
Water network design and operation optimization: Leveraging linear
approximations for solving challenging MINLPs

Sourabh K. Choudharya, Santanu S. Deyb, Nikolaos V. Sahinidisc

aGeorgia Institute of Technology, H. Milton Stewart School of Industrial and Systems Engineering, Atlanta, GA 30313,
USA, e-mail: schoudhary66@gatech.edu

bGeorgia Institute of Technology, H. Milton Stewart School of Industrial and Systems Engineering, Atlanta, GA 30313,
USA, e-mail: santanu.dey@isye.gatech.edu

cGeorgia Institute of Technology, H. Milton Stewart School of Industrial and Systems Engineering and School of
Chemical and Biomolecular Engineering, Atlanta, GA 30313, e-mail: nikos@gatech.edu

Abstract

This study addresses water network design and operational problems, such as managing produced water

in the oil and gas industry and urban water network design. We specifically address a key challenge

in solving these: the representation of frictional pressure changes across network nodes using nonlinear

constraints, typically modeled by the Hazen-Williams equation. For the optimization of produced

water networks, we demonstrate the effectiveness of using a standard piecewise linear approximation

to generate near-optimal solutions for the original problem. Computational results with real-world

problems confirm the success of this approach. However, in the context of urban water network design

problems, we recognize the limitations of this approximation and propose an alternative solution.

We develop a general-purpose primal heuristic to handle MINLPs with nonlinearities in continuous

variables, leveraging linear approximations and bound-reduction techniques. This heuristic consistently

produces high quality primal solutions, even outperforming the best-known solutions in three urban

water network design case studies.
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1. Introduction and literature review

Optimization of fresh and waste water networks is important due to high infrastructure costs, water

scarcity in certain parts of the world and environmental considerations. Depending on the application,

the optimization can be of solely of the network design, solely of the operation of devices like pumps,

or simultaneous design and operation. Our paper discusses two specific applications of water network

optimization: first in produced water management in the oil and gas industry and second in urban

water supply network design. Both these problems share a common feature that the frictional pressure

loss is governed by nonlinear expressions of volumetric flow rate of water, giving rise to nonconvexities

in the resulting formulations. Such nonconvexities make these optimization problem challenging.

Produced water, a highly saline byproduct of crude oil drilling, necessitates careful disposal to

mitigate ecological risks. Dedicated disposal sites have been established to manage it responsibly (US

Geological Survey (2024); PARETO (2024). Disposal offers a cost-effective way of handling produced

water and typically involves injecting it to an underground formation. Produced water can also be

reused within the oil and gas industry itself for drilling. It also has potential for being treated and put

to secondary use such as in mining or agriculture. Building a network for produced water management



is vital to ensure management in a cost-effective and environmentally responsible manner. This network

should aim to minimize infrastructure and operational costs while enforcing all physical and resource

constraints. Worth mentioning in this context is the project PARETO which is an initiative by the U.S.

Department of Energy that aims to develop an open-source optimization framework for the management

of produced water (Drouven et al., 2023).

Finding high-quality primal solutions for these types of problems presents a considerable challenge,

even for the most advanced Mixed Integer Nonlinear Programming (MINLP) solvers (Li et al., 2024).

The nonlinear constraints of frictional pressure drop in the problem formulations, according to the

Hazen-Williams equation (Williams & Hazen, 1905), hinder the solution of water network design prob-

lems. The pressure drop is directly proportional to flow raised to the power of 1.85 and inversely

proportional to the diameter raised to the power of 4.87. The electricity consumption of an electric

pump is directly proportional to the pressure increase from the pump and the volumetric flow rate of

water, leading to another nonlinearity. In such a context, we analytically show that a standard piece-

wise linear approximation can produce near-optimal solutions and confirm experimentally for several

real-world case studies. For another example demonstrating global guarantees of a linear approximation

in MINLP for pooling problem, refer to Dey & Gupte (2015).

Our paper also considers urban water network design problems. Unlike the produced water net-

work management, in this application setting, the demands at the customer locations are known and

assumed to be fixed across time. Additionally, these problems involve optimization of only network

design, whereas produced water network optimization incorporates the optimization of both design and

operation decisions. The objective is to determine pipeline diameters and flows that minimize infras-

tructure costs while meeting demand requirements and hydraulic constraints within a fixed network

topology, as described in Bragalli et al. (2012). As with the produced water network management, a

primary difficulty is the nonlinear constraints involving frictional pressure drops. These MINLP prob-

lems pose significant challenges for nonlinear solvers, particularly in finding good feasible solutions.

Here, we aim to find high-quality primal solutions to optimize these water network designs. As is

extensively discussed in (Bragalli et al., 2012), a direct use of piecewise linear approximation in urban

water network problems, such as the Hanoi water distribution network design problem (MINLPLib,

2024), may result in Mixed Integer Linear Programs (MILPs) whose solutions are infeasible for the

MINLP unless a very fine grid is used. When a fine grid is used, the resulting MILPs become in-

tractable for modern MILP solvers. This is due to the presence of hard nonlinear equality constraints

that model the Hazen-Williams relation and contain no slacks.

To address this challenge in the urban water network design problem, we have developed a new

general-purpose primal heuristic to produce high-quality, feasible solutions. Our approach involves

iteratively solving linear approximations of nonlinear constraints and systematically reducing bounds

on continuous variables around the solution. While the initial linear approximation solutions may

be infeasible for the MINLP problem, as the bounds tighten, feasibility is achieved within a desired

tolerance.

A significant amount of research has been conducted in the area of water distribution network

optimization. Awe et al. (2019) provide valuable insights into this field, while Mala-Jetmarova et al.

(2018) provide a comprehensive review of water distribution systems. Additionally, several works have

explored heuristics and metaheuristics for water distribution networks, such as Cunha & Sousa (1999).
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The literature shows a growing interest in the utilization of MILPs to either approximate or relax

optimization problems related to water networks. Several studies have demonstrated the advantages

of using MILP formulations, particularly by developing suitable piecewise linear approximations or

multi-parametric dis-aggregation of variables in nonlinear expressions. In their recent and a general

study, Braun & Burlacu (2023) conducted experiments that compare different piecewise linearization

formulations when applied to over 300 MINLPLib benchmark instances. Their work emphasizes the

advantages of incremental models for piecewise linear formulations.

Bragalli et al. (2012) propose a MINLP approach to solve the water distribution network prob-

lem. They demonstrate how the solutions they obtained are easily implementable due to the accurate

modeling of frictional pressure drop, which ensures correct hydraulics functioning. They note that

MILP approximations of these problems are typically intractable for any meaningful feasibility toler-

ance. Additionally, Morsi et al. (2012) and Geißler et al. (2011) successfully apply a piecewise linear

approximation to solve water supply operation problems on tested networks. Similarly, Vieira et al.

