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Abstract

We consider the design and operation of water networks simultaneously. Wa-

ter network problems can be divided into two categories: the design problem

and the operation problem. The design problem involves determining the

appropriate pipe sizing and placements of pump stations, while the opera-

tion problem involves scheduling pump stations over multiple time periods

to account for changes in supply and demand. Our focus is on networks that

involve water co-produced with oil and gas. While solving the optimization

formulation for such networks, we found that obtaining a primal (feasible)

solution is more challenging than obtaining dual bounds using off-the-shelf

mixed-integer nonlinear programming solvers. Therefore, we propose two

methods to obtain good primal solutions. One method involves a decom-

position framework that utilizes a convex reformulation, while the other is

based on time decomposition. To test our proposed methods, we conduct

computational experiments on a network derived from the PARETO case

study.

Keywords: Mixed-Integer Nonlinear Optimization, Time decomposition,

Network Design, Produced Water
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1. Introduction

Water is a crucial resource for both residential and industrial usage around

the world. It is extracted from various natural sources and requires a dis-

tribution network for its transportation. The type of water network used

depends on the characteristics of the water sources. In 2019, approximately

$48 billion was spent on water infrastructure. However, it is predicted that

a total of $129 billion will be needed to ensure continued access to sufficient

water in the future (ASCE, 2023). Our research explores the challenges as-

sociated with managing the so-called “produced water” that is co-produced

when oil and gas are extracted from reservoirs. Reports indicate that while

the volume of produced water continues to increase, disposal capacities are

decreasing (Caputo, 2020). This situation necessitates better treatment and

reuse options, as well as more efficient designs and operational schedules for

water networks.

We begin by considering several important characteristics when dealing

with produced-water networks. Firstly, the volume of water produced typi-

cally decreases over time, meaning that we need to model this change over

a multiple time period formulation. A realistic example of this trend can be

seen in Section 5 of Drouven et al. (2023). Secondly, the elevations of the

nodes of the network play a significant role in the behavior of the network,

since produced water is usually co-produced in a basin. Elevation differences

between two nodes in the network cause a change in pressure that needs to be

accounted for when formulating the problem. Lastly, pump stations can be

installed at certain locations in the network to boost the water pressure and

prevent pressure from violating desired limits. However, there is usually an

upper limit on the number of pump stations that can be installed. Therefore,

the location of each pump station must be carefully considered when making

design decisions.

In this work, we examine the design and operation of water networks

simultaneously. Typically, the design problem involves determining pipe sizes
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and the placement of pump stations, while the operation scheduling problem

takes into account the changes in supply and demand over time, as well as

scheduling the installed pump stations.

Our paper provides two main contributions. First, it presents a unified

model that combines the water network design and operation problems. This

model enables the optimization of decisions related to pipe diameter choices

and the operational status of the pumps and relief valves. These two prob-

lems are often considered separately, but our model integrates them into one

problem to obtain solutions with better objective values, commonly in terms

of the combined cost of construction and operation. From the practical point

of view, the network operators in many cases are also the network designers

and can, therefore, benefit from the co-optimization. Second, we propose

two time decomposition frameworks to solve our model. Our numerical ex-

periments demonstrate the effectiveness of both decomposition frameworks.

Among the two frameworks, the time decomposition approach is more effec-

tive in obtaining high-quality feasible solutions for real-world produced-water

network instances. Time decomposition can effectively reduce the size and

complexity of the problems solved in each step of which smaller and simpler

problems provide solutions that lead to high-quality feasible solutions to the

original problem. Moreover, our results show that state-of-the-art solvers

struggle to find a feasible solution within the same amount of computational

time.

The remainder of this paper is organized into several sections. Section 2

reviews the literature related to the problem. Section 3 provides a com-

pact formulation and the technical background for the problem. Section 4

discusses the two algorithms used to obtain feasible solutions. Section 4.1

presents a decomposition framework similar to that proposed in the work

of Li et al. (2024) for gas networks. Section 4.2 is based on a time decom-

position of the compact formulation. Section 5 presents the computational

experiments and discusses the results. Lastly, Section 6 concludes the paper
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and provides directions for further research.

2. Literature review

Water network design is a popular topic in the literature. For instance,

in their paper, Mala-Jetmarova et al. (2017) give a comprehensive overview

of the different types of water system design problems. Two common types

of water system design problems are considered in the literature. The first is

the Water Using Network (WUN) design, which considers freshwater usage

for both industrial and residential purposes. This type of problem often

involves studying the distribution of contaminants and water quality. A

review of this type of problem can be found in Castro and Teles (2013).

Other notable works include Teles et al. (2008, 2012, 2009). These works

utilize linear programming or mixed-integer linear programming techniques

to reformulate the nonlinear problem and propose algorithms to solve the

resulting reformulation. The other type of water system design problem

focuses on the hydraulic effect of water flow in pipes. Since our work belongs

to the latter type, we provide a detailed review of relevant works in this area.

