Sparse PSD approximation of the PSD cone

Grigoriy Blekherman¹ Santanu S. Dey¹ Marco Molinaro² Shengding Sun¹

¹ Georgia Institute of Technology.

² Pontifical Catholic University of Rio de Janeiro.

Oct 2020

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 900

1 Introduction

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Semi definite programming

$$
\min \langle C, X \rangle \n\text{s.t.} \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, ..., m\} \quad (\text{SDP}) \nX \in S^n_+
$$

where C and the A^i 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij},$ and

 η are

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Semi definite programming

$$
\min \langle C, X \rangle \n\text{s.t.} \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, ..., m\} \quad (\text{SDP}) \nX \in S^n_+
$$

where C and the A^i 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij},$ and

 $\mathcal{S}_+^n = \{ X \in \mathbb{R}^{n \times n} \, | \, X = X^T, \ u^\top X u \geq 0, \ \forall u \in \mathbb{R}^n \}.$

 η are

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Semi definite programming

$$
\min \langle C, X \rangle \n\text{s.t.} \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, ..., m\} \quad (\text{SDP}) \nX \in S^n_+
$$

where C and the A^i 's are $n \times n$ matrices, $\langle M, N \rangle := \sum_{i,j} M_{ij} N_{ij},$ and

 $\mathcal{S}_+^n = \{ X \in \mathbb{R}^{n \times n} \, | \, X = X^T, \ u^\top X u \geq 0, \ \forall u \in \mathbb{R}^n \}.$

 \triangleright Polynomial-time algorithm— but often challenging to solve in practice.

KORK EX KEY EL ARA

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

A relaxation: Sparse SDP

$$
\begin{array}{ll}\n\min & \langle C, X \rangle \\
\text{s.t.} & \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, \dots, m\} \\
& X \in S_+^n,\n\end{array} \tag{SDP}
$$

KID X 個→ K ミ X X ミ X ミ → の Q Q →

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

A relaxation: Sparse SDP

$$
\begin{array}{ll}\n\text{min} & \langle C, X \rangle \\
\text{s.t.} & \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, \dots, m\} \\
& X \in \mathcal{S}_+^n,\n\end{array} \tag{SDP}
$$

$$
\begin{array}{ll}\n\text{min} & \langle C, X \rangle \\
\text{s.t.} & \langle A^i, X \rangle \le b_i \ \forall i \in \{1, \dots, m\} \qquad \text{(Sparse SDP)} \\
& \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}_+^k.\n\end{array}
$$

K ロ X K 個 X K ミ X K ミ X ミ X の Q Q C

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

A relaxation: Sparse SDP

$$
\begin{array}{ll}\n\min & \langle C, X \rangle \\
\text{s.t.} & \langle A^i, X \rangle \le b_i \quad \forall i \in \{1, \dots, m\} \\
& X \in S_+^n,\n\end{array} \tag{SDP}
$$

$$
\begin{array}{ll}\n\text{min} & \langle C, X \rangle \\
\text{s.t.} & \langle A^i, X \rangle \le b_i \; \forall i \in \{1, \dots, m\} \qquad \text{(Sparse SDP)} \\
& \text{selected } k \times k \text{ principal submatrices of } X \in \mathcal{S}_+^k.\n\end{array}
$$

 \triangleright We can enforce PSD constraints by iteratively separating linear constraints. Enforcing PSD-ness on smaller $k \times k$ principal submatrix leads to linear constraints that are sparser, an important property leveraged by linear programming solvers that greatly improve their efficiency.

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

Þ

 QQ

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Example from [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

 $($ ロ) $($ \overline{m}) $($ \overline{m}) $($ \overline{m}) $($ \overline{m} $)$

 QQ

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Sparse SDP

min $\langle C, X \rangle$ s.t. $\langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \ldots, m\}$ (Sparse SDP) selected $k \times k$ principal submatrices of $X \in \mathcal{S}_{+}^{k}$.

- \triangleright [A. Qualizza, P. Belotti, and F. Margot (2012)]
- ► [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
- ► [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Sparse SDP

min $\langle C, X \rangle$ s.t. $\langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \ldots, m\}$ (Sparse SDP) selected $k \times k$ principal submatrices of $X \in \mathcal{S}_{+}^{k}$.

- \triangleright [A. Qualizza, P. Belotti, and F. Margot (2012)]
- ► [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
- ► [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]
- \triangleright [S. Sojoudi and J. Lavaei (2014)]
- \triangleright [B. Kocuk, SSD, and X. A. Sun (2016)]

 $\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{$

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Sparse SDP

min $\langle C, X \rangle$ s.t. $\langle A^i, X \rangle \leq b_i \ \forall i \in \{1, \ldots, m\}$ (Sparse SDP) selected $k \times k$ principal submatrices of $X \in \mathcal{S}_{+}^{k}$.