(2020) provide a piecewise linearization technique along with a correction scheme to obtain solutions

to operational planning problem of water distribution networks. Notably, the technique outperforms

all previous best results for three benchmark problems in the literature. However, existing research

primarily explores MILP approximations for operation planning of water distribution networks. In

contrast, our paper focuses on MILP approximations for produced water network design and operation

problems and for design of urban water networks.

Alperovits & Shamir (1977) present a heuristic approach to the water network design problem,

which involves iteratively fixing flows, solving the linear program (LP) for the design problem, and

using duals to update the flows. However, the solutions derived from this method do not guarantee

closeness to the globally optimal solution. Similarly, Samani & Zanganeh (2010) propose a heuristic for

the municipal water distribution network problem, which involves iteratively solving the MILP problem

to determine diameter choices and pumpheads. They then conduct hydraulic analysis to obtain flow

and pressure values.

In the context of water treatment network design, MILP approximation techniques have proven

to be successful. Teles et al. (2012) and Ting et al. (2016) apply these techniques to solve a water

treatment network design problem. The main challenge in water treatment network design lies in

the nonconvexity due to the bilinear terms comprising flow and concentrations. Faria & Bagajewicz

(2011) address this challenge by proposing a bound contraction procedure for variables appearing in

bilinear terms and applying it to water management problems. These water network optimization

models are different from the ones considered in this work in the sense that they do not account for

the nonlinearities arising from the Hazen-William equations.

The contributions of our work to linear approximations of MINLPs are twofold:

• We demonstrate through analytical results and real-world case studies that a standard piecewise

linear approximation identifies near-global optimal solutions for the produced water network

optimization problems.

• Conversely, for the urban water network design problems, such an approximation is not efficient

and fails to produce feasible solutions. To address this limitation, we develop a general-purpose

primal heuristic to tackle MINLPs with nonlinearities in continuous variables. We test our heuris-
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tic against the solutions obtained by the BARON global optimization solver. Our primal heuristic

consistently delivers near-optimal solutions for all our water network design instances, including

standard urban water network design problems and produced water management. Notably, our

heuristic produces feasible solutions with superior objective values for three of the standard urban

water network design instances compared to the best-known solutions in the existing literature.

Based on the literature, our heuristic can be compared to the mesh refinement algorithm presented

in Burlacu et al. (2020), which focuses on making discretizations finer in successive iterations. In

contrast to traditional mesh refinement at a region, our heuristic restricts the domain to a smaller

interval centered around the previous approximation solution. Furthermore, similarities can be drawn

between our approach and diving heuristics for discrete variables, as discussed in Berthold (2008) and

Bonami & Gonçalves (2012). In diving heuristics, the values of integer variables are fixed from the

solution of a relaxation. However, our approach distinguishes itself by restricting the domain of a

continuous variable to a smaller interval centered at the solution to an approximation.

The remainder of this paper is structured as follows. Section 2 describes the produced water net-

work optimization problem and provides a basic mathematical formulation for it. Section 3 details the

proposed piecewise linear approximation to the nonlinear constraints. This section also presents ana-

lytical results guaranteeing near optimality of the solutions to the MINLP that are obtained using the

proposed approximation scheme. Section 4 describes the continuous-variable-diving (CVD) heuristic.

Finally, experimental results are presented in section 5 followed by conclusions in Section 6.

2. Problem formulation for the produced water network optimization problem

We present a basic problem setting and the corresponding mathematical formulation to enhance the

readability and clarity of our approach. We refer to PARETO (2024) for the comprehensive formulation,

to which we will apply the proposed method.

2.1. Problem setting

We consider the problem of determining pipeline diameters for new installations or replacing existing

pipelines. We have three sets of nodes: demand nodes D, which process produced water; supply nodes

S, which are the source of the produced water; and intermediate nodes N of the pipeline. The flow

possibilities between nodes are represented by a set of arcs A. This set has one arc for each pair of

nodes where flow can occur in a single direction, and two arcs for each pair of nodes where flow can

occur in either direction.

Another set we consider is the set of extension pipeline diameters, K. When extending the current

pipeline, the new diameter is the sum of the current diameter and a selected diameter from the set

K. A cost is associated with installing a new diameter pipeline, and each diameter value determines

the maximum volumetric flow rate through the pipe. Additionally, the set K includes a diameter of 0,

representing the option not to extend and keep the current pipeline between the locations.

The pressure values at the supply nodes are known, as are the elevations of all the nodes. The

frictional pressure loss in the direction of the flow is calculated using the Hazen-William equation. We

can install a pump between any pair of nodes to increase the pressure in the direction of the flow or

install a relief valve to reduce the pressure in the direction of the flow. Pumps have a fixed installation
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cost and a variable electricity cost, which is directly proportional to the product of the volumetric flow

rate of water and the pressure increase due to the pump. The pressure values at each node must be

within the limits (minimum pressure limit and maximum tolerance limit) set by the pipe.

The objective is to identify minimum cost decisions for pipeline diameters and pump locations

while ensuring flow conservation, hydraulics pressure constraints, and flow capacities. Furthermore, all

produced water from the supply nodes must be properly managed, and the processing capacities at the

nodes processing produced water must be adhered to.

2.2. Mathematical formulation

All sets, parameters, and variables are reported in Table 1.

We formulate the problem as follows:

min
∑
k∈K

∑
(i,j)∈A

ckijy
k
ij +

∑
(i,j)∈A

Cij (1)

s.t. ∑
j:(i,j)∈A

qtij = bti i ∈ S, t ∈ T (2)

∑
j:(ji)∈A

qtji ≤ −bti i ∈ D, t ∈ T (3)

∑
j:(ji)∈A

qtji =
∑

j:(ij)∈A

qtij i ∈ N, t ∈ T (4)

qtij ≤
∑
k∈K

F k
ijy

k
ij (i, j) ∈ A, t ∈ T (5)

qtij ≤M1z
t
ij (i, j) ∈ A, t ∈ T (6)

ztij + ztji = 1 (i, j) ∈ A, t ∈ T s.t. (j, i) ∈ A (7)∑
k∈K

ykij = 1 (i, j) ∈ A (8)

ykij = ykji (i, j) ∈ A, k ∈ K s.t. (j, i) ∈ A (9)

pti = Pi,t i ∈ S, t ∈ T (10)

(dij +
∑
k∈K

kykij)
4.87HFriction,t

ij = γij(q
t
ij)

1.85 (i, j) ∈ A, t ∈ T (11)

pti + ρgEi ≥ ptj + ρgEj +HFriction,t
ij −∆Pump,t

ij

+∆Valve,t
ij −M2(1− ztij) (i, j) ∈ A, t ∈ T (12)

pti + ρgEi ≤ ptj + ρgEj +HFriction,t
ij −∆Pump,t

ij

+∆Valve,t
ij +M2(1− ztij) (i, j) ∈ A, t ∈ T (13)

pmin ≤ pti ≤ pmax i ∈ N, t ∈ T (14)