We start by reviewing some relevant literature on the design problem and

the operation problem. Bragalli et al. (2012) investigate a design problem

that involves selecting the diameters of pipes in a purely gravity-fed network

with no pump stations or relief valves. They present a mixed-integer nonlin-

ear programming (MINLP) formulation and focus on reformulations and im-

plementation considerations to optimize the performance of Bonmin (Bonami

and Lee, 2006; Bonami et al., 2008). Their numerical experiments are con-

ducted using common benchmark networks found in MIPLIB (Gleixner et al.,

2021). Similarly, Raghunathan (2013) also examines a design problem on

pipe diameter selections without pump stations or relief valves, and presents

a similar MINLP model, in which the nonlinear constraints governing the

water flow are linearized. The author then uses a linearization-based branch-

and-bound framework to solve the model and also proposes a new leaf-node
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problem for the framework to correct the discrepancies introduced by lin-

earization. The study uses the same set of benchmark networks as a previous

study by Bragalli et al. (2012) for numerical experiments. Later, Rajagopalan

(2018) produces a follow-up study, proposing a new formulation for the leaf-

node problem from the earlier study by Raghunathan (2013). Numerical

results from the new formulation show improvements for several networks.

In a slightly different design problem of optimal placements of relief valves

to minimize the average zone pressure, Pecci et al. (2019) use an MINLP

model. They investigate other linear relaxation schemes using a tailored

domain reduction procedure to strengthen the relaxations. Computational

experiments are performed using benchmark networks including a real-world

network from the UK. In Ghaddar et al. (2015), the authors explore the

problem of pump scheduling in a fixed topology. They use a Lagrangian de-

composition approach to decouple the constraints of a MINLP formulation

into smaller subproblems that can be solved separately. To account for addi-

tional operation constraints on the pump stations, the authors also propose a

simulation-based heuristic. Numerical results are obtained on two networks

with up to 47 nodes. In Bonvin et al. (2021), the authors study the pump

scheduling problem using an LP/NLP-based branch-and-bound framework.

They propose a linear relaxation of the original nonconvex formulation for

use in a branch-and-bound framework. Additionally, they suggest a special-

ized primal heuristic to repair near-feasible integer solutions from the linear

relaxation and improve computational efficiency.

It is common in operation problems to have so-called minimum-up and

minimum-down constraints that model the technical requirements of pump

stations. The minimum-up constraints require that once a pump station is

turned on or off, it must remain on or off for a specific minimum number of

periods. The polytope formed by these constraints has been studied in detail

in the area of power system design. The study by Ostrowski et al. (2012)

provides a detailed exploration of this topic. Other studies have proposed
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several sets of minimum-up and minimum-down constraints while changing

the number of variables employed. Lee et al. (2004) studies the “one-variable”

variant of the polytope, while Rajan and Takriti (2005) explore the “two-

variables” variant. More information about the discussion and comparison

across the variants can be found in Ostrowski et al. (2012).

Time decomposition is a technique that can be used to simplify problems

that involve multiple time periods. This approach involves breaking down the

original problem into smaller problems, with each problem only considering

a subset of the time periods. One of the most popular time decomposition

schemes is rolling horizon. In a recent study by Glomb et al. (2022), rolling

horizon is used for multiple time period optimization.

3. Problem description

3.1. Technical background

In this section, we provide background information on how to model a

water network using only the components present in our setting. We consider

T time periods, denoted by {1, . . . , T}. To represent the water network, we

use a directed graph G = (V ,A). Each vertex v ∈ V can be a customer

with demand, a reservoir with supply, or an in-node with neither demand

nor supply. In each time period t ∈ {1, . . . , T}, there is a pressure variable

pv,t associated with each vertex. This variable is lower and upper bounded

by pmin
v and pmax

v . Each pipe in the network is represented by an arc a ∈ A.

Pipes: The characteristics of a pipe a = (v, w) are defined by its length

la, diameterDa, and material properties. We use qa,t to denote the volumetric

flowrate for the pipe in period t ∈ {1, . . . , T}. The maximum flowrate, qmax
a ,

is proportional to the pipe’s cross-sectional area A = πD2
a/4. The pipe allows

water to flow in both directions, and the constraint reflecting the maximum

flowrate and bi-directional flow is given by

−qmax
a ≤ qa,t ≤ qmax

a , t ∈ {1, . . . , T}. (1)
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The locations of pump stations are design decisions and each pipe is assumed

to have a relief valve. Therefore, a pressure increase or relief can be incurred

in addition to pressure change due to friction and elevation. We begin by

addressing pressure loss due to friction. Water flow in a pipe is governed

by a set of partial differential equations. Under steady-state flow and other

technical assumptions, we can simplify the partial differential equations to

a set of nonlinear equations. Two variants of nonlinear equations have been

proposed. First, the Hazen-Williams equation is given as

pv,t − pw,t =
10.704la

C1.852D4.87
a

ρg|qa,t|q0.852a,t , t ∈ {1, . . . , T}, (2)

where C is the Hazen-Williams constant, which is dependent on the material

properties of the pipe, ρ is the density of water, and g is the gravitational

acceleration constant. Second, the Darcy equation is given as

pv,t − pw,t = fD
8la

π2gD5
a

ρg|qa,t|qa,t, t ∈ {1, . . . , T}, (3)

where fD is the friction coefficient that depends on the Reynolds number

of water flow and other properties of the pipe’s material. We can represent

both equations as

pv,t − pw,t = αa|qa,t|qηa,t, t ∈ {1, . . . , T}, (4)

where αa is the pressure loss coefficient and η is 0.852 or 1. Additionally,

elevation changes across a pipe result in a pressure change that is proportional

to the elevation change. If we denote the elevation at v and w by ev and ew,

we can calculate the pressure change induced by the elevation change using

the following equation:

δa = (ev − ew)ρg. (5)

It is important to note that δa remains constant and can be computed be-
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forehand when solving the design problem.

