Sparse PSD approximation of the PSD cone

Grigoriy Blekherman¹ Santanu S. Dey¹ Marco Molinaro ² Shengding Sun¹

¹Georgia Institute of Technology.

²Pontifical Catholic University of Rio de Janeiro.

Oct 2020

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

1 Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

Semi definite programming

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_{+}^{n}, \end{array}$$
 (SDP)

where *C* and the A^{i} 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij}$, and

・ロト (日下・モート・モー・ショー・ショー)

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

Semi definite programming

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_{+}^{n}, \end{array}$$
 (SDP)

where *C* and the A^{i} 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij}$, and

 $\mathcal{S}^n_+ = \{ \boldsymbol{X} \in \mathbb{R}^{n \times n} \, | \, \boldsymbol{X} = \boldsymbol{X}^T, \ \boldsymbol{u}^\top \boldsymbol{X} \boldsymbol{u} \ge \boldsymbol{0}, \ \forall \boldsymbol{u} \in \mathbb{R}^n \}.$

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

Semi definite programming

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_{+}^{n}, \end{array}$$
 (SDP)

where *C* and the A^{i} 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij}$, and

 $\mathcal{S}^n_+ = \{ X \in \mathbb{R}^{n \times n} \, | \, X = X^T, \ u^\top X u \ge 0, \ \forall u \in \mathbb{R}^n \}.$

 Polynomial-time algorithm— but often challenging to solve in practice.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

A relaxation: Sparse SDP

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}_{+}^{n}, \end{array}$$
 (SDP)

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

A relaxation: Sparse SDP

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}^{n}_{+}, \end{array}$$
 (SDP)

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{s.t.} & \langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \dots, m\} \\ & \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}_+^k. \end{array}$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

A relaxation: Sparse SDP

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^{i}, \boldsymbol{X} \rangle \leq \boldsymbol{b}_{i} \quad \forall i \in \{1, \dots, m\} \\ & \boldsymbol{X} \in \mathcal{S}^{n}_{+}, \end{array}$$
 (SDP)

$$\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^i, \boldsymbol{X} \rangle \leq \boldsymbol{b}_i \; \forall i \in \{1, \ldots, m\} & \text{(Sparse SDP)} \\ & \text{selected } k \times k \; \text{principal submatrices of } \boldsymbol{X} \in \mathcal{S}_+^k. \end{array}$$

We can enforce PSD constraints by iteratively separating linear constraints. Enforcing PSD-ness on smaller k × k principal submatrix leads to linear constraints that are sparser, an important property leveraged by linear programming solvers that greatly improve their efficiency.

Sparse PSD Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD approximation (2020)] Blekherman, Dey, Molinaro, Sun Introduction 40 Sparse Cuts 35 Solving SDP relaxation of a QCQP 30 Gap closed (%) Dense Cuts 10 0 5000 10000 15000 40000 45000 50000 55000 Time (s) Max sparse cuts **Sparsity level** per iteration k=0.25(n+1)

K=5n

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

Sparse SDP

 $\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^i, \boldsymbol{X} \rangle \leq b_i \ \forall i \in \{1, \dots, m\} & (\text{Sparse SDP}) \\ & \text{selected } k \times k \text{ principal submatrices of } \boldsymbol{X} \in \mathcal{S}_+^k. \end{array}$

- ► [A. Qualizza, P. Belotti, and F. Margot (2012)]
- [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
- [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

Sparse SDP

 $\begin{array}{ll} \min & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^i, \boldsymbol{X} \rangle \leq \boldsymbol{b}_i \; \forall i \in \{1, \ldots, m\} \quad \text{(Sparse SDP)} \\ & \text{selected } k \times k \; \text{principal submatrices of } \boldsymbol{X} \in \mathcal{S}^k_+. \end{array}$

- ▶ [A. Qualizza, P. Belotti, and F. Margot (2012)]
- [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
- [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]
- [S. Sojoudi and J. Lavaei (2014)]
- ▶ [B. Kocuk, SSD, and X. A. Sun (2016)]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

