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Abstract

This study concerns the optimal design and operation of produced water and urban water networks. The

optimization formulations of these problems have inherent nonconvexity, making them hard to solve.

We address a key source of nonconvexity and difficulty in solving these problems: the representation of

frictional pressure changes across network nodes using nonlinear constraints, typically modeled by the

Hazen-Williams equation. For the optimization of produced water networks, we analytically show the

effectiveness of using a standard piecewise linear approximation to generate near-optimal solutions for

the original problem for a general network. Computational results with real-world problems confirm the

success of this approach in terms solution quality and runtime. However, in the context of urban water

network design problems, we recognize the limitations of a direct piecewise-linear approximation and

propose an alternative solution. In particular, we develop a general-purpose primal heuristic to handle

MINLPs with nonlinearities in continuous variables. The heuristic solves a sequence of approximations,

with successively smaller domains of continuous variables appearing in nonlinearities. High-quality

primal solutions for problems from the literature are obtained, even outperforming the best-known

solutions in three of the nine problem instances.

Keywords: Produced water; Hazen-Williams equation; Urban water network design.

1. Introduction and background

Optimization of fresh and waste water networks is essential due to high infrastructure costs, water

scarcity in certain parts of the world, and environmental considerations. Applications in which opti-

mizing network parameters is important include drinking water distribution networks (Mala-Jetmarova

et al., 2018), wastewater treatment networks (Koleva et al., 2017), wastewater collection networks (Zhao

et al., 2015), produced water management networks in the context of oil and gas drilling (Drouven et al.,

2023), and irrigation networks (Wang et al., 2023). Depending on the application, the optimization can

be performed solely for the design of the network, solely for the operation of devices such as pumps,

or simultaneously for design and operational decisions. In this work, we consider two applications of

water network optimization: first, in produced water management in the oil and gas industry, and

second, in urban water supply network design. Both of these problems have inherent nonconvexities

and are challenging to solve by global solvers. These two problems share a common feature in that the

frictional pressure loss is governed by nonlinear expressions of the volumetric flow rate of water, giving

rise to nonconvexities in the resulting formulations.



A significant amount of research has been conducted in the area of water distribution network opti-

mization. Awe et al. (2019) provide valuable insights into this field, while Mala-Jetmarova et al. (2018)

provide a comprehensive review of water distribution systems. Additionally, several different types of

heuristics and metaheuristics for water distribution networks have been explored, see the review papers

Parvaze et al. (2023), Sarbu (2021). Here, we focus on works that use approximations of relaxations in

order to obtain MILPs that are computationally more tractable than MINLPs. Bragalli et al. (2012)

propose a MINLP approach to solve the water distribution network problem. They demonstrate how

the solutions they obtained are easily implementable due to the accurate modeling of frictional pres-

sure drop, which ensures correct hydraulics functioning. They note that MILP approximations of these

problems are typically intractable for any meaningful feasibility tolerance.

The literature shows a growing interest in the utilization of MILPs to either approximate or relax

optimization problems related to water networks. Several studies have demonstrated the advantages

of using MILP formulations, particularly by developing suitable piecewise linear approximations or

multi-parametric disaggregation of variables in nonlinear expressions. In a more general study, Braun

& Burlacu (2023) conducted experiments that compare different piecewise linearization formulations

when applied to over 300 MINLPLib benchmark instances. Their work emphasizes the advantages of

incremental models for piecewise linear formulations. Alperovits & Shamir (1977) present a heuristic

approach to the water network design problem, which involves iteratively fixing flows, solving the linear

program (LP) for the design problem, and using duals to update the flows. However, the solutions de-

rived from this method do not guarantee closeness to the globally optimal solution. Similarly, Samani

& Zanganeh (2010) propose a heuristic for the municipal water distribution network problem, which

involves iteratively solving the MILP problem to determine diameter choices and pump heads (pres-

sure change due to pumps). They then conduct hydraulic analysis to obtain flow and pressure values.

Recently, Shao et al. (2024) provide a piecewise linearization approach for pump schedule optimization.

The authors adaptively adjust the location of breakpoints based on the desired accuracy. Advantage

over genetic algorithm-based scheduling is observed in the case studies. Thomas & Sela (2024) provide

an optimization framework “MILPnet” which applies MILPs to model hydraulics in water distribution

networks. Application of the framework was demonstrated in examples of pump scheduling optimiza-

tion. These works do not present theoretical guarantees on the performance of approximations. For an

example demonstrating global guarantees of a linear approximation in MINLP for the pooling problem,

refer to Dey & Gupte (2015). In this work, we present analytical and experimental results for the

effectiveness of using a standard piecewise linear approximation for a general produced water network

optimization problem instance.

In the context of water treatment network design, MILP approximation techniques have proven

to be successful. Teles et al. (2012) and Ting et al. (2016) apply these techniques to solve a water

treatment network design problem. The main challenge in water treatment network design lies in the

nonconvexity due to the bilinear terms comprising flow and concentrations. Faria & Bagajewicz (2011)

address this challenge by proposing a bound contraction procedure for variables appearing in bilinear

terms and applying it to water management problems. Similarly, in water supply networks, Housh

(2023) shows computational efficiency of using MILP approximating MINLP on a tested case study.

These water network optimization models are different from the ones considered in this paper because

they do not account for the nonlinearities arising from the Hazen-Williams equations.
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Produced water, a highly saline byproduct of oil and gas development, necessitates careful disposal

to mitigate ecological risks. Dedicated disposal sites have been established to manage it responsibly (US

Geological Survey (2024); PARETO (2024)). Disposal offers a cost-effective way of handling produced

water and typically involves injecting it into an underground formation. It can also be reused within the

oil and gas industry itself for fracturing. Further, produced water has potential for being treated and

put to secondary beneficial use, such as in mining or agriculture. With all these considerations, building

a network for produced water management becomes vital to ensure cost-effective and environmentally

responsible handling. The network should aim to minimize infrastructure and operational costs while

enforcing physical and resource constraints.

Finding high-quality primal solutions for produced water optimization problems presents a consider-

able challenge, even for the most advanced Mixed Integer Nonlinear Programming (MINLP) solvers (Li

et al., 2024). The nonlinear constraints representing the frictional pressure drop in the problem for-

mulation, according to the Hazen-Williams equation (Williams & Hazen, 1905), make it challenging to

find good solutions for water network design problems. The electricity consumption of an electric pump

is directly proportional to the pressure increase from the pump and the volumetric flow rate of water,

leading to another nonlinearity. In such a context, we show analytically and confirm experimentally for

several real-world case studies that a standard piecewise linear approximation can produce near-optimal

solutions for a general network setting. Thus, the approach provides an efficient and effective method

for solving the produced water optimization problem.

Our paper also considers urban water network design problems. Unlike produced water network

management, in this application setting, the demands at the customer locations are known and assumed

to be fixed across time, while a reservoir supplies an unlimited quantity of water. Additionally, these

problems only involve the optimization of network design, whereas produced water network optimization

incorporates the optimization of both design and operation decisions. The objective is to determine

pipeline diameters and flows that minimize infrastructure costs while meeting demand requirements

and hydraulic constraints within a fixed network topology, as described in Bragalli et al. (2012). As

with produced water network management, a primary difficulty is the nonlinear constraints involving

frictional pressure drops. These MINLP problems pose significant challenges for nonlinear solvers,

particularly in finding good feasible solutions. Here, we aim to find high-quality primal solutions to

optimize these water network designs. As Bragalli et al. (2012) discussed extensively, a direct use of

piecewise linear approximation in urban water network problems, such as the Hanoi water distribution

network design problem (MINLPLib, 2024), may result in Mixed Integer Linear Programs (MILPs)

whose solutions are infeasible for the MINLP. To address infeasibility, a very dense set of breakpoints

for the flow variables needs to be used for the piecewise linear approximation of pressure loss. However,

when fine intervals are chosen in the piecewise linear approximation, the resulting MILPs become

intractable for modern MILP solvers. To address this challenge in the urban water network design

problem, we have developed a new general-purpose primal heuristic to produce high-quality, feasible

solutions. Our approach involves iteratively solving linear approximations of nonlinear constraints and

systematically reducing bounds on continuous variables around the solution. While the initial linear

approximation solutions may be infeasible for the MINLP problem, as the bounds tighten, feasibility

is achieved within a desired tolerance.