Now, we can use a binary variable, zI,a, to model the decision of whether

to place a pump station on the pipe. If a pump station is placed, then zI,a =

1; otherwise, it is 0. We also need to introduce two additional continuous

variables, ∆I,a,t and ∆R,a,t, which indicate the amount of pressure increase

induced by a pump station and the amount of pressure relief induced by a

relief valve in period t ∈ {1, . . . , T}, respectively. We place an upper bound

on the pressure increase that the pump station can induce, which is denoted

by ∆I,a. On the other hand, an upper bound on pressure relief that a relief

valve can induce can be very large, so we do not set any upper bound on

∆R,a,t.

As a result, the total pressure change across a pipe due to friction, eleva-

tion, and additional pressure increase or relief is given by

pv,t − pw,t = αa|qa,t|qηa,t + δa −∆I,a,t +∆R,a,t, t ∈ {1, . . . , T}. (6)

Additional constraints on pump stations: We assume that there

is an upper bound on the number of pump stations for the entire network,

denoted by N . We write a constraint as follows:∑
a∈Ap

zI,a ≤ N. (7)

Next, we write the so-called minimum-up and minimum-down constraints for

a pump a ∈ Ap. Specifically, once a pump station is turned on or off, it must

remain in that state for a total of τo (resp. τf ) periods. We decide to use

the “one-variable” variant of the constraints (see Section 2), as we do not

take start-up costs into account. To represent the status of the pump station

in each time period, we use binary variables ξa,t, where ξa,t is equal to 1 if

the pump station is on in period t and 0 otherwise. The minimum-up and
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minimum-down constraints are given by

ξa,t ≤ zI,a, t ∈ {1, . . . , T}, (8)

ξa,t − ξa,t−1 ≤ ξa,τ , t ∈ {2, . . . , T}, τ ∈ {t+ 1, . . . ,min{t+ τo, T}},
(9)

ξa,t−1 − ξa,t ≤ 1− ξa,τ , t ∈ {2, . . . , T}, τ ∈ {t+ 1, . . . ,min{t+ τf , T}}.
(10)

Additionally, we place an upper bound, Ma, on the number of periods a

pump station a ∈ Ap is on to simulate operational cost constraints. Formally,

we have the following ∑
t∈{1,...,T}

ξa,t ≤ Ma. (11)

Note that the upper bounds, Ma and Ma′ , can differ for two pipes a, a′ ∈ Ap.

Reservoirs: Reservoirs are typically used as the primary sources for

supplying water to the network. It is common practice to assume that the

pressures at these reservoirs are fixed. Therefore, if we denote the set of

source nodes as V src ⊂ V , we can write constraints:

pv,t = psrcv,t , v ∈ V src, t ∈ {1, . . . , T}. (12)

3.2. A summary on problem formulation

We use Ap to represent a set of pipes. In our setting, this means A =

Ap. We consider discrete diameter choices for the pipes by the set [n] :=

{1, 2, . . . , n}. We use binary variables za,i for a ∈ Ap and i ∈ [n] to indi-

cate the diameter choices. The diameter value for za,i is denoted by Da,i.

We denote the fixed cost of constructing a pipe with a diameter Da,i by

fa,i. Additionally, we create copies of flow variables qa,t for different diam-

eters as qa,t,i. The maximum flowrate for each diameter choice is denoted

by qmax
a,i . Since pipes allow bi-directional water flows, we introduce a binary

flow direction variable xdir
a,t to indicate the flow direction for a ∈ A and de-
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compose the flow into a positive and negative flow. As a result, the flow

variables are q+a,t,i and q−a,t,i for a pipe. For each vertex v ∈ V , we denote the

set of incoming and outgoing arcs by Ain(v) and Aout(v), respectively, i.e.,

Ain(v) = {a ∈ A|a = (w, v)} and Aout(v) = {a ∈ A|a = (v, w)}. Lastly, we

use dv,t to denote the demand (a supply can be reflected by a negative de-

mand value) at a vertex v ∈ V in period t. With these additional notations,

we can now present the formulation of the problem.

Objective min
z,q+,q−,p,xdir,zI ,∆I ,∆R,ξ

∑
a∈Ap

∑
i∈[n]

fa,iza,i, (13)

s.t.

