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min  (C, X)
st. (ALX)<b Vie{l,...,m} (SDP)
X eS8t

where C and the A''s are n x n matrices, (M, N) := 3", ; M;Nj;,
and

ST ={XeR™ X=X, u"Xu>0, YuecR"},

» Polynomial-time algorithm— but often challenging to solve in
practice.
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min  (C, X)
st. (AJX)y<bVvie{l,...,m} (Sparse SDP)
selected k x k principal submatrices of X € Sﬁ.
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min  (C, X)

st. (ALX)<b Vie{1,....m} (SDP)
XedS?,

min  (C, X)

st. (A X)<bVie{l,....m}  (Sparse SDP)
selected k x k principal submatrices of X € Si.

» We can enforce PSD constraints by iteratively separating
linear constraints. Enforcing PSD-ness on smaller k x k
principal submatrix leads to linear constraints that are
sparser, an important property leveraged by linear
programming solvers that greatly improve their efficiency.
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Sparse Cuts
Solving SDP relaxation of a QCQP
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Main results

Proof sketch 350

LP with dense cuts takes a lot more time!
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min (C, X)
st. (A X)<bVie{l,....m}  (Sparse SDP)
selected k x k principal submatrices of X € Sk.

» [A. Qualizza, P. Belotti, and F. Margot (2012)]

» [R. Baltean-Lugojan, P. Bonami, R. Misener, and A.
Tramontani (2018)]

» [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

» [S. Sojoudi and J. Lavaei (2014)]

» [B. Kocuk, SSD, and X. A. Sun (2016)]
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» [A. A. Ahmadi and A. Majumdar (2019)])
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5% .= min (C,X)
st. (ALX)<b Vie{l,...,m} (SDP)
X e St
ZSparse-SDP -—  min <07 X>

st. (A X)<bVie{l,...,m}  (Sparse SDP)
selected k x k principal submatrices of X € Sk.
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Z%%":= min (C,X)
st. (ALX)<b Vvie{l,...,m} (SDP)
X eS8t
ZSparse-SDP . i <07 X)

st. (A X)<bVie{l,...,m}  (Sparse SDP)
selected k x k principal submatrices of X € S¥.

Relationship between zSPP and zSparse-SDP9

» Seems like a difficult question to analyze.
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st AT =<b—vie{t——77} (SDP)
X e 87,

st ﬁﬁﬁw—m}—(%parse%ﬁﬁ
setected-k x k principal submatrices of X € Sk.

How far is cone with all k x k submatrices PSD from S7?
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» To measure this, we would like to consider the matrix in the
k-PSD closure that is farthest from the PSD cone. We require to
make two decisions here:
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Introduction [k-PSD Closure ]
Given positive integers n and k where 2 < k < n, the k-PSD closure
(8™ is the set of all n x n symmetric real matrices where all k x k
principal submatrices are PSD.

> ’ How far is S™* from S7?

» To measure this, we would like to consider the matrix in the
k-PSD closure that is farthest from the PSD cone. We require to
make two decisions here:

1. The norm to measure this distance and
2. A normalization method

d|StF S ,S == SUp dStF(M S )
+
MeSN K ||M|| =

= sup inf |IM — NJ|.
Mesmk, M| p=1 NS

bk
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Upper bound 1

Theorem (Upper Bound 1)
For all2 < k < n we have

distr (8™, 87) <

n—k

n+k-2°

26
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Theorem (Upper Bound 1)
For all2 < k < n we have

distr (8™, 87) <

n—k

n+k-2°

» Distance between the k-PSD closure and the SDP cone is at

~ n—k
most roughly ~ 2=,

27




Upper bound 2

» Distance between the k-PSD closure and the SDP cone is at
most roughly ~ 2=%

o8

DA
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: most roughly ~ =%

» This appears to be weak especially when k ~ n

29
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constraints?

» This appears to be weak especially when k =~ n

Theorem (Upper bound 2)
Assume n > 97 and k > 3. Then

N8/
distr(S™,S7) < 96 (” n k) .
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Upper bounds

Upper bound 2

» Distance between the k-PSD closure and the SDP cone is at
most roughly ~ =%

» This appears to be weak especially when k =~ n

Theorem (Upper bound 2)
Assume n > 97 and k > 3. Then

N8/
distr(S™,S7) < 96 (” n k) .

@)

» This bound dominates the previous bound when % is sufficiently

large.