The contributions of our work are twofold:
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• We demonstrate through analytical results that a standard piecewise linear approximation identi-

fies near-global optimal solutions for produced water network optimization problems. Experiments

on the real-world case studies further cements this claim.

• Standard piecewise linear approximations are inefficient for urban water network design problems

and fails to produce feasible solutions. To address this limitation, we develop a general-purpose

primal heuristic to tackle MINLPs with nonlinearities in continuous variables. We test our heuris-

tic against the solutions obtained by the BARON global optimization solver. Our primal heuristic

consistently delivers near-optimal solutions for all our water network design instances, including

standard urban water network design problems and produced water management. Notably, our

heuristic produces feasible solutions with superior objective values for three of the standard urban

water network design instances compared to the best-known solutions in the existing literature.

Our primal heuristic can be compared to the mesh refinement algorithms presented in Burlacu

et al. (2020) and Nagarajan et al. (2019), which focus on refining the intervals for the piecewise linear

approximation of nonlinear functions of continuous variables in successive iterations. In contrast to

traditional mesh refinement at a region, our approach restricts the domain to a smaller interval centered

around the previous approximation solution. Furthermore, similarities can be drawn between our

approach and diving heuristics for discrete variables, as discussed in Berthold (2008) and Bonami &

Gonçalves (2012). In diving heuristics, the values of integer variables are fixed from the solution of a

relaxation. However, our approach distinguishes itself by restricting the domain of a continuous variable

to a smaller interval centered at the solution to an approximation.

The remainder of this paper is structured as follows. Section 2 describes the produced water net-

work optimization problem and provides a basic mathematical formulation for it. Section 3 details the

proposed piecewise linear approximation to the nonlinear constraints. This section also presents ana-

lytical results guaranteeing near optimality of the solutions to the MINLP that are obtained using the

proposed approximation scheme. Section 4 describes the continuous-variable-diving (CVD) heuristic.

Finally, experimental results are presented in Section 5 followed by conclusions in Section 6.

2. Problem formulation for the produced water network optimization problem

We present a basic problem setting and the corresponding mathematical formulation to enhance the

readability and clarity of our approach. We refer to PARETO (2024) for the comprehensive formulation,

to which we will apply the proposed method.

2.1. Problem setting

We consider the problem of determining pipeline diameters for new installations or replacing existing

pipelines. We have three sets of nodes: demand nodes D, which process produced water; supply nodes

S, which are the source of the produced water; and intermediate nodes N of the pipeline. The quantity

of produced water varies with time across the source nodes, whereas the processing capacity (demand

nodes) is fixed with time. The flow possibilities between nodes are represented by a set of arcs A. This
set has one arc for each pair of nodes where flow can occur in a single direction, and two arcs for each

pair of nodes where flow can occur in either direction.
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Figure 1: An example network

Another set we consider is the set of upgrade diameters, K. When upgrading from the current

pipeline, the new diameter is the sum of the current diameter and a selected length from the set K.

A cost is associated with installing a new diameter pipeline, and each diameter value determines the

maximum volumetric flow rate through the pipe. Additionally, the set K includes an upgrade choice of

0, representing the option not to upgrade and keep the current pipeline intact between the locations.

The pressure values at the supply nodes are known, as are the elevations of all the nodes. The

frictional pressure loss in the direction of the flow is calculated using the Hazen-Williams equation. We

can install a pump between any pair of nodes to increase the pressure in the direction of the flow or

install a relief valve to reduce the pressure in the direction of the flow. Pumps have a fixed installation

cost and a variable electricity cost, which is directly proportional to the product of the volumetric flow

rate of water and the pressure increase due to the pump. The pressure values at each node must be

within the limits (minimum pressure limit and maximum tolerance limit) set by the pipe.

The objective is to identify minimum-cost decisions for pipeline diameters and pump locations

while ensuring flow conservation, hydraulics pressure constraints, and flow capacities. Furthermore, all

produced water from the supply nodes must be properly managed, and the processing capacities at the

nodes processing produced water must be adhered to.

2.2. Mathematical formulation

All sets, parameters, and variables are reported in Table 1.

We formulate the problem as follows:

min
∑
k∈K

∑
(i,j)∈A

cijkyijk +
∑

(i,j)∈A

Cij +
∑
i∈D

cproci (
∑
t∈T

∑
j:(i,j)∈A

qjit) (1)

s.t. ∑
j:(i,j)∈A

qijt = bit i ∈ S, t ∈ T (2)

∑
j:(j,i)∈A

qjit ≤ −bit i ∈ D, t ∈ T (3)
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Table 1: Sets, parameters, and variables

Sets

S Set of supply nodes
D Set of demand nodes
N Set of intermediate nodes
A Set of arcs
K Set of pipeline diameters for extension, includes 0 diameter case
T Set of time periods

Indices

i, j Indices for the nodes of the network
t Index for time
k Index for diameter choice

Parameters

cijk Cost of installing pipeline from i to j with diameter selection k
cproci Unit cost of processing produced water at location i
dij Current diameter value from i to j
σijk Diameter increase length for a choice k ∈ K of enlargement of pipeline from i to j
Fijk Flow capacity of pipeline from i to j if the extension diameter selected is k
bit Supply (if positive) or capacity at demand node (if negative) at node i at time period t.
pmax Maximum tolerable pressure at an intermediate node
pmin Minimum required pressure at an intermediate node
Pit Fixed pressures at the supply node i in period t
Ei Elevation of node i
ρ Density of water
g Acceleration due to gravity
γij Constant dependent on length of pipe, material of pipe and unit conversion
C1 Fixed cost of installing a pump
C2 Variable cost of using a pump
Qmax Maximum possible flow
M1 A large value (maximum flow)
M2 A large value (maximum pressure)

Variables

yijk Binary variable equals 1 if diameter k is selected for extension for arc (i, j), 0 otherwise
vij Binary variable equals 1 if pump is installed between nodes i and j, 0 otherwise
zijt Binary variable equals 1 if flow is from node i to node j at time period t, 0 otherwise
qijt Volumetric flow rate of water from node i to node j at period t
pit Pressure at node i at period t

∆Pump
ijt Pump head from node i to node j at period t

∆Valve
ijt Pressure release via valve from node i to node j at period t

HFriction
ijt Pressure loss due to friction from node i to node j at period t

Cij Total pump cost, fixed and variable, from node i to node j
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∑
j:(j,i)∈A

qjit =
∑

j:(i,j)∈A

qijt i ∈ N, t ∈ T (4)

qijt ≤
∑
k∈K

Fijkyijk (i, j) ∈ A, t ∈ T (5)

qijt ≤M1zijt (i, j) ∈ A, t ∈ T (6)

zijt + zjit = 1 (i, j) ∈ A, t ∈ T s.t. (j, i) ∈ A (7)∑
k∈K

yijk = 1 (i, j) ∈ A (8)

yijk = yjik (i, j) ∈ A, k ∈ K s.t. (j, i) ∈ A (9)

pit = Pit i ∈ S, t ∈ T (10)

(dij +
∑
k∈K

σijkyijk)
4.87HFriction

ijt = γijq
1.85
ijt (i, j) ∈ A, t ∈ T (11)

pit + ρgEi ≥ pjt + ρgEj +HFriction
ijt −∆Pump

ijt

+∆Valve
ijt −M2(1− zijt) (i, j) ∈ A, t ∈ T (12)

pit + ρgEi ≤ pjt + ρgEj +HFriction
ijt −∆Pump

ijt

+∆Valve
ijt +M2(1− zijt) (i, j) ∈ A, t ∈ T (13)

pmin ≤ pit ≤ pmax i ∈ N, t ∈ T (14)

∆Pump
ijt ≤M2vij (i, j) ∈ A, t ∈ T (15)

Cij = C1vij + C2

∑
t∈T

∆Pump
ijt qijt (i, j) ∈ A (16)

qijt ≥ 0, ∆Pump
ijt ≥ 0, ∆Valve

ijt ≥ 0 (i, j) ∈ A, t ∈ T (17)

yijk ∈ {0, 1} (i, j) ∈ A, k ∈ K (18)

vij ∈ {0, 1}, zij ∈ {0, 1} (i, j) ∈ A (19)

The objective function (1) minimizes the overall cost of pumps, pipe installations, and processing

produced water. Constraints (2) and (3) model the flows from supply nodes and flows into the demand

nodes, respectively. The equalities at supply nodes indicate that all produced water must be discharged,

while the inequalities at the demand nodes reflect the maximum processing capacities at these locations.