Flow conservation
∑
i∈[n]

∑
a∈Ain(v)

(q+a,t,i − q−a,t,i)−
∑
i∈[n]

∑
a∈Aout(v)

(q+a,t,i − q−a,t,i) = dv,t,

v ∈ V, t ∈ {1, . . . , T}, (14)

Pressures pmin
v ≤ pv,t ≤ pmax

v , v ∈ V\V src, t ∈ {1, . . . , T}, (15)

pv,t = psrcv,t , v ∈ V src, t ∈ {1, . . . , T}, (16)

Pipes 0 ≤ q−a,t,i, q
+
a,t,i ≤ qmax

a,i za,i, a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T},
(17)

pv,t − pw,t =
∑
i∈[n]

αa,i(q
+
a,t,i)

1+η −
∑
i∈[n]

αa,i(q
−
a,t,i)

1+η

+ δa −∆I,a,t +∆R,a,t, a ∈ Ap, t ∈ {1, . . . , T}, (18)

0 ≤ q+a,t,i ≤ qmax
a,i xdira,t , a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T} (19)

0 ≤ q−a,t,i ≤ qmax
a,i (1− xdira,t), a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T}

(20)∑
i∈[n]

za,i = 1, a ∈ Ap (21)

Pump stations ∆I,a,t ≤ ∆I,aξa,t, a ∈ Ap, t ∈ {1, . . . , T}, (22)

ξa,t ≤ zI,a, a ∈ Ap, t ∈ {1, . . . , T}, (23)∑
a∈Ap

zI,a ≤ N, (24)
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∑
t∈{1,...,T}

ξa,t ≤ Ma, a ∈ Ap, (25)

ξa,t − ξa,t−1 ≤ ξa,τ , t ∈ {2, . . . , T},

τ ∈ {t+ 1, . . . ,min{t+ τo, T}}, (26)

ξa,t−1 − ξa,t ≤ 1− ξa,τ , t ∈ {2, . . . , T},

τ ∈ {t+ 1, . . . ,min{t+ τf , T}}. (27)

Note that η is 0.852 or 1 depending on whether we use the Hazen-Williams

or Darcy equation. In the remainder of this paper, we use the Hazen-Williams

equation as it is more commonly used in both literature and in practice;

therefore, we use η = 0.852. This equation results in a general nonlinear

and nonconvex formulation. We also group the objective function and the

constraints into blocks. A summary of these blocks is given in Table 1.

We used the solvers BARON (Tawarmalani and Sahinidis, 2005) and

SCIP (Achterberg, 2009) in our preliminary study to understand the perfor-

mances of the formulation (13) - (27). In the preliminary study, we noticed

that both solvers are able to improve the dual bounds consistently but have

trouble obtaining primal (feasible) solutions. This motivates us to investigate

other means to obtain primal solutions and provide them to the solver.

4. Primal solutions

This section presents the two algorithms to obtain primal solutions. The

first algorithm is adapted from the decomposition algorithm presented in Li

et al. (2024) and is based on the CVXNLP reformulation that is described

in Raghunathan (2013) and Li et al. (2024). The main components in this

algorithm are a primal bound loop and an initial budget search. The second

algorithm is based on time decomposition.
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Table 1: Constraint blocks
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4.1. CVXNLP-based decomposition

4.1.1. Primal bound loop

The primal bound loop is an iterative procedure that involves a master

problem and a subproblem. It checks whether there exists a feasible set of

flows and pressures that can satisfy the demand and supply within a given

budget C. This set of feasible flows and pressures also corresponds to a

set of diameter choices, pump station locations, and schedules for the pump

stations and relief valves.

The master problem is formulated using CVXNLP and is given as

(Pm) min
z,q+,q−

∑
t∈{1,...,T}

∑
i∈[n]

∑
a∈Ap

[
αa,i

1 + η
(q+a,t,i)

1+η + δaq
+
a,t,i+

αa,i

1 + η
(q−a,t,i)

1+η + δaq
−
a,t,i

]

−
∑

t∈{1,...,T}

∑
v∈V src

psrcv,t

∑
i∈[n]

∑
a∈Ain(v)

(q+a,t,i − q−a,t,i)−

∑
i∈[n]

∑
a∈Aout(v)

(q+a,t,i − q−a,t,i)

 , (28)

s.t.
∑
i∈[n]

∑
a∈Ain(v)

(q+a,t,i − q−a,t,i)−
∑
i∈[n]

∑
a∈Aout(v)

(q+a,t,i − q−a,t,i) = dv,t,

v ∈ V\V src, t ∈ {1, . . . , T} (29)

0 ≤ q−a,t,i, q
+
a,t,i ≤ qmax

a,i za,i, a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T}, (30)∑
i∈[n]

za,i = 1, ∀a ∈ Ap, (31)

∑
a∈Ap

∑
i∈[n]

fa,iza,i ≤ C. (32)

Note that in the objective function (28), we have not included the addi-

tional pressure increase ∆I,a,t or additional pressure relief ∆R,a,t. The reasons

are two-fold. First, we have not considered the decisions regarding the loca-

tions of pump stations in the master problem (Pm). Secondly, we can rewrite
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the pressure change equation (17) as

pv,t − pw,t +∆I,a,t −∆R,a,t =
∑
i∈[n]

αa,i(q
+
a,t,i)

1+η −
∑
i∈[n]

αa,i(q
−
a,t,i)

1+η + δa. (33)

As a result, we can consider the values of ∆I,a,t and ∆R,a,t as part of the

pressure pv,t or pw,t.