Sparse SDP

 $\begin{array}{ll} \text{min} & \langle \boldsymbol{C}, \boldsymbol{X} \rangle \\ \text{s.t.} & \langle \boldsymbol{A}^i, \boldsymbol{X} \rangle \leq \boldsymbol{b}_i \; \forall i \in \{1, \dots, m\} \quad \text{(Sparse SDP)} \\ & \text{selected } k \times k \; \text{principal submatrices of } \boldsymbol{X} \in \mathcal{S}^k_+. \end{array}$

- ▶ [A. Qualizza, P. Belotti, and F. Margot (2012)]
- [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
- [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]
- [S. Sojoudi and J. Lavaei (2014)]
- ▶ [B. Kocuk, SSD, and X. A. Sun (2016)]
- ▶ [E. G. Boman, D. Chen, O. Parekh, and S. Toledo (2005)]
- [A. A. Ahmadi and A. Majumdar (2019)])

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Our question

$$z^{\text{SDP}} := \min_{\substack{\langle C, X \rangle \\ \text{s.t.} \quad \langle A^{i}, X \rangle \leq b_{i} \quad \forall i \in \{1, \dots, m\} \\ X \in \mathcal{S}^{n}_{+}, \end{cases}}$$
(SDP)

$$\begin{array}{ll} z^{\text{Sparse-SDP}} := & \min & \langle {\boldsymbol{C}}, X \rangle \\ & \text{s.t.} & \langle {\boldsymbol{A}}^i, X \rangle \leq b_i \ \forall i \in \{1, \ldots, m\} & (\text{Sparse SDP}) \\ & \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}^k_+. \end{array}$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Our question

$$z^{\text{SDP}} := \min_{\substack{\langle A^i, X \rangle \\ \text{s.t.}}} \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, \dots, m\}$$
(SDP)
$$X \in \mathcal{S}^n_+,$$

$$\begin{aligned} z^{\text{Sparse-SDP}} &:= & \min \quad \langle C, X \rangle \\ & \text{s.t.} \quad \langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \dots, m\} \quad \text{(Sparse SDP)} \\ & \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}^k_+. \end{aligned}$$

Relationship between z^{SDP} and $z^{\text{Sparse-SDP}}$?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Our question

$$z^{\text{SDP}} := \min \{ \langle C, X \rangle \\ \text{s.t.} \quad \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, \dots, m\} \\ X \in \mathcal{S}^n_+,$$
 (SDP)

$$\begin{aligned} z^{\text{Sparse-SDP}} &:= & \min \quad \langle C, X \rangle \\ & \text{s.t.} \quad \langle A^i, X \rangle \leq b_i \, \forall i \in \{1, \dots, m\} \quad \text{(Sparse SDP)} \\ & \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}^k_+. \end{aligned}$$

Relationship between z^{SDP} and $z^{\text{Sparse-SDP}}$?

・ロト (日下・モート・モー・ショー・ショー)

Seems like a difficult question to analyze.

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

Easier question

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketch

Easier question

How far is cone with all $k \times k$ submatrices PSD from S_+^n ?

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

• How far is $S^{n,k}$ from S^n_+ ?

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is $S^{n,k}$ from S^n_+ ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

イロト イポト イヨト イヨト 一日

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is $S^{n,k}$ from S^n_+ ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

イロト イポト イヨト イヨト 一日

- 1. The norm to measure this distance and
- 2. A normalization method

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Setting-up details of precise question

[k-PSD closure]

Given positive integers *n* and *k* where $2 \le k \le n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- How far is $S^{n,k}$ from S^n_+ ?
- To measure this, we would like to consider the matrix in the k-PSD closure that is farthest from the PSD cone. We require to make two decisions here:
 - 1. The norm to measure this distance and
 - 2. A normalization method

$$\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k}, \mathcal{S}^{n}_{+}) = \sup_{\substack{M \in \mathcal{S}^{n,k}, \|M\|_{\mathsf{F}} = 1}} \frac{\mathsf{dist}_{\mathsf{F}}(M, \mathcal{S}^{n}_{+})}{\sup_{\substack{M \in \mathcal{S}^{n,k}, \|M\|_{\mathsf{F}} = 1}} \inf_{\substack{N \in \mathcal{S}^{n}_{+}}} \|M - N\|_{\mathsf{F}}}$$

イロト イポト イヨト イヨト 一日

2 Main results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

2.1 Upper bounds on $\overline{\text{dist}}_{\mathcal{F}}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+})$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bounds

Lower bounds Do we need n^k PSD constraints?