- \triangleright [A. Qualizza, P. Belotti, and F. Margot (2012)]
- ► [R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani (2018)]
- ► [A. Kazachkov, A. Lodi, G. Munoz, SSD (2020)]
- \triangleright [S. Sojoudi and J. Lavaei (2014)]
- \triangleright [B. Kocuk, SSD, and X. A. Sun (2016)]
- ► [E. G. Boman, D. Chen, O. Parekh, and S. Toledo (2005)]

KORK EXTERNE DRAM

 \triangleright [A. A. Ahmadi and A. Majumdar (2019)])

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Our question

$$
z^{\text{SDP}} := \min \langle C, X \rangle
$$

s.t. $\langle A^i, X \rangle \leq b_i \quad \forall i \in \{1, ..., m\}$ (SDP)
 $X \in S_+^n$,

$$
z^{\text{Sparse-SDP}} := \min \langle C, X \rangle
$$

s.t. $\langle A^i, X \rangle \leq b_i \ \forall i \in \{1, ..., m\}$ (Sparse SDP)
selected $k \times k$ principal submatrices of $X \in S_+^k$.

K ロ > K 御 > K 君 > K 君 > 「君」 の Q Q <

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Our question

$$
z^{\text{SDP}} := \min \langle C, X \rangle
$$

s.t. $\langle A^i, X \rangle \leq b_i \quad \forall i \in \{1, ..., m\}$ (SDP)
 $X \in S^n_+$, (SDP)

$z^{\text{Sparse-SDP}} := \min \langle C, X \rangle$	$\langle A^i, X \rangle \leq b_i \forall i \in \{1, ..., m\}$	(Sparse SDP)
slected $k \times k$ principal submatrices of $X \in S_+^k$.		

Relationship between z^{SDP} and $z^{\text{Sparse-SDP}}$?

K ロ X K 個 X K ミ X K ミ X ミ X D V Q Q Q

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Our question

z

$$
\begin{array}{lll}\n\text{SDP} &:= & \text{min} & \langle C, X \rangle \\
& \text{s.t.} & \langle A^i, X \rangle \leq b_i \quad \forall i \in \{1, \dots, m\} \\
& X \in S_+^n,\n\end{array} \tag{SDP}
$$

$z^{\text{Sparse-SDP}} := \min \langle C, X \rangle$	$\langle A^i, X \rangle \leq b_i \forall i \in \{1, ..., m\}$	(Sparse SDP)
slected $k \times k$ principal submatrices of $X \in S_+^k$.		

Relationship between z^{SDP} and $z^{\text{Sparse-SDP}}$?

KORK EXTERNS ORA

 \triangleright Seems like a difficult question to analyze.

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Easier question

KORK EXTERNS ORA

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Easier question

How far is cone with all $k \times k$ submatrices PSD from \mathcal{S}_+^n ?

KORK E KERKERKERKER

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Setting-up details of precise question

[*k*-PSD closure]

Given positive integers *n* and *k* where $2 < k < n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

 QQ

∍

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Setting-up details of precise question

[*k*-PSD closure]

Given positive integers *n* and *k* where $2 < k < n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

 \blacktriangleright How far is $S^{n,k}$ from S^{n}_{+} ?

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Setting-up details of precise question

[*k*-PSD closure]

Given positive integers *n* and *k* where $2 < k < n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- \blacktriangleright How far is $S^{n,k}$ from S^{n}_{+} ?
- \triangleright To measure this, we would like to consider the matrix in the *k*-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ...

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Setting-up details of precise question

[*k*-PSD closure]

Given positive integers *n* and *k* where $2 < k < n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- \blacktriangleright How far is $S^{n,k}$ from S^{n}_{+} ?
- \triangleright To measure this, we would like to consider the matrix in the *k*-PSD closure that is farthest from the PSD cone. We require to make two decisions here:

イロト イ押 トイヨ トイヨ トー

- 1. The norm to measure this distance and
- 2. A normalization method

Blekherman, Dey, Molinaro, Sun

[Introduction](#page-1-0)

Setting-up details of precise question

[*k*-PSD closure]

Given positive integers *n* and *k* where $2 < k < n$, the *k*-PSD closure $(S^{n,k})$ is the set of all $n \times n$ symmetric real matrices where all $k \times k$ principal submatrices are PSD.