29
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Lower bounds on distg(S™k, ST)
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Lower bound 1

Theorem (Lower bound 1)
For all2 < k < n, we have

distr(S™*,8T)

< n—k

~ V(k=12n+n(n—1)

k]
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Lower bound 1

Theorem (Lower bound 1)
For all2 < k < n, we have

distr(S™,87) > n—k

~ V(k=12n+n(n—1)

» When k is small:
n—k n—k

~
~

Vk=1)2n+n(n-1) n

So first upper bound (Thm 1) is tight (upto constant).

24
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Lower bounds

Lower bound 1

Theorem (Lower bound 1)

For all2 < k < n, we have
JE— n—k
distr(S™k, 8" > .
a +)_\/(k71)2n+n(n—1)

» When k is small:
n—k n—k

~
~

Vk—=1)2n+n(n-1) n

So first upper bound (Thm 1) is tight (upto constant).

» When k is very large: n — k = ¢ where c is very small

25
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Theorem (Lower bound 1)
For all2 < k < n, we have

Lower bounds
—k

diste(S™, 87) > n :

A N (S E T CES)

» When k is small:
n—k n—k

~
~

Vk—=1)2n+n(n-1) n
So first upper bound (Thm 1) is tight (upto constant).
» When k is very large: n — k = ¢ where c is very small

Vk=12n+n(n—1) n®?

So second upper bound (Thm 2) is tight (upto constant).

26
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Upper bounds
Lower bounds . n—k __ H
Do we nsedr* PSD » Upper bound: =% = 1 — r, a constant independent of n

» Lower bound 1: ~ (1/r — 1) 5.

So is upper bound weak in this regime?

27
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Upper bounds
Lower bounds

Do we need n* PSD
constraints?

» Upper bound: % =1 — r, a constant independent of n
» Lowerbound 1: ~ (1/r — 1)+

SYEE

So is upper bound weak in this regime?

Theorem (Lower bound 2)
Fix a constant r < 9‘—3 and k = rn. Then for all k > 2,

\r—93r2

diste(S™,87) > ==
r( > e 3

which is independent of n.

8



2.3
Do we need (i) PSD constraints?
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Theorem
‘ Let2 < k < n-—1. Considere,§ > 0 and let

I;)c we need‘ n* PSD
2
n n
m=241—5In-).
5 )

LetT = (h,..., Im) be a sequence of random k-sets independently
uniformly sampled from (1),

Upper boun

40



Sparse PSD

approximation Achieving the strength of S™* by a polynomial number of
sekieman. Doy, PSD constraints

Molinaro, Sun

Theorem
Let2 < k < n-—1. Considere,§ > 0 and let

", n
LetZ =(h,..., Im) be a sequence of random k-sets independently
uniformly sampled from (1), and define Sz as the set of matrices

satisfying the PSD constraints for the principal submatrices indexed
by the I;’s, namely

Do we need n PSD
constraints?

Sr:={MeR™": M, =0, Vie [m]}

a1
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Do we need n PSD
constraints?

Achieving the strength of S™* by a polynomial number of
PSD constraints

Theorem
Let2 < k < n-—1. Considere,§ > 0 and let

", n
LetZ =(h,..., Im) be a sequence of random k-sets independently
uniformly sampled from (1), and define Sz as the set of matrices

satisfying the PSD constraints for the principal submatrices indexed
by the I;’s, namely

Sz ={MecR™": M, =0, Vie [m]}.
Then with probability at least 1 — 6 we have

n—k

diste(Sz,57) < (1 + ) 55

42
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Proof sketch



3.1
Proof of:

Theorem (Upper Bound 1)
For all2 < k < n we have
n—k

qiot nk cn < )
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> If

>

Il
L I
* X ¥ X ¥
S S G
S S
* X X X X

then red-submatrix is k x k PSD matrix.

45
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*  x ok % %
* ok ok k%
X=1|% % x % x| 8™
Upperttjundi X % % % %
* %k ok %k
then red-submatrix is kK x k PSD matrix.
» So
*+ x x 0 0
*+ * *x 0 0
x x x 0 0 | eS8l
0 0 0 0 O
0 0 0 0O

46
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> If
k * >k * *
* ok % % %
X=1|% % x % x| 8™
Upper bound 1
* ok ok ok %k
* * * * *
then red-submatrix is k x k PSD matrix.
» So
*+ * x 0 0
*+ * *x 0 0
* *x *x 0 0 [ e Si.
0 0 0 0O
0 0 0 0O

» Take average of all the above matrices for different principal k x k
submatrices (and suitably scale with a positive number), then the
resulting matrix is in S7.