Flow conservation equations are enforced by Constraints (4). Additionally, Constraints (5) define the

flow capacities based on the selected diameter. Constraints (6) dictate that the flow through an arc at

a particular time period will be zero if the corresponding binary indicator variable is zero. Constraints

(7) ensure that flow occurs in a single direction during time period t. Exactly one diameter is to be

selected (8), and the diameter of the pipe in the reverse arc must match that of the forward arc (9).

Constraints (10) establish pressure values at the supply nodes. Constraints (11) are the Hazen-Williams

equations to calculate frictional pressure loss. Combining Constraints (12) and (13) provides a rule for

calculating node pressures. This rule does not apply if there is no flow along an arc. Therefore, this

rule is modeled as two inequalities with big-M instead of equality constraints. Constraints (14) set

the minimum and maximum tolerable pressure at the intermediate nodes. Constraints (15) ensure the

pump head is set to zero if no pump is installed. Constraints (16) define the cost of using a pump, which

consists of a fixed component and a variable component depending on usage. Finally, Constraints (17)

ensure the nonnegativity of the flow, pump-head, and valve-head variables, while Constraints (18)–(19)
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enforce binary conditions.

3. A piecewise linear approximation to produced water management problem and analysis

The Hazen-Williams frictional pressure loss (11) and the pump cost rule (16) are the sources of

nonlinearities in the MINLP formulation. Here, we first present a standard linear approximation for

these constraints and then present analytical guarantees that they are effective for a general network.

3.1. A piecewise linear approximation

3.1.1. Hazen-Williams equation

We use a piecewise linear approximation to approximate f(qijt) = q1.85ijt appearing in the right-hand

side of the Hazen-Williams equation (11).

Suppose the values of flows range from 0 to an upper bound Qmax. Choose intervals of length ∆Q

such that Qmax is an integer multiple of ∆Q. Introduce convex combination multipliers λijt1, λijt2, . . .,

λijt1+Qmax/∆Q
∈ [0, 1]. The flows will be a convex combination of 1+Qmax/∆Q equally spaced points in

the range [0, Qmax]. Let ζijt denote the piecewise linear approximation of f(qijt). The following system

of equations and inequalities yields ζijt.

qijt =

1+Qmax/∆Q∑
s=1

(s− 1)∆Qλijts (i, j) ∈ A, t ∈ T (20)

ζijt =

1+Qmax/∆Q∑
s=1

((s− 1)∆Q)
1.85λijts (i, j) ∈ A, t ∈ T (21)

1+Qmax/∆Q∑
s=1

λijts = 1 (i, j) ∈ A, t ∈ T (22)

λijt1 ≤ uijt1 (i, j) ∈ A, t ∈ T (23)

λijts ≤ uijts + uijt(s−1) (i, j) ∈ A, t ∈ T, s ∈ {2, . . . , Qmax/∆Q} (24)

λijt1+Qmax/∆Q
≤ uijt(Qmax/∆Q) (i, j) ∈ A, t ∈ T (25)

Qmax/∆Q∑
s=1

uijts = 1 (i, j) ∈ A, t ∈ T (26)

uijts ∈ {0, 1} (i, j) ∈ A, t ∈ T, s ∈ {1, . . . , Qmax/∆Q} (27)

Here, equation (20) represents flows as a convex combination of uniformly located points in the range

0 to Qmax. Equation (21) uses the same convex combination multipliers to approximate f(qijt) by

expressing it as a convex combination of function values at these uniformly located points. Equation

(22) ensures that the convex combination multipliers equals 1. Finally, Constraints (23) to (25) impose

a condition on the convex combination multipliers, specifying that a maximum of two can be nonzero

and that the nonzero multipliers have to be consecutive; Here, uijts are auxiliary binary variables that

take a value of one for the interval of the piecewise linear function that is selected. Equation (26)

enforces that exactly one interval is chosen.
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Figure 2: Piecewise linear approximation for the RHS of the Hazen-Williams constraint

The Hazen-Williams equation can be transformed into the following equation by rewriting the

expression for effective diameter on the LHS:∑
k∈K

(dij + σijk)
4.87yijkH

Friction
ijt = γijζijt (i, j) ∈ A, t ∈ T

Note that this approach involves a product of binary diameter selection variables with the frictional

pressure loss. This product can be easily linearized using McCormick inequalities. We know that when

one of two variables in a bilinear product is binary, these McCormick inequalities accurately model

the product. Thus, by introducing a new variable Pijtk for the product, we can enforce the above

Hazen-Williams equation as:∑
k∈K

(dij + σijk)
4.87Pijtk = γijζijt (i, j) ∈ A, t ∈ T (28)

Pijtk ≥ 0 (i, j) ∈ A, t ∈ T, k ∈ K (29)

Pijtk ≤ HFriction
ijt (i, j) ∈ A, t ∈ T, k ∈ K (30)

Pijtk ≤M2yijk (i, j) ∈ A, t ∈ T, k ∈ K (31)

Pijtk ≥ HFriction
ijt +M2yijk −M2 (i, j) ∈ A, t ∈ T, k ∈ K (32)

Instead of using Constraints (11), we use Constraints (20) to (32) to create a linear approximation.

The approximation error is caused by modeling f(qijt) as a piecewise linear function. Increasing the

number of points of the piecewise linear approximation improves accuracy but reduces the solution

process efficiency. In our current setup, we found that a somewhat coarse point selection (with four

intervals) still led to a near-optimal solution. This observation is supported by the propositions in

Subsection 3.2.

3.1.2. Electricity (variable) cost of operating pumps

The variable cost, which is the electricity cost of using a water pump, depends on the product of the

pressure change induced by the pump and the volumetric flow rate of water through the pump. Specif-
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ically, the variable cost at any given time period is calculated using the formula Vijt = C2∆
Pump
ijt qijt,

for all (i, j) ∈ A. After expressing the flow as a convex combination of discrete points in its range, we

can linearize the variable cost using the following inequality.

Vijt ≥ C2(s∆Q)∆
Pump
ijt −M(1− uijts) s ∈ {1, . . . , Qmax/∆Q} (33)

The variable cost Vijt in the system of inequalities is set based on the cost calculated using the maximum

point of the respective flow interval. When the respective flow does not fall within the range of intervals,

the constraints are deactivated using the big-M term. Since the overall problem is a minimization

problem, optimality ensures that Vijt is equal to the largest of the terms on the right-hand side of (33).

For the sake of conciseness, we provide the complete formulation for the piecewise linear approxi-

mation in Appendix A.

3.2. Analytical results

Let zMINLP be the optimal objective cost of the MINLP and zPL be the optimal objective cost of

the piecewise linear formulation described above.

The next set of propositions provides a way to generate and assess the quality of a solution to the

MINLP using a solution to the piecewise linear approximation.

The first proposition proves that one can produce a feasible solution of the MINLP using an optimal

solution of the piecewise linear approximation. In particular, one can find a feasible solution of the

MINLP by fixing the flow values, diameter choices, and pump locations of the optimal solution of the

piecewise linear approximation and only perturbing the relief valve pressure differences. The proof of

the proposition shows how to make these perturbations. The obtained solution of the MINLP has

at least as good objective value as the piecewise linear approximation’s objective. As a result, the

piecewise linear approximation always leads to a feasible solution of the MINLP.

Proposition 3.1. For every solution to the piecewise linear approximation, there is a corresponding

solution to the MINLP with no higher cost.

Proof. Consider a solution to the piecewise linear approximation (ŷijk, ẑijt, v̂ij , q̂ijt, ∆̂
Pump
ijt , ∆̂Valve

ijt ,

ĤFriction
ijt , Ĉij). Construct a solution to the original MINLP as follows.