From (Pm), we can obtain a set of binary solutions for diameter choices,

z∗a,i, for a ∈ Ap and i ∈ [n]. Consequently, we can compute the pressure loss

coefficient and the max flowrate for each pipe a ∈ Ap by

αa =
∑
i∈[n]

αa,iz
∗
a,i, (34)

qmax
a =

∑
i∈[n]

qmax
a,i z∗a,i. (35)

Then, we can fix the corresponding binary variables and obtain a subprob-

lem (Ps) that differs only from the compact formulation (13)–(27) in a few

constraint blocks. Formally, we describe the changes in each of the blocks.

• Objective. Instead of minimizing the total cost on pipes, we have a

feasibility problem as

Find q+a,t, q
−
a,t, x

dir
a,t, pv,t, zI,a, ξa,t,∆I,a,t,∆R,a,t. (36)

• Flow conservation. Once we obtain the diameter choices, we only

have one set of the flowrate variables for each pipe a ∈ Ap in each time

period t ∈ {1, . . . , T}, denoted by q+a,t and q−a,t. We can then write the

flow conservation constraint as∑
a∈Ain(v)

(q+a,t − q−a,t)−
∑

a∈Aout(v)

(q+a,t − q−a,t) = dv,t, v ∈ V , t ∈ {1, . . . , T}.

(37)
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• Pressures. This block remains unchanged.

• Pipes. Similar to the Flow conservation block, we only need one set

of the flowrate variables, q+a,t and q−a,t, for a ∈ Ap and t ∈ {1, . . . , T}.
We simplify the Pipes block as follows:

pv,t − pw,t = αa(q
+
a,t)

1+η − αa(q
−
a,t)

1+η + δa −∆I,a,t +∆R,a,t,

a ∈ Ap, t ∈ {1, . . . , T}, (38)

0 ≤ q+a,t ≤ qmax
a xdir

a,t, a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T}, (39)

0 ≤ q−a,t ≤ qmax
a (1− xdir

a,t), a ∈ Ap, i ∈ [n], t ∈ {1, . . . , T}. (40)

• Pump stations. This block remains unchanged.

If the subproblem (Ps) is infeasible, we can add an integer no-good cut

to the master problem (Pm) of the form,∑
i∈[n]

∑
a∈Ap,z∗a,i=0

za,i +
∑
i∈[n]

∑
a∈Ap,z∗a,i=1

(1− za,i) ≥ 1, (41)

and re-solve the master problem (Pm). If (Ps) is feasible, we can then obtain

a set of primal solutions to the original formulation that have an objective

value of C. The primal bound loop terminates when we obtain a feasible

budget or when it reaches a pre-set time limit. If the time limit is reached,

we double the budget C and re-run the primal bound loop.

4.1.2. Initial budget search

To obtain an initial starting budget for the primal bound loop, we propose

a budget search procedure, which is a loop consisting of a master problem

and subproblem. The master problem (Im) is given as follows:

(Im) min
z

∑
a∈Ap

∑
i∈[n]

fa,iza,i, (42)
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s.t.
∑
i∈[n]

za,i = 1, ∀a ∈ Ap, (43)

za,i ∈ {0, 1}, a ∈ Ap, i ∈ [n]. (44)

We only consider the available diameter choices in (Im) and select the least

cost option. This problem can be solved quickly compared to (Pm). After

obtaining a set of solutions z∗a,i for a ∈ Ap and i ∈ [n], we use (34) and (35) to

compute the pressure loss coefficients and maximum flowrates, respectively.

The resulting subproblem is the same as (Ps). If (Ps) is feasible, we conclude

that the original problem has been solved, and the optimal cost is the ob-

jective value of problem (Im). Otherwise, we add the integer no-good cut of

the form (41) and resolve (Im).

4.1.3. Summary of the algorithm

Algorithm 1 presents the overall procedure with both components from

the previous sections.

Algorithm 1: CVXNLP-based decomposition

1 Initial budget search is run for 10 min.
2 if a feasible budget is obtained then
3 terminate with the optimal cost of constructions for this set of

demand and supply
4 end
5 else
6 Set starting budget based on the returned value from initial

budget search;
7 Primal bound loop is run for 45 min for each budget.