» The distance between this average PSD matrix and X gives
bound.

a7



3.2
Proof of:

Theorem (Upper bound 2)
Assume n > 97 and k > 3. Then

L _ 3/2
distF(S””‘,Sﬂ)§96<n k> .
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» Using Cauchy’s Interlace Theorem for eigenvalues of
Jpperbound 2 symmetric matrices, we obtain that every matrix in S™* has
at most n — k negative eigenvalues.

49
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» Using Cauchy’s Interlace Theorem for eigenvalues of
vpperbound symmetric matrices, we obtain that every matrix in S™* has
at most n — k negative eigenvalues.
» Since the PSD cone consists of symmetric matrices with
non-negative eigenvalues, the distance from a unit-norm
matrix M € S™K to S is upper bounded by

(absolute value of most negative eigenvalue of M)x+v'n — k.

» So we need to upper bound absolute value of most
negative eigenvalue of M for M € S™¥ and ||M||r = 1.

50
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n
M= - w' + Zp,v,-v,-T
i=2
where A > 0.

» Proof uses probabilitic method: Randomly sparsify (with some
scaling) v and let the resulting random vector be V.

Upper bound 2

Rq
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> Let ,
M=-xw" +> v’
i=2
where )\ > 0.
. » Proof uses probabilitic method: Randomly sparsify (with some
jpper bound 2

scaling) v and let the resulting random vector be V. Think of V
having the following properties:

» Vv, ie. Viva1and Vv = 0. (&)
» V has a support of k (#)

52
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n
M=-xw" +> v’
i=2
where A > 0.

. » Proof uses probabilitic method: Randomly sparsify (with some
jpper bound 2

scaling) v and let the resulting random vector be V. Think of V
having the following properties:

» Vv, ie. Viva1and Vv = 0. (&)
» V has a support of k (#)
> So (&) implies:

n
VIMV ~ =X-14> 10~ —X+smallerror  (A)

i=2

%]
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n
M= - w' + Zu,v,-\/,T
i=2
where A > 0.

» Proof uses probabilitic method: Randomly sparsify (with some
scaling) v and let the resulting random vector be V. Think of V
having the following properties:

» Vv, ie. Viva1and Vv = 0. (&)
» V has a support of k (#)
> So (&) implies:

Upper bound 2

n
VIMV ~ =X-14> 10~ —X+smallerror  (A)

i=2
» On the other hand (&) implies:
Vimv >0, (B)

since V has a support of k.

R4
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Upper bound 2

Proof of upper bound 2 -contd.
> Let

n
M=-xw" +> v’
i=2
where A > 0.
Proof uses probabilitic method: Randomly sparsify (with some
scaling) v and let the resulting random vector be V. Think of V
having the following properties:

» Vv, ie. Viva1and Vv = 0. (&)
» V has a support of k (#)
So (&) implies:

VIMV ~ =X-14> 10~ —X+smallerror  (A)
i=2
On the other hand () implies:
Vimv >0, (B)

since V has a support of k.
So (A) and (B) imply:

‘ —X + small error > 0 = X\ < small error ‘

1Y



3.3
Proof of:

Theorem (Lower bound 1)
For all2 < k < n, we have

n—k

diste(S™, ST)

- \/(k—1 n+n(n—1)
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» Consider the matrix:
Lower bound 1 G(a, b) = (a + b)l o a11T

» If u € R" with ||lu]]2 = 1 has a support of k, then

u'Gu =

57
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» Consider the matrix:
Lower bound 1 (3(ai b) = (a+b)l* a11T

» If u € R" with ||lu]]2 = 1 has a support of k, then

n 2
u'Gu=(a+b)—a (Z u,-)

i=1

g8
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» Consider the matrix:
Lower bound 1 (3(3i b) = (aer)/f a11T

» If u € R" with ||lu]]2 = 1 has a support of k, then

n 2
u'Gu=(a+b)—a (Z U/> > (a+b)—a(||ullr)?

i=1

e}
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» Consider the matrix:
Lower bound 1 (3(3i b) = (aer)/f a11T

» If u € R" with ||lu]]2 = 1 has a support of k, then

n 2
u'Gu=(a+b)—a (Z u;) > (a+b)—a(|lull+)* > (a+b)—ak

i=1

B0
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v

Consider the matrix:

Lower bound 1 G(a’ b) = (a + b)/ —al1’

v

If u e R" with ||u||z = 1 has a support of k, then

n 2
u'Gu=(a+b)—a (Z u;) > (a+b)—a(|lull+)* > (a+b)—ak

i=1

v

So G(a, b) € ™ iff (1 — k)a+ b > 0.
Use these explicit matrices to obtain lower bound from S’

v

A1



3.4
Proof of:

Theorem (Lower bound 2)
Fix a constant r < ¢s and k = rn. Then for all k > 2,

V'r—93r2

diste(S™K,87) > ~—
F +) J/162r £ 3

which is independent of n.
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» For simplicity, assume k = n/2. (Actually proof does not have this
value of k).