Set ȳijk ← ŷijk, z̄ijt ← ẑijt, v̄ij ← v̂ij , q̄ijt ← q̂ijt, ∆̄
Pump
ijt ← ∆̂Pump

ijt . The value of H̄Friction
ijt will

be set by the nonlinear equation (11) to H̄Friction
ijt ← γij(q̂ijt)

1.85/(dij +
∑

k∈K kŷijk)
4.87. Further, set

∆̄Valve
ijt ← ∆̂Valve

ijt + ĤFriction
ijt − H̄Friction

ijt . Then, the defined solution (ȳijk, z̄ijt, v̄ij , q̄ijt, ∆̄
Pump
ijt , ∆̄Valve

ijt ,

H̄Friction
ijt , p̄it, C̄ij) satisfies all the constraints of the original MINLP.

The cost of diameter extension in the constructed MINLP solution
∑

k∈K
∑

(ij)∈A cijkȳijk =∑
k∈K

∑
(ij)∈A cijkŷijk is the same as the piecewise linear approximation formulation. Similarly, the

cost of processing remains the same because the flows into the processing sites are kept the same.

Furthermore, the pump cost Ĉij in the piecewise linear approximation overestimates C̄ij in the MINLP

because the flow in an interval is at its maximum in the piecewise linear approximation. Therefore,

the objective cost of the constructed MINLP solution is less than or equal to the objective cost of the

piecewise linear solution.

Remark (Upper Bound). Proposition 3.1 provides an efficient method for obtaining good feasible so-

lutions to the MINLP. By leveraging the efficient solving capabilities of modern MILP solvers, one can
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obtain a valid feasible solution to an instance of the produced water network problem. Additionally,

zMINLP ≤ zPL.

As we have shown above, the solution of the piecewise linear approximation can always be converted

to a feasible solution of the MINLP with an objective value that is at least as good as that of the

piecewise linear approximation. We next ask the question how good are the solutions produced using

this approach. In order to study this question, we will take the optimal solution of the MINLP and

show that there is a feasible solution in the piecewise linear approximation which is nearly as good.

We present two such results. The first result makes an assumption about the structure of the network

and a minor assumption about the MINLP optimal solution. We note here that these assumptions hold

true for all instances we solved in this work. The second result makes no such assumptions but comes

at the cost of weaker bounds.

Before we present our results, we present the following relationship between the horizontal grid size

and the error of the approximation of the frictional pressure loss, which enhances the understanding of

the bounds obtained.

Remark. Let ϵ be the maximum approximation error for the nonlinear frictional pressure drops with

a piecewise linear approximation. The relationship between ∆Q and ϵ is as follows. For each interval

[s∆Q, (s+ 1)∆Q], we define ζs(x) as the value of the line segment that connects (s∆Q, (s∆Q)
1.85) and

((s+ 1)∆Q, ((s+ 1)∆Q)
1.85). This gives us a piecewise linear approximation. Our goal is to maximize

the concave function ζs(x)− x1.85 by taking the derivative with respect to x. We denote this maximum

value as ϵs. Then, ϵ = γmaxs∈{1,...,1+Qmax/∆Q} ϵs, where γ is the pipeline-specific constant.

Proposition 3.2. Suppose the cycles in the network are chordless. Let L,E denote the set of cycles

and arcs, respectively. Suppose there exists an optimal solution to the MINLP where the operating

pressures are at least 2|L||E|ϵ more than the minimum allowable pressure and at least |L||E|ϵ less than
the maximum allowable pressure. Then there is a feasible solution to the piecewise-linear approximation

with a maximum cost deterioration of C2Qmaxϵ|E|T + C2(pmax − pmin)∆Q|E|T .

Proof. Consider any solution of the MINLP (ȳijk, z̄ijt, v̄ij , q̄ijt, ∆̄
Pump
ijt , ∆̄Valve

ijt , H̄Friction
ijt , p̄it, C̄ij). We

construct a solution feasible for the piecewise linear formulation (ŷijk, ẑijt, v̂ij , q̂ijt, ∆̂
Pump
ijt , ∆̂Valve

ijt ,

ĤFriction
ijt , p̂it) whose objective function is at most C2Qmaxϵ|E|T +C2(pmax− pmin)∆Q|E|T higher than

the known feasible solution of the MINLP. In order to construct this solution, we perturb the solution

of the MINLP. Specifically, we keep the variable values (ȳijk, z̄ijt, v̄ij , q̄ijt) from the MINLP solution

fixed and adjust the variables ∆̄Pump
ijt , ∆̄Valve

ijt , H̄Friction
ijt , p̄it in order to be feasible for the piecewise

linear formulation. In the beginning, we set (∆̂Pump
ijt , ∆̂Valve

ijt ) = (∆̄Pump
ijt ,∆̄Valve

ijt ). Furthermore, we set

ĤFriction
ijt as the piecewise linear approximation of the frictional pressure loss.

We need to construct a pressure profile feasible for the piecewise linear formulation at any time t.

The piecewise linear approximation of the frictional pressure drops tends to overestimate the frictional

pressure drops of MINLP for the same flow. To offset this effect, we will first adjust the ∆̂Pump
ijt and

∆̂Valve
ijt variables in the piecewise linear formulation.

We begin by adjusting the variables (∆̂Pump
ijt and ∆̂Valve

ijt ) so that the total pressure drop around a

cycle is 0. In the network, there are two types of cycles. The first type involves all water flows in a

single direction, such as clockwise, in the MINLP solution and, therefore, in the constructed piecewise
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linear approximation solution. Such a cycle must contain a pump. This can be seen by adding the

pressure change constraints (12) and (13) over the arcs in the cycles. Let Lc be the set of arcs in the

clockwise direction. Since the pressure values and the changes in elevation cancel out, we obtain the

following equation: ∑
(ij)∈Lc

∆̄Pump
ijt =

∑
(ij)∈Lc

∆̄Valve
ijt +

∑
(ij)∈Lc

H̄Friction
ijt

Since the right-hand side of the above equation is strictly positive, there must be a nonzero pumphead

in the cycle. The piecewise linear approximation overestimates the pressure drop across every edge in

the cycle, resulting in a net positive pressure drop around the cycle in a clockwise direction. We can

calculate the magnitude of this net pressure drop as Rl, considering that none of the flows are altered.

To counterbalance this effect, we increase the pump head variable of the arc containing a pump to

∆̂Pump
ij = ∆̂Pump

ij + Rl. This ensures that total pressure drops around such cycles are 0. The maximum

possible value for Rl is ϵ|Lc|.
In the second type of cycle, the flows are not all in the same direction. Without loss of generality,

let the net pressure drop across the cycle with frictional drops calculated with the piecewise linear

function be positive in the clockwise direction as Rl. Then, select an arc (i, j) where the flow q̄ijt is

in the counterclockwise direction. Set ∆̂Valve
ijt = ∆̂Valve

ijt + Rl. This adjustment ensures that the total

pressure drop throughout the cycle is 0, thus achieving a net pressure drop of zero across each cycle in

the piecewise linear formulation.

Henceforth, for arcs where both i and j are not source nodes, the values of ∆̂Valve
ijt and ∆̂Pump

ijt are

fixed according to the assigned values. The value of ĤFriction
ijt is also fixed for all arcs. Thus, the values

of p̂it − p̂jt for the arcs in which neither i nor j is source from the inequalities (12) and (13) is fixed.

Next, we need to adjust the values of ∆̂Valve
ijt and ∆̂Pump

ijt for arcs where i or j is a source node. We

also need to assign the value of p̂ti for all nodes in order to produce a feasible solution.

To assign operating pressures to each node, we define S as the set of source nodes with known and

fixed pressure values. For each s ∈ S, let N (s) be the set of all neighbors of the source node s. Let

V represent the set of all nodes. Then assign the node pressures in the piecewise linear formulation

according to the following steps:

1. For each s ∈ S, set the source node pressures p̂s,t with known fixed pressures.

2. Select an arbitrary starting source node s0 ∈ S. Compute a tentative value for the pressure in a

neighbor n, say p̃nt, using the values of ∆̄Valve
s0nt , ∆̄

Pump
s0nt

and H̄Friction
s0nt through inequalities (12) and

(13).

3. Since p̂it − p̂jt is fixed for all arcs (i, j) such that i, j ∈ V \ S, starting with n, assign tentative

pressure values p̃it for all nodes i in V \S. In other words, p̃it− p̃jt = p̂it− p̂jt for all i, j ∈ V \S.

cycles have zero pressure drops around them, so there should be no conflict associated with them.

