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Semi definite programming

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

where C and the Ai ’s are n × n matrices, 〈M,N〉 :=
∑

i,j MijNij ,
and

Sn
+ = {X ∈ Rn×n |X = X T , u>Xu ≥ 0, ∀u ∈ Rn}.

I Polynomial-time algorithm— but often challenging to solve in
practice.
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A relaxation: Sparse SDP

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

I We can enforce PSD constraints by iteratively separating
linear constraints. Enforcing PSD-ness on smaller k × k
principal submatrix leads to linear constraints that are
sparser, an important property leveraged by linear
programming solvers that greatly improve their efficiency.
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Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD
(2020)]

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 

G
ap

 c
lo

se
d 

(%
) 

Time (s) 

40 

Percent gap closed with respect to SDP + McCormicks optimum (t2g10_5555) 

      dense 

      hybrid 

Max	sparse	cuts	
per	itera1on	
𝑲=𝟓𝒏  

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

QCQP instance! 

Solving  SDP relaxation of a QCQP

Sparse Cuts

Dense Cuts

9



Sparse PSD
approximation

Blekherman, Dey,
Molinaro, Sun

Introduction

Main results

Proof sketch

Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD
(2020)]

41 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 

LP
 so

lv
e 

tim
e 

(s
) 

Time (s) Max	sparse	cuts	
per	itera1on	
𝑲=𝟓𝒏  

Sparsity	level		
𝒌=𝟎.𝟐𝟓(𝒏+𝟏)

      dense 

      hybrid 

Time to solve LP relaxation per iteration (t2g10_5555) 
QCQP instance! 

LP with dense cuts takes a lot more time!

10



Sparse PSD
approximation

Blekherman, Dey,
Molinaro, Sun

Introduction

Main results

Proof sketch

Sparse SDP

min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

I [A. Qualizza, P. Belotti, and F. Margot (2012)]
I [R. Baltean-Lugojan, P. Bonami, R. Misener, and A.

Tramontani (2018)]
I [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

I [S. Sojoudi and J. Lavaei (2014)]
I [B. Kocuk, SSD, and X. A. Sun (2016)]
I [E. G. Boman, D. Chen, O. Parekh, and S. Toledo (2005)]
I [A. A. Ahmadi and A. Majumdar (2019)])
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Our question

zSDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

zSparse-SDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

Relationship between zSDP and zSparse-SDP?

I Seems like a difficult question to analyze.
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Easier question

zSDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (SDP)

X ∈ Sn
+,

zSparse-SDP := min 〈C,X 〉
s.t. 〈Ai ,X 〉 ≤ bi ∀i ∈ {1, . . . ,m} (Sparse SDP)

selected k × k principal submatrices of X ∈ Sk
+.

How far is cone with all k × k submatrices PSD from Sn
+?
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Setting-up details of precise question

[k -PSD closure ]
Given positive integers n and k where 2 ≤ k ≤ n, the k -PSD closure
(Sn,k ) is the set of all n × n symmetric real matrices where all k × k
principal submatrices are PSD.

I How far is Sn,k from Sn
+?

I To measure this, we would like to consider the matrix in the
k -PSD closure that is farthest from the PSD cone. We require to
make two decisions here:

1. The norm to measure this distance and
2. A normalization method

distF (Sn,k ,Sn
+) = sup

M∈Sn,k , ‖M‖F =1
distF (M,Sn

+)

= sup
M∈Sn,k , ‖M‖F =1

inf
N∈Sn

+

‖M − N‖F .
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Upper bound 1

Theorem (Upper Bound 1)
For all 2 ≤ k < n we have

distF (Sn,k ,Sn
+) ≤

n − k
n + k − 2

. (1)

I Distance between the k -PSD closure and the SDP cone is at
most roughly ≈ n−k

n .
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Upper bound 2

I Distance between the k -PSD closure and the SDP cone is at
most roughly ≈ n−k

n

I This appears to be weak especially when k ≈ n

Theorem (Upper bound 2)
Assume n ≥ 97 and k ≥ 3n

4 . Then

distF (Sn,k ,Sn
+) ≤ 96

(
n − k

n

)3/2

. (2)