∆Pump,t
ij ≤M2vij (i, j) ∈ A, t ∈ T (15)

Cij = C1vij + C2

∑
t∈T

∆Pump,t
ij qtij (i, j) ∈ A (16)

qtij ≥ 0, ∆Pump,t
ij ≥ 0, ∆Valve,t

ij ≥ 0 (i, j) ∈ A, t ∈ T (17)
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Table 1: Sets, parameters, and variables

Sets

S Set of supply nodes
D Set of demand nodes
N Set of intermediate nodes
A Set of arcs
K Set of pipeline diameters for extension, includes 0 diameter case
T Set of time periods

Indices

i, j Indices for the nodes of the network
t Index for time
k Index for diameter choice

Parameters

ckij Cost of installing pipeline from i to j with diameter selection k

F k
ij Flow capacity of pipeline from i to j if the extension diameter selected is k

bti Supply (if positive) or capacity at demand node (if negative) at node i at time period t.
pmax Maximum tolerable pressure at an intermediate node
pmin Minimum required pressure at an intermediate node
Pi,t Fixed pressures at the supply node i in period t
Ei Elevation of node i
ρ Density of water
g Accelaration due to gravity
γij Constant dependent on length of pipe, material of pipe and unit conversion
C1 Fixed cost of installing a pump
C2 Variable cost of using a pump
M1 A large value (maximum flow)
M2 A large value (maximum pressure)

Variables

yki,j Binary variable equals to 1 if diameter k is selected for extension i to j, 0 otherwise

vi,j Binary variable equals to 1 if pump is installed between nodes i and j, 0 otherwise
zti,j Binary variable equals to 1 if flow is from node i to node j at time period t, 0 otherwise

qtij Volumetric flow rate of water from node i to node j at period t

ptt Pressure at node i at period t

∆Pump,t
ij Pump head from node i to node j at period t

∆Valve,t
ij Pressure release via valve from node i to node j at period t

HFriction,t
ij Pressure loss due to friction from node i to node j at period t

Cij Total pump cost, fixed and variable, from node i to node j

6



The objective function (1) minimizes the overall cost of pumps and pipe installations. Constraints

(2) and (3) model the flows from supply nodes and flows into the demand nodes, respectively. The

equalities at supply nodes indicate that all produced water must be discharged, while the inequalities

at the demand nodes reflect the maximum processing capacities at these locations. Flow conservation

equations are enforced by Constraints (4). Additionally, Constraints (5) define the flow capacities

based on the selected diameter. Constraints (6) dictate that the flow through an arc at a particular

time period will be zero if the corresponding binary indicator variable is zero. Constraints (7) ensure

that flow occurs in a single direction. Exactly one diameter is to be selected (8) and the diameter of the

pipe in the reverse arc must match that of the forward arc (9). Constraints (10) establish pressure values

at the supply nodes. Constraints (11) are the Hazen-Williams equations to calculate frictional pressure

loss. Combining Constraints (12) and (13) provides a rule for calculating node pressures. This rule does

not apply if there is no flow along an arc. Therefore, this rule is modeled as two inequalities with big-M

instead of an equality. Constraints (14) set the maximum tolerable pressure at the intermediate nodes.

Constraints (15) ensure the pump head is set to zero if no pump is installed. Constraints (16) define

the cost of using a pump, which consists of a fixed component and a variable component depending

on usage. Finally, Constraints (17) ensure the nonnegativity of the flow, pump-head, and valve-head

variables.

3. A piecewise linear approximation to produced water management problem and analysis

The Hazen-William frictional pressure loss (11) and the pump cost rule (16) are the sources of

nonlinearities in the MINLP formulation. Here, we develop a linear approximation for these constraints.

In Lemma 1, we show that any solution to the linear approximation can be made feasible to the original

MINLP formulation with minor adjustments.

3.1. A piecewise linear approximation

3.1.1. Hazen-William equation

We use a piecewise linear approximation to approximate f(qtij) = (qtij)
1.85 appearing in the right-

hand side of the Hazen-Williams equation (11).

Suppose the values of flows range from 0 to Qmax. Divide this range of flow into intervals of length

∆Q where Qmax is an integer multiple of ∆Q. Introduce convex combination multipliers λt,1
i,j , λ

t,2
i,j , ...,

λ
t,1+Qmax/∆Q

i,j . The flows will be a convex combination of 1 + Qmax/∆Q equally spaced points in the

range. Let ζtij denote the piecewise linear approximation of f(qtij). The following system of equations

and inequalities yield ζtij .

qtij =

1+Qmax/∆Q∑
s=1

(s− 1)∆Qλ
t,s
i,j (i, j) ∈ A, t ∈ T (18)

ζtij =

1+Qmax/∆Q∑
s=1

((s− 1)∆Q)
1.85λt,s

i,j (i, j) ∈ A, t ∈ T (19)

1+Qmax/∆Q∑
s=1

λt,s
i,j = 1 (i, j) ∈ A, t ∈ T (20)
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λt,1
i,j ≤ ut,1ij (i, j) ∈ A, t ∈ T (21)

λt,s
i,j ≤ ut,sij + ut,s−1

ij (i, j) ∈ A, t ∈ T, s ∈ {2, 3, ..., Qmax/∆Q} (22)

λ
t,1+Qmax/∆Q

i,j ≤ u
t,Qmax/∆Q

ij (i, j) ∈ A, t ∈ T (23)

Qmax/∆Q∑
s=1

ut,si,j = 1 (i, j) ∈ A, t ∈ T (24)

Here, Equation (18) represents flows as a convex combination of uniformly located points in the range

0 to Qmax. Equation (19) uses the same convex combination multipliers to approximate f(qtij) by

expressing it as a convex combination of function values at these uniformly located points. Equation

(20) ensures that the convex combination multipliers equals 1. Finally, Constraints (21) to (23) impose

a condition on the convex combination multipliers, specifying that a maximum of two can be nonzero,

depending on which interval of the piecewise linear graph is selected. Here, ut,sij are auxiliary binary

variables that take a value of one for the interval of the piecewise linear function that is selected.

Equation (24) enforces that exactly one interval is chosen.