Proof sketch

Upper bound 1

Theorem (Upper Bound 1)

For all $2 \le k < n$ we have

$$\overline{\operatorname{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+}) \leq \frac{n-k}{n+k-2}.$$
(1)

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�() ◆

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Do we need n^k PSD constraints?

Proof sketch

Upper bound 1

Theorem (Upper Bound 1)

For all $2 \le k < n$ we have

$$\overline{\operatorname{dist}}_{\mathcal{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) \leq rac{n-k}{n+k-2}.$$

(1)

・ロト (日下・モート・モー・ショー・ショー)

► Distance between the k-PSD closure and the SDP cone is at most roughly ≈ ^{n-k}/_n.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Lower bounds Do we need n^k PSE constraints?

Proof sketch

Upper bound 2

► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds

Do we need n^k PSD constraints?

Proof sketch

Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$
- This appears to be weak especially when $k \approx n$

・ロト (日本・ヨー・ヨー・ショー・ショー)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds Lower bounds Do we need n^k PSD constraints?

Proof sketch

Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$
- This appears to be weak especially when $k \approx n$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds Lower bounds Do we need n^k PSD constraints?

Proof sketch

Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$
- This appears to be weak especially when $k \approx n$

Theorem (Upper bound 2)
Assume
$$n \ge 97$$
 and $k \ge \frac{3n}{4}$. Then
 $\overline{\text{dist}}_{F}(S^{n,k}, S^{n}_{+}) \le 96 \left(\frac{n-k}{n}\right)^{3/2}$. (2)

This bound dominates the previous bound when k/n is sufficiently large.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

2.2 Lower bounds on $\overline{\text{dist}}_{F}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bound:

Lower bounds

Do we need n^k PSI constraints?

Proof sketch

Lower bound 1

Theorem (Lower bound 1) For all $2 \le k < n$, we have

$$\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) \geq \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.$$

(3)

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣�() ◆

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bound:

Lower bounds

Do we need n^k PSI constraints?

Proof sketch

Lower bound 1

Theorem (Lower bound 1) For all $2 \le k < n$, we have

$$\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) \geq \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.$$

(3)

・ロト (日本・ヨー・ヨー・ショー・ショー)

▶ When *k* is small:

$$\frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}} \approx \frac{n-k}{n}$$

So first upper bound (Thm 1) is tight (upto constant).

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bound:

Lower bounds

Do we need n^k PSI constraints?

Proof sketch

Lower bound 1

Theorem (Lower bound 1) For all $2 \le k < n$, we have

$$\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) \geq \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.$$

(3)

・ロト (日本・ヨー・ヨー・ショー・ショー)

▶ When *k* is small:

$$\frac{n-k}{\sqrt{(k-1)^2 n+n(n-1)}} \approx \frac{n-k}{n}$$

So first upper bound (Thm 1) is tight (upto constant).

• When k is very large: n - k = c where c is very small

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bound:

Lower bounds

Do we need n^k PSI constraints?

Proof sketch

Lower bound 1

Theorem (Lower bound 1) For all $2 \le k < n$, we have

$$\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) \geq \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.$$

(3)

・ロト (日本・ヨー・ヨー・ショー・ショー)

▶ When *k* is small:

$$\frac{n-k}{\sqrt{(k-1)^2 n+n(n-1)}} \approx \frac{n-k}{n}$$

So first upper bound (Thm 1) is tight (upto constant).

• When k is very large: n - k = c where c is very small

$$\frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}} \approx \frac{c}{n^{3/2}}$$

So second upper bound (Thm 2) is tight (upto constant).

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bound

Lower bounds Do we need n^k PSD constraints?

Proof sketch

Lower bound 2: What happens when k = rn?

- Upper bound: $\frac{n-k}{n} = 1 r$, a constant independent of *n*
- Lower bound 1: $\approx (1/r 1) \frac{1}{n^{1/2}}$.

So is upper bound weak in this regime?

37

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bound:

Lower bounds Do we need n^k PSE constraints?

Proof sketch

Lower bound 2: What happens when k = rn?

- Upper bound: $\frac{n-k}{n} = 1 r$, a constant independent of *n*
- Lower bound 1: $\approx (1/r 1) \frac{1}{n^{1/2}}$.

