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Abstract

A cutting-plane procedure for integer programming (IP) problems usually involves invoking a black-
box procedure (such as the Gomory-Chvátal (GC) procedure) to compute a cutting-plane. In this
paper, we describe an alternative paradigm of using the same cutting-plane black-box. This involves
two steps. In the first step, we design an inequality cx ≤ d where c and d are integral, independent
of the cutting-plane black-box. In the second step, we verify that the designed inequality is a valid
inequality by verifying that the set P ∩ {x ∈ Rn | cx ≥ d + 1} ∩ Zn is empty using cutting-planes
from the black-box. Here P is the feasible region of the linear-programming relaxation of the IP. We
refer to the closure of all cutting-planes that can be verified to be valid using a specific cutting-plane
black-box as the verification closure of the considered cutting-plane black-box. This paper undertakes
a systematic study of properties of verification closures of various cutting-plane black-box procedures.

1 Introduction

Cutting-planes are indispensable for solving Integer Programs (IPs). When using generic cutting-planes
(like Gomory-Chvátal or split cuts), often the only guiding principal used is that the incumbent fractional
point must be separated. In a way, cutting-planes are generated ‘almost blindly’, where we apply some
black-box method to constructively compute valid cutting-planes and hope for the right set of cuts to
appear that helps in proving optimality or close significant portion of the integrality gap. One possible
approach to improve such a scheme would therefore be if we were somehow able to deliberately design
strong cutting-planes that were tailor-made, for example, to prove the optimality of known good candidate
solutions. This motivates a different paradigm to generate valid cutting-planes for integer programs: First
we design cutting-planes which we believe will be useful without considering their validity. Then, once
the cutting-planes are designed, we verify that it is valid.

For n ∈ N, let [n] = {1, ..., n} and for a rational polytope P ⊆ Rn denote its integral hull by
PI := conv (P ∩ Zn), where conv represents convex hull. We now precisely describe the verification
scheme (abbreviated as: V-scheme). Let M be an admissible cutting-plane procedure (that is, a valid
and ‘reasonable’ cutting-plane system - we will formally define these) and let M(P ) be the closure with
respect to the family of cutting-planes obtained using M. For example, M could represent split cuts and
then M(P ) represents the split closure of P . Usually using cutting-planes from a cutting-plane procedure
M, implies using valid inequalities for M(P ) as cutting-planes. In the V-scheme, we apply the following
procedure: We design or guess the inequality cx ≤ d where (c, d) ∈ Zn×Z. To verify that this inequality is
valid for PI , we apply M to P ∩{x ∈ Rn | cx ≥ d+1} and check whether M(P ∩{x ∈ Rn | cx ≥ d+1}) = ∅.
If M(P ∩ {x ∈ Rn | cx ≥ d + 1}) = ∅, then cx ≤ d is a valid inequality for PI . This leads us to the
following definition.

Definition 1. We say that the inequality cx ≤ d is verifiable using a cutting plane operator M for a
rational polytope P ⊆ Rn if c ∈ Zn, d ∈ Z and M(P ∩ {x ∈ Rn | cx ≥ d+ 1}) = ∅.
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We might wonder how much we gain from having to only verify that a given inequality cx ≤ d is valid
for PI , rather than actually computing it. In fact at a first glance, it is not even clear that there would
be any difference between computing and verifying. The strength of the verification scheme lies in the
following inclusion that can be readily verified for admissible cutting-plane procedures:

M(P ∩ {x ∈ Rn | cx ≥ d+ 1}) ⊆M(P ) ∩ {x ∈ Rn | cx ≥ d+ 1} . (1)

The interpretation of this inclusion is that an additional inequality cx ≥ d+1 appended to the description
of P can provide us with crucial extra information when deriving new cutting-planes by using M that is
not available when considering P alone. In other words, (1) can potentially be a strict inclusion such that
M(P ∩ {x ∈ Rn | cx ≥ d+ 1}) = ∅ while M(P ) ∩ {x ∈ Rn | cx ≥ d+ 1} 6= ∅. This is equivalent to saying
that we can verify the validity of cx ≤ d, however we are not able to compute cx ≤ d. To the best of our
knowledge, the only paper discussing a related idea is [4], but theoretical and computational potential of
this approach has not been further investigated.

The set obtained by intersecting all cutting-planes verifiable using M will be called the verification
closure (abbreviated as: V-closure) of M and denoted by ∂M(P ), that is,

Definition 2. Let M be a cutting plane operator. Then

∂M(P ) :=
⋂

(c,d)∈Zn×Z
s.t. M(P∩{x∈Rn|cx≥d+1})=∅

{x ∈ Rn | cx ≤ d} . (2)

Under mild conditions, (1) implies ∂M(P ) ⊆ M(P ) for all rational polytopes P . (We formally verify
this later.) Since there exist inequalities that can be verified but not computed, this inclusion can be
proper. We illustrate this in the next example.

Example 1. Given a rational polytope P ⊆ Rn, recall that the split closure of P is defined as,

SC(P ) =
⋂

(π,π0)∈Zn×Z

conv((P ∩ {x ∈ Rn |πx ≤ π0}) ∪ (P ∩ {x ∈ Rn |πx ≥ π0 + 1})).

Let SCi(P ) denote the i-th split closure P , that is SCi(P ) = SC(SCi−1(P )) and SC1(P ) := SC(P ).
Consider the following family of polytopes [3] for n ∈ N:

An :=

x ∈ [0, 1]n |
∑
i∈I

xi +
∑
i 6∈I

(1− xi) ≥
1

2
∀ I ⊆ [n]

 . (3)

Note that (An)I = ∅ and recall that it takes n rounds of split cuts to establish that An is infeasible [7].
For simplicity, consider the instance P := A3. Then SC2(A3) 6= ∅ and SC3(A3) = ∅.

We will show that the V-split closure of A3 is the empty set, that is, ∂SC(A3) = ∅. We first design
the inequality x1 + x2 + x3 ≥ 2. In order to show that the inequality x1 + x2 + x3 ≥ 2 is verifiable for
∂SC(A3) we will establish that SC(Q) = ∅ where Q := A3 ∩

{
x ∈ R3 | x1 + x2 + x3 ≤ 1

}
. It is easy to see

that max{xi | x ∈ Q} < 1 for i ∈ [3] and so we obtain that the split cuts xi ≤ 0 for i ∈ [3] are valid for
SC(Q). However, x1 +x2 +x3 ≥ 1

2 is in the description of Q. Thus, SC(Q) = ∅, and so x1 +x2 +x3 ≥ 2
can be obtained via the V-split closure, that is, it is valid for ∂SC(A3). By symmetry, we also obtain that
∂SC(A3) ⊆

{
x ∈ R3 | x1 + x2 + x3 ≤ 1

}
and so it follows that ∂SC(A3) = ∅.

We note that rank of A3 with respect to Gomory-Chvátal (GC) cuts [14, 2], Lift-and-project (LP)
cuts [1], and Matrix cone cuts (N0,N,N+) [16] is also 3 but the V-rank is 1 for any of these operators.

Outline and contribution. This paper undertakes a systematic study of the strengths and weak-
nesses of the V-closures. In Section 2, we prove basic properties of the V-closure. In order to present these
results, we first describe general classes of reasonable cutting-planes, the so called admissible cutting-plane
procedures, a machinery developed in [19]. We prove that ∂M is almost admissible, that is the V-schemes
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satisfy many important properties that all known classes of admissible cutting-plane procedures including
GC cuts, lift-and-project cuts, split cuts (SC), and N,N0,N+ cuts satisfy.

In Section 3, we show first that V-schemes have natural inherent strength, that is even if M is an
arbitrarily weak admissible cutting-plane procedure, ∂M is at least as strong as the GC and the N0

closures. We then compare the strength of various regular closures (GC cuts, split cuts, and N0,N,N+

cuts) with their V-versions and with each other. For example, we show that ∂GC(P ) ⊆ SC(P ) and
∂N0(P ) ⊆ SC(P ) for every rational polytope P . The complete list of these results is illustrated in
Figure 1.

In Section 4, we present upper and lower bounds on the rank of valid inequalities with respect to
the V-closures for a large class of 0/1 problems. These results show that while the V-closures are strong
compared to the regular closures, they not unrealistically so.

In Section 5, we illustrate the strength of the V-schemes when applied on specific structured problems.
We show that facet-defining inequalities of monotone polytopes contained in [0, 1]n have low rank with
respect to any ∂M operator. We show that numerous families of inequalities with high GC, N0, or N
rank [16, 3, 5] (such as clique inequalities) for the stable set polytope have a rank of 1 with respect to any
∂M with M being arbitrarily weak and admissible. We will also show that for the subtour elimination
relaxation of the traveling salesman problem the rank for ∂M with M ∈ {GC,SC,N0,N,N+} is in Θ(n)
where n is the number of nodes, that is the rank is Θ(

√
dim(P )) with P being the TSP-polytope. It

is well-known that for the case of rational polytopes in R2 the GC rank can be arbitrarily large [2]. In
contrast, we establish that the rank of rational polytopes in R2 with respect to ∂GC is 1.