The Hazen-William equation can be transformed into the following equation by rewriting the ex-

pression for effective diameter on the LHS:∑
k∈K

(dij + k)4.87ykijH
Friction,t
ij = κijζ

t
ij (i, j) ∈ A, t ∈ T

Note that this approach involves a product of binary diameter selection variables with the frictional

pressure loss. This product can be easily linearized using McCormick inequalities. We know that when

one of two variables in a bilinear product is binary, these McCormick inequalities accurately model

the product. Thus, by introducing a new variable Ptk
ij for the product, we can enforce the above

Hazen-William equation as:∑
k∈K

(dij + k)4.87Ptk
ij = κijζ

t
ij (i, j) ∈ A, t ∈ T (25)

Ptk
ij ≥ 0 (i, j) ∈ A, t ∈ T, k ∈ K (26)

Ptk
ij ≤ HFriction,t

ij (i, j) ∈ A, t ∈ T, k ∈ K (27)

Ptk
ij ≤M2y

k
ij (i, j) ∈ A, t ∈ T, k ∈ K (28)

Ptk
ij ≥ HFriction,t

ij +M2y
k
ij −M2 (i, j) ∈ A, t ∈ T, k ∈ K (29)

Instead of using Constraints (11), we use Constraints (18) to (24) and (25) to (29) to create a

linear approximation. The approximation error may be caused by modeling f(qtij) as a piecewise linear

function. Increasing the number of points for piecewise linear approximation improves accuracy but

reduces the solution process efficiency. In our current setup, we found that a somewhat coarse point

selection still led to a near-optimal solution. This observation is supported by the propositions in

Subsection 3.2.

3.1.2. Electricity (variable) cost of operating pumps

The variable cost, which is the electricity cost of using a water pump, depends on the product of the

pressure change induced by the pump and the volumetric flow rate of water through the pump. Specif-
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ically, the variable cost at any given time period is calculated using the formula Vtij = C2∆
Pump,t
ij qtij ,

for all (i, j) ∈ A. After expressing the flow as a convex combination of discrete points in its range, we

can linearize the variable cost using the following inequality.

Vtij ≥ C2(s∆Q)∆
Pump,t
ij −M(1− ut,sij ) s ∈ {1, 2, ..., Qmax/∆Q} (30)

The variable cost Vtij in the system of inequalities is set based on the cost calculated using the minimum

point of the respective flow. When the respective flow does not fall within the range of intervals, the

constraints are deactivated using the big-M term. Since the overall problem is a minimization problem,

optimality ensures that Vtij is equal to the largest of the terms on the right-hand side of (30).

For the sake of conciseness, we provide the complete formulation for the piecewise linear approxi-

mation in Appendix A.

3.2. Analytical results

Let zMINLP be the optimal objective cost of the MINLP and zPL be the optimal objective cost of

the piecewise linear formulation.

Proposition 3.1 (Approximate equivalance between piecewise linearization and MINLP). Assume

the loops present in the network are chordless, and the source nodes have only one neighbor. Let ϵ be

the maximum error of approximation of the nonlinear frictional pressure drops with piecewise linear

approximation, let L be the set of loops in the network, and let E be the set of edges of the network.

Suppose the optimal solution of the MINLP (ȳkij, z̄tij, v̄ij, q̄tij, ∆̄Pump,t
ij , ∆̄Valve,t

ij , H̄Friction,t
ij , p̄ti, C̄ij)

satisfies the condition that the operating pressure at each node is at least |E|ϵ+ |L||E|ϵ more than the

minimum allowable pressure and at least |L||E|ϵ less than the maximum allowable pressure. Then,

0 ≤ zPL − zMINLP ≤ C2Qmaxϵ|E|+ C2
∑

t∈T
∑

(i,j)∈A∆Pump,t
ij ∆Q.

The following two lemmas lead to the proposition.

Lemma 1. For every solution to the piecewise linear approximation, there is a corresponding solution

to the MINLP with no higher cost.

Proof. Consider a solution to the piecewise linear approximation (ŷkij , ẑ
t
ij , v̂ij , q̂

t
ij , ∆̂

Pump,t
ij , ∆̂Valve,t

ij ,

ĤFriction,t
ij , Ĉij). Construct a solution to the original MINLP as follows.

Set ȳkij = ŷkij , z̄tij = ẑtij , vij = v̂ij , qtij = q̂tij , ∆̄Pump,t
ij = ∆̂Pump,t

ij . The value of H̄Friction,t
ij will

be set by the nonlinear equation (11) to H̄Friction,t
ij = κij(q̂

t
ij)

1.85/((dij +
∑

k∈K kŷkij)
4.87). Further, set

∆̄Valve,t
ij = ∆̂Valve,t

ij +ĤFriction,t
ij −H̄Friction,t

ij . Then, the defined solution (ȳkij , z̄
t
ij , v̄ij , q̄

t
ij , ∆̄

Pump,t
ij , ∆̄Valve,t

ij ,

H̄Friction,t
ij , p̄ti, C̄ij) satisfies all the constraints of the original MINLP.

The cost of diameter extension in the constructed MINLP solution
∑

k∈K
∑

(ij)∈A ckij ȳ
k
ij =∑

k∈K
∑

(ij)∈A ckij ŷ
k
ij is the same as the piecewise linear approximation formulation. Furthermore, the

pump cost Ĉij in the piecewise linear approximation overestimates C̄ij in the MINLP because the flow

in an interval is at its maximum in the piecewise linear approximation. Therefore, the objective cost

of the constructed MINLP solution is less than or equal to the objective cost of the piecewise linear

solution.
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Remark (Upper Bound). Lemma 1 provides an effective method for obtaining good feasible solutions

to the MINLP. By leveraging the efficient solving capabilities of modern MILP solvers, we can obtain

a valid upper bound.

Remark (Optimal objectives). A corollary to the above proposition is that zMINLP ≤ zPL.

The next lemma gives guarantees on qualities of such solutions under mild assumptions.

Lemma 2. Assume that the loops present in the network are chordless and the source nodes have only

one neighbor. Let ϵ be the maximum error of approximation for the nonlinear frictional pressure drops

with piecewise linear approximation, let L be the set of loops in the network, and let E be the set of edges

of the network. Consider any solution of the MINLP (ȳkij, z̄
t
ij, v̄ij, q̄

t
ij, ∆̄

Pump,t
ij , ∆̄Valve,t

ij , H̄Friction,t
ij ,

p̄ti, C̄ij) satisfying the condition that the operating pressure at each node is at least |E|ϵ+ |L||E|ϵ more

than the minimum allowable pressure and at least |L||E|ϵ less than the maximum allowable pressure.

Then, there exists a corresponding solution to the piecewise linear approximation with a cost increase

of at most C2ϵQmax|E| +C2
∑

t∈T
∑

(i,j)∈A∆Pump,t
ij ∆Q from the MINLP cost, where Qmax is an upper

bound on the flow capacities.

Proof. We construct a solution feasible for the piecewise linear formulation (ŷkij , ẑ
t
ij , v̂ij , q̂

t
ij , ∆̂

Pump,t
ij ,

∆̂Valve,t
ij , ĤFriction,t

ij , p̂ti) whose objective function is at most C2ϵQmax|E|+ C2
∑

t∈T
∑

(i,j)∈A∆Pump,t
ij ∆Q

higher than the known feasible solution of the MINLP. In order to construct this solution, we per-

turb the solution of the MINLP. Specifically, we keep the variable values (ȳkij , z̄
t
ij , v̄ij , q̄

t
ij) from the

MINLP solution fixed and adjust the variables ∆̄Pump,t
ij , ∆̄Valve,t

ij , H̄Friction,t
ij , p̄ti in order to be feasible

for the piecewise linear formulation. In the beginning, we set (∆̂Pump,t
ij , ∆̂Valve,t

ij ) = (∆̄Pump,t
ij ,∆̄Valve,t

ij ).