So is upper bound weak in this regime?

Theorem (Lower bound 2) Fix a constant $r < \frac{1}{93}$ and k = rn. Then for all $k \ge 2$,

$$\overline{\operatorname{dist}}_{F}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+}) > \frac{\sqrt{r-93r^{2}}}{\sqrt{162r+3}},$$

イロン 不得 とくほ とくほう 二日

which is independent of n.

2.3 Do we need $\binom{n}{k}$ PSD constraints?

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bounds Lower bounds

Do we need n^k PSD constraints?

Proof sketch

Achieving the strength of $S^{n,k}$ by a polynomial number of PSD constraints

Theorem Let $2 \le k \le n - 1$. Consider $\varepsilon, \delta > 0$ and let

$$m = 24\left(\frac{n^2}{\varepsilon^2}\ln\frac{n}{\delta}\right).$$

Let $\mathcal{I} = (l_1, \dots, l_m)$ be a sequence of random *k*-sets independently uniformly sampled from $\binom{[n]}{k}$,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bounds Lower bounds

Do we need n^k PSD constraints?

Proof sketch

Achieving the strength of $S^{n,k}$ by a polynomial number of PSD constraints

Theorem Let $2 \le k \le n - 1$. Consider $\varepsilon, \delta > 0$ and let

$$m = 24\left(\frac{n^2}{\varepsilon^2}\ln\frac{n}{\delta}\right).$$

Let $\mathcal{I} = (I_1, \ldots, I_m)$ be a sequence of random k-sets independently uniformly sampled from $\binom{[n]}{k}$, and define $S_{\mathcal{I}}$ as the set of matrices satisfying the PSD constraints for the principal submatrices indexed by the I_i 's, namely

$$\mathcal{S}_{\mathcal{I}} := \{ \boldsymbol{M} \in \mathbb{R}^{n \times n} : \boldsymbol{M}_{l_i} \succeq \mathbf{0}, \ \forall i \in [m] \}.$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Upper bounds Lower bounds

Do we need n^k PSD constraints?

Proof sketch

Achieving the strength of $S^{n,k}$ by a polynomial number of PSD constraints

Theorem Let $2 \le k \le n - 1$. Consider $\varepsilon, \delta > 0$ and let

$$m = 24\left(\frac{n^2}{\varepsilon^2}\ln\frac{n}{\delta}\right).$$

Let $\mathcal{I} = (I_1, ..., I_m)$ be a sequence of random *k*-sets independently uniformly sampled from $\binom{[n]}{k}$, and define $S_{\mathcal{I}}$ as the set of matrices satisfying the PSD constraints for the principal submatrices indexed by the I_i 's, namely

$$S_{\mathcal{I}} := \{ \boldsymbol{M} \in \mathbb{R}^{n \times n} : \boldsymbol{M}_{l_i} \succeq \mathbf{0}, \forall i \in [m] \}.$$

Then with probability at least $1 - \delta$ we have

$$\overline{\operatorname{dist}}_{F}(\mathcal{S}_{\mathcal{I}},\mathcal{S}^{n}_{+}) \leq (1+\varepsilon)\frac{n-k}{n+k-2}.$$

3 Proof sketch

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3.1 Proof of:

Theorem (Upper Bound 1) For all $2 \le k < n$ we have $\overline{\text{dist}}_F(\mathcal{S}^{n,k}, \mathcal{S}^n_+) \le \frac{n-k}{n+k-2}.$

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Upper bound 1

Upper bound a

Lower bound

Lower bound 2

Proof of Upper bound 1

► If

then red-submatrix is $k \times k$ PSD matrix.

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof Sketcr

Upper bound 1 Upper bound 2 Lower bound 1

Lower bound 2

Proof of Upper bound 1

then red-submatrix is $k \times k$ PSD matrix.

So

► If

 $\left|\begin{array}{ccccc} * & * & * & 0 & 0 \\ * & * & * & 0 & 0 \\ * & * & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right| \in \mathcal{S}_{+}^{n}.$

Blekherman, Dey, Molinaro, Sun

Introduction

Main result

Proof sketcr

Upper bound 1 Upper bound 2 Lower bound 1

Proof of Upper bound 1

- ► Take average of all the above matrices for different principal $k \times k$ submatrices (and suitably scale with a positive number), then the resulting matrix is in S_{+}^{n} .
- The distance between this average PSD matrix and X gives bound.