An extended abstract of the results in this paper is presented in [11].

2 General properties of the V-closure.
Definition 3 ([19]). Let M be a cutting plane procedure for binary integer linear programs and let P :=
{x ∈ [0, 1]n | Ax ≤ b} be any rational polytope contained in the 0/1 hypercube. The cutting-plane procedure
M is called admissible if the following holds:

1. Validity: PI ⊆M(P ) ⊆ P .

2. Inclusion preservation: If P ⊆ Q, then M(P ) ⊆M(Q) for all polytopes P,Q ⊆ [0, 1]n.

3. Homogeneity: M(F ∩ P ) = F ∩M(P ), for all faces F of [0, 1]n.

4. Single coordinate rounding: If xi ≤ ε < 1 (or xi ≥ ε > 0) is valid for P , then xi ≤ 0 (or
xi ≥ 1) is valid for M(P ).

5. Commuting with coordinate flips and duplications: τi(M(P )) = M(τi(P )), where τi is
either one of the following two operations: (i) Coordinate flip: τi : [0, 1]n → [0, 1]n with (τi(x))i =
(1− xi) and (τi(x))j = xj for j ∈ [n] \ {i}; (ii) Coordinate Duplication: τi : [0, 1]n → [0, 1]n+1 with
(τi(x))n+1 = xi and (τi(x))j = xj for j ∈ [n].

6. Substitution independence: Let ϕF : Rn → Rd be the projection onto the d-dimensional face F
of [0, 1]n. Then we require ϕF (M(P ∩ F )) = M(ϕF (P ∩ F )).

7. Short verification: There exists a polynomial p such that for any inequality cx ≤ d that is valid
for M(P ) there is a set I ⊆ [m] with |I| ≤ p(n) such that cx ≤ d is valid for M({x ∈ [0, 1]n | aix ≤
bi, i ∈ I}).

Let M be a cutting plane procedure for general integer linear programs. Such a operator M is defined
as being admissible if (A.) M satisfies (1.)-(7.) when restricted to polytopes contained in [0, 1]n and (B.)
M satisfies

(a) (1.) for all polytopes P ⊆ Rn, that is, if P := {x ∈ Rn | Ax ≤ b} then PI ⊆M(P ) ⊆ P ;

(b) (2.) for any two polytopes P and Q in Rn, that is if P and Q are rational polytopes satisfying P ⊆ Q
then M(P ) ⊆M(Q);
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(c) (7.) for all polytopes P := {x ∈ Rn | aix ≤ bi, i ∈ [m]}, that is there exists a polynomial p such that
for any inequality cx ≤ d that is valid for M(P ) there is a set I ⊆ [m] with |I| ≤ p(n) such that
cx ≤ d is valid for M({x ∈ Rn | aix ≤ bi, i ∈ I}).

and satisfies Strong Homogeneity (which replaces Homogeneity)

8. Strong Homogeneity: If P ⊆ F≤ := {x ∈ Rn | ax ≤ b} and F = {x ∈ Rn | ax = b} where
(a, b) ∈ Zn × Z, then M(F ∩ P ) = M(P ) ∩ F .

In the following, we assume that M(P ) is a closed convex set. If M satisfies all required properties for
being admissible except (7.), then we say M is almost admissible.

We note here that almost all known classes of cutting-plane schemes such as GC cuts, lift-and-project
cuts, split cuts, and N,N0,N+ are admissible (cf. [19] for more details). Observe that (1) in Section 1
follows from inclusion preservation. In the following we will mostly work with admissible cutting-plane
procedures, however most results hold more generally (that is, these results hold due to only a subset of
the properties of admissible cutting plane operators) and we will indicate in brackets for each result which
of the above properties are used. Since we assume to work with valid cutting planes only, Property 1 is
added in the bracket for each result.

Also note that whenever M is admissible, then M(P ) 6= P whenever P ⊆ [0, 1]n with P 6= ∅ and PI = ∅
(see [19]). Note that we did not include commutation of M with coordinate permutations, which is merely
renaming of coordinates, as we assume this to be trivially true.

Remark 1 (Properties of admissible cutting plane for general IP versus binary IP). Requiring strong
homogeneity for general IPs leads to a slightly more restricted class than the requirement of homogeneity
in the 0/1 case. Our motivation to add this property to the list of properties satisfied by admissible cutting
plane operators are: (1) It is an importment property that is used for proving various results about the
closures of cutting planes (see for example [21], [6]) which holds true for all well-known cutting plane
operators for general IPs. (2) Moreover as we show in Theorem 1, this ‘restrictive’ property is inherited
by ∂M due to it holding for M . Since in this paper, we study properies of V-schemes, this is an appropiate
property to study.

Note that another typical property one would expect to hold for well-defined cutting-plane procedures for
general IPs is invariance under integral translations. While we have not added this to the list of properties
of admissible cutting plane operators, it is straightforward to check that this property holds for ∂M , if it
holds for M.

Remark 2 (Property 4 and V-closures). Observe that any V-scheme ∂M supports property 4 by definition.
To see this, let P ⊆ [0, 1]n be a polytope and let without loss of generality P ∩{x ∈ Rn |xi = 0} = ∅. Then
in particular M(P ∩ {x ∈ Rn |xi ≤ 0}) = ∅ and thus ∂M(P ) ⊆ {x ∈ Rn |xi = 1}.

Remark 3 (Admissible cutting-plane procedures for compact convex sets). The definition of admissible
cutting-plane procedures readily generalizes to compact convex sets. Since the set M(P ) is convex and
compact, this allows us to iterate M, that is given a compact convex set P , the set M i(P ) := M(M i−1(P )
is well-defined for i ∈ N (where M1(P ) := M(P )). Observe that ∂M(P ) is a compact convex set by
definition and is well-defined for a general compact convex set P if M(P ) is defined for compact convex
set P . Therefore, the set (∂M)i(P ) := ∂M((∂M)i−1(P ) is also well-defined for i ∈ N (where (∂M)1(P ) :=
∂M(P )) .

Finally we remark that the assumption of M being applicable for compact convex sets is not necessary
for defining iterations of M . Indeed one may alternatively assume that M(P ) is a rational polytope.
However, this still leaves difficulty with the definition of (∂M)i. Moreover, this property is not true
for well-known cutting plane operators such as the N,N+ operator. On the other hand, all the well-
known operators described above, that is GC,SC, N,N0,N+, are applicable to general compact convex
sets. (See [9] for a definition of GC operator for compact convex sets.)

All polytopes are assumed to be rational polytopes in this paper if not stated otherwise. In this
case we can confine ourselves to valid inequalities with integral coefficients. We will use en to represent
the vector of all ones in Rn. If the dimension of the vector is obvious from context, then we will use e
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instead of en. Recall that An :=
{
x ∈ [0, 1]n |

∑
i∈I xi +

∑
i 6∈I(1− xi) ≥

1
2 ∀ I ⊆ [n]

}
; this set is referred

regularly in the rest of the paper. We will use {αx ≤ β} as a shorthand for {x ∈ Rn | αx ≤ β} whenever
the ambient dimension n is understood from context. Let ϕF be the projection onto the face F of [0, 1]n

and Q = ϕF (P ∩ F ). We simplify the notation Q = ϕF (P ∩ F ) as Q ∼= (P ∩ F ). Moreover, instead of the
cumbersome notation ϕF (M(P ∩ F )) = M(ϕF (P ∩ F )) for substitution independence, we will simply say
M(Q) ∼= M(P ∩ F ).

Next we present a technical lemma that we require for the main result of this section.

Lemma 2. Let Q ⊆ Rn be a compact set contained in the interior of the set {βx ≤ ζ} with (β, ζ) ∈ Zn×Z
and let (α, η) ∈ Zn × Z. Then there exists a positive integer τ such that Q is strictly contained in the set
{(α+ τβ)x ≤ η + τζ}.

Proof. Since Q is a bounded set, αx ≤ η + M for all x ∈ Q for some bounded M ∈ R. Also since Q is
contained in the interior of the set {βx ≤ ζ}, there exists an ε > 0 such that βx ≤ ζ − ε for all x ∈ Q.
Therefore for τ ∈ Z+ satisfying M/ε < τ , we obtain that (α + τβ)x ≤ η + M + τζ − τε < η + τζ for all
x ∈ Q.

We next show that ∂M satisfies almost all properties that we observe in most well-known cutting-plane
procedures.