Furthermore, we set ĤFriction,t
ij as the piecewise linear approximation of the frictional pressure loss.

We need to construct a pressure profile feasible for the piecewise linear formulation at any time

t. The piecewise linear approximation of frictional pressure drops tends to overestimate the MINLP

frictional pressure drops for the same flow. To offset this effect, we will first adjust the ∆̂Pump,t
ij and

∆̂Valve,t
ij variables in the piecewise linear formulation.

We begin by adjusting the variables (∆̂Pump,t
ij and ∆̂Valve,t

ij ) so that the total pressure drop around

a loop is 0. In the network, there are two types of loops. The first type involves all water flows in a

single direction in the MINLP solution and, therefore, in the constructed piecewise linear approximation

solution, such as clockwise. Such a loop must contain a pump. This can be seen by adding the pressure

change constraints (12) and (13) over the arcs in the loop. Let l be the set of arcs in the clockwise

direction. Since the pressure values and the changes in elevation cancel out, we obtain the following

equation: ∑
(ij)∈l

∆̄Pump,t
ij =

∑
(ij)∈l

∆̄Valve,t
ij +

∑
(ij)∈l

H̄Friction,t
ij

Since the right hand side of the above equation is strictly positive, there must be a nonzero pumphead

in the loop. Next, the piecewise linear approximation overestimates the pressure drop across every edge

in the loop, resulting in a net positive pressure drop around the loop in a clockwise direction. We can

calculate the magnitude of this net pressure drop as Rl, considering that none of the flows are altered.

To counterbalance this effect, we increase the pump head variable as ∆̂Pump
i(l),j(l) = ∆̂Pump

i(l),j(l) + Rl. This

ensures total pressure drops around such loops are 0. The maximum possible value for Rl is ϵ|l|.
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In the second type of loop, the flows are not all in the same direction. Without loss of generality,

let the net pressure drop across the loop with frictional drops calculated with piecewise linear function

be positive in the clockwise direction as Rl. Then, select an arc (i, j) where the flow q̄tij is in the

counterclockwise direction. Set ∆̂Valve,t
ij = ∆̂Valve,t

ij +Rl. This adjustment ensures that the total pressure

drop across the loop is 0, thus achieving a net pressure drop of zero across each loop in the piecewise

linear formulation.

Henceforth, for arcs where both i and j are not source nodes, the values of ∆̂Valve,t
ij and ∆̂Pump,t

ij

are fixed according to the assigned values. The value of ĤFriction,t
ij is also fixed for all arcs. Thus, we

already know the value of p̂ti − p̂tj for these arcs based on inequalities (12) and (13).

Next, we need to adjust the values of ∆̂Valve,t
ij and ∆̂Pump,t

ij for arcs where either i or j is a source

node. We also need to assign the value of p̂ti for all nodes in order to produce a feasible solution.

To assign operating pressures at each node, we define S as the set of source nodes with known and

fixed pressure values. For each s ∈ S, let n(s) be the immediate neighbor of the source nodes s. Let

V represent the set of all nodes. Then assign the node pressures in the piecewise linear formulation

according to the following steps:

1. For each s ∈ S, set the source node pressures p̂ts with the known fixed pressures.

2. Select an arbitrary starting source node s0 ∈ S. Compute a tentative value for pressure at n(s0),

say p̃tn(s0), using the values of ∆̄Valve,t
s0,n(s0)

, ∆̄Pump,t
s0,n(s0)

and H̄Friction,t
s0,n(s0)

via inequalities (12) and (13).

3. Since p̂ti − p̂tj is fixed for all arcs (i, j) such that i, j ∈ V \ S, starting with n(s0), assign tentative

pressure values p̃ti for all nodes i in V \ S. In other words, p̃ti − p̃tj = p̂ti − p̂tj for all i, j ∈ V \ S.

Loops have zero pressure drops around them, so there should be no conflict associated with them.

4. The above tentative pressure values may not be feasible since p̂ts − p̃tn(s) may not be equal to

−ρgEs + ρgEn(s) +HFriction,t
s,n(s) − ∆̄Pump,t

s,n(s) + ∆̄Valve,t
s,n(s)

for some s ∈ S \ {s0}. If the value of p̂ts − p̃tn(s) is larger than the above expression, then we can

fix the solution by appropriately increasing the value of ∆̂Valve,t
s,n(s) . If p̂

t
s− p̃tn(s) is smaller than the

above expression, then we will globally reduce the value of the node pressures at all nodes in set

V \ S to attain feasibility. We do this by calculating the following quantity for all source nodes

s ∈ S:

D(s) = max
{
(−ρgEs + ρgEn(s) + ĤFriction,t

s,n(s) − ∆̂Pump,t
s,n(s) + ∆̂Valve,t

s,n(s) )− (p̂ts − p̃tn(s)), 0
}
, s ∈ S.

Then, we proceed in three steps:

(a) Let D = maxs∈S(D(s)).

(b) Decrease the pressures of all the nodes in V \S by D. That is, set p̂ti = p̃ti−D, for all i ∈ V \S.

(c) Finally, for all s ∈ S set ∆̂Valve,t
s,n(s) = (p̂ts−(−ρgEs+ρgEn(s)+ĤFriction,t

s,n(s) −∆̂Pump,t
s,n(s) +∆̂Valve,t

s,n(s) ))−
p̂tn(s).
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The pressure assignment is feasible because of the given assumptions. The increase in cost from the

MINLP solution is due to the increase in pump head variables and the error in approximating the pump

costs. The cost increase due to pump head increase can be bounded for each loop with the unidirectional

flow as C2q̄
t
il,jl

Rl ≤ C2q̄
t
il,jl

ϵ|l|. Therefore, the total cost increase due to pump head increase can be

bounded as
∑

l∈Lp
C2q̄

t
il,jl

ϵ|l| ≤ C2Qmaxϵ
∑

l∈Lp
|l| ≤ C2Qmaxϵ|E|. The increase in cost due to the

approximation error of the pump operating cost can also be quantified as C2
∑

t∈T
∑

(i,j)∈A∆Pump,t
ij ∆Q.

Remark. The relationship between ∆Q and ϵ is as follows: for each interval [s∆Q, (s + 1)∆Q], we

define ζs(x) as the value of the line segment that connects (s∆Q, (s∆Q)
1.85) and ((s + 1)∆Q, ((s +

1)∆Q)
1.85). This gives us a piecewise linear approximation. Our goal is to maximize the concave

function ζs(x)− x1.85 by taking the derivative with respect to x. We denote this maximum value as ϵs.