3.2 Proof of:

Theorem (Upper bound 2) Assume $n \ge 97$ and $k \ge \frac{3n}{4}$. Then $\overline{\text{dist}}_{F}(S^{n,k}, S^{n}_{+}) \le 96\left(\frac{n-k}{n}\right)^{3/2}$.

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1

Upper bound 2

Lower bound 1

Proof of upper bound 2

► Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in S^{n,k} has at most n - k negative eigenvalues.

・ロット (雪) (日) (日) (日)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound 1
- Upper bound 2
- Lower bound 1

Proof of upper bound 2

- ► Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in S^{n,k} has at most n - k negative eigenvalues.
- Since the PSD cone consists of symmetric matrices with non-negative eigenvalues, the distance from a unit-norm matrix *M* ∈ S^{n,k} to Sⁿ₊ is upper bounded by

(absolute value of most negative eigenvalue of M)× $\sqrt{n-k}$.

So we need to upper bound absolute value of most negative eigenvalue of M for M ∈ S^{n,k} and ||M||_F = 1.

Blekherman, Dey, Molinaro, Sun

Introductio

Main results

Proof sketch

Upper bound '

Upper bound 2

Lower bound 1

Proof of upper bound 2 -contd.

Let

$$\boldsymbol{M} = -\lambda \boldsymbol{v} \boldsymbol{v}^{\top} + \sum_{i=2}^{n} \mu_i \boldsymbol{v}_i \boldsymbol{v}_i^{\top}$$

where $\lambda > 0$.

Proof uses probabilitic method: Randomly sparsify (with some scaling) v and let the resulting random vector be V.

イロト イポト イヨト イヨト

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Proof of upper bound 2 -contd.

Let

$$\boldsymbol{M} = -\lambda \boldsymbol{v} \boldsymbol{v}^{\top} + \sum_{i=2}^{n} \mu_i \boldsymbol{v}_i \boldsymbol{v}_i^{\top}$$

where $\lambda > 0$.

- Proof uses probabilitic method: Randomly sparsify (with some scaling) v and let the resulting random vector be V. Think of V having the following properties:
 - ▶ $V \approx v$, i.e. $V^{\top}v \approx 1$ and $V^{\top}v_i \approx 0$. (♣)
 - V has a support of k (\blacklozenge)

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ヨッ

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Proof of upper bound 2 -contd.

Let

$$\boldsymbol{M} = -\lambda \boldsymbol{v} \boldsymbol{v}^{\top} + \sum_{i=2}^{n} \mu_i \boldsymbol{v}_i \boldsymbol{v}_i^{\top}$$

where $\lambda > 0$.

- Proof uses probabilitic method: Randomly sparsify (with some scaling) v and let the resulting random vector be V. Think of V having the following properties:
 - ▶ $V \approx v$, i.e. $V^{\top}v \approx 1$ and $V^{\top}v_i \approx 0$. (♣)
 - V has a support of k (\blacklozenge)

► So (♣) implies:

$$V^{\top}MV \approx -\lambda \cdot \mathbf{1} + \sum_{i=2}^{n} \mu_i \mathbf{0} \approx -\lambda + \text{small error}$$
 (A)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1

Upper bound 2

Lower bound 1

Proof of upper bound 2 -contd.

Let

$$\boldsymbol{M} = -\lambda \boldsymbol{v} \boldsymbol{v}^{\top} + \sum_{i=2}^{n} \mu_i \boldsymbol{v}_i \boldsymbol{v}_i^{\top}$$

where $\lambda > 0$.

- Proof uses probabilitic method: Randomly sparsify (with some scaling) v and let the resulting random vector be V. Think of V having the following properties:
 - ▶ $V \approx v$, i.e. $V^{\top}v \approx 1$ and $V^{\top}v_i \approx 0$. (♣)
 - V has a support of k (\blacklozenge)

► So (♣) implies:

$$V^{ op} M V pprox -\lambda \cdot \mathbf{1} + \sum_{i=2}^{n} \mu_i \mathbf{0} pprox -\lambda + ext{small error}$$
 (A)

On the other hand (A) implies:

$$V^{\top}MV \geq 0, \qquad (B)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

since V has a support of k.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1

Upper bound 2

Lower bound 1

Proof of upper bound 2 -contd.