8 end
9 return Primal solutions or no primal solution found

4.2. Time decomposition

In this section, we discuss the time decomposition framework. Let us

consider a subset of time periods denoted by T̃ < T . If we restrict the
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original problem to {1, . . . , T̃}, we can solve it to a target accuracy ε relatively

efficiently. As we mentioned in Section 1, one characteristic of the problem

is that the amount of water produced is typically high at the beginning, and

it gradually decreases over time. This means that the diameter choices from

solving the problem with restricted time periods {1, . . . , T̃} are very likely to

be feasible with respect to the volume of water produced in {T̃ + 1, . . . , T}.
Additionally, we argue that a pump station is more likely to be needed when

the amount of water produced is high. Consider a pipe a = (v, w) and the

pressure change equation for a single diameter choice case in a particular

time period t, along with the bounds on the pressure variables,

pv,t − pw,t = αaq
+
a,t

1+η − αaq
−
a,t

1+η
, (45)

pmin
v ≤ pv,t ≤ pmax

v , (46)

pmin
w ≤ pw,t ≤ pmax

w . (47)

When a larger amount of water is produced, it results in a higher frictional

pressure loss, which can lead to either a higher pressure value at w or a

smaller pressure value at v. As a result, the upper bound at w or the lower

bound at v may be violated. The only solution to this problem is to install

a pump station on this pipe, which reduces the frictional pressure loss at

the same flowrate and ensures that the pressure values at v and w remain

feasible.

Based on our observations, we present the time decomposition algorithm.

First, we modify the constraint (25) to the following form

∑
t∈{1,...,T̃}

ξa,t ≤ Ma
T̃

T
, a ∈ Ap, (48)

and after that, solve the resulting restricted problem for the time periods

{1, . . . , T̃} to a target accuracy ε. This will give us a set of binary solutions

for the diameter choices z∗a,i, locations of pump stations z∗I,a for a ∈ Ap and
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i ∈ [n], and a set of binary solutions for the status of the pump stations

ξ∗a,t for a ∈ Ap and t ∈ {1, . . . , T̃}. Once we fix the diameter choices and

locations of the pump stations, we can obtain a feasibility problem (Pr) for

the remaining time periods t ∈ {T̃ + 1, . . . , T} by modifying the objective

and constraint blocks as follows,

• Objective. Instead of minimizing the total cost of pipes, we have a

feasibility problem as

Find q+a,t, q
−
a,t, x

dir
a,t, pv,t, zI,a, ξa,t,∆I,a,t,∆R,a,t. (49)

• Pressures. Block remains unchanged.

• Flow conservation. Once we obtain the diameter choices, we only

have one set of the flowrate variables for each pipe a ∈ Ap in each time

period t ∈ {T̃ + 1, . . . , T}, denoted by q+a,t and q−a,t. We can then write

the flow conservation constraint as∑
a∈Ain(v)

(q+a,t−q−a,t)−
∑

a∈Aout(v)

(q+a,t−q−a,t) = dv,t, v ∈ V , t ∈ {T̃+1, . . . , T}.

(50)

• Pipes. Similar to the Flow conservation block, we only need one set

of the flowrate variables, q+a,t and q−a,t, for a ∈ Ap and t ∈ {1, . . . , T}.
We simplify the Pipes block as follows:

pv,t − pw,t = αa(q
+
a,t)

1+η − αa(q
−
a,t)

1+η + δa −∆I,a,t +∆R,a,t,

a ∈ Ap, t ∈ {T̃ + 1, . . . , T}, (51)

0 ≤ q+a,t ≤ qmax
a xdir

a,t, a ∈ Ap, i ∈ [n], t ∈ {T̃ + 1, . . . , T}, (52)

0 ≤ q−a,t ≤ qmax
a (1− xdir

a,t), a ∈ Ap, i ∈ [n], t ∈ {T̃ + 1, . . . , T}. (53)

• Pump stations. Once we fix the locations of the pump stations, we
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simplify this block to be as follows,

∆I,a,t ≤ ∆I,aξa,t, a ∈ Ap, t ∈ {T̃ + 1, . . . , T}, (54)

ξa,t ≤ z∗I,a, a ∈ Ap, t ∈ {T̃ + 1, . . . , T}, (55)∑
t∈{T̃+1,...,T}

ξa,t ≤ Ma(1−
T̃

T
), a ∈ Ap, (56)

ξa,t − ξa,t−1 ≤ ξa,τ , t ∈ {πa,T̃ ,o, . . . , T},

τ ∈ {t+ 1, . . . ,min{t+ τo, T}}, (57)

ξa,t−1 − ξa,t ≤ 1− ξa,τ , t ∈ {πa,T̃ ,f , . . . , T},

τ ∈ {t+ 1, . . . ,min{t+ τf , T}}, (58)

where πa,T̃ ,o and πa,T̃ ,f are two parameters that depend on the values of

ξ∗a,t for a ∈ Ap and t ∈ {1, . . . , T̃}, and we may need to fix the variables

ξa,t for t ∈ {T̃ + 1, . . . , T} due to constraints (26) and (27). Formally,

if we denote the set of pipes where the pump stations are installed by

Ã, we have the procedure in Algorithm 2.

If the problem (Pr) is feasible, we can obtain a set of primal solutions

for the original problem by combining the variable values from the restricted

problem for time periods {1, . . . , T̃} and (Pr). This set of primal solutions

would have the same objective value as the restricted problem. However, if

(Pr) is not feasible, we need to choose a different T̃ or target accuracy ε and

repeat the algorithm.

