes the three metrics across all
instances, including instances that reached the time limit of 3600 seconds. Both the average remaining
optimality gap and the number of nodes further show that the extreme strong branching rule can
reach a smaller optimality gap with a smaller tree size. The entirety of the detailed computational
results is provided in Table 6 in Appendix A. We have also tested our instances against BARON and
Counne [3], but they did not perform better than the extreme strong branching and achieved only
marginal improvements in the lower bounds with their default parameters. Although the commercial
solvers have highly engineered and sophisticated internal strategies, these results show that a simple
yet effective branching rule can lead to substantial performance gains without the use of any advanced
convexification techniques.

Table 3: Instances solved to optimality and average time limits.

Gurobi esb

# opt Tavg Tgeo # opt Tavg Tgeo

5 1418.81 325.99 8 1345.98 970.51

Table 4: Summary across all instances on three evaluation metrics.

Remaining optimality gap Solution time (sec) Number of nodes solved

Gurobi esb Gurobi esb Gurobi esb

Arithmetic mean 11.26% 7.94% 3054.70 2698.39 8607384 58
Geometric mean 3.20% 1.65% 1974.82 2130.99 4533969 44

5 Conclusion

In this paper, we introduced a new spatial branching rule, namely extreme strong branching. The
method combines binary search with bound tightening and extends the objective-driven efficiency
of strong branching from MIP to MINLP. While applicable to general MINLPs, our preliminary
computational experiments show that the rule is particularly effective for bilinear bipartite problems,
which are special subcases of QCQPs.

For problems with a large number of variables, our approach can have limitations, since all con-
tinuous variables are considered as candidate branching variables and the overhead computation to
solve relaxation problems may outweigh the benefits. As a future direction, we would like to consider
developing a reliability-based variant of extreme strong branching. Understanding why the method
works particularly well for BBP is also another stream of future research.

Acknowledgment

The authors would like to gratefully acknowledge the support of grant number 2211343 from the NSF
CMMI.

8



References

[1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005.
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A Computational results

Table 5: Remaining optimality gap, solution time, and number of nodes solved for MINLP instances: the lowest
value either by the remaining optimality gap or the solution time among the three methods is highlighted in
bold; if another method reached within 10% of the lowest value, such a value is also highlighted.

Remaining optimality gap Solution time (sec) Number of nodes solved
instance basic balance esb basic balance esb basic balance esb

pooling adhya1pq 0.10% 0.10% 0.10% 40.40 39.06 12.96 201 2899 15
pooling adhya1stp 0.10% 0.10% 0.09% 85.30 101.82 23.65 179 3551 11
pooling adhya1tp 0.10% 0.10% 0.11% 355.77 15.29 16.57 1073 979 21
pooling adhya2pq 0.09% 0.10% 0.04% 38.91 16.76 13.87 183 901 17
pooling adhya2stp 0.09% 0.10% 0.08% 106.83 100.57 22.40 217 3375 11
pooling adhya2tp 4.54% 0.10% 0.02% 55.63 15.09 14.13 215 885 17
pooling adhya3pq 0.10% 0.10% 0.00% 90.10 10.68 33.81 159 265 17
pooling adhya3stp 0.10% 0.10% 0.00% 222.75 52.88 64.78 153 945 11
pooling adhya3tp 2.45% 0.10% 0.01% 262.23 13.60 29.02 229 405 13
pooling adhya4pq 0.07% 0.10% 0.01% 14.67 8.33 15.26 15 151 5
pooling adhya4stp 0.07% 0.09% 0.03% 27.25 24.15 35.36 15 493 5
pooling adhya4tp 0.06% 0.10% 0.08% 573.45 19.89 15.15 421 531 5
pooling bental4pq 0.00% 0.00% 0.00% 5.03 4.00 3.57 7 9 5
pooling bental4stp 0.00% 0.00% 0.00% 5.19 3.97 3.71 7 13 5
pooling bental4tp 0.00% 0.00% 0.00% 5.03 3.87 3.57 7 11 5
pooling bental5pq 0.00% 0.00% 0.00% 4.39 2.97 3.00 1 1 1
pooling bental5tp 0.00% 0.00% 0.00% 4.71 3.04 3.00 1 1 1
pooling foulds2pq 0.00% 0.00% 0.00% 4.44 2.90 3.00 1 1 1
pooling foulds2stp 0.00% 0.00% 0.00% 6.40 4.03 7.15 1 1 1
pooling foulds2tp 0.00% 0.00% 0.00% 4.43 2.87 2.85 1 1 1
pooling haverly1pq 0.00% 0.00% 0.00% 5.18 3.90 3.45 5 9 5
pooling haverly1stp 0.00% 0.00% 0.00% 5.20 4.00 3.73 5 11 5
pooling haverly1tp 0.00% 0.00% 0.00% 5.17 3.90 3.79 9 9 5
pooling haverly2pq 0.00% 0.00% 0.00% 5.13 4.46 3.61 5 11 5
pooling haverly2stp 0.00% 0.00% 0.00% 5.20 3.97 3.66 5 13 5
pooling haverly2tp 0.00% 0.00% 0.00% 5.09 4.23 3.60 9 15 5
pooling haverly3pq 0.00% 0.08% 0.00% 5.27 4.23 3.54 7 33 5
pooling haverly3stp 0.00% 0.00% 0.00% 5.18 3.99 3.72 7 15 5
pooling haverly3tp 0.10% 0.00% 0.00% 5.56 3.98 3.52 25 9 5
pooling rt2pq 0.07% 0.10% 0.04% 37.62 10.30 12.40 173 627 13
pooling rt2stp 0.10% 0.09% 0.02% 57.19 15.51 14.97 117 563 7
pooling rt2tp 0.06% 0.05% 0.00% 50.13 4.32 10.01 225 33 11
wastewater02m1 0.09% 0.10% 0.01% 32.57 287.80 5.73 547 67287 15
wastewater02m2 0.10% 0.09% 0.00% 2099.35 4.68 18.49 703 217 19
wastewater04m1 0.09% 17.10% 0.03% 961.47 1221.00 9.49 799 112681 23
wastewater04m2 0.09% 0.10% 0.06% 3600.00 84.83 45.41 1087 4990 23
wastewater05m1 47.53% 56.51% 0.08% 3600.00 3600.00 3600.00 1521 65391 491
wastewater14m1 58.43% 56.82% 37.43% 3600.00 3600.00 3600.00 105 31921 609
wastewater15m1 49.74% 53.11% 38.75% 3600.00 3600.00 3600.00 8999 77303 1387
waterund01 2.35% 37.79% 0.11% 3600.00 2742.10 3600.00 11547 104743 2223
waterund08 100.00% 79.10% 2.26% 3600.00 3600.00 3600.00 285 37501 27
waterund11 57.10% 57.10% 0.10% 3600.00 3600.00 960.04 683 57693 189
waterund17 55.15% 63.75% 0.39% 3601.95 3600.00 3600.00 3095 49323 389
waterund18 62.63% 56.63% 0.15% 3600.09 3600.00 3600.00 3237 64743 599