Theorem 1. Let M be an admissible cutting-plane procedure. Then ∂M is almost admissible. In partic-
ular,

1. For 0/1 polytopes, ∂M satisfies properties (1.) to (6.).

2. If M is defined for general polytopes, then ∂M satisfies property (8.).

Proof. It is straightforward to verify (1.), (2.), and (4.) - (6.). The non-trivial part is property (8.) (or
(3.) respectively). In fact it follows from the original operator M having this property. We will prove (8.);
property (3.) in the case of P ⊆ [0, 1]n follows mutatis mutandis.

First observe that ∂M(P ∩ F ) ⊆ ∂M(P ) and ∂M(P ∩ F ) ⊆ F . Therefore, ∂M(P ∩ F ) ⊆ ∂M(P ) ∩ F .
To verify ∂M(P ∩ F ) ⊇ ∂M(P ) ∩ F , we show that if x̂ /∈ ∂M(P ∩ F ), then x̂ /∈ ∂M(P ) ∩ F . Observe first
that if x̂ /∈ P ∩ F , then x̂ /∈ ∂M(P ) ∩ F . Therefore, we assume that x̂ ∈ P ∩ F . Hence we need to prove
that if x̂ /∈ ∂M(P ∩ F ) and x̂ ∈ P ∩ F , then x̂ /∈ ∂M(P ). Since x̂ /∈ ∂M(P ∩ F ), there exists c ∈ Zn and
d ∈ Z such that cx̂ > d and M(P ∩ F ∩ {cx ≥ d+ 1}) = ∅. By strong homogeneity of M, we obtain

M(P ∩ {cx ≥ d+ 1}) ∩ F = ∅. (4)

Let F≤ = {ax ≤ b} and F = {ax = b} with P ⊆ F≤. Now observe that (4) is equivalent to saying
that M(P ∩ {cx ≥ d+ 1}) is contained in the interior of the set {ax ≤ b}. Therefore by Lemma 2, there
exists a τ ∈ Z+ such that M(P ∩ {cx ≥ d + 1}) is contained in the interior of {(c + τa)x ≤ d + 1 + τb}.
Equivalently, M(P ∩ {cx ≥ d+ 1}) ∩ {(c+ τa)x ≥ d+ 1 + τb} = ∅ which implies

M(P ∩ {cx ≥ d+ 1}) ∩ (P ∩ {(c+ τa)x ≥ d+ 1 + τb}) = ∅. (5)

Since P ⊆ F≤, we obtain that

P ∩ {(c+ τa)x ≥ d+ 1 + τb} ⊆ P ∩ {cx ≥ d+ 1}. (6)

Now using (5), (6) and the inclusion preservation property of M it follows that M(P ∩ {(c + τa)x ≥
d+ 1 + τb}) = ∅. Thus (c+ τa)x ≤ d+ τb is a verifiable inequality for ∂M(P ). Moreover note that since
x̂ ∈ P ∩F , we have that ax̂ = b. Therefore, (c+ τa)x̂ = cx̂+ τb > d+ τb, where the last inequality follows
from the fact that cx̂ > d.

It can be shown that short verification, that is property (7.) of admissible systems follows whenever
∂M(P ) is a rational polyhedron. However, we do not need this property for the results in this paper.
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3 Strength and comparisons of V-closures.
In this section, we compare various regular closures and their verification counterparts with each other.
We first formally define possible relations between admissible closures and the notation we use.

Definition 4. Let L,M be almost admissible. Then

1. L refines M, if for all rational polytopes P we have L(P ) ⊆M(P ). We write: L ⊆M. It is indicated
by empty arrow heads in Figure 1.

2. L strictly refines M, if L refines M and there exists a rational polytope P such that L(P ) ( M(P ).
We write: L ( M. It is indicated by a filled arrow heads in Figure 1.

3. L is incomparable with M, if there exist rational polytopes P and Q such that M(P ) ( L(P ) and
M(Q) ) L(Q). We write: L ⊥M. It is indicated with an arrow with circle head and tail in Figure
1.

In each of the above definitions, if either one of L or M is defined only for polytopes P ⊆ [0, 1]n, then we
confine the comparison to this class of polytopes.

In Section 3.1, we will establish the following result.

Theorem 2. Let M be an admissible cutting plane operator. Then

1. ∂M ( M (via Properties 1, 2, 4, 6, 7).

2. ∂M ⊆ GC and ∂M ⊆ N0 (via Properties 1, 2, 4).

In Section 3.2, we will establish the following result.

Theorem 3. Let L and M be admissible cutting plane operators such that L ⊆ M. Then ∂L ⊆ ∂M.
Moreover,

1. ∂GC ( SC.

2. ∂N0 ⊥ ∂GC.

3. ∂N0 ⊥ SC.

4. ∂N ( ∂N0.

Well-known relations between the operators {GC,SC,N0,N,N+} and those presented in Theorem 2
and Theorem 3 are depicted in Figure 1.

3.1 Strength of ∂M for arbitrary admissible cutting-plane procedures M

In order to show that ∂M refines M, we require the following technical lemma; see [10] for a similar result.
We use the notation σP (·) to refer to the support function of a set P , that is σP (c) = sup{cx | x ∈ P}.

Lemma 3. Let P,Q ⊆ Rn be compact convex sets. If σP (c) ≤ σQ(c) for all c ∈ Zn, then P ⊆ Q.

Proof. For a compact convex set T , we have that T =
⋂
c∈Zn{x ∈ Rn | cx ≤ σT (c)}. See [10] for a proof.

If x̂ ∈ P , then cx̂ ≤ σP (c) for all c ∈ Zn. By assumption σP (c) ≤ σQ(c), we obtain that cx̂ ≤ σQ(c) for all
c ∈ Zn. However since Q =

⋂
c∈Zn{x ∈ Rn | cx ≤ σQ(c)}, we obtain that x̂ ∈ Q.

Proposition 4. (Properties 1, 2, 4, 6, 7) Let M be admissible. Then ∂M ( M.
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GC

SC

pGC

pM

pSC

N0

NpN0

N+pN

pN+

M

Figure 1: Direct and V-closures and their relations. pL in the figure represents ∂L and M is an arbitrarily
weak admissible system. In order to simplify the figure, we have removed the arcs corresponding to
GC ⊥ N, GC ⊥ N+, SC ⊥ N, SC ⊥ N+. An arc A→ B states that A is refined by B — the other edges
indicate incompatibility.

Proof. We first verify that ∂M ⊆M. Since M(P ) ⊆ P and ∂M(P ) ⊆ P (this follows from the definition of
∂M and Lemma 3), both M(P ) and ∂M(P ) are bounded. Moreover since M(P ) is closed by definition, and
∂M(P ) is defined as the intersection of halfspaces (thus a closed set), we obtain that M(P ) and ∂M(P )
are both compact convex sets. Thus, by Lemma 3, it is sufficient to compare the support functions of
M(P ) and ∂M(P ) with respect to integer vectors only. Let σM(P )(c) = d for c ∈ Zn. We verify that
σ∂M(P )(c) ≤ bdc. Observe that, M(P ∩ {cx ≥ bdc + 1}) ⊆ M(P ) ∩ {cx ≥ bdc + 1}, where the inclusion
follows from the inclusion preservation property of M. However note that since cx ≤ d is a valid inequality
for M(P ), we obtain that M(P ) ∩ {cx ≥ bdc+ 1} = ∅. Thus, M(P ∩ {cx ≥ bdc+ 1}) = ∅ and so cx ≤ bdc
is a valid inequality for ∂M(P ). Equivalently we have σ∂M(P )(c) ≤ bdc ≤ d = σM(P )(c), completing the
proof.

Now we verify ∂M ( M. Let n ∈ N be such that M(An) 6= ∅ and M(An−1) = ∅; such an n exists (due
to the coordinate rounding property of M we have that M(A1) = ∅ and since M satisfies property 7, there
exists t ∈ N such that M(At) 6= ∅; (see [19])). We claim that ∂M(An) = ∅ which implies that ∂M ( M
follows.

In order to establish the claim, observe that M(An∩{xn ≤ 0}) ∼= M(An−1) = ∅, where the last equality
is due to the choice of n. Therefore xn ≥ 1 is valid for ∂M(An). Similarly, we can derive the validity of
xn ≤ 0 for ∂M(An). We therefore conclude that ∂M(An) = ∅.

Remark 4. Recall that ∂M is defined via integral inequalities and M(P ) does neither have to be polyhedral
nor rational in general. We use compactness and Lemma 3 to confine ourselves to integral normals which
allows for the comparison of M and ∂M.

Also observe that for strict inclusion it suffices that there exists a polytope P ⊆ [0, 1]n with PI = ∅ and
M(P ) 6= ∅. Then it can be verified that there is a face F of [0, 1]n (F can be [0, 1]n) such that M(P∩F ) 6= ∅
but ∂M(P ∩F ) = ∅ via properties 1, 2, and 3 of an admissible operator M. The requirement of P such that
M(P ) 6= ∅ and PI = ∅, can be considered a weakening of property 7 which is sufficient for the existence of
such a polytope.