4. The above tentative pressure values may not be feasible since for some s ∈ S, n1 ∈ N (s) p̂ts − p̃tn1
may not be equal to

−ρgEs + ρgEn1 +HFriction
s,n1,t − ∆̄Pump

sn1t + ∆̄Valve
sn1t

. If the value of p̂st − p̃n1t is larger than the above expression, then we find a feasible solution by

appropriately increasing the value of ∆̂Valve,t
s,n1 . If p̂st − p̃n1t is smaller than the above expression,
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then we will globally reduce the value of the node pressures at all nodes in set V \ S to attain

feasibility. We do this by calculating the following quantity for all source nodes s ∈ S, n1 ∈ N (s):

D(s, n1) = max
{
(−ρgEs + ρgEn1 + ĤFriction,t

s,n1 − ∆̂Pump,t
s,n1 + ∆̂Valve,t

s,n1 )− (p̂ts − p̃n1t), 0
}

Then, we proceed in three steps:

(a) Let D = maxs∈S,n1∈N (s)(D(s, n1).

(b) Decrease the pressures of all the nodes in V \S by D. That is, set p̂it = p̃it − D, for all

i ∈ V \S.

(c) Finally, for all s ∈ S, n1 ∈ N (s), set ∆̂Valve
sn1t = (p̂st − (−ρgEs + ρgEn1 + ĤFriction

sn1t − ∆̂Pump
sn1t +

∆̂Valve
s,n1t ))− p̂n1t.

At the end of such assignment, we obtain feasible pressure profiles due to the following reason.

After adjusting the pump and valve pressure differences to address residuals around the loops, pressure

assignments can deviate from the MINLP solution by a maximum magnitude of |L||E|ϵ. Further, after
adjusting the valves of source and neighbors of the source, the pressure assignments can further show

a reduction from MINLP pressure assignments by a maximum |L||E|ϵ. Thus, the assumptions of the

proposition ensure the feasibility of the constructed pressure profile.

Objective value of the constructed solution: The increase in cost from the MINLP solution is due to

the increase in pump head variables and the error in approximating the pump costs. The cost increase

due to pump head increase can be bounded for each cycles with unidirectional flow as C2q̄iljltRl ≤
C2q̄iljltϵ|Lc| where il and jl are the nodes where the pump operates. Therefore, the total cost increase

due to pump head increase at any period can be bounded as
∑

l∈Lp
C2q̄iljltϵ|Lc| ≤ C2Qmaxϵ

∑
l∈Lp
|Lc| ≤

C2Qmaxϵ|E|. The increase in cost due to the approximation error of the pump operating cost can also

be quantified as C2
∑

t∈T
∑

(i,j)∈A ∆̂Pump
ijt ∆Q. Upper bounding ∆̂Pump

ijt with pmax − pmin results in the

mentioned bound.

Proposition 3.1 allows us to compute a feasible solution to the MINLP for any problem instance

described in Section 2. However, Proposition 3.2, which provides near-optimality guarantees of such

a solution, requires assumptions of chordless cycles and a structure on the optimal solution of the

pressures in the MINLP. Although the assumptions are mild and satisfied in all our case studies, it is

conceivable that there exist networks where the loops have chords. Next, we prove a weaker bound

on the feasible solution obtained via Proposition 3.1 for a general network. Since the cost of installing

pumps is a fraction of the overall cost of building the network and processing the produced water, the

bounds proved next become meaningful.

Proposition 3.3. For every solution to the MINLP, there is a corresponding solution to the piecewise

linear approximation with cost that is no worse than C1|E|+ C2ϵTQmax|E|.

Proof. Consider a solution to the MINLP (ȳijk, z̄ijt, v̄ij , q̄ijt, ∆̄
Pump
ijt , ∆̄Valve

ijt , H̄Friction
ijt , C̄ij). Construct

a solution to the piecewise linear approximation as follows.

Set ŷijk ← ȳijk, ẑijt ← z̄ijt, v̂ij ← 1, q̂ijt ← q̄ijt, ∆̂Valve
ijt ← ∆̄Valve

ijt . The value of ĤFriction
ijt will

be set using the piecewise linear approximation of the q̄1.85ijt term. Set ∆̂Pump
ijt ← ∆̄Pump

ijt + ĤFriction
ijt −
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H̄Friction
ijt . Then, the defined solution (ŷijk, ẑijt, v̂ij , q̂ijt, ∆̂

Pump
ijt , ∆̂Valve

ijt , ĤFriction
ijt , p̂it, Ĉij) satisfies all

the constraints of the original MINLP.

The cost increase is due to the installation of an electric pump and operating at a higher power can

be bounded from above by C1|E| + C2ϵTQmax|E| where the first term corresponds to the fixed cost

and the second term is the electricity cost.

Remark. For Proposition 3.2, the terms C2Qmaxϵ|E|T + C2(pmax − pmin)∆Q|E|T can be interpreted

as the cost incurred if |E| pumps were to operate over all the time periods at a small pressure difference

ϵ but with a maximum flow (first term) as well as the cost incurred if |E| pumps were to operate over

all the time periods at a maximum pressure difference pmax − pmin but with a small flow ∆Q. Similar

intuition can be derived for the second term of Proposition 3.3. That is, the second term C2ϵTQmax|E| is
the electricity cost incurred if the pumps were to operate at maximum flow but a tiny pressure difference

of ϵ.

4. The continuous-variable-diving heuristic: combining linear approximation and domain

reduction

According to Bragalli et al. (2012), the direct use of piecewise-linear approximation for urban water

network design is ineffective and inefficient. This formulation is slow to solve using modern MILP

solvers, and feasible solutions obtained from the approximation are often infeasible for the original

MINLP problem. Based on these challenges and the effectiveness of global solvers in providing dual

bounds for network design problems, our focus is on designing a general-purpose primal heuristic to

generate high-quality feasible solutions.

We propose the Continuous-Variable-Diving (CVD) algorithm, which solves mixed-integer linear

approximations of the MINLP problem followed by domain reduction. We assume that all continuous

variables appearing in nonlinear expressions are bounded. The steps of the CVD algorithm are as

follows:

1. To approximate the nonlinear terms in the constraints and objective, we use linear functions

obtained via sampling points within variable bounds and fitting a linear function using standard

linear regression. In our experiments, we uniformly select sample points within the current bounds

to perform the regression. We refer to the resulting linear function as a least squares fit.

2. Substitute the nonlinear expressions in the objective and constraints with the linear expressions

obtained previously. The resulting problem will then be an MILP. Solve the MILP, but not

necessarily optimally. In our experiments, we provide the MILP solvers with a fixed amount of

time as the stopping criterion. If the MILP is infeasible, then the heuristic is said to have failed

and is terminated.

3. If the difference between the linear expressions and the original nonlinear function at the ob-

tained solution is within the desired tolerance, then accept the solution and stop the algorithm.

Otherwise, reduce the domains of all nonlinear continuous variables to smaller intervals centered

around the current MILP solution. This reduction is achieved in the following way. Denote the

reduction factor as η, which is a pre-specified constant greater than 2. Let x̄ be the MILP solution
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to a continuous variable and the current length of the domain of the variable be l. Then, update

the bounds of this variable to

[x̄− l/η, x̄+ l/η] ,

and return to Step 1.

The gap between the upper and lower bounds of each continuous variable shrinks exponentially with

each iteration. However, the domains of these continuous variables may not be nested. This means

that the domain of a variable in one iteration might not be a subset of the domain of the same variable

in the previous iteration.

Algorithm 1 is a pseudo-code for the CVD algorithm applied to the water network design problem.

The urban network design problem also excludes operational components (Bragalli et al., 2012). In

this context, flow variables may have positive or negative values based on the flow direction. The

pressure drop from node ‘a’ to node ‘b’ is proportional to the flow from ‘a’ to ‘b’ raised to the power of

1.85. When the flow is from ‘b’ to ‘a’, the pressure drop is negative. To represent this relationship in

the model, we use a nonlinear expression of the form signpower(q, 1.85), which evaluates to |q|1.85 for

positive flow q, and −|q|1.85 for negative flow q.