Let

$$\boldsymbol{M} = -\lambda \boldsymbol{v} \boldsymbol{v}^{\top} + \sum_{i=2}^{n} \mu_i \boldsymbol{v}_i \boldsymbol{v}_i^{\top}$$

where $\lambda > 0$.

- Proof uses probabilitic method: Randomly sparsify (with some scaling) v and let the resulting random vector be V. Think of V having the following properties:
 - ▶ $V \approx v$, i.e. $V^{\top}v \approx 1$ and $V^{\top}v_i \approx 0$. (♣)
 - V has a support of k (\blacklozenge)

► So (♣) implies:

$$V^{ op} M V pprox -\lambda \cdot \mathbf{1} + \sum_{i=2}^{n} \mu_i \mathbf{0} pprox -\lambda + ext{small error}$$
 (A)

On the other hand (A) implies:

$$V^{\top}MV \ge 0, \qquad (B)$$

since V has a support of k.

So (A) and (B) imply:

 $-\lambda + \text{small error} \geq 0 \Rightarrow \lambda \leq \text{small error}$

3.3 Proof of: Theorem (Lower bound 1) For all $2 \le k < n$, we have $\overline{\text{dist}}_F(S^{n,k}, S^n_+) \ge \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.$

<ロ> (四) (四) (三) (三) (三) (三)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound 1
- Upper bound 2
- Lower bound 1
- Lower bound 2

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{\top} G u =$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound 1
- Upper bound 2
- Lower bound 1
- Lower bound 2

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound 1
- Upper bound 2
- Lower bound 1
- Lower bound 2

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(||u||_1)^2$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound 1

Upper bound 2

Lower bound 1

Lower bound 2

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{ op} Gu = (a+b) - a \left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(\|u\|_1)^2 \ge (a+b) - ak$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

- Proof sketch
- Upper bound 1
- Upper bound 2
- Lower bound 1
- Lower bound 2

Proof of lower bound 1

Consider the matrix:

$$G(a,b) := (a+b)I - a\mathbf{1}\mathbf{1}^{\top}$$

• If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of k, then

$$u^{ op} G u = (a+b) - a \left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(\|u\|_1)^2 \ge (a+b) - ak$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- So $G(a,b) \in S^{n,k}$ iff $(1-k)a+b \ge 0$.
- ▶ Use these explicit matrices to obtain lower bound from *S*^{*n*}₊

3.4 Proof of:

Theorem (Lower bound 2)

Fix a constant $r < \frac{1}{93}$ and k = rn. Then for all $k \ge 2$,

$$\overline{\operatorname{dist}}_{F}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+}) > \frac{\sqrt{r-93r^{2}}}{\sqrt{162r+3}},$$

which is independent of n.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound 2

Lower bound 1

Lower bound 2

Proof of lower bound 2

► For simplicity, assume k = n/2. (Actually proof does not have this value of k).

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

- Upper bound
- Upper bound a
- Lower bound 1

Lower bound 2

Proof of lower bound 2

- For simplicity, assume k = n/2. (Actually proof does not have this value of k).
- ► The idea is to construct a matrix *M* where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^1, w^2, \ldots, w^{n/2}$, i.e.,

$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^\top$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

- Upper bound '
- Upper bound 2
- Lower bound 1

Lower bound 2

For simplicity, assume k = n/2. (Actually proof does not have this value of k).

► The idea is to construct a matrix *M* where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^1, w^2, \ldots, w^{n/2}$, i.e.,

$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^\top$$

イロン 不得 とくほう イヨン しほう

• This normalization makes $||M||_F \approx 1$.

Proof of lower bound 2

• dist_F(M, S_+^n) $\gtrsim \sqrt{\left(\frac{1}{\sqrt{n}}\right)^2 \cdot \frac{n}{2}} = cst$ independent of n.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

- Upper bound '
- Upper bound 2
- Lower bound 1

Lower bound 2

- For simplicity, assume k = n/2. (Actually proof does not have this
 - ► The idea is to construct a matrix *M* where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $w^1, w^2, \ldots, w^{n/2}$, i.e.,

$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^\top$$

・ロット (雪) (日) (日) (日)

• This normalization makes $||M||_F \approx 1$.