We next show that even if M is chosen arbitrarily, ∂M is at least as strong as the GC closure and the
N0 closure. Let M ◦ L denote the composition of two operators, that is (M ◦ L)(P ) = M(L(P )). Note
that here we assume that M is an admissible cutting plane operator applicable to general compact convex
sets if L(P ) is not polyhedral. Also note that M ◦ L is an admissible operator [19].
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Proposition 5. (Properties 1, 2, 4) Let M be admissible. Then ∂M ⊆ GC ◦M and ∂M ⊆ N0.

Proof. Given T ⊆ Rn a compact convex set, recall that GC(T ) =
⋂
π∈Zn{πx ≤ bσT (π)c}. Let P ⊆ Rn

be a polytope. First let cx < d + 1 with c ∈ Zn and d ∈ Z be valid for M(P ). Then cx ≤ d is valid for
GC(M(P )). It suffices to consider inequalities of this type even if M(P ) is not polyhedral by Lemma 3.
As M(P ) ⊆ {cx < d+ 1} it follows that ∅ = M(P )∩{cx ≥ d+ 1} ⊇M(P ∩{cx ≥ d+ 1}). It follows that
cx ≤ d is valid for ∂M(P ) and thus ∂M(P ) ⊆ GC(M(P )).

Now let P ⊆ [0, 1]n. For proving ∂M(P ) ⊆ N0(P ), recall that N0 =
⋂
i∈[n] Pi where Pi := conv{(P ∩

{xi = 0}) ∪ (P ∩ {xi = 1})}. We will show that ∂M(P ) ⊆ Pi for all i ∈ [n]. Therefore let cx ≤ d with
c ∈ Zn and d ∈ Z be valid for Pi with i ∈ [n] arbitrary. (It is sufficient to consider only inequalities with
integer coefficients since Pi is a rational polytope.) In particular, cx ≤ d is valid for P ∩ {xi = l} with
l ∈ {0, 1}. Thus we can conclude that P ∩ {cx ≥ d+ 1} ∩ {xi = l} = ∅ for i ∈ {0, 1}. Therefore xi > 0
and xi < 1 are valid for P ∩ {cx ≥ d+ 1} and so by coordinate rounding (property (4.) of Definition 3),
xi ≤ 0 and xi ≥ 1 are valid M(P ∩ {cx ≥ d+ 1}). We obtain M(P ∩ {cx ≥ d+ 1}) = ∅ and thus cx ≤ d
is valid for ∂M(P ).

Remark 5. Note that, although the identity map I is not admissible as it does not satisfy property 4, it
follows from the proof of Proposition 5 that ∂I ⊆ GC. Moreover in this particular case, it is not difficult
to verify that ∂I = GC.

On the other hand, we remark that it is not true that the V-scheme of an admissible operator M is
always the composition of GC with M . For example, as shown in Section 5, ∂GC(P ) = PI for any
rational polytope in R2. In contrast, it is well-known that GC ◦GC(P ) = GC2(P ) does not yield PI for
rational polytopes P ⊆ R2 in general. Also, as we will see later, the V-schemes derive clique inequalities
in a single round. This is not necessarily true for GC ◦M(P ) in general.

3.2 Comparing M and ∂M for M being GC, SC, N0, N, or N+

We now compare various closures and their associated V-closures. The first result shows that the verifi-
cation scheme of the Gomory-Chvátal procedure is strictly stronger than split cuts.

Proposition 6. ∂GC ( SC.

Proof. We first verify that ∂GC ⊆ SC. Consider cx ≤ d being valid for P ∩ {πx ≤ π0} and P ∩
{πx ≥ π0 + 1} with c, π ∈ Zn and d, π0 ∈ Z. Clearly, cx ≤ d is valid for SC(P ) and it suffices to
consider inequalities cx ≤ d with this property as SC(P ) is a rational polytope [6] (since we work with
polytopes, this is also implied by Lemma 3). Therefore consider P ∩ {cx ≥ d+ 1}. By cx ≤ d being
valid for the disjunction πx ≤ π0 and πx ≥ π0 + 1 we obtain that P ∩ {cx ≥ d+ 1} ∩ {πx ≤ π0} = ∅
and P ∩ {cx ≥ d+ 1} ∩ {πx ≥ π0 + 1} = ∅. This implies that P ∩ {cx ≥ d+ 1} ⊆ {πx > π0} and simi-
larly P ∩ {cx ≥ d+ 1} ⊆ {πx < π0 + 1}. We thus obtain that πx ≥ π0 + 1 and πx ≤ π0 are valid for
GC(P ∩ {cx ≥ d+ 1}). It follows GC(P ∩ {cx ≥ d+ 1}) = ∅. Thus cx ≤ d is valid for ∂GC(P ).

To see that ∂GC ( SC, observe that ∂GC(A2) = ∅ and SC(A2) 6= ∅.

Next we compare V-schemes of two closures that are comparable. Before we present these results, we
clarify the difference between the notion of verifiable inequalities against the notion of valid inequalities
for V-closure of M. Recall that given a polytope, P ⊆ Rn, we say cx ≤ d is a verifiable inequality if
c ∈ Zn, d ∈ Z and M(P ∩ {cx ≥ d+ 1}) = ∅. Thus the V-closure of M is the intersection of all verifiable
inequalities. On the other hand, there may be a valid inequality for ∂M(P ) that is not verifiable. A trivial
example of such as a valid inequality cx ≤ d for ∂M(P ) is when c is not a rational vector. The following
example illustrates this difference more explicitly.

Example 7. Consider the set P = {x ∈ [0, 1]2 | x1 + x2 ≥ 1
2 , x1 − x2 ≤

1
2 ,−x1 + x2 ≤ 1

2}. Observe that
∂N0(P ) = PI = {(1, 1)}. This can be obtained by observing that the inequalities x1 ≥ 1 and x2 ≥ 1 are
verifiable using N0. Now consider the inequality 2x1 + 3x2 ≥ 5. Clearly 2x1 + 3x2 ≥ 5 is valid for ∂N0(P )
but is not verifiable since N0(P ∩ {2x1 + 3x2 ≤ 4}) ⊇ N0(A2) = 1

2e.

The next result shows that switching to the verification schemes preserves inclusion. It holds for
verification schemes of any two operators, as it is based on a purely geometric property.
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Proposition 8. Let L,M be cutting-plane (not necessarily admissible) operators such that L ⊆M. Then
∂L ⊆ ∂M.

Proof. Let P ⊆ Rn be a polytope. By the definition of ∂M, it is sufficient to show that every inequality
cx ≤ d verifiable by using M is valid for ∂L(P ). Now observe that since cx ≤ d is verifiable by using M,
we have that M(P ∩ {cx ≥ d+ 1}) = ∅. Thus, L(P ∩ {cx ≥ d+ 1}) = ∅ since L ⊆M and therefore cx ≤ d
is verifiable using L. Equivalently cx ≤ d is valid for ∂L(P ), completing the proof.

In order to prove strict refinement or incompatibility between V-closures the following proposition is
helpful. It establishes when strict refinement carries over to the V-schemes.

Proposition 9. (Properties 1, 3, 6) Let L,M be admissible. If P ⊆ [0, 1]n is a polytope with PI = ∅ such
that M(P ) = ∅ and L(P ) 6= ∅, then ∂L does not refine ∂M.

Before presenting the proof of Proposition 9, we first present a lemma which relates the V-scheme with
the actual closure.

Lemma 10. (Properties 1, 3, 6) Let L be admissible. Let P ⊆ [0, 1]n be a polytope, P 6= ∅ and PI = ∅.
Define Q ⊆ [0, 1]n+1 as Q = conv({(x, 1) ∈ Rn+1 | x ∈ P} ∪ {(y, 0) ∈ Rn+1 | y ∈ [0, 1]n}). Then
∂L(Q) = QI iff L(P ) = ∅.