- \blacktriangleright How far is $S^{n,k}$ from S^{n}_{+} ?
- \triangleright To measure this, we would like to consider the matrix in the *k*-PSD closure that is farthest from the PSD cone. We require to make two decisions here:
	- 1. The norm to measure this distance and
	- 2. A normalization method

$$
\overline{\text{dist}}_{F}(\mathcal{S}^{n,k}, \mathcal{S}^{n}_{+}) = \sup_{M \in \mathcal{S}^{n,k}, ||M||_{F} = 1} \text{dist}_{F}(M, \mathcal{S}^{n}_{+})
$$

$$
= \sup_{M \in \mathcal{S}^{n,k}, ||M||_{F} = 1} \inf_{N \in \mathcal{S}^{n}_{+}} ||M - N||_{F}.
$$

イロト イ押 トイヨ トイヨ トー

2 Main results

2.1 Upper bounds on $\overline{\text{dist}}_{F}(\mathcal{S}^{n,k}, \mathcal{S}^{n}_{+})$

Blekherman, Dey, Molinaro, Sun

[Upper bounds](#page-24-0)

[Lower bounds](#page-31-0) Do we need n^k PSD [constraints?](#page-38-0)

Upper bound 1

Theorem (Upper Bound 1)

For all $2 \leq k < n$ *we have*

$$
\overline{\text{dist}}_F(\mathcal{S}^{n,k},\mathcal{S}_+^n) \leq \frac{n-k}{n+k-2}.\tag{1}
$$

K ロ X K 個 X K ミ X K ミ X ミ X D V Q Q Q

Blekherman, Dey, Molinaro, Sun

[Upper bounds](#page-24-0)

[Lower bounds](#page-31-0) Do we need n^k PSD [constraints?](#page-38-0)

Upper bound 1

Theorem (Upper Bound 1)

For all $2 \leq k < n$ *we have*

$$
\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) \leq \frac{n-k}{n+k-2}.
$$

 (1)

KORK EXTERNS ORA

► Distance between the *k*-PSD closure and the SDP cone is at most roughly $\approx \frac{n-k}{n}$.

Blekherman, Dey, Molinaro, Sun

[Upper bounds](#page-24-0)

[Lower bounds](#page-31-0)

Do we need n^k PSD [constraints?](#page-38-0)

Upper bound 2

► Distance between the *k*-PSD closure and the SDP cone is at $\text{most roughly} \approx \frac{n-k}{n}$

K ロ X K ④ X K ミ X K ミ X ミ → ウ Q Q →

Blekherman, Dey, Molinaro, Sun

[Upper bounds](#page-24-0)

[Lower bounds](#page-31-0)

Do we need n^k PSD [constraints?](#page-38-0)

Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at $\text{most roughly} \approx \frac{n-k}{n}$
- If This appears to be weak especially when $k \approx n$

KORK EXTERNS ON ABY

Blekherman, Dey, Molinaro, Sun

[Upper bounds](#page-24-0) [Lower bounds](#page-31-0)

Do we need n^k PSD

Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at $\text{most roughly} \approx \frac{n-k}{n}$
- In This appears to be weak especially when $k \approx n$

Theorem (Upper bound 2) $\textit{Assume} \; n \geq 97 \; \textit{and} \; k \geq \frac{3n}{4}.$ Then $\overline{{\sf dist}}_\digamma(\mathcal{S}^{n,k}, \mathcal{S}^n_+) \leq 96 \left(\, \frac{n-k}{n} \right)$ *n* $\bigwedge^{3/2}$. (2)

 $\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{$

Blekherman, Dey, Molinaro, Sun

[Upper bounds](#page-24-0) [Lower bounds](#page-31-0)

Do we need n^k PSD [constraints?](#page-38-0)

Upper bound 2

- ► Distance between the *k*-PSD closure and the SDP cone is at $\text{most roughly} \approx \frac{n-k}{n}$
- If This appears to be weak especially when $k \approx n$

Theorem (Upper bound 2)
\nAssume
$$
n \ge 97
$$
 and $k \ge \frac{3n}{4}$. Then
\n
$$
\overline{\text{dist}}_F(S^{n,k}, S_+^n) \le 96 \left(\frac{n-k}{n}\right)^{3/2}.
$$
\n(2)

If This bound dominates the previous bound when $\frac{k}{n}$ is sufficiently large.