Algorithm 1 Continuous variable diving heuristic for water network design

Require: Error tolerance τ , reduction factor η > 2, number of sample points P
1: qLi0, q

U
i0 ← initial upper and lower bounds of flows 1

2: j ← 0
3: δ ← τ + 0.01 ▷ Maximum discrepency between nonlinear terms and the approximations, initially

more than τ
4: while δ > τ do
5: For each i ∈ A, sample P uniformly spaced points (q̄ki , signpower(q̄

k
i , 1.85)), k ∈ {1, . . . , P}

between qLij and qUij .

6: Let miqi + ci is the least square fit of the sampled points {(q̄ki , signpower(q̄ki , 1.85)) : k ∈
{1, . . . , P}}, i ∈ A.

7: For each i ∈ A, replace signpower(qi, 1.85) in the original formulation with the least squares fit
miqi + ci. This gives an approximation MILP. ▷ The process in Section 3 is used for the
linearization of the diameter terms.

8: Let q̃i, i ∈ A denote the solution to flows for the above MILP after a fixed time.
9: δ ← maxi∈A(|signpower(q̃i)− (miq̃i + ci)|)

10: li ← qUij − qLij . ▷ Current box sizes

11: qLi,j+1 ← q̃i − li/η. ▷ Reducing the domain

12: qUi,j+1 ← q̃i + li/η.
13: j ← j + 1.
14: end while
15: Return the solution of the last MILP solved in the above while loop.

For the following proposition, assume ϵ is the feasibility tolerance of the constraints, η is the re-

duction factor defined above, and D0 is the maximum length of the intervals containing the continuous

variables that appear in any of the nonlinearities.

1UB and LB obtained by minimizing and maximizing the flow variables over a relaxation formed by relaxing the
nonlinear constraints of the formulation.
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Proposition 4.1. If the nonlinearities that are linearized are unidimensional and Lipschitz continuous

with Lipschitz constant γ, then the maximum number of MILPs solved by the CVD algorithm can be

bounded from above by ⌈log(2D0γ/ϵ)/log(η/2)⌉.

Proof. When a nonlinear expression f(x) of a single variable is replaced with the least squares fit, there

will be a point x0 in the domain of f where the least squares fit value (L(x0)) equals the value of the

nonlinear function (f(x0)). To observe this, since L(x) is the least squares fit, there are two sampled

points x′0 and x′′0 such that L(x′0) ≥ f(x′0) and L(x′′0) ≤ f(x′′0). Else, L(x) could be perturbed by adding

or subracting a small constant to fit the sampled points better. If L(x′0) = f(x′0) or L(x′′0) = f(x′′0),

then we select x0 = x′0 or x0 = x′′0 respectively. If not, then we have L(x′0) > f(x′0) and L(x′′0) < f(x′′0).

Then, the continuity of f(x) and L(x) implies the existence of a point x0 on the line segment joining

x′0 and x′′0 such that L(x0) = f(x0).

The maximum magnitude of the slope of L(x) is upper bounded by γ because the linear fit helps

explain the variability in the data points. For a more detailed explanation, refer to Lemma 1 in the

Appendix.

In the current iteration, let the maximum length of the intervals of the continuous variables be

denoted as l. Thus, we have the following two inequalities for a nonlinearity f(x), its linear fit L(x),

and a general point x in the domain: |f(x) − f(x0)| ≤ lγ and |L(x) − L(x0)| ≤ lγ. Combining the

two equations, we find the error of approximation |f(x) − L(x)| ≤ 2γl. In order for all errors to be

less than a tolerance ϵ, it must hold that 2γl ≤ ϵ, which implies l ≤ ϵ/(2γ). By recalling that the

reduction factor in each step is η/2, the maximum length of the intervals containing the continuous

variables after N iterations of the algorithm can be expressed as D0/(η/2)
N . Therefore, it is necessary

that D0/(η/2)
N ≤ ϵ/(2γ). This condition leads to the expression N ≥ log(2D0γ/ϵ)/ log(η/2).

5. Numerical experiments

5.1. Hardware and software

The computational experiments were conducted using an Intel i7-1165G7 CPU with 16 GB RAM.

Gurobi 12.0 was used as the MILP solver for linear approximation, and BARON 25.2 was used to solve

the MINLP models.

5.2. Instances

5.2.1. Produced water network optimization problems

We used the four networks as part of the PARETO case studies for the produced water optimization

problem (PARETO, 2024). These include some of the real-world water networks in the Permian Basin

hosting several shale oil wells (Drouven et al., 2023). The sizes of these networks are shown in Table

2. The networks for “ Permian Case Study” and “ Treatment Case Study” are identical but there are

more arcs with options to enlarge the diameters in the “ Treatment Case Study.”

We created additional instances by modifying the amounts of produced water at the production

nodes. For each time period, we increased the produced water amount at the production pads by a

stress factor. We also increased the intake capacity at the completion pads using the same stress factor.

The stress factors used were 0.8, 1.2, and 1.6. Additionally, to test the limits of the piecewise linear

approximation to solve the case studies, we increase the costs of the pumps by multiplying with a factor

of 5, 10, and 15.
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Table 2: Instance sizes

Case study Production
nodes

Intermediate
nodes

Completion
pad

Disposal
sites

Storage
sites

Water
treatment
sites

Toy 4 9 1 2 1 2
Small 15 28 4 3 2 2
Permian 15 28 3 5 3 6
Treatment 15 28 3 5 3 6

5.2.2. Urban water network design instances

We evaluated our CVD algorithm by testing it with standard instances of urban water network

design problems, which are widely used as benchmark problems for testing optimization techniques

(MINLPLib, 2024). The smallest instance, Shamir, contains 112 binary variables for diameter choices,

46 constraints, and a total of 135 variables. The largest instance, Modena, consists of 4121 binary

variables for diameter choices, 1853 constraints, and a total of 5027 variables.

5.3. Results

5.3.1. Piecewise-linearization results

Tables 3 and 4 display the results for the optimization of the produced water network using piece-

wise linear approximation. Table 3 presents results for four case studies, while Table 4 shows the results

for variations to these case studies. The piecewise linear approximation method provided near-optimal

solutions within reasonable times, while the nonlinear solvers struggled to produce good feasible solu-

tions within the same time frames, even with a coarse grid and a small number of intervals for piecewise

linearization (in this case, four). The stopping criterion for solving the piecewise linear approximation

was set to be an optimality gap of 4%. The time required to solve the approximations ranged from a

few seconds for the smallest instance to around 20 minutes for the largest instance.

In all instances tested, except for the small case study, the nonlinear solver BARON failed to

provide a good upper bound within 3 hours. The lower bounds provided by BARON were generally

good, except for the treatment case study. We observed that dropping the nonlinear constraints and

solving the resulting MILP, a relaxation is created that gives a tight lower bound for these instances.

With regards to the stress experiments presented in Table 4, multiplying the produced water quan-

tities by 1.2 or more at all periods made the small case study problem infeasible. For the remaining

feasible instances, the performance of BARON and piecewise linearization were similar to the trends

mentioned above.

Next, we tested the sensitivity of the piecewise linearization approach with respect to the electric

pump costs. The propositions in Section 3 show that the optimality gap can be sensitive to the relative

magnitude of the pump cost. Thus, we tested the proposed approach on the same case studies but

with the pump cost multiplied by the factors of 5, 10, and 15. Table 5 presents the results obtained.