Proof. (⇐) If L(P ) = ∅, then observe that L(Q∩{x ∈ Rn+1 |xn+1 ≥ 1}) ∼= L(P ) = ∅. Therefore xn+1 ≤ 0
is valid for ∂L(Q). Thus ∂L(Q) = QI .
(⇒) We will now show that if L(P ) 6= ∅, then the point 1

2e ∈ Rn+1 satisfies 1
2e ∈ ∂L(Q) and hence ∂L(Q) 6=

QI . Let c ∈ Zn and cn+1, d ∈ Z such that L(T ) = ∅ with T = {x ∈ Q | cx+ cn+1xn+1 ≥ d+ 1}, that is
cx+ cn+1xn+1 ≤ d is valid for ∂L(Q). We will show that c( 1

2e
n) + 1

2cn+1 ≤ d. Let zmin := minx∈[0,1]n cx
and zmax := maxx∈[0,1]n cx; let xmin and xmax be a minimizer and a maximizer, respectively. Further we
define zP := minx∈P cx. As L(P ) 6= ∅, by property 6 we have P ∼= Q ∩ {xn+1 = 1} 6⊆ T and therefore
zP + cn+1 < d+ 1 and hence cn+1 ≤ d− zP . On the other hand we have that zmin ≤ zP since P ⊆ [0, 1]n.
As Q∩{xn+1 = 0} is integral we have T ∩ (Q∩{xn+1 = 0}) = ∅ and so zmax ≤ d. Moreover, by definition
of xmin and xmax we can assume that xmin and xmax are antipodal, that is en = xmax + xmin. So we
conclude

1

2
e =

1

2
((xmin, 0) + (xmax, 0) + (0, . . . , 0, 1)),

and therefore

c(
1

2
en) +

1

2
cn+1 ≤

1

2
(zP + d+ (d− zP )) = d

which completes the proof.

We will use the following notation in the remainder of this section. Let G ⊆ [0, 1]n be a closed convex
set. For l ∈ [0, 1], by Gxn+1=l we denote the set S ⊆ [0, 1]n+1 such that S ∩ {xn+1 = l} ∼= G and S does
not contain any other points. We can think of S arising from G by padding the coordinates of the vertices
with l to the right. If G is the singleton {p}, then we write {p}xn+1=l as pxn+1=l.

Proof. of Proposition 9 Consider the auxiliary polytope Q given as Q := conv
(
Pxn+1=1 ∪ [0, 1]nxn+1=0

)
.

By Lemma 10, ∂L(Q) = ∅ if and only if L(P ) ∼= L(Q ∩ {xn+1 ≥ 1}) = ∅ (and similarly for M). Since we
have M(P ) = ∅ but L(P ) 6= ∅, we obtain QI = ∂M(Q) 6⊇ ∂L(Q).

In the following propositions, polytopes are presented that help establish the strict inclusion or incom-
patibility depicted in Figure 1, via Proposition 9.

Proposition 11. ∂N0 ⊥ ∂GC via the two polytopes P1 := conv([0, 1]3 ∩ {x1 + x2 + x3 = 3/2}) ⊆ [0, 1]3

and P2 := conv({( 1
4 ,

1
4 , 0), ( 1

4 ,
1
4 , 1), ( 1

2 , 0,
1
2 ), ( 1

2 , 1,
1
2 ),

(0, 12 ,
1
2 ), (1, 12 ,

1
2 )}) ⊆ [0, 1]3.
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Proof. By Proposition 9 it suffices to show that GC(P1) = ∅ 6= N0(P1) and, vice versa, GC(P2) 6= ∅ =
N0(P2).

For the first case, clearly GC(P1) = ∅. For proving that N0(P1) 6= ∅ it suffices to show that 1
2e is

contained in conv((P1 ∩ {xi = 0}) ∪ (P1 ∩ {xi = 1})) for all i ∈ [3]. By symmetry, it suffices to show this
for i = 1. This is true as 1

2e is the convex combination of the points (0, 1, 1/2) and (1, 0, 1/2).
For the second case, we first show that N0(P2) = ∅. For this observe that conv((P2 ∩{x3 = 0})∪ (P2 ∩

{x3 = 1})) contains only points whose first two coordinates are equal to 1/4. On the other hand

conv((P2 ∩ {x1 = 0}) ∪ (P2 ∩ {x1 = 1}))

∩conv((P2 ∩ {x2 = 0}) ∪ (P2 ∩ {x2 = 1})) =
1

2
e,

as P2 ∩ {x3 = 1/2} ∼= A2 and thus N0(P2) = ∅. It thus remains to show that GC(P2) 6= ∅. We will show
that 1

2e ∈ P2. Let cx ≤ d with c ∈ Zn be valid for P2. We divide the proof into two cases:

1. Either c1 or c2 is non-zero. In this case observe that

d ≥ d0 := max

{
c

(
1

2
, 0,

1

2

)
, c

(
1

2
, 1,

1

2

)
, c

(
0,

1

2
,

1

2

)
, c

(
1,

1

2
,

1

2

)}
> d1 := c

(
1

2
,

1

2
,

1

2

)
,

where the second inequality follows from the fact that
(
1
2 ,

1
2 ,

1
2

)
lies in the relative interior of the

convex hull of
(
1
2 , 0,

1
2

)
,
(
1
2 , 1,

1
2

)
,
(
0, 12 ,

1
2

)
,
(
1, 12 ,

1
2

)
. Now observe that since d0, d1 ∈ 1

2Z, we obtain

that the interval [d1, d0] contains at least one integer number. Thus, bdc ≥ bd0c ≥ d1 = c
(
1
2 ,

1
2 ,

1
2

)
.

2. c1 = c2 = 0. If c3 > 0, then d ≥ c3 (since ( 1
4 ,

1
4 , 1) ∈ P2) and we obtain the GC inequality

c3x3 ≤ bc3c where bc3c ≥ 1. Thus this inequality cannot separate 1
2e. Similarly if c3 ≤ −1, it can

the verified that the resulting inequality cannot separate 1
2e.

Proposition 12. ∂N0 ⊥ SC via P1 := A3 ⊆ [0, 1]3 and P2 := conv([0, 1]3 ∩ {x1 + x2 + x3 = 3/2}).

Proof. Clearly SC 6⊆ ∂N0 as ∂N0(P1) = ∅ (proof similar to Example 1) but SC(P1) 6= ∅ (cf. Lemma 3.3
in [8]).

For the converse, by Proposition 11 we have N0(P2) 6= ∅. However, SC(Q) = QI by observing that
the split x1 +x2 +x3 ≤ 1 and x1 +x2 +x3 ≥ 2 derives QI . Now the result follows from Proposition 9.

Proposition 13. ∂N ( ∂N0.

Proof. We will show that there exists a polytope Q contained in the 0/1 cube such that QI = ∅ and
∅ = N(Q) ( N0(Q). Then the result follows by the use of Proposition 9.

Let P ⊆ [0, 1]n such that N(P ) ( N0(P ), for example as discussed in page 171 of [16], for some n ∈ N.
Let p ∈ N0(P ) \N(P ) and define

Q := conv
(
Pxn+1=1/2 ∪

{
pxn+1=1, pxn+1=0

})
.

Clearly, QI = ∅.
We first verify that N(Q) = ∅. Observe first that N(Q) ⊆ N0(Q) ⊆ conv (Q ∩ {xn+1 = 0} ∪Q ∩ {xn+1 = 1}) =

conv(pxn+1=0, pxn+1=1). On the other hand, it is easily verified that if
∑n
i=1 cixi ≤ d is a valid inequality for

P , then it is also a valid inequality forQ. Therefore we obtain that N(Q) ⊆ conv(N(P )xn+1=0,N(P )xn+1=1).
Now since conv(N(P )xn+1=0,N(P )xn+1=1) ∩ conv(pxn+1=0, pxn+1=1) = ∅, we obtain that N(Q) = ∅.

Next we verify that N0(Q) 6= ∅. As p ∈ N0(P ) we can conclude that

pxn+1=1/2 ∈
⋂
i∈[n]

conv (Q ∩ {xi = 0} ∪Q ∩ {xi = 1}) .

Thus we have to show that pxn+1=1/2 ∈ conv (Q ∩ {xn+1 = 0} ∪Q ∩ {xn+1 = 1}). This is clear though as{
pxn+1=1, pxn+1=0

}
⊆ Q.
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4 Rank of valid inequalities with respect to V-closures.
In this section, we establish several bounds on the rank of ∂M for the case of polytopes P ⊆ [0, 1]n. Given
a natural number k, we use the notation Mk(P ) and rkM(P ) to be denote that kth closure of P with
respect to M and the rank of P with respect to M respectively. As ∂M ⊆ N0 we obtain:

Remark 6 (Upper bound in [0, 1]n). (Properties 1, 2, 4) Let M be admissible and P ⊆ [0, 1]n be a
polytope. Then rk∂M(P ) ≤ n.

Note that in general the property of M being admissible, does not guarantee that the upper bound on
rank is n. For example, the GC closure can have a rank strictly higher than n (cf. [13, 20]).

4.1 Rank of An

In quest for lower bounds on the rank of 0/1 polytopes, we note that among polytopes P ⊆ [0, 1]n that
have PI = ∅, the polytope An = {x ∈ [0, 1]n |

∑
i∈I xi +

∑
i 6∈I(1− xi) ≥

1
2 ∀ I ⊆ [n]} has maximal rank

(of n) for many admissible systems [18]. We will now establish that ∂M is not unrealistically strong by
showing that it is subject to similar limitations. Recall that we do not prove short verification (property
(7.)) for ∂M which is the basis for the lower bound in [19, Corollary 23] for admissible systems. We will
show that the lower bound for ∂M is inherited from the original operator M. Let

F kn := {x ∈ {0, 1/2, 1}n | exactly k entries equal to 1/2} ,

and let Akn := conv
(
F kn
)

be the convex hull of F kn . (Note A1
n = An.) With F being a face of [0, 1]n let

I(F ) denote the index set of those coordinate that are fixed by F . We begin with a crucial lemma.