KORK EX KEY EL ARA

2.2 Lower bounds on $\overline{\text{dist}}_{F}(\mathcal{S}^{n,k}, \mathcal{S}^{n}_{+})$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0)

Do we need n^k PSD [constraints?](#page-38-0)

Lower bound 1

Theorem (Lower bound 1)

For all $2 \leq k < n$ *, we have*

$$
\overline{\text{dist}}_{F}(\mathcal{S}^{n,k},\mathcal{S}^{n}_{+})\geq \frac{n-k}{\sqrt{(k-1)^{2}n+n(n-1)}}.\tag{3}
$$

メロメメ 倒 メメ きょくきょうき

 η are

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0)

Do we need n^k PSD [constraints?](#page-38-0)

Lower bound 1

Theorem (Lower bound 1)

For all $2 \leq k < n$ *, we have*

$$
\overline{\text{dist}}_F(S^{n,k}, S_+^n) \ge \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.
$$
 (3)

KORK EXTERNS ON ABY

\triangleright When *k* is small:

$$
\frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}} \approx \frac{n-k}{n}
$$

So first upper bound (Thm 1) is tight (upto constant).

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0)

Do we need n^k PSD [constraints?](#page-38-0)

Lower bound 1

Theorem (Lower bound 1)

For all $2 \leq k < n$ *, we have*

$$
\overline{\text{dist}}_F(\mathcal{S}^{n,k},\mathcal{S}_+^n) \ge \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.
$$
 (3)

KORK EXTERNS ON ABY

 \triangleright When *k* is small:

$$
\frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}} \approx \frac{n-k}{n}
$$

So first upper bound (Thm 1) is tight (upto constant).

 \triangleright When *k* is very large: $n - k = c$ where *c* is very small

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0)

Do we need n^k PSD [constraints?](#page-38-0)

Lower bound 1

Theorem (Lower bound 1)

For all $2 \leq k < n$, we have

$$
\overline{\text{dist}}_F(\mathcal{S}^{n,k}, \mathcal{S}_+^n) \ge \frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}}.
$$
 (3)

 \triangleright When *k* is small:

$$
\frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}} \approx \frac{n-k}{n}
$$

So first upper bound (Thm 1) is tight (upto constant).

 \triangleright When *k* is very large: $n - k = c$ where *c* is very small

$$
\frac{n-k}{\sqrt{(k-1)^2 n + n(n-1)}} \approx \frac{c}{n^{3/2}}
$$

KORK EXTERNE DRAM

So second upper bound (Thm 2) is tight (upto constant).

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0) Do we need n^k PSD

[constraints?](#page-38-0)

Lower bound 2: What happens when $k = rn$?

- ► Upper bound: $\frac{n-k}{n} = 1 r$, a constant independent of *n*
- ► Lower bound $1: \approx (1/r-1) \frac{1}{n^{1/2}}$.

So is upper bound weak in this regime?

Þ

 QQ

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0)

Do we need n^k PSD

Lower bound 2: What happens when $k = rn$?

- ► Upper bound: $\frac{n-k}{n} = 1 r$, a constant independent of *n*
- ► Lower bound $1: \approx (1/r-1) \frac{1}{n^{1/2}}$.

So is upper bound weak in this regime?

Theorem (Lower bound 2) *Fix a constant r* $< \frac{1}{93}$ *and k = rn. Then for all k* \geq 2*,*

$$
\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+)>\frac{\sqrt{r-93r^2}}{\sqrt{162r+3}},
$$

 QQ

which is independent of n.

2.3 Do we need $\binom{n}{k}$ *k* PSD constraints?

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0)

Do we need *n k* PSD [constraints?](#page-38-0)

Achieving the strength of $S^{n,k}$ by a polynomial number of PSD constraints

Theorem *Let* $2 \le k \le n - 1$ *. Consider* $\varepsilon, \delta > 0$ *and let*

$$
m=24\left(\frac{n^2}{\varepsilon^2}\ln\frac{n}{\delta}\right).
$$

Let $\mathcal{I} = (I_1, \ldots, I_m)$ *be a sequence of random k-sets independently* uniformly sampled from $\binom{[n]}{k}$,

KORK EXTERNS ON ABY

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0)

Do we need *n k* PSD [constraints?](#page-38-0)

Achieving the strength of $S^{n,k}$ by a polynomial number of PSD constraints

Theorem *Let* $2 \le k \le n - 1$ *. Consider* $\varepsilon, \delta > 0$ *and let*

$$
m=24\left(\frac{n^2}{\varepsilon^2}\ln\frac{n}{\delta}\right).
$$

Let $\mathcal{I} = (I_1, \ldots, I_m)$ *be a sequence of random k-sets independently* uniformly sampled from $\binom{[n]}{k}$, and define $\mathcal{S}_{\mathcal{I}}$ as the set of matrices *satisfying the PSD constraints for the principal submatrices indexed by the Iⁱ 's, namely*

$$
\mathcal{S}_{\mathcal{I}}:=\{M\in\mathbb{R}^{n\times n}:M_{i_j}\succeq 0,\;\forall i\in[m]\}.
$$