I This bound dominates the previous bound when k
n is sufficiently

large.
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Lower bound 1

Theorem (Lower bound 1)
For all 2 ≤ k < n, we have

distF (Sn,k ,Sn
+) ≥

n − k√
(k − 1)2 n + n(n − 1)

. (3)

I When k is small:

n − k√
(k − 1)2 n + n(n − 1)

≈ n − k
n

So first upper bound (Thm 1) is tight (upto constant).
I When k is very large: n − k = c where c is very small

n − k√
(k − 1)2 n + n(n − 1)

≈ c
n3/2

So second upper bound (Thm 2) is tight (upto constant).
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Lower bound 2: What happens when k = rn?

I Upper bound: n−k
n = 1− r , a constant independent of n

I Lower bound 1: ≈ (1/r − 1) 1
n1/2 .

So is upper bound weak in this regime?

Theorem (Lower bound 2)
Fix a constant r < 1

93 and k = rn. Then for all k ≥ 2,

distF (Sn,k ,Sn
+) >

√
r − 93r 2
√

162r + 3
,

which is independent of n.
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Achieving the strength of Sn,k by a polynomial number of
PSD constraints

Theorem
Let 2 ≤ k ≤ n − 1. Consider ε, δ > 0 and let

m = 24
(

n2

ε2 ln
n
δ

)
.

Let I = (I1, . . . , Im) be a sequence of random k-sets independently
uniformly sampled from

(
[n]
k

)
,

and define SI as the set of matrices
satisfying the PSD constraints for the principal submatrices indexed
by the Ii ’s, namely

SI := {M ∈ Rn×n : MIi � 0, ∀i ∈ [m]}.

Then with probability at least 1− δ we have

distF (SI ,Sn
+) ≤ (1 + ε)

n − k
n + k − 2

.
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+) ≤ (1 + ε)

n − k
n + k − 2

.
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Achieving the strength of Sn,k by a polynomial number of
PSD constraints

Theorem
Let 2 ≤ k ≤ n − 1. Consider ε, δ > 0 and let

m = 24
(

n2

ε2 ln
n
δ

)
.

Let I = (I1, . . . , Im) be a sequence of random k-sets independently
uniformly sampled from

(
[n]
k

)
, and define SI as the set of matrices

satisfying the PSD constraints for the principal submatrices indexed
by the Ii ’s, namely

SI := {M ∈ Rn×n : MIi � 0, ∀i ∈ [m]}.

Then with probability at least 1− δ we have

distF (SI ,Sn
+) ≤ (1 + ε)

n − k
n + k − 2

.
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Proof sketch



3.1
Proof of:

Theorem (Upper Bound 1)
For all 2 ≤ k < n we have

distF (Sn,k ,Sn
+) ≤

n − k
n + k − 2

.
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Proof of Upper bound 1

I If

X =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ∈ Sn,k

then red-submatrix is k × k PSD matrix.

I So 
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 0 0 0
0 0 0 0 0

 ∈ Sn
+.

I Take average of all the above matrices for different principal k × k
submatrices (and suitably scale with a positive number), then the
resulting matrix is in Sn

+.
I The distance between this average PSD matrix and X gives

bound.
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Proof of Upper bound 1

I If

X =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ∈ Sn,k

then red-submatrix is k × k PSD matrix.
I So 

∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 0 0 0
0 0 0 0 0

 ∈ Sn
+.

I Take average of all the above matrices for different principal k × k
submatrices (and suitably scale with a positive number), then the
resulting matrix is in Sn

+.
I The distance between this average PSD matrix and X gives

bound.
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Proof of Upper bound 1

I If

X =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ∈ Sn,k

then red-submatrix is k × k PSD matrix.
I So 

∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 0 0 0
0 0 0 0 0

 ∈ Sn
+.

I Take average of all the above matrices for different principal k × k
submatrices (and suitably scale with a positive number), then the
resulting matrix is in Sn

+.
I The distance between this average PSD matrix and X gives

bound.
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3.2
Proof of:

Theorem (Upper bound 2)
Assume n ≥ 97 and k ≥ 3n

4 . Then

distF (Sn,k ,Sn
+) ≤ 96

(
n − k

n

)3/2

.
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Proof of upper bound 2

I Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in Sn,k has
at most n − k negative eigenvalues.

I Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M ∈ Sn,k to Sn

+ is upper bounded by

(absolute value of most negative eigenvalue of M)×
√

n − k .

I So we need to upper bound absolute value of most
negative eigenvalue of M for M ∈ Sn,k and ‖M‖F = 1.
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Proof of upper bound 2

I Using Cauchy’s Interlace Theorem for eigenvalues of
symmetric matrices, we obtain that every matrix in Sn,k has
at most n − k negative eigenvalues.

I Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M ∈ Sn,k to Sn

+ is upper bounded by

(absolute value of most negative eigenvalue of M)×
√

n − k .

I So we need to upper bound absolute value of most
negative eigenvalue of M for M ∈ Sn,k and ‖M‖F = 1.
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Proof of upper bound 2 -contd.
I Let

M = −λvv> +
n∑

i=2

µiviv>i

where λ > 0.
I Proof uses probabilitic method: Randomly sparsify (with some

scaling) v and let the resulting random vector be V .

Think of V
having the following properties:

I V ≈ v , i.e. V>v ≈ 1 and V>vi ≈ 0. (♣)
I V has a support of k (♠)

I So (♣) implies:

V>MV ≈ −λ · 1 +
n∑

i=2

µi0 ≈ −λ+ small error (A)

I On the other hand (♠) implies:

V>MV ≥ 0, (B)

since V has a support of k .
I So (A) and (B) imply:

−λ+ small error ≥ 0⇒ λ ≤ small error .
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Proof of upper bound 2 -contd.
I Let

M = −λvv> +
n∑

i=2

µiviv>i

where λ > 0.
I Proof uses probabilitic method: Randomly sparsify (with some

scaling) v and let the resulting random vector be V . Think of V
having the following properties:

I V ≈ v , i.e. V>v ≈ 1 and V>vi ≈ 0. (♣)
I V has a support of k (♠)

I So (♣) implies:

V>MV ≈ −λ · 1 +
n∑

i=2

µi0 ≈ −λ+ small error (A)

I On the other hand (♠) implies:

V>MV ≥ 0, (B)

since V has a support of k .
I So (A) and (B) imply:

−λ+ small error ≥ 0⇒ λ ≤ small error .
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Proof of upper bound 2 -contd.
I Let

M = −λvv> +
n∑

i=2

µiviv>i

where λ > 0.
I Proof uses probabilitic method: Randomly sparsify (with some

scaling) v and let the resulting random vector be V . Think of V
having the following properties:

I V ≈ v , i.e. V>v ≈ 1 and V>vi ≈ 0. (♣)
I V has a support of k (♠)

I So (♣) implies:

V>MV ≈ −λ · 1 +
n∑

i=2

µi0 ≈ −λ+ small error (A)

I On the other hand (♠) implies:

V>MV ≥ 0, (B)

since V has a support of k .
I So (A) and (B) imply:

−λ+ small error ≥ 0⇒ λ ≤ small error .
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Proof of upper bound 2 -contd.
I Let

M = −λvv> +
n∑

i=2

µiviv>i

where λ > 0.
I Proof uses probabilitic method: Randomly sparsify (with some

scaling) v and let the resulting random vector be V . Think of V
having the following properties:

I V ≈ v , i.e. V>v ≈ 1 and V>vi ≈ 0. (♣)
I V has a support of k (♠)

I So (♣) implies:

V>MV ≈ −λ · 1 +
n∑

i=2

µi0 ≈ −λ+ small error (A)

I On the other hand (♠) implies:

V>MV ≥ 0, (B)

since V has a support of k .