As expected, the optimality gap of the solutions obtained is an increasing function of the cost of the

electric pumps, with all the optimality gaps less than 5%.
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Table 3: PARETO instances (m, n, and d denote the numbers of constraints, variables and binary
variables, respectively)

Case study
MINLP (BARON) Piecewise linearization

Size Time (s) UB LB Time (s) UB1 Gap2

Toy m = 22, 218 10,800 7,438 6, 126 89 6,136 0.2%
n = 15, 652
d = 5, 884

Small m = 44, 902 10,800 90,103 88,243 7 88,278 0.1%
n = 35, 287
d = 6, 323

Permian m = 49, 986 10,800 - 14,035 215 14,059 0.3%
n = 39, 622
d = 13, 662

Treatment m = 53, 640 10,800 - 9,649 1,267 17,364 0.25%
n = 40, 670
d = 21, 860

Table 4: Results with varying stress levels

Case study Stress BARON UB (3 hr)
Piecewise Linearization

LB3 Gap2
Time (s) UB

Toy 0.8 5854 56 4,913 4,900 0.3%
1.2 8021 129 7,522 7,508 0.2%
1.6 10,236 47 10,206 10,192 0.1%

Small 0.8 67,983 18 53,461 53,407 0.4%
1.2 Infeasible 0.2 Infeasible
1.6 Infeasible 0.2 Infeasible

Permian 0.8 N/A 186 12,112 12,066 0.4%
1.2 N/A 299 18,627 18,578 0.3%
1.6 N/A 333 28,807 28,759 0.2%

Treatment 0.8 N/A 642 14,259 14,215 0.3%
1.2 N/A 2,054 21,805 21,757 0.3%
1.6 N/A 2127 32,068 32,020 0.2%

Table 5: Piecewise Linearization results for varying pump costs

Case study Pump cost factor UB LB3 Time (s) Gap2 (%)

Toy 5 6,188 6,122 136 1.1
10 6,252 6,122 272 2.1
15 6,302 6,122 254 2.8

Small 5 88,566 88,199 10 0.4
10 91,187 88,199 11 3.3
15 92,335 88,199 16 4.5

Permian 5 14,239 14,014 141 1.6
10 14,484 14,014 128 3.2

Treatment 5 17,541 17,320 488 1.2
10 17,760 17,320 501 2.4
15 17,981 17,320 442 3.6
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5.3.2. CVD results

We tested the CVD algorithm on both produced water network optimization and standard urban

water network design instances. The results can be found in Table 6 for the urban water network

and Table 8 for the produced water network. To the best of our knowledge, Grossmann & Lee (2024)

and the dissertation Rajagopalan (2018) provide the current best-known solutions for the benchmark

instances of urban water network instances. We compare the objective our solutions to the best-knowns.

Concerning the parameters of the algorithm, we used a reduction factor of η = 3 and a feasibility

tolerance of 10−5. The maximum time limit for each MILP approximation was set to 120 seconds if

the root node time for the first LP relaxation was less than 30 seconds, 20 minutes if the root node

time for the LP relaxation was between 30 seconds to 2 minutes, otherwise 3 hours. All MILPs, except

for the ‘New York’ benchmark instance, solved in the iterations of the algorithm were feasible with

these settings. Additionally, the time taken to calculate the initial upper and lower bounds on the flow

variables in the CVD algorithm was insignificant compared to the total time of the algorithm. These

bounds were obtained by dropping nonlinearities and minimizing and maximizing the flow variables

subject to the remaining linear constraints. We have omitted reporting these times.

As can be seen from Tables 6 and 8, the CVD algorithm is successful in finding good feasible solutions

much faster than BARON. Moreover, for three of the benchmark urban water network instances, the

CVD algorithm found better solutions than the best-known solutions. CVD algorithm did not succeed

in finding solutions to the ‘New York’ instance. However, we observed that modifying the linear

approximation from one line segment to a piecewise linear approximation with two pieces, yielded

optimal solution of the instance in about 25 minutes. Table 7 presents the best of the two versions of

CVD, with time as the sum of the two runtimes.

Table 6: CVD algorithm: benchmark instances (∆1: CVD’s improvement over best known solution,
∆2: Optimality gap compared to LB obtained from BARON)

Name
BARON CVD

Best known ∆1 ∆2Time UB LB Time UB

blacksburg 1.5 h 121,393 116,625 44 s 118,461 116,945 −1.3% 1.5%

fossiron 1.5 h 438,858 175,905 1,237 s 178,282 175,922 −1.3% 1.3%

fosspoly1 1.5 h 30,406 25,709 1,528 s 27,051 27,851 2.9% 5.0%

fosspoly0 1.5 h 79,520,517 67,557,672 885 s 72,888,489 67,559,218 −7.9% 7.3%

hanoi 1,575 s 6,109,620 6,109,620 131 s 6,125,369 6,109,620 −0.25% 0.2%

pescara 3 h N/A 1,663,840 2.1 h 1,812,564 1,820,264 0.42% 8.2%

modena 2 d N/A 2,130,040 2 d 2,539,446 2,576,589 1.4% 16.1%

shamir 62 s 419,000 419,000 10 s 419,000 419,000 0 0

new york 2 h 45,361,900 28,044,300 120 N/A 39,307,800 N/A N/A

1UB to MINLP obtained starting from piecewise linear approximation’s optimal solution and then applying Proposition
3.1.

2“Gap” in the tables refers to the gap of the feasible MINLP solution with respect to the lower bounds obtained by
dropping nonlinear constraints and solving the resulting MILP.

3Lower bounds obtained by dropping nonlinear constraints and solving the resulting MILP.

19



Table 7: CVD algorithm (best of two): benchmark instances (∆1: CVD’s percent improvement over
best known solution, ∆2: Optimality gap in percent compared to LB obtained from BARON)

Name
CVD

Best known ∆1 ∆2Time UB

blacksburg 37 s 118,461 116,945 −1.3% 1.5%

fossiron 2,474 s 178,282 175,922 −1.3% 1.3%

fosspoly1 1,759 s 27,051 27,851 2.9% 5.0%

fosspoly0 2,250 s 72,888,489 67,559,218 −7.9% 7.3%

hanoi 4 258 s 6,109,620 6,109,620 0% 0%

pescara 4.6 h 1,812,564 1,820,264 0.42% 8.2%

modena 2 d 2,539,446 2,576,589 1.4% 16.1%

shamir 26 s 419,000 419,000 0 0

new york 4 1,643 s 39,307,800 39,307,800 0 0

Table 8: CVD algorithm on PARETO instances (lower bound obtained by removing the nonlinear
constraints and solving the resulting MILP)

Case study Stress CVD UB Time (s) LB Gap (%)

Toy 0.8 4,921 71 4,900 0.4
1 6,144 80 6,123 0.3
1.2 7,530 43 7,508 0.3
1.6 10,209 54 10,192 0.2

Small 0.8 74,921 14 53,407 30
1 115,724 15 88,200 24
1.2 Infeasible
1.6 Infeasible

Permian 0.8 12,203 55 12,066 1.1
1 14,223 197 14,015 1.4
1.2 19,002 350 18,578 2.2
1.6 29,049 70 28,759 1.0

Treatment 0.8 14,269 709 14,215 0.4
1 17,375 540 17,311 0.4
1.2 21,848 709 21,757 0.4
1.6 32,083 714 32,020 0.2
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Table 9: CVD algorithm on PARETO instances for varying pump costs

Instance Pump cost factor UB LB3 Time (s) Gap2 (%)

Toy 5 6,228 6,122 56 1.7
10 6,333 6,122 34 3.3
15 6,490 6,122 70 5.7

Small 5 111,515 88,199 14 21
10 113,469 88,199 21 23
15 114,172 88,199 23 23

Permian 5 14,437 14,014 18 2.9
10 14,731 14,014 88 4.9
15 15,007 14,014 118 6.7

Treatment 5 17,590 17,320 603 1.5
10 17,880 17,320 558 3.1
15 18,167 17,320 295 4.7

Table 10: CVD algorithm: sensitivity with respect to reduction factor

Name
η = 2.5 η = 3.0 η = 4.0

Time UB Time UB Time UB

blacksburg 121 s Infeasible 44 s 118,461 67 s 125,128

fossiron 2,079 s 180,688 1237 s 178,282 653 s 181,056

fosspoly1 2,980 s 29,470 1528 s 27,051 1067 s 28,033

fosspoly0 1,490 s 70,680,508 885 s 72,888,489 552 s 71,345,012

hanoi 305 s 6,125,369 131 s 6,125,369 173 s Infeasible

pescara 7.5 hours 1,820,843 2.1 hours 1,812,564 2.9 hours Infeasible

modena 3 d 2,694,276 2 d 2,539,446 30 hours Infeasible

shamir 27 s 419,000 10 s 419,000 16 s 423,000

5.3.3. CVD sensitivity analysis

For the next set of experiments, we experimented with variations in the reduction factor and time

limit given for each MILP approximation. Table 10 shows the performance of the algorithm for three

different sets of reduction factor, namely η = 2.5, η = 3 and η = 4.0. It can be observed from this

table that η = 3 is optimal value of the reduction factor. A lower reduction factor of η = 2.5 leads

to a slower convergence of the algorithm and a slight deterioration in the solution quality for most

instances. An exception of this is the fosspoly0 instance, for which, the solution quality improves with

the lower reduction factor. Similarly, and as one can expect, with a higher reduction factor of η = 4,

the convergence becomes faster but the solution quality deteriorates. With such a higher reduction

factor, three of the instances show infeasibility at some point of the CVD algorithm. A recommended

approach to find the optimal value of the reduction factor for a given problem is to adjust it for a

smaller problem instance and then use the tuned parameter for the larger instances. See Figure 3 for

the reduction in nonlinear constraint violations as a result of approximations plotted against iterations

of CVD for the Shamir instance. Next, Table 11 shows the performance of the algorithm relative to

different time settings. In the first time setting, the MILP timeout is set to be 80 seconds for the

problems where the root node relaxation can be solved within 30 seconds, 800 seconds for the problems

with root node time between 30 seconds to 2 minutes and 2 hours if the root node time is beyond 2

minutes. In the second time setting, the MILP timeout is set to be 120 seconds for the problems where
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Table 11: CVD algorithm: sensitivity with respect to MILP time (η = 3)

Name
Time setting 1 Time setting 2 Time setting 3

Time UB Time UB Time UB

blacksburg 41 s Infeasible 44 s 118,461 51 s Infeasible

fossiron 888 s 180,381 1237 s 178,282 1639 s 180,688

fosspoly1 1242 s 28,157 1528 s 27,051 2552 s 27,767

fosspoly0 613 s 72,821,347 885 s 72,888,489 1275 s 72,759,146

hanoi 80 s 6,125,369 131 s 6,125,369 130 s 6,125,369

pescara 3.3 hours 1,851,378 2.1 hours 1,812,564 6 hours 1,816,745

modena 1.5d 2,580,684 2 d 2,539,446 3d 2,529,012

shamir 9 s 419,000 10 s 419,000 11 s 419,000
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Figure 3: Reduction of maximum violations of nonlinear constraints with iteration (Shamir instance)

the root node relaxation can be solved within 30 seconds, 20 minutes for the problems with root node

time between 30 seconds to 2 minutes and 3 hours if the root node time is beyond 2 minutes. Finally, in

the third time setting, the MILP timeout is set to be 180 seconds for the problems where the root node

relaxation can be solved within 30 seconds, 30 minutes for the problems with root node time between

30 seconds to 2 minutes and 4 hours if the root node time is beyond 2 minutes. It can be observed that

the second time is more or less optimal, barring two of the instances which showed a better solution

quality with the third time setting.

The second time setting was the default setting of the parameter in the previous experiments.

4Optimal solution found using CVD with two pieces to approximate the nonlinear function x1.85.
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6. Conclusions

We analytically and empirically establish the usefulness of piecewise-linear approximation for pro-

duced water networks in the oil and gas industry. Additionally, we introduce the Continuous Variable

Diving heuristic, which not only improves known upper bounds for standard urban water network

instances but also generates near-optimal results for produced water network optimization problems.

Future research could explore the performance of this heuristic in addressing various other MINLP prob-

lems with nonlinearity in continuous variables, extending the impact of this work within the broader

range of practically relevant MINLPs.
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Appendix A. Piecewise linear formulation for produced water network optimization

min
∑
k∈K

∑
(i,j)∈A

cijkyijk +
∑

(i,j)∈A

Cij (A.1)

s.t. ∑
j:(i,j)∈A

qijt = bit i ∈ S, t ∈ T (A.2)
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∑
j:(ji)∈A

qjit ≤ −bit i ∈ D, t ∈ T (A.3)

∑
j:(ji)∈A

qjit =
∑

j:(ij)∈A

qijt i ∈ N, t ∈ T (A.4)

qijt ≤
∑
k∈K

Fijkyijk (i, j) ∈ A, t ∈ T (A.5)

qijt ≤M1zijt (i, j) ∈ A, t ∈ T (A.6)

zijt + zjit = 1 (i, j) ∈ A with (j, i) ∈ A, t ∈ T (A.7)∑
k∈K

yijk = 1 (i, j) ∈ A (A.8)

yijk = yjik (i, j) ∈ A with (j, i) ∈ Ak ∈ K (A.9)

pit = Pit i ∈ S, t ∈ T (A.10)

qijt =

1+Qmax/∆Q∑
s=1

(s− 1)∆Qλijts (i, j) ∈ A, t ∈ T (A.11)

ζijt =

1+Qmax/∆Q∑
s=1

((s− 1)∆Q)
1.85λijts (i, j) ∈ A, t ∈ T (A.12)

1+Qmax/∆Q∑
s=1

λijts = 1 (i, j) ∈ A, t ∈ T (A.13)

λijt1 ≤ uijt1 (i, j) ∈ A, t ∈ T (A.14)

λijts ≤ uijts + uijts−1 (i, j) ∈ A, t ∈ T, s ∈ {2, . . . , Qmax/∆Q} (A.15)

λijt1+Qmax/∆Q
≤ uijtQmax/∆Q

(i, j) ∈ A, t ∈ T (A.16)

Qmax/∆Q∑
s=1

uijts = 1 (i, j) ∈ A, t ∈ T (A.17)∑
k∈K

(dij + σijk)
4.87Pijtk = γijζijt (i, j) ∈ A, t ∈ T (A.18)

Pijtk ≥ 0 (i, j) ∈ A, t ∈ T (A.19)

Pijtk ≤ HFriction
ijt (i, j) ∈ A, t ∈ T (A.20)

Pijtk ≤M2yijk (i, j) ∈ A, t ∈ T (A.21)

Pijtk ≥ HFriction
ijt +M2yijk −M2 (i, j) ∈ A, t ∈ T (A.22)

pit + ρgEi ≥ pjt + ρgEj +HFriction
ijt −∆Pump

ijt

+∆Valve
ijt −M2(1− zijt) (i, j) ∈ A, t ∈ T (A.23)

pit + ρgEi ≤ pjt + ρgEj +HFriction
ijt −∆Pump

ijt

+∆Valve
ijt +M2(1− zijt) (i, j) ∈ A, t ∈ T (A.24)

pmin ≤ pit ≤ pmax i ∈ N, t ∈ T (A.25)

∆Pump
ijt ≤M2vij (i, j) ∈ A, t ∈ T (A.26)

Cij = C1vij + C2

∑
t∈T

∆Pump
ijt qijt (i, j) ∈ A (A.27)

qijt ≥ 0, ∆Pump
ijt ≥ 0, ∆Valve

ijt ≥ 0 (i, j) ∈ A, t ∈ T (A.28)
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Appendix B. Lemma

Lemma 1. Suppose the nonlinear function f(x) that is linearized in the CVD algorithm is uni-

dimensional and Lipschitz continuous with Lipschitz constant γ. Then, the least squares fit x has

a Lipschitz constant L(x) that is upper bounded by γ.

Proof. We will prove that an upper bound on the magnitude of the slope of L(x) is γ by the method

of contradiction. Let the magnitude of the slope of L(x) be M > γ. Without loss of generality, let

L(x) = Mx + c. There is a point x0 where L(x0) = f(x0). From M > γ, it follows that for x > x0,

L(x) > f(x0) and for x < x0, L(x) < f(x0). Next, consider a very small rotation of to L(x) about

(x0, L(x0)) which reduces the slope magnitude M to M − ϵ where ϵ = M−γ
2 > 0. Then for any x > x0,

the error of approximation reduces by ϵ(x − x0) whereas for any x < x0 the error of approximation

reduces by ϵ(x0 − x). Further, for x0, the error of approximation remains the same, that is 0. Thus,

the rotated plane reduces the error of approximation everywhere in the domain and particularly at the

sampled points. Hence, the rotated plane is a better fit than L(x) leading to a contradiction.

27


	Introduction and background
	Problem formulation for the produced water network optimization problem
	Problem setting
	Mathematical formulation

	A piecewise linear approximation to produced water management problem and analysis
	A piecewise linear approximation
	Hazen-Williams equation
	Electricity (variable) cost of operating pumps

	Analytical results

	The continuous-variable-diving heuristic: combining linear approximation and domain reduction
	Numerical experiments
	Hardware and software
	Instances
	Produced water network optimization problems
	Urban water network design instances

	Results
	Piecewise-linearization results
	CVD results
	CVD sensitivity analysis


	Conclusions
	Piecewise linear formulation for produced water network optimization
	Lemma