 $\left\{ \begin{array}{ccc} \square & \times & \overline{c} & \overline{c} & \times \end{array} \right.$

∍

Blekherman, Dey, Molinaro, Sun

[Lower bounds](#page-31-0)

Do we need *n k* PSD [constraints?](#page-38-0)

Achieving the strength of $S^{n,k}$ by a polynomial number of PSD constraints

Theorem *Let* $2 \le k \le n - 1$ *. Consider* $\varepsilon, \delta > 0$ *and let*

$$
m=24\left(\frac{n^2}{\varepsilon^2}\ln\frac{n}{\delta}\right).
$$

Let $\mathcal{I} = (I_1, \ldots, I_m)$ *be a sequence of random k-sets independently* uniformly sampled from $\binom{[n]}{k}$, and define $\mathcal{S}_{\mathcal{I}}$ as the set of matrices *k satisfying the PSD constraints for the principal submatrices indexed by the Iⁱ 's, namely*

$$
\mathcal{S}_{\mathcal{I}}:=\{M\in\mathbb{R}^{n\times n}:M_{l_i}\succeq 0,\ \forall i\in[m]\}.
$$

Then with probability at least 1 − δ *we have*

$$
\overline{\text{dist}}_{F}(\mathcal{S}_{\mathcal{I}}, \mathcal{S}^n_+) \leq (1+\varepsilon)\frac{n-k}{n+k-2}.
$$

KORK EXTERNE DRAM

3 Proof sketch

メロト メタト メミト メミト 一番

 2990

3.1 Proof of:

Theorem (Upper Bound 1) *For all* $2 \leq k < n$ *we have*

$$
\overline{\mathsf{dist}}_{\mathsf{F}}(\mathcal{S}^{n,k},\mathcal{S}^n_+) \leq \frac{n-k}{n+k-2}.
$$

メロト メタト メミト メミト 一毛

 $2Q$

Blekherman, Dey, Molinaro, Sun

[Upper bound 1](#page-43-0)

[Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of Upper bound 1

 \blacktriangleright If

then red-submatrix is $k \times k$ PSD matrix.

 $\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{$

 QQ

Blekherman, Dey, Molinaro, Sun

[Upper bound 1](#page-43-0)

[Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of Upper bound 1

 $X =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ ∗ 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ \in $\mathcal{S}^{n,k}$

then red-submatrix is $k \times k$ PSD matrix.

 \triangleright So

 \blacktriangleright If

 $\sqrt{ }$ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0 0 ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0 0 1 \in \mathcal{S}^n_+ .

 2990

Blekherman, Dey, Molinaro, Sun

[Upper bound 1](#page-43-0)

[Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of Upper bound 1

 \blacktriangleright Take average of all the above matrices for different principal $k \times k$ submatrices (and suitably scale with a positive number), then the resulting matrix is in S_+^n .

KO KKO K EXKEX E VAC

 \triangleright The distance between this average PSD matrix and *X* gives bound.

3.2 Proof of:

Theorem (Upper bound 2) *Assume n* ≥ 97 *and k* $\geq \frac{3n}{4}$ 4 *. Then* $\overline{{\sf dist}}_{\digamma}(\mathcal{S}^{n,k}, \mathcal{S}^{n}_{+}) \leq 96 \left(\frac{n-k}{n} \right)$ *n* $\int_{0}^{3/2}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 익 안

Blekherman, Dey, Molinaro, Sun

[Upper bound 2](#page-47-0)

[Lower bound 1](#page-55-0) [Lower bound 2](#page-61-0)

Proof of upper bound 2

► Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in S *ⁿ*,*^k* has at most *n* − *k* negative eigenvalues.

∍

Blekherman, Dey, Molinaro, Sun

[Upper bound 2](#page-47-0)

[Lower bound 1](#page-55-0) [Lower bound 2](#page-61-0)

Proof of upper bound 2

- ► Using Cauchy's Interlace Theorem for eigenvalues of symmetric matrices, we obtain that every matrix in S *ⁿ*,*^k* has at most *n* − *k* negative eigenvalues.
- \triangleright Since the PSD cone consists of symmetric matrices with non-negative eigenvalues, the distance from a unit-norm matrix $\pmb{\mathcal{M}}\in\mathcal{S}^{n,k}$ to \mathcal{S}^n_+ is upper bounded by

(absolute value of most negative eigenvalue of $M \times$ √ *n* − *k*.

 $\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{$

 Ω

 \triangleright So we need to upper bound absolute value of most negative eigenvalue of M for $M \in S^{n,k}$ and $\|M\|_F = 1$.

Blekherman, Dey, Molinaro, Sun

[Upper bound 2](#page-47-0)

[Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of upper bound 2 -contd.

 \blacktriangleright Let

$$
M = -\lambda v v^{\top} + \sum_{i=2}^{n} \mu_i v_i v_i^{\top}
$$

where $\lambda > 0$.

 \blacktriangleright Proof uses probabilitic method: Randomly sparsify (with some scaling) *v* and let the resulting random vector be *V*.

 QQ

∍

Blekherman, Dey, Molinaro, Sun

[Upper bound 2](#page-47-0)

[Lower bound 1](#page-55-0) [Lower bound 2](#page-61-0) Proof of upper bound 2 -contd.

 \blacktriangleright Let

$$
M = -\lambda v v^{\top} + \sum_{i=2}^{n} \mu_i v_i v_i^{\top}
$$

where $\lambda > 0$.

- \triangleright Proof uses probabilitic method: Randomly sparsify (with some scaling) v and let the resulting random vector be V . Think of V having the following properties:
	- \blacktriangleright $V \approx v$, i.e. $V^{\top}v \approx 1$ and $V^{\top}v_i \approx 0$. (\clubsuit)
	- ^I *V* has a support of *k* (♠)

Blekherman, Dey, Molinaro, Sun

[Upper bound 2](#page-47-0)

[Lower bound 1](#page-55-0) [Lower bound 2](#page-61-0)

Proof of upper bound 2 -contd.

 \blacktriangleright Let

$$
M = -\lambda v v^{\top} + \sum_{i=2}^{n} \mu_i v_i v_i^{\top}
$$

where $\lambda > 0$.

- \triangleright Proof uses probabilitic method: Randomly sparsify (with some scaling) v and let the resulting random vector be V . Think of V having the following properties:
	- \blacktriangleright $V \approx v$, i.e. $V^{\top}v \approx 1$ and $V^{\top}v_i \approx 0$. (\clubsuit)
	- ^I *V* has a support of *k* (♠)

 \triangleright So $($.) implies:

$$
V^{\top}MV \approx -\lambda \cdot 1 + \sum_{i=2}^{n} \mu_i 0 \approx -\lambda + \text{small error} \qquad (A)
$$

∍

Blekherman, Dey, Molinaro, Sun

[Upper bound 2](#page-47-0)

[Lower bound 1](#page-55-0) [Lower bound 2](#page-61-0)

Proof of upper bound 2 -contd.

 \blacktriangleright Let

$$
M = -\lambda v v^{\top} + \sum_{i=2}^{n} \mu_i v_i v_i^{\top}
$$

where $\lambda > 0$.

- \triangleright Proof uses probabilitic method: Randomly sparsify (with some scaling) *v* and let the resulting random vector be *V*. Think of *V* having the following properties:
	- \blacktriangleright $V \approx v$, i.e. $V^{\top}v \approx 1$ and $V^{\top}v_i \approx 0$. (\clubsuit)
	- ^I *V* has a support of *k* (♠)

 \triangleright So $($.) implies:

$$
V^{\top}MV \approx -\lambda \cdot 1 + \sum_{i=2}^{n} \mu_i 0 \approx -\lambda + \text{small error} \qquad (A)
$$

► On the other hand (♦) implies:

$$
V^{\top}MV\geq 0, \qquad (B)
$$

 $\mathbf{A} \otimes \mathbf{A} \otimes \mathbf{$

 Ω

since *V* has a support of *k*.

Blekherman, Dey, Molinaro, Sun

[Upper bound 2](#page-47-0)

[Lower bound 1](#page-55-0) [Lower bound 2](#page-61-0)

Proof of upper bound 2 -contd.

 \blacktriangleright Let

$$
M = -\lambda v v^{\top} + \sum_{i=2}^{n} \mu_i v_i v_i^{\top}
$$

where $\lambda > 0$.

- \triangleright Proof uses probabilitic method: Randomly sparsify (with some scaling) *v* and let the resulting random vector be *V*. Think of *V* having the following properties:
	- \blacktriangleright $V \approx v$, i.e. $V^{\top}v \approx 1$ and $V^{\top}v_i \approx 0$. (\clubsuit)
	- ^I *V* has a support of *k* (♠)

 \triangleright So $($.) implies:

$$
V^{\top}MV \approx -\lambda \cdot 1 + \sum_{i=2}^{n} \mu_i 0 \approx -\lambda + \text{small error} \qquad (A)
$$

► On the other hand (♦) implies:

$$
V^{\top}MV\geq 0, \qquad (B)
$$

since *V* has a support of *k*.

 \triangleright So (A) and (B) imply:

 $-\lambda$ + small error $\geq 0 \Rightarrow \lambda \leq$ small error

 2990

す ロン (1) (同) とす (す) と (言) と (言)

 $2Q$

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)
- [Lower bound 2](#page-61-0)

Proof of lower bound 1

 \blacktriangleright Consider the matrix:

$$
G(a, b) := (a + b)I - a11^T
$$

K ロ X K ④ X K ミ X K ミ X ミ → ウ Q Q →

If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of *k*, then

$$
u^\top G u =
$$

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of lower bound 1

 \blacktriangleright Consider the matrix:

$$
G(a,b):=(a+b)I-a11^\top
$$

K ロ X K ④ X K ミ X K ミ X ミ → ウ Q Q →

If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of *k*, then

$$
u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2
$$

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)
- [Lower bound 2](#page-61-0)

Proof of lower bound 1

 \blacktriangleright Consider the matrix:

$$
G(a,b):=(a+b)I-a11^{\top}
$$

K ロ X K ④ X K ミ X K ミ X ミ → ウ Q Q →

If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of *k*, then

$$
u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(||u||_1)^2
$$

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)
- [Lower bound 2](#page-61-0)

Proof of lower bound 1

 \blacktriangleright Consider the matrix:

$$
G(a,b):=(a+b)I-a11^{\top}
$$

If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of *k*, then

$$
u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(\|u\|_1)^2 \ge (a+b) - ak
$$

K ロ X K ④ X K ミ X K ミ X ミ → ウ Q Q →

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)
- [Lower bound 2](#page-61-0)

Proof of lower bound 1

 \triangleright Consider the matrix:

$$
G(a,b):=(a+b)I-a11^\top
$$

If $u \in \mathbb{R}^n$ with $||u||_2 = 1$ has a support of *k*, then

$$
u^{\top}Gu = (a+b) - a\left(\sum_{i=1}^{n} u_i\right)^2 \ge (a+b) - a(\|u\|_1)^2 \ge (a+b) - ak
$$

K ロ X K ④ X K ミ X K ミ X ミ → ウ Q Q →

- **►** So $G(a, b) \in S^{n,k}$ iff $(1 k)a + b \ge 0$.
- \blacktriangleright Use these explicit matrices to obtain lower bound from S_+^n

3.4 Proof of:

Theorem (Lower bound 2)

Fix a constant r $< \frac{1}{93}$ *and k = rn. Then for all k* ≥ 2 *,*

$$
\overline{\text{dist}}_{F}(\mathcal{S}^{n,k}, \mathcal{S}^{n}_{+}) > \frac{\sqrt{r-93r^2}}{\sqrt{162r+3}},
$$

K ロ K K @ K K R X X R X → R R

 $2Q$

which is independent of n.

Blekherman, Dey, Molinaro, Sun

[Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of lower bound 2

For simplicity, assume $k = n/2$. (Actually proof does not have this value of *k*).

KORK EXTERNS ON ABY

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of lower bound 2

- For simplicity, assume $k = n/2$. (Actually proof does not have this value of *k*).
- \blacktriangleright The idea is to construct a matrix M where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors *w* 1 , *w* 2 , . . . , *w n*/2 , i.e.,

$$
M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^{\top} + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^{\top}
$$

 2990

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of lower bound 2

- For simplicity, assume $k = n/2$. (Actually proof does not have this value of *k*).
- \blacktriangleright The idea is to construct a matrix M where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors *w* 1 , *w* 2 , . . . , *w n*/2 , i.e.,

$$
M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^{\top} + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^{\top}
$$

- **Fig.** This normalization makes $\|M\|_F \approx 1$.
- $\blacktriangleright \textnormal{ dist}_F (M, \mathcal{S}_+^n) \gtrsim \sqrt{\left(\frac{1}{\sqrt{n}}\right)^2 \cdot \frac{n}{2}} = cst$ independent of *n*.

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

For simplicity, assume $k = n/2$. (Actually proof does not have this value of *k*).

 \blacktriangleright The idea is to construct a matrix M where half of its eigenvalues take the negative value $-\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors $v^1, v^2, \ldots, v^{n/2}$, and rest take a positive value $\frac{1}{\sqrt{n}}$, with orthonormal eigenvectors *w* 1 , *w* 2 , . . . , *w n*/2 , i.e.,

$$
M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^{\top} + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^{\top}
$$

Fig. This normalization makes $\|M\|_F \approx 1$.

Proof of lower bound 2

- $\blacktriangleright \textnormal{ dist}_F (M, \mathcal{S}_+^n) \gtrsim \sqrt{\left(\frac{1}{\sqrt{n}}\right)^2 \cdot \frac{n}{2}} = cst$ independent of *n*.
- ► So we only need to quarantee that M belongs to the *k*-PSD closure.

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of lower bound 2 –contd.

$$
\blacktriangleright M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\nu^{i})(\nu^{i})^{\top} + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\nu^{i})(\nu^{i})^{\top}
$$

Extract Letting *V* be the matrix with rows v^1, v^2, \ldots , and *W* the matrix with rows $\pmb{w}^1, \pmb{w}^2, \ldots,$ the quadratic form $\pmb{x}^\top M\pmb{x}$:

$$
x^{\top} M x = -\frac{1}{\sqrt{n}} \|Vx\|_2^2 + \frac{1}{\sqrt{n}} \|Wx\|_2^2.
$$

 \equiv

 QQ

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of lower bound 2 –contd.

$$
\blacktriangleright M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\nu^{i})(\nu^{i})^{\top} + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\nu^{i})(\nu^{i})^{\top}
$$

Extract Letting *V* be the matrix with rows v^1, v^2, \ldots , and *W* the matrix with rows $\pmb{w}^1, \pmb{w}^2, \ldots,$ the quadratic form $\pmb{x}^\top M\pmb{x}$:

$$
x^{\top} M x = -\frac{1}{\sqrt{n}} \|Vx\|_2^2 + \frac{1}{\sqrt{n}} \|Wx\|_2^2.
$$

 2990

 \blacktriangleright $||Vx||_2^2 \le ||x||_2^2$ (because *V* is orthonormal)

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of lower bound 2 –contd.

$$
\blacktriangleright M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (\nu^{i}) (\nu^{i})^{\top} + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (\nu^{i}) (\nu^{i})^{\top}
$$

Extract Letting *V* be the matrix with rows v^1, v^2, \ldots , and *W* the matrix with rows $\pmb{w}^1, \pmb{w}^2, \ldots,$ the quadratic form $\pmb{x}^\top M\pmb{x}$:

$$
x^{\top} M x = -\frac{1}{\sqrt{n}} \|Vx\|_2^2 + \frac{1}{\sqrt{n}} \|Wx\|_2^2.
$$

- \blacktriangleright $||Vx||_2^2 \le ||x||_2^2$ (because *V* is orthonormal)
- ► So if we *could construct the matrix W* so that for all *k*-sparse *vectors* $x \in \mathbb{R}^n$ *we had* $\left| \frac{\|Wx\|_2^2}{2} \approx \|x\|_2^2 \right|$:

$$
x^\top M x \gtrsim -\frac{1}{\sqrt{n}} \|x\|_2^2 + \frac{1}{\sqrt{n}} \|x\|_2^2 \gtrsim 0
$$

for all *k*-sparse vectors *x*

 Ω

Blekherman, Dey, Molinaro, Sun

-
-
-
- [Lower bound 1](#page-55-0)

[Lower bound 2](#page-61-0)

Proof of lower bound 2 –contd.

$$
\blacktriangleright M = \frac{-1}{\sqrt{n}} \sum_{i=1}^{n/2} (v^i) (v^i)^{\top} + \frac{1}{\sqrt{n}} \sum_{i=1}^{n/2} (w^i) (w^i)^{\top}
$$

Extract Letting *V* be the matrix with rows v^1, v^2, \ldots , and *W* the matrix with rows $\pmb{w}^1, \pmb{w}^2, \ldots,$ the quadratic form $\pmb{x}^\top M\pmb{x}$:

$$
x^{\top} M x = -\frac{1}{\sqrt{n}} \|Vx\|_2^2 + \frac{1}{\sqrt{n}} \|Wx\|_2^2.
$$

- \blacktriangleright $||Vx||_2^2 \le ||x||_2^2$ (because *V* is orthonormal)
- ▶ So if we *could construct the matrix W so that for all k-sparse vectors* $x \in \mathbb{R}^n$ *we had* $\left| \frac{\|Wx\|_2^2}{2} \approx \|x\|_2^2 \right|$:

$$
x^\top M x \gtrsim -\frac{1}{\sqrt{n}} \|x\|_2^2 + \frac{1}{\sqrt{n}} \|x\|_2^2 \gtrsim 0
$$

for all *k*-sparse vectors *x*

 Ω

 \triangleright This approximate preservation of norms of sparse vectors is precisely the notion of the *Restricted Isometry Property*.

Thank You.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q