Lemma 14. (Properties 1, 2, 5, 6) Let M be admissible and let ` ∈ N such that Ak+`n ⊆ M(Akn) for all
n, k ∈ N with k + ` ≤ n. If n ≥ k + 2`+ 1, then Ak+2`+1

n ⊆ ∂M(Akn).

Proof. Let P := Akn and let cx ≤ d with c ∈ Zn and d ∈ Z be verifiable for ∂M(P ), that is M(P ∩
{cx ≥ d+ 1}) = ∅. To prove this result, it is sufficient to prove that Ak+2`+1

n ⊆ P ∩ {cx ≤ d}.
We first claim that

Akk+`
∼= Akn ∩ F 6⊆ P ∩ {cx ≥ d+ 1} (7)

for all (k+ `)-dimensional faces F of [0, 1]n. Assume by contradiction that Akn∩F ⊆ P ∩{cx ≥ d+ 1}. As
Ak+`k+` ⊆M(Akk+`) by assumption, we obtain ∅ 6= Ak+`k+` ⊆M(Akk+`)

∼= M(Akn ∩ F ) ⊆M(P ∩ {cx ≥ d+ 1})
which contradicts the verifiability of cx ≤ d over ∂M(P ).

Without loss of generality we can further assume that c ≥ 0 and ci ≥ cj whenever i ≤ j by applying
coordinate flips and permutations.

Next we claim that for all (k + `)-dimensional faces F of [0, 1]n, the point vF defined as

vFi :=


∈ {0, 1} according to F , for all i ∈ I(F )

0, if ci is one of the ` largest coefficients of c with i 6∈ I(F )

1/2, otherwise

(8)

for i ∈ [n] is not contained in P ∩ {cx ≥ d+ 1}, that is cvF < d + 1 and so cvF ≤ d + 1/2. Note
that vF ∈ P and observe that vF := argminx∈Fk

n∩F cx. Therefore, if vF ∈ P ∩ {cx ≥ d+ 1}, then

Akn ∩ F ⊆ P ∩ {cx ≥ d+ 1} which in turn contradicts (7). This claim holds in particular for those faces
F fixing coordinates to 1.

Finally, we claim that Ak+2`+1
n ⊆ P ∩ {cx ≤ d}. It suffices to show that cv ≤ d for all v ∈ F k+2`+1

n

and we can confine ourselves to the worst case v given by

vi :=

{
1, if i ∈ [n− (k + 2`+ 1)]

1/2, otherwise.
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Observe that cv ≥ cw holds for all w ∈ F k+2`+1
n . Let F be the (k+ `)-dimensional face of [0, 1]n obtained

by fixing the first n− (k + `) coordinates to 1. Then

cv =

n−(k+2`+1)∑
i=1

ci +
1

2

n∑
i=n−(k+2`+1)+1

ci

≤
n−(k+`)∑
i=1

ci −
1

2
cn−(k+`) +

n−k∑
i=n−(k+`)+1

0 +
1

2

n∑
i=(n−k)+1

ci

= cvF − 1

2
cn−(k+`) ≤ d+

1

2
− 1

2
cn−(k+`).

In case cn−(k+`) ≥ 1 it follows that cv ≤ d. Therefore consider the case cn−(k+`) = 0. Then we have that
ci = 0 for all i ≥ n− (k+`). In this case cvF is integral and cvF < d+1 implies cvF ≤ d. So cv ≤ cvF ≤ d
follows, which completes the proof.

Using Lemma 14 we can establish the following lower bound on the rank of ∂M for An.

Theorem 4 (Lower bound for An). (Properties 1, 2, 5, 6) Let M be admissible and let ` ∈ N such that

Ak+`n ⊆M(Akn) for all n, k ∈ N with k + ` ≤ n. If n ≥ k + 2`+ 1, then rk∂M(An) ≥
⌊
n−1
2`+1

⌋
.

Proof. We will show the A
1+k(2`+1)
n ⊆ (∂M)k(An) as long as n ≥ k + 2` + 1. The proof is by induction

on k. Let k = 1, then A1+2`+1
n ⊆ ∂M(A1

n) = ∂M(An) by Lemma 14. Therefore consider k > 1. Now

(∂M)k(An) = ∂M((∂M)k−1(An)) ⊇ ∂M(A
1+(k−1)(2`+1)
n ) ⊇ A1+k(2`+1)

n , where the first inclusion follows by
induction and the second inclusion by Lemma 14 again. Thus (∂M)k(An) 6= ∅ as long as 1+k(2`+1) ≤ n,

which is the case as long as k ≤
⌊
n−1
2`+1

⌋
and we can conclude rk∂M(An) ≥

⌊
n−1
2`+1

⌋
.

For M ∈ {GC,SC,N0,N,N+} we have that ` = 1 (see [19]) and therefore we obtain the following
corollary.

Corollary 1. Let M ∈ {GC,N0,N,N+,SC} and n ∈ N with n ≥ 4. Then rk∂M(An) ≥
⌊
n−1
3

⌋
.

We can also derive an upper bound on the rank of An as follows.

Proposition 15 (Upper bound for An). (Properties 1, 2, 3, 4, 6) Let M be admissible and n ∈ N. Then
rk∂M(An) ≤ n− 2.

Proof. For n ≤ 3, observe that the arguments presented in Example 1 for the case of ∂SC would be valid
for any admissible cutting plane operator. Thus, the result holds for n ≤ 3.

For n ≥ 4, the proof is by induction on n. Consider An∩{xi = l} ∼= An−1 for (i, l) ∈ [n]×{0, 1}. Then
after n−3 applications of ∂M, by induction we have (∂M)(n−3)(An∩{xi = l}) = ∅. As (i, l) ∈ [n]×{0, 1}
was arbitrary we obtain that xi < 1 and xi > 0 are valid for (∂M)(n−3)(An). Another application of ∂M
suffices to derive xi ≤ 0 and xi ≥ 1 and thus (∂M)(n−2)(An) = ∅ follows.

5 V-closures for well-known and structured problems.

We first establish a useful lemma which holds for any ∂M with M being admissible. The lemma is
analogous to Lemma 1.5 in [16].

Lemma 16. (Properties 1, 2, 4) Let M be admissible, let P ⊆ [0, 1]n be a closed convex set and let
(c, d) ∈ Zn+1

+ . If cx ≤ d is valid for P ∩ {xi = 1} for every i ∈ [n] with ci > 0, then cx ≤ d is valid for
∂M(P ).

Proof. Clearly, cx ≤ d is valid for PI : if x ∈ P ∩ Zn is non-zero, then there exists an i ∈ [n] with xi = 1,
otherwise cx ≤ d is trivially satisfied.

We claim that cx ≤ d is valid for ∂M(P ). Let Q := P ∩{cx ≥ d+ 1} and observe that Q∩{xi = 1} = ∅
for any i ∈ [n] with ci > 0. Therefore by the coordinate rounding property of admissible operators, we
have that M(Q) ⊆

⋂
i∈[n]:ci>0 {xi = 0}. By definition of Q we also have that M(Q) ⊆ {cx ≥ d+ 1}. Since

c ≥ 0 and d ≥ 0 we deduce M(Q) = ∅ and the claim follows.
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5.1 Monotone polytopes

The following theorem is a direct consequence of Lemma 16 and follows in a similar fashion as Lemma 2.7
in [5] or Lemma 2.14 in [16].

Theorem 5. (Properties 1, 2, 3, 4) Let M be admissible. Further, let P ⊆ [0, 1]n be a polytope and
(c, d) ∈ Zn+1

+ such that cx ≤ d is valid for P ∩ F whenever F is an (n − k)-dimensional face of [0, 1]n

obtained by fixing coordinates to 1. Then cx ≤ d is valid (∂M)k(P ).

Proof. The proof is by induction on k, the number of coordinates fixed to obtain a n − k dimensional
face. For k = 1 the assertion follows with Lemma 16. Therefore let k > 1. Define Qi = P ∩ {xi = 1}
for all i ∈ [n]. Then cx ≤ d is valid for Qi ∩ F̃ whenever F̃ is an (n − 1) − (k − 1)-dimensional face of
[0, 1]n−1 fixing k − 1 coordinates to 1 and i is not one of those coordinates. We can apply the induction
hypothesis obtaining that cx ≤ d is valid for (∂M)k−1(Qi) for all i ∈ [n]. By homogeneity of ∂M we
obtain (∂M)k−1(Qi) = (∂M)k−1(P ) ∩ {xi = 1} for all i ∈ [n]. Applying Lemma 16 once more yields that
cx ≤ d is valid for (∂M)k(P ).

We call a polytope P ⊆ [0, 1]n monotone if x ∈ P , y ∈ [0, 1]n, and y ≤ x (coordinate-wise) implies
y ∈ P . We can derive the following corollary from Theorem 5 which is the analog to Lemma 2.7 in [5].

Corollary 2. (Properties 1, 2, 3, 4) Let M be admissible and let P ⊆ [0, 1]n be a monotone polytope with
maxx∈PI

ex = k. Then rk∂M(P ) ≤ k + 1.

Proof. Observe that since P is monotone, so is PI and thus PI possesses an inequality description P =
{x ∈ [0, 1]n | Ax ≤ b} with A ∈ Zm×n+ and b ∈ Zn+ for some m ∈ N. Therefore it suffices to consider
inequalities cx ≤ d valid for PI with c, d ≥ 0. As maxx∈PI

ex = k and P is monotone, we claim that
P ∩F = ∅ whenever F is an n− (k+ 1) dimensional face of [0, 1]n obtained by fixing k+ 1 coordinates to
1. Assume by contradiction that x ∈ P ∩ F 6= ∅. As P ∩ F is monotone, the point obtained by setting all
fractional entries of x to 0 is contained in PI ∩ F which is a contradiction to maxx∈PI

ex = k. Therefore
cx ≤ d is valid for all P ∩ F with F being an n − (k + 1) dimensional face of [0, 1]n obtained by fixing
k + 1 coordinates to 1. The result follows now by using Theorem 5.

5.2 Stable set polytope

Given a graph G := (V,E), the fractional stable set polytope of G is given by

FSTAB(G) := {x ∈ [0, 1]n | xu + xv ≤ 1 ∀(u, v) ∈ E} .

See [16] for a description of clique inequalities, odd hole inequalities, odd anti-hole inequalities, and odd
wheel inequalities for the stable set polytope.

Now Lemma 16 can be used to prove the following result.

Theorem 6. (Properties 1, 2, 4) Clique inequalities, odd hole inequalities, odd anti-hole inequalities, and
odd wheel inequalities are valid for ∂M(FSTAB(G)) with M being an admissible operator.

Proof. In the following let

P 0 := {x ∈ [0, 1]|V | |xu + xv ≤ 1 ∀(u, v) ∈ E},

for V,E chosen as explained below.
We first consider the clique inequalities. Let H(V,E) be an induced clique. Then the clique inequality

is ∑
u∈V

xu ≤ 1.

Now for every vertex v in V , fixing xv = 1 in the system P 0 implies that xu = 0 for u 6= v. Thus, the
clique inequality is valid for P 0 ∩ {xv = 1} for all v ∈ V . Now by Lemma 16 the result follows.

Odd hole inequalities are GC inequalities: Add all the inequalities of the form xu + xv ≤ 1 along the
odd hole, divide by 2, and the round down the right-hand-side. Therefore, odd hole inequalities are valid
for ∂M.
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Let H(V,E) be an induced graph which is a complement of an odd hole with |V | ≥ 5. Then the odd
anti-hole inequality is ∑

u∈V
xu ≤ 2.

For every vertex v in V , fixing xv = 1 in the system

P 0 = {x ∈ [0, 1]|V | |xu + xv ≤ 1 ∀(u, v) ∈ E},

implies that xu = 0 for all u except the neighbors of vertex v in the complement graph. Moreover, the
two neighbors of v in the complement graph are neighbors of each other in H (since |V | ≥ 5). Thus,
max

∑
u∈V xu = 2 for x ∈ P 0 ∩ {xv = 1}. Now by Lemma 16 the result follows.

Let H({0, . . . , n}, E) be an induced graph which is an odd wheel, that is n is odd, the vertices 1
through n form a hole and the vertex 0 is a neighbor to all other vertices. Then the odd wheel inequality
is

n∑
i=1

xi +
n− 1

2
x0 ≤

n− 1

2
.

Now for the vertex 0, fixing x0 = 1 in the system

P 0 = {x ∈ [0, 1]n+1 |xu + xv ≤ 1 ∀(u, v) ∈ E},

implies that xu = 0 for u ∈ {1, . . . , n}. Therefore, max
∑n
i=1 xi + n−1

2 x0 = n−1
2 for x ∈ P 0 ∩ {x0 = 1}.

On fixing x1 = 1 in P 0, we obtain that x0 = 0, x2 = 0, xn = 0 and therefore the system P 0 reduces to

xk + xk+1 ≤ 1 ∀k ∈ {2, ..., n− 2} (9)

0 ≤ xk ≤ 1 ∀k ∈ {2, ..., n− 2}. (10)

Now observe that the constraint set (9) is totally unimodular. Therefore, max
∑n
i=1 xi + n−1

2 x0 = n−1
2

for x ∈ P 0 ∩ {x1 = 1}. Similarly, max
∑n
i=1 xi + n−1

2 x0 = n−1
2 for x ∈ P 0 ∩ {xv = 1} for v ∈ {2, . . . , n}.

Now by Lemma 16 the result follows.

5.3 The traveling salesman problem

So far we have seen that transitioning from a general cutting-plane procedure M to its V-scheme, ∂M,
can result in a significantly lower rank for valid inequalities, potentially making them accessible in a small
number of rounds. However, we will now show that the rank of (the subtour elimination relaxation of)
the traveling salesman polytope remains high, even when using V-schemes of strong operators such as SC
or N+. For n ∈ N, let G = (V,E) be the complete graph on n vertices and Hn ⊆ [0, 1]n be the polytope
given by (see [5] for more details)

x(δ({v})) = 2 ∀ v ∈ V
x(E(W )) ≤ |W | − 1 ∀ ∅ (W ( V

xe ∈ [0, 1] ∀e ∈ E,

where for a given node v, x(δ({v})) is the sum of the components of the vector x corresponding to edges
incident to the node v and for any subset W of V , x(E(W )) is the sum of the components of the vector x
corresponding to edges which are incident to nodes contained only in W . Note that the dimension of Hn

is Θ(n2). We obtain the following statement which is the analog to [5, Theorem 4.1]. A similar result for
the admissible systems M in general can be found in the full-length version of [19].

Theorem 7. (Properties 1, 2, 3, 4, 5, 6) Let M ∈ {GC,N0,N,N+,SC}. For n ∈ N and Hn as defined
above we have rk∂M(Hn) ∈ Θ(n). In particular rk∂M(Hn) ∈ Θ(

√
dim(P )).
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Proof. We first establish the lower bound. As shown in [3] or [5, Theorem 4.1], there exists an embedding

f : Abn/8c ↪→ Hn,

consisting of coordinate flips and coordinate duplications only, such that f( 1
2e) ∈ Hn \ (Hn)I . Since ∂M

is almost admissible, we have that ∂M commutes with f . We obtain

f(
1

2
e) ∈ f(∂Mk(Abn/8c)) = ∂Mk(f(Abn/8c)) ⊆ ∂Mk(Hn),

for k < rk∂M(Abn/8c) and thus rk∂M(Hn) ≥ rk∂M(Abn/8c) ∈ Ω(n) by Corollary 1.
For the upper bound, observe that Hn is a face of Tn given by

x(δ({v}) ≤ 2 ∀ v ∈ V
x(E(W )) ≤ |W | − 1 ∀ ∅ (W ( V

xe ∈ [0, 1] ∀e ∈ E.

(see [5] for details). As Tn is given by a system of inequalities of the form Ax ≤ b with non-negative
coefficients, it follows that Tn is a monotone polytope. Furthermore, we can conclude that maxx∈(Tn)I ex ≤
n so that we can apply Corollary 2. We obtain that rk∂M(Hn) ≤ rk∂M(Tn) ≤ n + 1 which finishes the
proof.

The same result can be shown to hold for the asymmetric TSP problem (see [3] and [5]).

5.4 General polytopes in R2

The GC rank of valid inequalities for polytopes in R2 can be arbitrarily high; see example in [17]. The
SC rank of valid inequalities for polytopes in R2 can be at least 2; A2 is an example where the split rank
is 2 and the instance is infeasible and see [12] for an example where the instance is feasible and the split
rank is at least 2.

However, ∂GC is significantly stronger as shown next.
In the following proof, a split is a set of the form {g ≤ hx ≤ g+1} where h ∈ Z2 and g ∈ Z and we call

the lines {hx = g} and {hx = g+ 1} as the boundary lines of the split. A set Q ⊂ R2 is called lattice-free
if int(Q) ∩ Z2 = ∅. Therefore a split set is an example of a lattice-free convex set.

The following result follows from [15].

Lemma 17. If P ⊆ R2 is a full-dimensional unbounded lattice-free convex set, then P is contained in a
split set.

Theorem 8. Let P be a polytope in R2. Then ∂GC(P ) = PI .