Then, ϵ = κmaxs∈{1,2,...,1+Qmax/∆Q} ϵs, where κ is the pipeline specific constant.

Remark. A corollary to the above lemma is zPL−zMINLP ≤ C2Qmaxϵ|E|+C2
∑

t∈T
∑

(i,j)∈A∆Pump,t
ij ∆Q.

Combining it with the previous corollary, that is zPL − zMINLP ≥ 0 leads to Proposition 3.1.

4. The continuous-variable-diving heuristic: combining linear approximation and domain

reduction

According to Bragalli et al. (2012), the direct use of piecewise-linear approximation for urban water

network design is ineffective and inefficient. This formulation is slow to solve using modern MILP

solvers, and feasible solutions obtained from the approximation are often infeasible for the original

MINLP problem. Based on these challenges and the effectiveness of global solvers in providing dual

bounds for network design problems, our focus is on designing a general-purpose primal heuristic to

generate high-quality feasible solutions for all water network design instances we tested.

We propose the Continuous-Variable-Diving (CVD) algorithm, which solves mixed-integer linear

approximations of the MINLP problem followed by domain reduction. We assume that all continuous

variables appearing in nonlinear expressions are bounded. The steps of the CVD algorithm are as

follows:

1. To approximate the nonlinear terms in the constraints and objective, we approximate them as

linear functions using methods such as sampling points within variable bounds and fitting a linear

function using standard linear regression. In our experiments, we uniformly select sample points

within the current bounds to perform the regression. We refer to the resulting linear function as

a least squares fit.

2. Substitute the nonlinear expressions in the objective and constraints with the linear expressions

obtained previously. The resulting problem will then be an MILP. Solve the MILP, but not

necessarily optimally. In our experiments, we provide the MILP solvers with a fixed amount of

time as the stopping criterion. If the MILP is infeasible, then the heuristic fails and is terminated.

3. If the difference between the linear expressions and the original nonlinear function at the obtained

solution is within the desired tolerance, then terminate the algorithm. Otherwise, reduce the

domains of continuous variables to a smaller sized interval centered around the current MILP

12



solution. This reduction is achieved in the following way: denote the reduction factor as η, which

is a pre-specified constant greater than 2; let x̄ be the MILP solution to a continuous variable and

the current length of the domain of the variable be l; then, update the bounds of this variable to

[x̄− l/η, x̄+ l/η] ,

and return to Step 1.

The gap between the upper and lower bounds of each continuous variable shrinks exponentially with

each iteration. However, the domains of these continuous variables may not be nested. This means

that the domain of a variable in one iteration might not be a subset of the domain of the same variable

in the previous iteration.

Algorithm 1 is a pseudo-code for the CVD algorithm applied to the water network design problem.

The urban network design problem also excludes operational components (Bragalli et al., 2012). In

this context, flow variables may have positive or negative values based on the flow direction. The

pressure drop from node ‘a’ to node ‘b’ is proportional to the flow from ‘a’ to ‘b’ raised to the power of

1.85. When the flow is from ‘b’ to ‘a’, the pressure drop is negative. To represent this relationship in

the model, we use a nonlinear expression of the form signpower(q, 1.85), which evaluates to |q|1.85 for

positive flow q, and −|q|1.85 for negative flow q.

Algorithm 1 Continuous variable diving heuristic for water network design

Require: Error tolerance τ , reduction factor η > 0, number of sample points P
1: Calculate initial upper and lower bounds qL,0i , qU,0i for all the flow variables by minimizing and

maximizing them over a relaxation formed by relaxing the nonlinear constraints of the formulation.
2: j ← 0
3: while true do
4: Sample P uniformly spaced points (q̄ki , signpower(q̄

k
i , 1.85)), k ∈ {1, 2, ..., P}, i ∈ A, where

q̄ki = qL,ji + (k − 1)(qU,ji − qL,ji )/(P − 1).
5: For every i ∈ A, find the least squares fit miqi + ci by fitting the sampled points
{(q̄ki , signpower(q̄ki , 1.85)) : k ∈ {1, 2, ..., P}}.

6: Solve the MILP resulting from replacing each signpower(qi, 1.85) with the least squares fit
miqi + ci. ▷ The process in Section 4 is used for the linearization of the diameter terms.

7: Let q̃i, i ∈ A denote the solution to flows for the above MILP after a fixed amount of time.
8: li ← qU,ji − qL,ji . ▷ Current box sizes
9: If for each flow, the discrepancies |signpower(q̃i)− (miq̃i + ci)| ≤ τ break.

10: qL,j+1
i ← q̃i − li/η. ▷ Reducing the domain

11: qU,j+1
i ← q̃i + li/η.

12: j ← j + 1.
13: end while
14: Return the solution of the last MILP solved.

Proposition 4.1. When using the CVD algorithm, if the nonlinearities that are linearized are unidi-

mensional and Lipschitz continuous with Lipschitz constant γ, then the maximum number of MILPs

solved by the CVD algorithm can be bounded from above by ⌈log(2D0γ/ϵ)/log(η)⌉ where ϵ is the fea-

sibility tolerance of the constraints, η is the reduction factor defined above, and D0 is the maximum

length of the intervals containing the continuous variables that appear in any of the nonlinearities.
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Proof. When a nonlinear expression f(x) of a single variable is replaced with the least squares fit, there

will be a point x0 in the domain of f where the least squares fit value (L(x0)) equals the value of the

nonlinear function (f(x0)). To observe this, since L(x) is the least squares fit, there are two sampled

points x′0 and x′′0 such that L(x′0) ≥ f(x′0) and L(x′′0) ≤ f(x′′0). Else, L(x) could be perturbed by adding

or subracting a small constant to fit the sampled points better. If L(x′0) = f(x′0) or L(x′′0) = f(x′′0),

then we select x0 = x′0 or x0 = x′′0 respectively. If not, then we have L(x′0) > f(x′0) and L(x′′0) < f(x′′0).

Then, the continuity of f(x) and L(x) implies the existence of a point x0 on the line segment joining

x′0 and x′′0 such that L(x0) = f(x0).

The maximum magnitude of the slope of L(x) is upper bounded by γ because the linear fit helps

explain the variability in the data points. For a more detailed explanation, refer to Lemma 3 in the

Appendix.

In the current iteration, let the maximum length of the intervals of the continuous variables be

denoted as l. Thus, we have the following two inequalities for a nonlinearity f(x), its linear fit L(x),

and a general point x in the domain: |f(x)− f(x0)| ≤ lγ and |L(x)− L(x0)| ≤ lγ. Combining the two

equations, we find the error of approximation |f(x) − L(x)| ≤ 2γl. In order for all errors to be less

than a tolerance ϵ, it must hold that 2γl ≤ ϵ, which implies l ≤ ϵ/(2γ). By recalling that the reduction

factor in each step is η, the maximum length of the intervals containing the continuous variables after N

iterations of the algorithm can be expressed as D0/η
N . Therefore, it is necessary that D0/η

N ≤ ϵ/(2γ).

This condition leads to the expression N ≥ log(2D0γ/ϵ)/ log(η).

5. Numerical experiments

5.1. Hardware and software

The computational experiments were conducted using an Intel i7 CPU with 16 GB RAM. Gurobi

11.0 was used as the MILP solver for linear approximation, and BARON 24.3 was used to solve the

MINLP models. We tried Gurobi 11 for the MINLP models but observed that it was reporting pri-

mal solutions which violated some of the constraints for a small instance of produced water network

optimization. Furthermore, for one of the larger case studies (Permian case study), Gurobi 11 falsely

concludes infeasibility, whereas BARON comes up with a feasible solution.

5.2. Instances

5.2.1. Produced water network optimization problems

We used the four networks as part of the PARETO case studies (PARETO, 2024) for the produced

water optimization problem.

• Toy: nine intermediate nodes, four production nodes, six demand nodes (including one completion

pad, two disposal sites, one storage site, two water treatment facilities).

• Small: 28 intermediate nodes, 15 production nodes, 11 demand nodes (including four completion

pads, three disposal sites, two storage sites, and two water treatment facilities). Pipeline diameters

are fixed.

• Permian: 28 intermediate nodes, 15 production nodes, 17 demand nodes (including three com-

pletion pads, five disposal sites, three storage sites, and six water treatment facilities).
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• Treatment: Same components as the Permian case study but with more arcs offering diameter

expansion flexibility.

We created more instances by modifying the amounts of produced water at the production nodes. For

each time period, we increased the produced water amount at the production pads by a stress factor.

We also increased the intake capacity at the completion pads using the same stress factor. The stress

factors used were 0.8, 1.2, and 1.6.

5.2.2. Urban water network design instances

We evaluated our CVD algorithm by testing it with standard instances of urban water network

design problems, which are widely used as benchmark problems for testing optimization techniques

(MINLPLib website, (MINLPLib, 2024)). The smallest instance, Shamir, consists of 112 binary

variables for diameter choices, 46 constraints, and a total of 135 variables. The largest instance,

Modena, consists of 4121 binary variables for diameter choices, 1853 constraints, and a total of 5027

variables.

5.3. Results

5.3.1. Piecewise-linearization results

Tables 2 and 3 display the results for the optimization of the produced water network using piecewise

linear approximation. Table 2 presents results for four case studies, while Table 3 shows the results for

variations to these case studies.

The piecewise linear approximation method provided nearly optimal solutions within reasonable

time frames, while the nonlinear solvers struggled to produce good bounds within the same time frames,

even with a coarse grid and a small number of intervals for piecewise-linearization (in this case, four).

The time required to solve the approximations ranged from a few seconds for the smallest instance to

around 12 minutes for the largest instance.

In all tested instances, except the strategic small case study, the nonlinear solver BARON failed to

provide a good upper bound within 1 hour. Moreover, multiplying the produced water quantities by

1.2 or more at all periods made the strategic small case study problem infeasible. The lower bounds

provided by BARON were generally not good, except for a strategic small case study. However, by

removing the nonlinear constraints and solving the resulting MILP, a relaxation is created that gives a

tight lower bound for these instances. This is due to the relatively low pump costs in the objective, and

reducing the hydraulic component of the formulation provides a very close estimate of the objective

cost.

In the cases we tested, we found that the optimal solutions had relatively low frictional pressure

drops. Therefore, when making decisions related to pump installations, changes in elevation were the

primary, if not the sole, determining factor. This clarifies why approximating frictional pressure loss is

appropriate for these specific instances. Nonetheless, as discussed in Section 3, we anticipate achieving

near-optimal results for networks and instances where the frictional pressure drop is substantial.

5.3.2. CVD results

We tested the CVD algorithm on both produced water network optimization and standard urban

water network design instances. The results can be found in Table 4 for the produced water network
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Table 2: PARETO instances (We use m, n, and d to denote the numbers of constraints, variables and
binary variables, respectively)

Instance
MINLP Piecewise linearization

Size Time (s) UB LB Time (s) Objective Gap

Toy m = 22, 218 3,600 - −12, 844 28 6,126 <0.1%
n = 15, 652
d = 5, 884

Small m = 44, 902 3,600 88,250 88,207 3 88,214 <0.1%
n = 35, 287
d = 6, 323

Permian m = 49, 986 3,600 60,487 7,656 67 14,024 <0.1%
n = 39, 622
d = 13, 662

Treatment m = 53, 640 3,600 - 9,649 832 17,329 <0.1%
n = 40, 670
d = 21, 860

Table 3: Varying stress levels (lower bound obtained by removing the nonlinear constraints and solving
the resulting MILP)

Instance Stress
MILP

Lower bound Gap BARON UB (1 hr)
Time (s) Objective

Toy 0.8 8 4,903 4,900 <0.1% 19,760
1.2 6 7,511 7,508 <0.1% N/A
1.6 5 10,195 10,192 <0.1% N/A

Small 0.8 13 53,422 53,407 <0.1% 58,380
1.2 0.2 Infeasible Infeasible
1.6 0.2 Infeasible Infeasible

Permian 0.8 85 12,076 12,066 <0.1% 79,388
1.2 94 18,588 18,578 <0.1% 81,381
1.6 87 28,781 28,759 <0.1% N/A

Treatment 0.8 173 14,224 14,215 <0.1% N/A
1.2 425 21,769 21,757 <0.1% N/A
1.6 425 32,029 32,020 <0.1% N/A
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and Table 5 for the urban water network. The best known upper bounds in Table 5 were obtained

from Grossmann & Lee (2024). We used a reduction factor of η = 3 and a feasibility tolerance of 10−5.

All MILPs solved in the iterations of the algorithm were feasible with these settings. The maximum

time limit for each MILP approximation was set to 120 seconds, except for the Pescara and Modena

instances. We improved the best known feasible solutions for Fosspoly1, Pescara, and Modena. For the

Pescara problem, we increased the runtime of each MILP to around 20 minutes and obtained a solution

with an objective of 1, 812, 564 within approximately two hours. For the Modena instance, we increased

the maximum time limit to three hours for each MILP approximation and obtained a solution with the

objective value of 2, 539, 446 within approximately two days.