Lower bound 2

B3
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» For simplicity, assume k = n/2. (Actually proof does not have this
value of k).
» The idea is to construct a matrix M where half of its eigenvalues
take the negative value — f, with orthonormal elgenvectors
toverbound 2 v',v2, ..., v"2 and rest take a positive value f, with

orthonormal eigenvectors w', w2, w2, i.e.,

/A4
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» For simplicity, assume k = n/2. (Actually proof does not have this
value of k).

» The idea is to construct a matrix M where half of its eigenvalues
take the negative value — f, with orthonormal elgenvectors

toverbound2 v',v2 ..., v"? and rest take a positive value —-, with
n/2

f!

orthonormal eigenvectors w', w2, ,i.e.,

n/2 1 n/2 ) -
Z 75 > (w)Hw)

i=1

» This normalization makes ||M||r ~ 1.

2
> diste(M,ST) > (\iﬁ) - § = cst independent of n.

B85
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» For simplicity, assume k = n/2. (Actually proof does not have this
value of k).

» The idea is to construct a matrix M where half of its eigenvalues
take the negative value —7, with orthonormal e|genvectors

Lower bound 2 v',v2, ..., v"2 and rest take a positive value f, with
orthonormal eigenvectors w', w2, w2, i.e.,
n/2 n/2

M= A3+ =)

» This normalization makes ||M||r ~ 1.

2
> diste(M,ST) > (\iﬁ) - § = cst independent of n.

» So we only need to guarantee that M belongs to the k-PSD
closure.

66
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> M= SVEV)T + S (w)T
» Letting V be the matrix with rows v', v2, ..., and W the matrix
with rows w', w?, . .., the quadratic form x Mx:
Lower bound 2 X Mx = ,LH Vx|)3 + LH Wi|[3.

Vi Vi
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Sparse PSD

e e Proof of lower bound 2 —contd.

Blekherman, Dey,

Molinaro, Sun
> M= SVEV)T + S (w)T
» Letting V be the matrix with rows v', v2, ..., and W the matrix
with rows w', w?, . .., the quadratic form x Mx:
Lower bound 2 X Mx = ,LH Vx|)3 + LH Wi|[3.

Vi Vi

> || Vx||3 < ||Ix||3 (because V is orthonormal)

A8



Sparse PSD
approximation

Blekherman, Dey,

Molinaro, Sun

Lower bound 2

Proof of lower bound 2 —contd.

M= LSRN+ S S w)(w)T
Letting V be the matrix with rows v', v, ..., and W the matrix
with rows w', w2, .. ., the quadratic form x " Mx:

T 1 2 1 2
X Mx=——||Vx — || Wx||5.
IVl + W

| Vx||3 < ||| (because V is orthonormal)
So if we could construct the matrix W so that for all k-sparse

vectors x € R" we had | ||Wx||3 ~ ||x]|[3 |

x Mx > ’ for all k-sparse vectors X |,

1 2, 1 2
——||x —|Ix|22 0
2~ g + B 2

(e}



Sparse PSD
approximation

Blekherman, Dey,

Molinaro, Sun

er bound

Lower bound 2

Proof of lower bound 2 —contd.

M= LSRN+ S S w)(w)T
Letting V be the matrix with rows v', v, ..., and W the matrix
with rows w', w2, .. ., the quadratic form x " Mx:

T 1 2 1 2
X Mx=——||Vx — || Wx||5.
IVl + W

| Vx||3 < ||| (because V is orthonormal)
So if we could construct the matrix W so that for all k-sparse

vectors x € R" we had | ||Wx||3 ~ ||x]|[3 |

T 1 2 1 2
X Mx > ——|x — x|z =0
2~ g + B 2

’ for all k-sparse vectors X |,

This approximate preservation of norms of sparse vectors is
precisely the notion of the Restricted Isometry Property.
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Thank You.
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