I So (A) and (B) imply:

−λ+ small error ≥ 0⇒ λ ≤ small error .
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Proof of upper bound 2 -contd.
I Let

M = −λvv> +
n∑

i=2

µiviv>i

where λ > 0.
I Proof uses probabilitic method: Randomly sparsify (with some

scaling) v and let the resulting random vector be V . Think of V
having the following properties:

I V ≈ v , i.e. V>v ≈ 1 and V>vi ≈ 0. (♣)
I V has a support of k (♠)

I So (♣) implies:

V>MV ≈ −λ · 1 +
n∑

i=2

µi0 ≈ −λ+ small error (A)

I On the other hand (♠) implies:

V>MV ≥ 0, (B)

since V has a support of k .
I So (A) and (B) imply:

−λ+ small error ≥ 0⇒ λ ≤ small error .
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3.3
Proof of:

Theorem (Lower bound 1)
For all 2 ≤ k < n, we have

distF (Sn,k ,Sn
+) ≥

n − k√
(k − 1)2 n + n(n − 1)

.
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu =

(a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2 ≥ (a+b)−ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu = (a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2 ≥ (a+b)−ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu = (a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2

≥ (a+b)−ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu = (a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2 ≥ (a+b)−ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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Proof of lower bound 1

I Consider the matrix:

G(a, b) := (a + b)I − a11>

I If u ∈ Rn with ‖u‖2 = 1 has a support of k , then

u>Gu = (a+b)−a

(
n∑

i=1

ui

)2

≥ (a+b)−a(‖u‖1)
2 ≥ (a+b)−ak

I So G(a, b) ∈ Sn,k iff (1− k)a + b ≥ 0.
I Use these explicit matrices to obtain lower bound from Sn

+
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3.4
Proof of:

Theorem (Lower bound 2)
Fix a constant r < 1

93 and k = rn. Then for all k ≥ 2,

distF (Sn,k ,Sn
+) >

√
r − 93r2
√

162r + 3
,

which is independent of n.
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Proof of lower bound 2

I For simplicity, assume k = n/2. (Actually proof does not have this
value of k ).

I The idea is to construct a matrix M where half of its eigenvalues
take the negative value − 1√

n , with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n , with

orthonormal eigenvectors w1,w2, . . . ,wn/2, i.e.,

M =
−1√

n

n/2∑
i=1

(v i)(v i)> +
1√
n

n/2∑
i=1

(w i)(w i)>

I This normalization makes ‖M‖F ≈ 1.

I distF (M,Sn
+) &

√(
1√
n

)2
· n

2 = cst independent of n.

I So we only need to guarantee that M belongs to the k -PSD
closure.
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Proof of lower bound 2

I For simplicity, assume k = n/2. (Actually proof does not have this
value of k ).

I The idea is to construct a matrix M where half of its eigenvalues
take the negative value − 1√

n , with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n , with

orthonormal eigenvectors w1,w2, . . . ,wn/2, i.e.,

M =
−1√

n

n/2∑
i=1

(v i)(v i)> +
1√
n

n/2∑
i=1

(w i)(w i)>

I This normalization makes ‖M‖F ≈ 1.

I distF (M,Sn
+) &

√(
1√
n

)2
· n

2 = cst independent of n.

I So we only need to guarantee that M belongs to the k -PSD
closure.
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Proof of lower bound 2

I For simplicity, assume k = n/2. (Actually proof does not have this
value of k ).

I The idea is to construct a matrix M where half of its eigenvalues
take the negative value − 1√

n , with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n , with

orthonormal eigenvectors w1,w2, . . . ,wn/2, i.e.,

M =
−1√

n

n/2∑
i=1

(v i)(v i)> +
1√
n

n/2∑
i=1

(w i)(w i)>

I This normalization makes ‖M‖F ≈ 1.

I distF (M,Sn
+) &

√(
1√
n

)2
· n

2 = cst independent of n.

I So we only need to guarantee that M belongs to the k -PSD
closure.
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Proof of lower bound 2

I For simplicity, assume k = n/2. (Actually proof does not have this
value of k ).