Arithmetic mean 10.03% 10.90% 1.82% 854.51 683.02 605.36 825 15695 142
Geometric mean 0.45% 0.47% 0.18% 67.13.35 31.21 24.75 67 302 14
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Table 6: Remaining optimality gap, solution time, and number of nodes solved by each method: the lower
value either by the remaining optimality gap or the solution time achieved by two methods is highlighted in
bold.

Remaining optimality gap Solution time (sec) Number of nodes solved

Instance Gurobi esb Gurobi esb Gurobi esb

in 19 48 1 30.13% 27.51% 3600.00 3600.00 9289972 105
in 19 48 2 0.10% 28.29% 2436.81 3600.00 6882539 105
in 19 48 3 24.15% 14.74% 3600.00 3600.00 14495254 93
in 19 48 4 0.05% 0.06% 1.69 424.67 3147 13
in 19 48 5 0.98% 2.10% 3600.00 3600.00 16777932 107
in 19 48 6 10.64% 0.10% 3600.00 3009.85 12769840 119
in 19 48 7 5.59% 16.30% 3600.00 3600.00 15071785 103
in 19 48 8 0.99% 0.88% 3600.00 3600.00 15890286 71
in 19 48 9 9.15% 3.93% 3600.00 3600.00 10464904 89
in 19 48 10 2.30% 0.00% 3600.00 1002.23 13998031 17
in 21 54 1 35.28% 16.33% 3600.00 3600.00 8509977 51
in 21 54 2 0.09% 0.00% 277.49 387.46 208340 13
in 21 54 3 38.00% 12.39% 3600.00 3600.00 6459876 21
in 21 54 4 6.53% 2.20% 3600.00 3600.00 5519562 63
in 21 54 5 38.24% 24.77% 3600.00 3600.00 6942537 63
in 21 54 6 0.09% 0.00% 935.95 435.51 633461 15
in 21 54 7 15.88% 9.06% 3600.00 3600.00 9509896 33
in 21 54 8 0.10% 0.01% 3442.11 675.41 4893953 11
in 21 54 9 5.38% 0.10% 3600.00 1747.07 7447186 27
in 21 54 10 1.63% 0.07% 3600.00 3085.60 6379203 39

Arithmetic mean 11.26% 7.94% 3054.70 2698.39 8607384 58
Geometric mean 3.20% 1.65% 1974.82 2130.99 4533969 44
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