Note that we can adapt this algorithm to handle non-monotonic changes

in the amount of water produced across the time periods by constructing a

restricted problem for a total of T̃ periods with the highest water produc-

tion and then solving a similar feasibility problem for the remaining periods.

However, the fixing procedure in Algorithm 2 will require modifications.
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Algorithm 2: Fixing procedure

1 for a ∈ Ã do

2 Initialize to = T̃

3 while to ≥ T̃ − τo + 1 and to ≥ 2 do
4 if ξa,to − ξa,to−1 = 1 then

5 Fix ξa,τ = 1 for τ ∈ {T̃ + 1, . . . , to + τo}
6 Set πa,T̃ ,o = to + τo + 1

7 end
8 to = to − 1

9 end

10 Initialize tf = T̃

11 while tf ≥ T̃ − τf + 1 and tf ≥ 2 do
12 if ξa,tf−1 − ξa,tf = 1 then

13 Fix ξa,τ = 0 for τ ∈ {T̃ + 1, . . . , tf + τf}
14 Set πa,T̃ ,f = tf + τf + 1

15 end
16 tf = tf − 1

17 end

18 if πa,T̃ ,o has not been set then Set πa,T̃ ,o = T̃ + 2;

19 if πa,T̃ ,f has not been set then Set πa,T̃ ,f = T̃ + 2;

20 end
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4.2.1. Summary of the algorithm

In this section, we provide a summary of the algorithm. It is important

to note that there is a trade-off to consider when selecting T̃ and ε. A small

T̃ and a large ε lead to a restricted problem that can be solved quickly.

However, the diameter choices and locations of pump stations obtained from

such a restricted problem may not result in a feasible (Pr). To address this,

we can select T̃ from a set T and ε from a set E . This will allow us to obtain

a set of primal solutions. The algorithm is presented in Algorithm 3.

Algorithm 3: Time decomposition

1 Initialize Sol = ∅
2 for T̃ ∈ T do
3 for ε ∈ E do

4 Solve the restricted problem with time periods {1, . . . , T̃} to a
target accuracy of ε by SCIP

5 Solve the problem (Pr) for time periods {T̃ + 1, . . . , T} after
the fixing procedure (Algorithm 2)

6 if (Pr) is feasible then
7 Add the primal solution to Sol with the objective value of

the restricted problem
8 end

9 end

10 end
11 if Sol ̸= ∅ then return The primal solution with smallest objective

value;
12 else return No primal solution found ;

5. Numerical experiments

5.1. Instances

Our numerical experiments were conducted on a network derived from

the Produced Water Application for Beneficial Reuse, Environmental Im-

pact and Treatment Optimization (PARETO) strategic case study (Drou-
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ven et al., 2023). An illustration of a PARETO network is given in Figure

8 of Drouven et al. (2023). The characteristics of the network are listed in

Table 2, and for more details, we refer readers to the Project PARETO web-

site. We considered two values of T with T = 24 and T = 53. The base

demand and supply scenario follows the same trend as the one given in the

Project PARETO strategic case study. Additionally, we used stress factors

to create more demand and supply scenarios, as done in the numerical ex-

periments of Li et al. (2024). Specifically, we used stress factors from the

set {0.1, 0.5, 1.5, 2.0}, which are directly multiplied by the base demand and

supply values of each individual node to create new demand and supply sce-

narios. We considered four different diameter choices and assumed that the

fixed cost of construction is proportional to the circumferences of the pipe.

Table 2: Characteristics of the networks

Sources Sinks In-nodes Pipes
19 7 29 58

5.2. Implementation settings

We conducted our experiments on a computer with an Intel i9 CPU

(3.70GHz) with 64GB RAM. Our formulation is coded in Python using Py-

omo. After testing BARON (Tawarmalani and Sahinidis, 2005) and SCIP (Achter-

berg, 2009), we found that SCIP performs slightly better and decided to use

SCIP in the experiments, including solving the formulation (13)–(27) as a

baseline comparison. In particular, we use SCIP through GAMS. We follow

Algorithm 4 to solve the problem, starting by obtaining the first primal so-

lution and providing it as an initial point to SCIP, which then proceeds to

improve the dual bounds, and in some cases, generates better primal solu-

tions. For a comparison, we also use SCIP to solve the problem directly for

five hours.
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Algorithm 4: Overall procedure

1 Run CVXNLP-based decomposition (Algorithm 1) or Time
decomposition (Algorithm 3)

2 if a primal solution is obtained then
3 Record the time taken to obtain the primal solution;
4 Provide the primal solution to SCIP;
5 Run SCIP for the remainder of 5 hours

6 end

7 return Primal bound C and dual bound C

5.3. Results

In this section, we present our computational results. We compare the

performance of solving the compact formulation by SCIP directly, running

Algorithm 4 with CVXNLP-based composition, and running Algorithm 4

with time decomposition. We report the primal bound C, lower bound C,

and percentage gap, which is computed by

gap =
C − C

C
. (59)