I The idea is to construct a matrix M where half of its eigenvalues
take the negative value − 1√

n , with orthonormal eigenvectors

v1, v2, . . . , vn/2, and rest take a positive value 1√
n , with

orthonormal eigenvectors w1,w2, . . . ,wn/2, i.e.,

M =
−1√

n

n/2∑
i=1

(v i)(v i)> +
1√
n

n/2∑
i=1

(w i)(w i)>

I This normalization makes ‖M‖F ≈ 1.

I distF (M,Sn
+) &

√(
1√
n

)2
· n

2 = cst independent of n.

I So we only need to guarantee that M belongs to the k -PSD
closure.
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Proof of lower bound 2 –contd.

I M = −1√
n

∑n/2
i=1(v

i)(v i)> + 1√
n

∑n/2
i=1(w

i)(w i)>

I Letting V be the matrix with rows v1, v2, . . . , and W the matrix
with rows w1,w2, . . ., the quadratic form x>Mx :

x>Mx = − 1√
n
‖Vx‖2

2 +
1√
n
‖Wx‖2

2.

I ‖Vx‖2
2 ≤ ‖x‖2

2 (because V is orthonormal)
I So if we could construct the matrix W so that for all k-sparse

vectors x ∈ Rn we had ‖Wx‖2
2 ≈ ‖x‖2

2 :

x>Mx & − 1√
n
‖x‖2

2 +
1√
n
‖x‖2

2 & 0 for all k -sparse vectors x ,

I This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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Proof of lower bound 2 –contd.

I M = −1√
n

∑n/2
i=1(v

i)(v i)> + 1√
n

∑n/2
i=1(w

i)(w i)>

I Letting V be the matrix with rows v1, v2, . . . , and W the matrix
with rows w1,w2, . . ., the quadratic form x>Mx :

x>Mx = − 1√
n
‖Vx‖2

2 +
1√
n
‖Wx‖2

2.

I ‖Vx‖2
2 ≤ ‖x‖2

2 (because V is orthonormal)

I So if we could construct the matrix W so that for all k-sparse

vectors x ∈ Rn we had ‖Wx‖2
2 ≈ ‖x‖2

2 :

x>Mx & − 1√
n
‖x‖2

2 +
1√
n
‖x‖2

2 & 0 for all k -sparse vectors x ,

I This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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Proof of lower bound 2 –contd.

I M = −1√
n

∑n/2
i=1(v

i)(v i)> + 1√
n

∑n/2
i=1(w

i)(w i)>

I Letting V be the matrix with rows v1, v2, . . . , and W the matrix
with rows w1,w2, . . ., the quadratic form x>Mx :

x>Mx = − 1√
n
‖Vx‖2

2 +
1√
n
‖Wx‖2

2.

I ‖Vx‖2
2 ≤ ‖x‖2

2 (because V is orthonormal)
I So if we could construct the matrix W so that for all k-sparse

vectors x ∈ Rn we had ‖Wx‖2
2 ≈ ‖x‖2

2 :

x>Mx & − 1√
n
‖x‖2

2 +
1√
n
‖x‖2

2 & 0 for all k -sparse vectors x ,

I This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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Proof of lower bound 2 –contd.

I M = −1√
n

∑n/2
i=1(v

i)(v i)> + 1√
n

∑n/2
i=1(w

i)(w i)>

I Letting V be the matrix with rows v1, v2, . . . , and W the matrix
with rows w1,w2, . . ., the quadratic form x>Mx :

x>Mx = − 1√
n
‖Vx‖2

2 +
1√
n
‖Wx‖2

2.

I ‖Vx‖2
2 ≤ ‖x‖2

2 (because V is orthonormal)
I So if we could construct the matrix W so that for all k-sparse

vectors x ∈ Rn we had ‖Wx‖2
2 ≈ ‖x‖2

2 :

x>Mx & − 1√
n
‖x‖2

2 +
1√
n
‖x‖2

2 & 0 for all k -sparse vectors x ,

I This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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Thank You.
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