Table 4: CVD algorithm on PARETO instances (lower bound obtained by removing the nonlinear
constraints and solving the resulting MILP)

Instance Stress CVD UB Time (s) LB Gap (%)

Toy 0.8 4,903 15 4,900 0.06
1 6,126 11 6,123 0.05
1.2 7,512 14 7,508 0.05
1.6 10,196 8 10,192 0.04

Small 0.8 53,421 6 53,407 0.03
1 88,214 3 88,200 0.02
1.2 Infeasible
1.6 Infeasible

Permian 0.8 12,077 37 12,066 0.09
1 14,025 59 14,015 0.07
1.2 18,588 78 18,578 0.05
1.6 28,769 126 28,759 0.03

Treatment 0.8 14,225 332 14,215 0.07
1 17,320 537 17,311 0.05
1.2 21,769 574 21,757 0.06
1.6 32,031 413 32,020 0.03

Table 5: CVD algorithm: benchmark instances (∆1: Improvement over best known solution, ∆2:
Optimality gap compared to LB obtained from BARON)

Name
CVD BARON

Best known ∆1 ∆2Time UB Time UB LB

blacksburg 44 s 118,461 1.5 h 121,393 116,625 116,945 −1.3% 1.5%

fossiron 1,237 s 178,282 1.5 h 438,858 175,905 175,922 −1.3% 1.3%

fosspoly1 1,528 s 27,051 1.5 h 30,406 25,709 27,851 2.9% 5.0%

fosspoly0 885 s 72,888,489 1.5 h 79,520,517 67,557,672 67,559,218 −7.9% 7.3%

hanoi 131 s 6,125,369 1,575 s 6,109,620 6,109,620 6,109,620 −0.25% 0.2%

pescara 2.1 h 1,812,564 3 h N/A 1,663,840 1,820,264 0.42% 8.2%

modena 2 d 2,539,446 2 d N/A 2,130,040 2,576,589 1.4% 16.1%

shamir 10 s 419,000 62 s 419,000 419,000 419,000 0 0
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6. Conclusions

This paper proposes a new approach to the optimization of produced water networks in the oil

and gas industry. Our approximate MILP formulation uses a coarse piecewise linear fitting of the

nonlinear terms and consistently delivers optimal results. The piecewise linear approximation code has

been integrated into the PARETO open source software, benefiting the broader research community.

Additionally, we introduce the Continuous Variable Diving heuristic, which not only improves known

upper bounds for standard urban water network instances but also generates near-optimal results for

produced water network optimization problems. Future research could explore the performance of

this heuristic in addressing various other MINLP problems with nonlinearity in continuous variables,

extending the impact of this work within the field of optimization.
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Appendix A. Piecewise linear formulation for produced water network optimization

min
∑
k∈K

∑
(i,j)∈A

ckijy
k
ij +

∑
(i,j)∈A

Cij (A.1)

s.t. ∑
j:(i,j)∈A

qtij = bti i ∈ S, t ∈ T (A.2)

∑
j:(ji)∈A

qtji ≤ −bti i ∈ D, t ∈ T (A.3)

∑
j:(ji)∈A

qtji =
∑

j:(ij)∈A

qtij i ∈ N, t ∈ T (A.4)

qtij ≤
∑
k∈K

F k
ijy

k
ij (i, j) ∈ A, t ∈ T (A.5)

qtij ≤M1z
t
ij (i, j) ∈ A, t ∈ T (A.6)

ztij + ztji = 1 (i, j) ∈ A, t ∈ Ts.t.(j, i) ∈ A (A.7)∑
k∈K

ykij = 1 (i, j) ∈ A (A.8)

ykij = ykji (i, j) ∈ A, k ∈ Ks.t.(j, i) ∈ A (A.9)

pti = Pi,t i ∈ S, t ∈ T (A.10)

qtij =

1+Qmax/∆Q∑
s=1

(s− 1)∆Qλ
t,s
i,j (i, j) ∈ A, t ∈ T (A.11)

ζtij =

1+Qmax/∆Q∑
s=1

((s− 1)∆Q)
1.85λt,s

i,j (i, j) ∈ A, t ∈ T (A.12)

1+Qmax/∆Q∑
s=1

λt,s
i,j = 1 (i, j) ∈ A, t ∈ T (A.13)

λt,1
i,j ≤ ut,1ij (i, j) ∈ A, t ∈ T (A.14)
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λt,s
i,j ≤ ut,sij + ut,s−1

ij (i, j) ∈ A, t ∈ T, s ∈ {2, 3, ..., Qmax/∆Q} (A.15)

λ
t,1+Qmax/∆Q

i,j ≤ u
t,Qmax/∆Q

ij (i, j) ∈ A, t ∈ T (A.16)

Qmax/∆Q∑
s=1

ut,si,j = 1 (i, j) ∈ A, t ∈ T (A.17)∑
k∈K

(dij + k)4.87Ptk
ij = κijζ

t
ij (i, j) ∈ A, t ∈ T (A.18)

Ptk
ij ≥ 0 (i, j) ∈ A, t ∈ T (A.19)

Ptk
ij ≤ HFriction,t

ij (i, j) ∈ A, t ∈ T (A.20)

Ptk
ij ≤M2y

k
ij (i, j) ∈ A, t ∈ T (A.21)

Ptk
ij ≥ HFriction,t

ij +M2y
k
ij −M2 (i, j) ∈ A, t ∈ T (A.22)

pti + ρgEi ≥ ptj + ρgEj +HFriction,t
ij −∆Pump,t

ij

+∆Valve,t
ij −M2(1− ztij) (i, j) ∈ A, t ∈ T (A.23)

pti + ρgEi ≤ ptj + ρgEj +HFriction,t
ij −∆Pump,t

ij

+∆Valve,t
ij +M2(1− ztij) (i, j) ∈ A, t ∈ T (A.24)

pmin ≤ pti ≤ pmax i ∈ N, t ∈ T (A.25)

∆Pump,t
ij ≤M2vij (i, j) ∈ A, t ∈ T (A.26)

Cij = C1vij + C2

∑
t∈T

∆Pump,t
ij qtij (i, j) ∈ A (A.27)

qtij ≥ 0, ∆Pump,t
ij ≥ 0, ∆Valve,t

ij ≥ 0 (i, j) ∈ A, t ∈ T (A.28)

Appendix B. Lemma

Lemma 3. Suppose the nonlinear function f(x) that is linearized in the CVD algorithm is uni-

dimensional and Lipschitz continuous with Lipschitz constant γ. Then, the least squares fit x has

a Lipschitz constant L(x) that is upper bounded by γ.

Proof. We will prove that an upper bound on the magnitude of the slope of L(x) is γ by the method

of contradiction. Let the magnitude of the slope of L(x) be M > γ. Without loss of generality, let

L(x) = Mx + c. There is a point x0 where L(x0) = f(x0). From M > γ, it follows that for x > x0,

L(x) > f(x0) and for x < x0, L(x) < f(x0). Next, consider a very small rotation of to L(x) about

(x0, L(x0)) which reduces the slope magnitude M to M − ϵ where ϵ = M−γ
2 > 0. Then for any x > x0,

the error of approximation reduces by ϵ(x − x0) whereas for any x < x0 the error of approximation

reduces by ϵ(x0 − x). Further, for x0, the error of approximation remains the same, that is 0. Thus,

the rotated plane reduces the error of approximation everywhere in the domain and particularly at the

sampled points. Hence, the rotated plane is a better fit than L(x) leading to a contradiction.
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