The first set of results for T = 24 is in Table 3, where C and C are reported

in 104. We see that SCIP is only able to find primal solutions for stress

factors 1.0 and 2.0. While running Algorithm 4 with either CVXNLP-based

decomposition or time decomposition, we are able to find primal solutions for

all stress factors with the largest optimality gap of about 25%. We observe

further improvement when running Algorithm 4 with time decomposition

instead of CVXNLP-based decomposition. Additionally, we report that the

SCIP solver obtained new primal solutions for stress factors 0.5 and 1.0 when

running Algorithm 4 with CVXNLP-based decomposition. The final primal

solution reported has about 37.6% and 38.5% improvements from the primal

solutions provided to SCIP for the two stress factors, respectively. For all

other demand and supply scenarios, the final primal solutions were obtained
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from Algorithm 4. Furthermore, in comparing the dual bounds C, we see

that SCIP has the best dual bounds as Algorithm 4 takes time to obtain the

primal solutions. The dual bounds from Algorithm 4 with time decomposi-

tion are slightly better than those from Algorithm 4 with CVXNLP-based

decomposition. This observation suggests that Algorithm 4 with time de-

composition takes less time to find a primal solution than Algorithm 4 with

CVXNLP-based decomposition does, thus allowing more time to SCIP to

improve the dual bound. Generally, increasing the stress factor makes the

demand and supply scenario more challenging to solve. However, this trend

is not evident in running SCIP directly as SCIP is able to find feasible pri-

mal solutions for stress factors 1.0 and 2.0. In both instances, SCIP obtained

the primal solutions via heuristics. We believe that certain problem struc-

tures may trigger heuristics in SCIP for some stress factors, while in general,

it remains very challenging to obtain primal solutions when running SCIP

directly.

Table 3: Computational results for T = 24

Stress
SCIP Algorithm 4; CVXNLP Algorithm 4; Time decomp

C C gap(%) C C gap (%) C C gap (%)

0.1 - 2443.39 - 2443.39 2443.39 0.00 2443.39 2443.39 0.00
0.5 - 2498.78 - 2682.88 2493.39 7.60 2616.23 2496.77 4.78
1.0 3070.02 2632.23 16.63 2892.44 2627.61 10.08 2789.74 2631.38 6.02
1.5 - 2805.03 - 3219.64 2793.41 15.26 3023.93 2804.21 7.84
2.0 3276.69 2937.63 11.54 3683.82 2918.45 26.23 3199.12 2937.07 8.92

The next set of results for T = 53 can be found in Table 4. The values

for C and C are reported in 104. As the number of time period increases, the

problems become more challenging to solve. Currently, SCIP is unable to

obtain a primal solution for any of the stress factors. However, Algorithm 4

with CVXNLP-based decomposition is able to obtain primal solutions for all

stress factors except for 2.0. Algorithm 4 with time decomposition is able to

obtain primal solutions for all stress factors, with the largest optimality gap

of less than 15%.

24



The results for T = 53 confirm that, as the stress factor increases, the

problem becomes more challenging to solve. Unlike a few instances for

T = 24, all the primal solutions reported in this table are obtained from

Algorithm 4. The variant of Algorithm 4 that uses CVXNLP-based decom-

position struggles to find good primal solutions for stress factors 1.0 and 1.5,

terminating with large optimality gaps. Moreover, the dual bounds for Algo-

rithm 4 with both CVXNLP-based decomposition and time decomposition

are comparable, indicating it now takes longer to obtain primal solutions

with time decomposition. If we consider a larger network or more time pe-

riods, solving the restricted problem for {1, . . . , T̃} (Step 4 of Algorithm 3)

may not be ideal for the computation time needed. Instead, we can consider

using the CVXNLP-based decomposition to solve the restricted problem.

Table 4: Computational results for T = 53

Stress
SCIP Algorithm 4; CVXNLP Algorithm 4; Time decomp

C C gap(%) C C gap (%) C C gap (%)

0.1 - 2443.39 - 2443.39 2443.39 0.00 2443.39 2443.39 0.00
0.5 - 2493.29 - 2721.64 2493.29 9.16 2645.06 2493.29 6.09
1.0 - 2599.72 - 4822.70 2583.69 86.66 2828.82 2582.85 9.52
1.5 - 2748.69 - 5288.98 2715.45 94.77 3054.41 2711.14 12.66
2.0 - 2857.61 - - - - 3212.51 2829.65 13.53

6. Conclusions

Our study explores a water network problem that considers design and

operation aspects simultaneously. Our formulation results in a nonconvex

mixed-integer nonlinear program. We observe that off-the-shelf solvers con-

sistently provide good dual bounds of the formulation, but struggle to find

primal solutions. To obtain primal solutions, we proposed two algorithms.

One algorithm uses the CVXNLP reformulation and is similar to the frame-

work proposed in Li et al. (2024), while the other is based on time decom-

position. Our computational studies, which use a network derived from the
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PARETO strategic case study, show that our algorithms can obtain good pri-

mal solutions for most of the demand and supply scenarios. The algorithm

based on time decomposition outperforms the algorithm based on CVXNLP.

We propose a possible future direction for our work. It involves factoring

in the costs of pump stations and relief valves into the proposed algorithms.

Both algorithms can be adapted to handle these additional cost components.
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Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A., 2008.
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