Proof. The proof is divided into various cases based on the dimension of PI .

Case 1: dim(PI) = 2. We will show that every facet-defining inequality can be obtained using the ∂GC
operator. In this case, every facet-defining inequality cx ≤ d satisfies at least two integer points belonging
to PI at equality. Let Q := P ∩ {x ∈ R2 | cx ≥ d}. We assume that Q * {cx < d + 1}, since otherwise
cx ≤ d is a GC cut. Let x1 and x2 be two consecutive integer points on the face of PI defined by {cx = d}.
As Q * {cx < d+1} we obtain that Q intersects {cx = d+1} in a segment contained between two integer
points y1, y2 on {cx = d + 1}. Since x1, x2, y2, y1 (in topological order) are the vertices of a lattice-free
parallelogram and these are the only integer points contained in this parallelogram, the lines l1 and l2

through x1y1 and x2y2 respectively are the boundary lines of a split. Call this split S. It is sufficient to
verify that Q ∩ {cx ≥ d+ 1} is strictly contained in S, since this implies that GC(Q ∩ {cx ≥ d+ 1}) = ∅.
Note that Q is contained in the union of the split set d ≤ cx ≤ d + 1 and S, since otherwise it is
straightforward to verify that yi for some i ∈ {1, 2} must belong to Q. Therefore Q ∩ {cx ≥ d + 1} is

contained in S, and it remains to prove that Q ∩ {cx ≥ d + 1} is strictly contained in S. Let l̂i ⊆ li be
the half-line starting at the point yi which does not contain the point xi. Since xi ∈ P and yi /∈ P , by
convexity of P we have that l̂i ∩ P = ∅. Moreover, since Q ⊆ P , we have that Q ∩ {cx ≥ d+ 1} ∩ l̂i = ∅
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for i ∈ {1, 2}. Since Q ∩ {cx >= d + 1} is contained in S, we therefore obtain that Q ∩ {cx ≥ d + 1} is
strictly contained in S. �

Before we consider other cases where dim(PI) ≤ 1, observe that since P is a rational polytope, with
out loss of generality we may assume that P is full-dimensional: Since P is rational polytope, it is
straightforward to verify that there exists a full-dimensional rational polytope T satifying P ⊆ T and
TI = PI . Since ∂GC(P ) ⊆ ∂GC(T ) it is suffcient to verify that ∂GC(T ) = TI .

If P contains integer points, then we further preprocess P in the following fashion. Suppose there
exists a linear inequality in the description of P , such that removing this inequality from the description
of P results in a polyhedron P ′ such that P ′I = PI . Note that in this case P ′ is a polytope since P ′ is
rational and P ′I = PI 6= ∅. We rename P ′ by P and by applying this procedure iteratively, we obtain a
polytope where removing any facet-defining inequality introduces new integer points.

We call a point v ∈ Z2 as minimally infeasible for facet-defining inequality fx ≤ g of P if (1) v satisfies
all the constraints defining P except fx ≤ g and (2) conv(P ∪ {v}) ∩ Z2 = (P ∩ Z2) ∪ {v}. A minimally
infeasible point exists for every facet-defining inequality of P : By the preprocessing of P , we know that
removing the facet-defining inequality fx ≤ g introduces new integer points in P . Let u be any such
integer point that satisifes all the facet-defining inequalities of P except fx ≤ g. Then the set of points
(conv(P ∪{u}) \P )∩Z2 is finite and each of these satisfy all the constraints defining P except fx ≤ g. If
|(conv(P ∪{u})\P )∩Z2| = 1, then u is a minimally infeasible point. Else let w ∈ (conv(P ∪{u})\P )∩Z2

such that w 6= u and consider conv(P ∪ {w}) ∩ Z2. Since u is a vertex of conv(P ∪ {u}), we obtain that
|conv(P ∪ {w}) ∩ Z2| < |conv(P ∪ {u}) ∩ Z2|. Now rename w as u and repeat the above process a finite
number of times to finally obtain some v ∈ Z2 such that (1) v satisfies all the constraints defining P except
fx ≤ g and (2) conv(P ∪ {v}) ∩ Z2 = (P ∩ Z2) ∪ {v}.

Case 2: dim(PI) = 1. Let PI ⊆ {cx = d} where c ∈ Z2 and d ∈ Z. Note that the inequality cx ≤ d
satisfies at least two integer points belonging to PI at equality. Therefore by the application of the proof
technique used in case 1, we have that the inequality cx ≤ d is valid for ∂GC(P ). Similarly, cx ≥ d is
valid for ∂GC(P ). Thus,

∂GC(P ) ⊆ {cx = d}. (11)

Let PI = {cx = d, g ≤ fx ≤ h}, where f is a vector orthogonal to c. Next observe that there exists atleast
one facet-defining inequality of P that separates the integer points in {cx = d, fx < g} from P . Call
one such facet-defining inequality af F 1. Similaly let F 2 be a facet-defining inequality that separates the
integer points in {cx = d, fx > h} from P . Since P is bounded and non-empty it has at least three facets.
Select a facet-defining inequality of P different from F 1 and F 2. Let v ∈ Z2 be a minimally infeasible
point for this facet and let P ′ := conv(P ∪ {v}). Since F 1 and F 2 still separate the integer points in the
the set {cx = d, fx < g} ∪ {cx = d, fx > h} from P ′, we may assume without loss of generality

v := (P ′ \ P ) ∩ Z2 satifies cx < d. (12)

Therefore, dim(conv(P ′I)) = 2 and by case 1, we have that ∂GC(P ′) = P ′I . Finally note that since
∂GC(P ) ⊆ ∂GC(P ′), we obtain that

∂GC(P ) ⊆ {cx = d} ∩ ∂GC(P ′) (13)

= {cx = d} ∩ P ′I (14)

= PI , (15)

where (13) follows from (11) and (15) follows from (12). �

Case 3: dim(PI) = 0. Since P is bounded and non-empty it has at least three facets. Let v1 and v2 be
minimally infeasible points for two distinct facet-defining inequalities for P . Then we have that v1 6= v2.
Let P i = conv(P∪{vi}) for i ∈ {1, 2}. Then we have ∂GC(P ) ⊆ ∂GC(P 1∩P 2) ⊆ ∂GC(P 1)∩∂GC(P 2) =
P 1
I ∩ P 2

I = {u}, where the second last equality follows from case 2 and the fact that dim(P iI ) = 1 and the
last equality follows from the fact that v2 /∈ conv({v1} ∪ {u}) and v1 /∈ conv({v2} ∪ {u}). �
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Case 4: PI = ∅: Like in the case where PI 6= ∅, we preprocess P by removing any facet-defining
inequality if removing the inequality does not introduce any integer points in the resulting polyhedron.
Note that, in this case, the resulting set need not be bounded. If P is unbounded, since it is lattice-free and
full-dimensional, by Lemma 17 we have that P is contained in a split set {a0 ≤ ax ≤ a0 + 1}. Moreover
since P ∩ Z2 = ∅, we obtain that P ∩ {ax ≥ a0 + 1} is a line segment (possibly an empty set) strictly
contained between two integer points. This implies that GC(P ∩ {ax ≥ a0 + 1}) = ∅ and thus ax ≤ a0 is
a valid inequality for ∂GC(P ). Similarly, ax ≥ a0 + 1 is a valid inequality for ∂GC(P ), completing the
proof.

Now consider the case where P is bounded. Then P has at least three facets. Let v1 and v2 be
minimally infeasible points for two distinct facet-defining inequalities of P and let P i := conv({vi} ∪ P )
for i ∈ {1, 2}. Therefore, ∂GC(P ) ⊆ ∂GC(P 1 ∩ P 2) ⊆ ∂GC(P 1) ∩ ∂GC(P 2) = {v1} ∩ {v2} = ∅ where
the second last equality follows from case 3 and the last equality follows from the fact that v1 6= v2.

6 Concluding remarks

In this paper, we consider a new paradigm for generating cutting-planes. Rather than computing a
cutting-plane we suppose that the cutting-plane is given, either by a deliberate construction or guessed in
some other way and then we verify its validity using a regular cutting-plane procedure. We have shown
that cutting-planes obtained via the verification scheme can be very strong, significantly exceeding the
capabilities of the regular cutting-plane procedure. This superior strength is illustrated, for example, in
Theorem 4, Theorem 6, Figure 1, Lemma 6, Proposition 15, Theorem 5, Theorem 6, Theorem 7 and
Theorem 8. On the other hand, we also show that the verification scheme is not unrealistically strong, as
illustrated by Theorem 4 and Theorem 7.

We would like to point out that verification schemes (with minor adjustments) can also be applied to
mixed-integer programming problems to generate pure integer cuts. For example one could replace the
Gomory-Chv́atal generator with projected Gomory-Chv́atal cuts in the mixed-integer case.
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