Proof of lower bound 2

value of k).

- ► dist_{*F*}(*M*, Sⁿ₊) $\gtrsim \sqrt{\left(\frac{1}{\sqrt{n}}\right)^2 \cdot \frac{n}{2}} = cst$ independent of *n*.
- So we only need to guarantee that *M* belongs to the *k*-PSD closure.

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound a

Lower bound

Lower bound 2

Proof of lower bound 2 -contd.

•
$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{v}^i) (\mathbf{v}^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{w}^i) (\mathbf{w}^i)^\top$$

► Letting *V* be the matrix with rows $v^1, v^2, ..., and W$ the matrix with rows $w^1, w^2, ..., w^2$ the quadratic form $x^\top M x$:

$$x^{\top}Mx = -\frac{1}{\sqrt{n}}\|Vx\|_2^2 + \frac{1}{\sqrt{n}}\|Wx\|_2^2.$$

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

Upper bound

Upper bound

Lower bound 1

Lower bound 2

Proof of lower bound 2 -contd.

•
$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{v}^i) (\mathbf{v}^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{w}^i) (\mathbf{w}^i)^\top$$

► Letting *V* be the matrix with rows $v^1, v^2, ..., and W$ the matrix with rows $w^1, w^2, ..., w^2$ the quadratic form $x^\top M x$:

$$x^{\top}Mx = -\frac{1}{\sqrt{n}}\|Vx\|_2^2 + \frac{1}{\sqrt{n}}\|Wx\|_2^2.$$

イロン 不得 とくほ とくほう 二日

• $||Vx||_2^2 \le ||x||_2^2$ (because V is orthonormal)

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

- Upper bound
- Upper bound a
- Lower bound

Lower bound 2

Proof of lower bound 2 -contd.

•
$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{v}^i) (\mathbf{v}^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{w}^i) (\mathbf{w}^i)^\top$$

► Letting *V* be the matrix with rows $v^1, v^2, ...,$ and *W* the matrix with rows $w^1, w^2, ...,$ the quadratic form $x^\top Mx$:

$$x^{\top}Mx = -\frac{1}{\sqrt{n}}\|Vx\|_{2}^{2} + \frac{1}{\sqrt{n}}\|Wx\|_{2}^{2}.$$

- $\|Vx\|_2^2 \le \|x\|_2^2$ (because V is orthonormal)
- ► So if we could construct the matrix *W* so that for all *k*-sparse vectors $x \in \mathbb{R}^n$ we had $||Wx||_2^2 \approx ||x||_2^2$:

$$x^{ op} M x \gtrsim -\frac{1}{\sqrt{n}} \|x\|_2^2 + \frac{1}{\sqrt{n}} \|x\|_2^2 \gtrsim 0$$

for all *k*-sparse vectors *x*

Blekherman, Dey, Molinaro, Sun

Introduction

Main results

Proof sketch

- Upper bound
- Upper bound 2
- Lower bound

Lower bound 2

Proof of lower bound 2 -contd.

•
$$M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{v}^i) (\mathbf{v}^i)^\top + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\mathbf{w}^i) (\mathbf{w}^i)^\top$$

► Letting *V* be the matrix with rows $v^1, v^2, ...,$ and *W* the matrix with rows $w^1, w^2, ...,$ the quadratic form $x^\top Mx$:

$$x^{\top}Mx = -\frac{1}{\sqrt{n}}\|Vx\|_{2}^{2} + \frac{1}{\sqrt{n}}\|Wx\|_{2}^{2}.$$

- $\|Vx\|_2^2 \le \|x\|_2^2$ (because V is orthonormal)
- ► So if we could construct the matrix *W* so that for all *k*-sparse vectors $x \in \mathbb{R}^n$ we had $||Wx||_2^2 \approx ||x||_2^2$:

$$x^{ op}Mx\gtrsim -rac{1}{\sqrt{n}}\|x\|_2^2+rac{1}{\sqrt{n}}\|x\|_2^2\gtrsim 0$$

for all *k*-sparse vectors *x*

This approximate preservation of norms of sparse vectors is precisely the notion of the *Restricted Isometry Property*.

Thank You.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで