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Section 1

Introduction: Sensitivity analysis for operations
related IPs
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An example from power system: optimal transmission
switching (OTS)

▶ Optimal transmission switching is an affordable way to mitigate
congestion, allowing the dispatch of cheaper generators first and reducing
the overall cost.
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Sensitivity analysis

f (b) := min x⊤Qx + c⊤x
s.t. Ax = b

x ∈ {0, 1}n1 × Rn2
+


Mixed binary
quadratic
program (MBQP)

Sensitivity: If we have solved for f (b), can we use this information to pre-
dict/obtain bounds on f (b + δ)?

f (b + δ) := min x⊤Qx + c⊤x
s.t. A︸︷︷︸

remains same

x = b + δ

x ∈ {0, 1}n1 × Rn2
+ .︸ ︷︷ ︸

remains same
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Motivation for sensitivity analysis

f (b) := min x⊤Qx + c⊤x
s.t. Ax = b

x ∈ {0, 1}n1 × Rn2
+


Mixed binary
quadratic
program (MBQP)

Why we care about sensitivity analysis?

▶ Many operations related optimization tasks have this flavor. (Unit
commitment [Lee, Leung, Margot (2004)], [Rajan, S Takriti (2005)],
[Damcı-Kurt, Küçükyavuz,Atamtürk (2013)], [Knueven, J Ostrowski, JP
Watson (2019)]; Various problems in supply chain last-mile delivery
[Greening, Dahan, Erera (2021)])

▶ A represents constraints regarding the physical/logical configuration, so
remains the same

▶ b represents instance specific information. Example: demand changes
from instance to instance.

Getting high quality dual-bound for similar instances without needing to start
solving from scratch would be very useful in this setting.
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Classical approach

▶ Classical result by [Cook, Gerards, Schrijver, Tardos (1992)] for MILPs.

▶ Nice improvements: [Eisenbrand, Weismantel (2019)], [Lee, Paat,
Stallknecht, Xu (2020)][Celaya, Kuhlmann, Paat, Weismantel (2022)],
[Del Pia, Ma (2022)].

Opt Soln.
MILP (b)

↔ Opt Soln.
LP relax (b)

↔
Opt Soln.
LP relax
(b + δ)

↔ Opt Soln.
MILP (b+δ)

▶

bound ∞− norm between opt. soln. of MILP(b) and MILP(b + δ)

▶ This bound is useful for general integer case. In the binary case, such
results are less useful, since the bounds are on the infinity norm of the
integer solutions.
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This talk

▶ Complexity of sensitivity analysis.

▶ Sensitivity analysis via duality theorem.

▶ Some preliminary computational result.
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Section 2

Complexity of sensitivity analysis
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Some notation

f (b) = min x⊤Qx + c⊤x

s.t. Ax = b

x ∈ {0, 1}n1 × Rn2
+ .

▶ Sensitivity analysis is a computational task taking the following input

▶ an MBQP instance (A, b, c ,Q, n1)
▶ optimal value f (b) and solution
▶ Perturbation δ

Compute/approximate ∆f (δ) := |f (b+δ)− f (b)| as a function of δ.

Definition
An algorithm is called (α, β)-approximation for some β ≥ 1 ≥ α > 0 if it takes
the above input and outputs p satisfying:

α·∆f (δ) ≤p≤β·∆f (δ).

Unlike classic approximation algorithm setting, two-sided bounds are required.
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NP-hardness of sensitivity analysis with respect to rhs
changes

Theorem (Cifuentes, D., Xu [2023])
It is NP-hard to achieve (α, β)-approximation for any β ≥ 1 ≥ α > 0 for
general MBQPs, even if exactly one entry of b is changed by one.

▶ The proof idea is to find some trivial IP, which becomes non-trivial after
changing one entry of b.
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Section 3

Sensitivity analysis via duality
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Sensitivity analysis in convex conic programming

Given K a convex cone and K∗ its dual cone where
K∗ := {x : ⟨x , y⟩ ≥ 0,∀y ∈ K}.

vp(b) :=min
x

c⊤x

(P) s.t. Ax = b

x ∈ K

vd :=max
y

b⊤y

(D) s.t. A∗y + s = c

s ∈ K∗

Two nice properties:

▶ weak duality: vp ≥ vd

▶ feasible region of (D) is independent of b

Find a good dual solution y0 ⇒ vp(b + δ) ≥ (b + δ)⊤y0

Sensitivity analysis is to find a good dual solution

This leads to the following framework:

MBQP =⇒ convex conic relax-
ation

=⇒ sensitivity analysis from
dual
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Sensitivity analysis in convex conic programming
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K∗ := {x : ⟨x , y⟩ ≥ 0,∀y ∈ K}.

vp(b) :=min
x

c⊤x

(P) s.t. Ax = b

x ∈ K

=︸︷︷︸
?

vd :=max
y

b⊤y

(D) s.t. A∗y + s = c

s ∈ K∗

Two nice properties:

▶ weak duality: vp ≥ vd

▶ feasible region of (D) is independent of b

Find a good dual solution y0 ⇒ vp(b + δ) ≥ (b + δ)⊤y0

Sensitivity analysis is to find a good dual solution

This leads to the following framework:

MBQP =⇒︸︷︷︸
may not be tight

convex conic relax-
ation

=⇒︸︷︷︸
not tight if

no strong duality

sensitivity analysis from
dual
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CP and COP

▶ The first question solved by [Burer (2009)].

▶ Considering the dual of Burer’s conic reformulation was first suggested by
[Guo, Bodur, Taylor (2021)].

We require the following cones to describe the convex relaxation and it dual
that we use:

▶ Completely positive cone
CP = {X is n-by-n symmetric matrix : X = UU⊤ for some U ≥ 0}

▶ Its dual cone, copositive cone
COP = {X is n-by-n symmetric matrix : y⊤Xy ≥ 0, ∀y ≥ 0}
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Burer’s result

f (b) = min x⊤Qx + 2c⊤x
s.t. Ax=b

x ∈ {0, 1}n1 × Rn2
+ .


Mixed binary
quadratic
program (MBQP)
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s.t. Ax=b

x ∈ {0, 1}n1 × Rn2
+ .


Mixed binary
quadratic
program (MBQP)

fCP(b) = inf Q · X + 2c⊤x
s.t. a⊤i x=bi , i ∈ [m]

a⊤i Xai=b2
i , i ∈ [m]

Xjj = xj ,∀j ∈ [n1][
1 x⊤

x X

]
∈ CP


Competely-
positive
program (CPP)
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Burer’s result

f (b) = min x⊤Qx + 2c⊤x
s.t. Ax=b

x ∈ {0, 1}n1 × Rn2
+ .


Mixed binary
quadratic
program (MBQP)

It is convenient to work with the following notation:

fCP(b) := inf ⟨C ,Y ⟩
s.t. ⟨T ,Y ⟩ = 1

(Original constraints) ⟨Ai ,Y ⟩ = 2bi , ∀i ∈ [m]
(Square original constraint) ⟨AAi ,Y ⟩ = b2

i , ∀i ∈ [m]
(implied by binary) ⟨Nj ,Y ⟩ = 0, ∀j ∈ [n1]

Y ∈ CP


Completely-
positive
program
(CPP)

where C =

[
0 c⊤

c Q

]
, T =

[
1 0
0 0

]
, Ai =

[
0 a⊤i
ai 0

]
,

AAi =

[
0 0
0 aia

⊤
i

]
, Nj =

[
0 −e⊤j

−ej 2eje
⊤
i

]
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Theorem ([Burer (2009)])
f (b) = fCP(b).
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Lets talk about the dual

MBQP ≡︸︷︷︸
Burer [2009]

Completely-positive reformulation︸ ︷︷ ︸
(CPP)

≡︸︷︷︸
?

Co-positive dual︸ ︷︷ ︸
(DUAL)

Completely-positive reformulation
(CPP)

fCP := inf ⟨C ,Y ⟩
s.t. ⟨T ,Y ⟩ = 1 (θ)

⟨Ai ,Y ⟩ = 2bi ,∀i ∈ [m] (αi )
⟨AAi ,Y ⟩ = b2

i ,∀i ∈ [m] (βi )
⟨Nj ,Y ⟩ = 0,∀j ∈ [n1] (ηi )
Y ∈ CP

≡︸︷︷︸
?

Co-positive dual
(DUAL)

fDUAL := sup θ+∑m
i=1(αi · 2bi + βi · b2

i )
s.t. C − (θ · T +∑m

i=1 αi · Ai +∑m
i=1 βi · AAi +∑n1
i=1 ηj · Nj) ∈ COP

As discussed, weak duality always holds.
What about strong duality?
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Main result

Theorem (Cifuentes, D., Xu [2023])
Given a feasible and bounded MBQP, if

▶ Either the feasible region of MBQP is bounded (i.e., the continuous
variables are bounded), or

▶ the objective function of the MBQP is convex,

then fCP = fDUAL.

Obj. func. convex Obj. func. not convex
Bounded
Feas.R.

✓ ✓

Unbounded
Feas.R.

✓

▶ [Linderoth, Raghunathan (2022)]
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Main result

Theorem (Cifuentes, D., Xu [2023])
Given a feasible and bounded MBQP, if

▶ Either the feasible region of MBQP is bounded (i.e., the continuous
variables are bounded), or

▶ the objective function of the MBQP is convex,

then fCP = fDUAL.

Obj. func. convex Obj. func. not convex
Bounded
Feas.R.

✓ ✓

Unbounded
Feas.R.

✓

▶ [Brown, Bernal Neira, Venturelli, Pavone (2022)] Proved the
bounded case. [non-constructive proof]

▶ [Guo, Bodur, Taylor (2021)] Empirically validated these results.

▶ [Linderoth, Raghunathan (2022)]
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Non-convex, unbounded feasible region
Consider the following example:

min x2
1 − x2

2

s.t. x1 − x2 = 0

x1, x2 ≥ 0

▶ Opt value of above M(B)QP is 0, i.e. f = 0.

▶ By Burer’s result, fCP = f = 0.

▶ The co-positive dual is infeasible! Proof:

M :=

0 0 0
0 1 0
0 0 −1

+ θ

1 0 0
0 0 0
0 0 0

+ α

 0 1 −1
1 0 0
−1 0 0

+ β

0 0 0
0 1 −1
0 −1 1


M∈ COP.

Consider y =

 0
1

1 + ϵ

,
y⊤My = 1− (1 + ϵ)2 + β(1 + (1 + ϵ)2 − 2(1 + ϵ))

= −ϵ2 − 2ϵ+ βϵ2 < 0 (for sufficiently small ϵ)
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Strong duality result - our proof is constructive

Theorem
Consider a feasible and bounded instance of MBQP where either the feasible
region is bounded or objective function is convex. Given:

▶ a valid low bound l on the objective function value of MBQP, and

▶ ϵ > 0

then there we can construct a feasible solution to the DUAL and its objective
value is at least l − ϵ.

▶ This gives an alternate proof of Burer’s Theorem for the case

of bounded feasible region or convex objective function.

▶ We can construct copositive dual solutions “easily” and
start obtaining dual bounds for perturbed instances.
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Brief comments on proof techniques

▶ A key lemma in the construction of the COP solution is the following.

Lemma (Stability)

f (b, ϵ0) = minx,ϵ(1),ϵ(2) x⊤Qx + 2c⊤x

s.t. Ax=b + ϵ(1)

xj + ϵ
(2)
j ∈ {0, 1} ∀j ∈ [n1]

xj ≥ 0 ∀j ∈ [n]

|ϵ(1)|∞ ≤ ϵ0
|ϵ(2)|∞ ≤ ϵ0



Perturbed
mixed
binary
quadratic
program

If the feasible region of MBQP is bounded or Q ⪰ 0, then there exists ϵ∗ > 0
and s ∈ R that only depend on A, b, c,Q such that

f (b, ϵ0) ≥ f (b, 0)− s · ϵ0,

for all 0 ≤ ϵ0 < ϵ∗.
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When the stability lemma fails

Example where strong duality does not hold:

0 = f (0) := min x2
1 − x2

2

s.t. x1 − x2 = 0

x1, x2 ≥ 0
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When the stability lemma fails

Example where strong duality does not hold:

f (ϵ0) := min x2
1 − x2

2

s.t. x1 − x2 = ϵ

x1, x2 ≥ 0

|ϵ| ≤ ϵ0
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When the stability lemma fails

Example where strong duality does not hold:

f (ϵ0) := min x2
1 − x2

2

s.t. x1 − x2 = ϵ

x1, x2 ≥ 0

|ϵ| ≤ ϵ0

For any fixed ϵ < 0
limx1→∞x2

1 − (x1 − ϵ)2 = −∞
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When the stability lemma fails

Example where strong duality does not hold:

−∞ = f (ϵ0) := min x2
1 − x2

2

s.t. x1 − x2 = ϵ
x1, x2 ≥ 0
|ϵ| ≤ ϵ0

∀ϵ0 > 0

So the stability lemma does not hold here.
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Sketch of constructive proof

For simplicity, we consider pure binary case.

fDUAL := sup −θ −
∑m

i=1(αi · 2bi + βi · b2
i )

s.t. C + (θ · T +
∑m

i=1 αi · Ai +
∑m

i=1 βi · AAi +
∑n1

i=1 ηj · Nj) ∈ COP

Given any lower bound l and ϵ, we construct M such that

▶ M = C + Block 1 + Block 2 + Block 3

▶ Each block = θ′ · T +
m∑
i=1

α′
i · Ai +

m∑
i=1

β′
i · AAi +

n1∑
i=1

η′
j · Nj︸ ︷︷ ︸

some combination of dual variables

Goal:

▶ The total objective value is l − ϵ

▶ M is copositive: y⊤My ≥ 0,∀y =

[
t
x

]
≥ 0.

For our construction, t = 0 is easy to check. Sufficient to assume t = 1.
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Each Block

There exists some closed-form formula:
Block1

▶ PSD and has objective value 0

▶ (

[
1
x

]
)⊤Block 1(

[
1
x

]
) is large positive number if x significantly violates

original linear constraints. (If (ai )⊤x = bi + ϵ and “|ϵ| is large”)

Block2

▶ Copositive and has objective value arbitrarily close to 0

▶ (

[
1
x

]
)⊤Block 2(

[
1
x

]
) is large positive number if x significantly violates

being binary

Block3

▶ PSD and has objective value l − ϵ

▶ (

[
1
x

]
)⊤Block 3(

[
1
x

]
) ≥ −l + ϵ̂
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Combining everything together
Remember M = C + Block 1︸ ︷︷ ︸

copositive

+Block 2︸ ︷︷ ︸
copositive

+Block 3︸ ︷︷ ︸
copositive

.

For any y =

[
1
x

]
≥ 0, we partition x into three cases:

▶ x ”significantly” violates original linear constraints, then

y⊤My ≥ y⊤Cy + y⊤Block1y︸ ︷︷ ︸
very large postive number

≥ 0

▶ x ”significantly” violates being binary, then

y⊤My ≥ y⊤Cy + y⊤Block2y︸ ︷︷ ︸
very large postive number

≥ 0

▶ x ”almost” satisfies original linear constraints and ”almost” being binary,

then stability lemma implies that

y⊤Cy ≈ l

and
y⊤My ≥ y⊤Cy + y⊤Block3y ≥ l − l + ϵ̂ ≥ 0
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Existence of infinitely many solution
▶ Given l , ϵ, one can construct nearly optimal dual solution without solving

copositive programming.

▶ Remember Block 1 is PSD with zero objective

▶ Let M be an ϵ-optimal dual solution, then

M∗ = M + r Block 1︸ ︷︷ ︸
recession direction

is also ϵ-optimal dual solution for any r > 0.

▶ M∗,M are dual solution with the same objective. Larger r provides a
weaker sensitivity analysis. Our constructed solution has too large r .

▶ Subtracting multiples of r improves the quality of the sensitivity analysis.
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Select for the “best” optimal dual solution

We want DUAL optimal solution that have small contributions from r .

▶

infλ λ

s.t. M︸︷︷︸
our closed-form formula

+λ · Block1 ∈ COP

▶ Actual problem solved in experiments involves solving a restriction of
COP with some other ‘engineering’ tricks.
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Section 4

Preliminary computational results
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Stable set with side cardinality constraint

Given a bipartite graph G = (V1 ∪ V2,E ), we consider the following
instances:

minx −2c⊤x
s.t. e⊤x ≤ k (Cardinality constraint, Changing k)

xi + xj ≤ 1,∀(i , j) ∈ E (Stable set)
x ∈ {0, 1}|V1|+|V2|

▶ G is random bipartite graph with |V1| = |V2| = 10 and each edge (i , j) is
present in E with probability {0.3, 0.5, 0.7} and each entries of ci is uniformly
sampled from {0, . . . , 10};

▶ Each entry of ai is uniformly sampled from {0, . . . , 10}.

▶ For each setting, 20 instances are generated.
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Sensitivity with respect to rhs of Cardinality constraint (k)
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Sensitivity with respect to rhs of Cardinality constraint (k)

Gap = IP−Dual Val
IP−Shor

Table: Average relative gap

∆k 1 2 3 4 5 6 7 8 9 10 avg time(s)

Shor1 (SDP) 1 1 1 1 1 1 1 1 1 1 7.30
Shor2 (SDP) 1.33 2.04 2.7 2.71 2.76 2.79 2.87 2.88 2.94 3.03 10.17
Our method 0.83 0.02 0.00 0.11 0.19 0.26 0.32 0.38 0.41 0.44 8.35
Cont (LP) 0.97 1.07 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.04 0.00
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Fixed charge models

minx,y −2c⊤x + 2d⊤y
s.t. a⊤i x ≤ bi ,∀i ∈ [m] (LP constraints,Changing b)

xi ≤ yi ,∀i ∈ [n] (Fixed charge constraints)
x ≥ 0, y ∈ {0, 1}n.

▶ n = 20,m = 5

▶ Each entry of c is uniformly sampled from [0, 5] and d is all ones vector.

▶ Each entry of ai is uniformly sampled from {0, . . . , 10}
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Sensitivity with respect to rhs of Ax ≤ b

minx,y −2c⊤x + 2d⊤y
s.t. a⊤i x ≤ bi ,∀i ∈ [m] (LP constraints,Changing b)

xi ≤ yi , ∀i ∈ [n] (Fixed charge constraints)
x ≥ 0, y ∈ {0, 1}n.

Table: Average relative gap for (SSLP) – all densities

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 (SDP) 1 1 1 3.63
Shor2 (SDP) 1.20 1.48 1.64 7.21
Our method 0.59 0.55 0.60 5.82

Cont 1.00 1.00 1.00 0.00
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Conclusions

▶ We formally studied the computational complexity of sensitivity
analysis.

▶ On the dual side, we analyzed the COP-dual of Burer’s CPP
reformulation, its properties and use.

Future directions:

▶ Find faster ways to solve the modified COP-duals.

▶ More general problems than MBQPs, for example, general
quadratically constrained quadratic programs.
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Thank you!

https://arxiv.org/abs/2312.06714
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NP-hardness of sensitivity analysis with respect to rhs
changes

Let G = (V ,E) be a simple graph. An edge coloring of G is an assignment of
colors to edges so that no incident edge will have the same color. The
minimum number of colors required is called edge chromatic number and
denoted by χ′(G).

Theorem (Vizing theorem)
For any simple graph G, χ′(G) ∈ {∆(G),∆(G) + 1} where ∆(G) is the
maximum degree of vertices in G.

Theorem
It is NP-hard to determine the edge chromatic number of cubic graphs, which
is to distinguish χ′(G) = 3 or χ′(G) = 4
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NP-hardness of sensitivity analysis with respect to rhs
changes

Theorem
For any simple graph G, χ′(G) ∈ {∆(G),∆(G) + 1} where ∆(G) is the
maximum degree of vertices in G.

Let G be a cubic graph.

z1 := min
∑
i∈[H]

wi

s.t.
∑
i∈[H]

wi ≥ 4

∑
i∈[H]

xei = 1, ∀e ∈ E

xri + xsi ≤ wi , ∀(r , s) adjacent

x ∈ {0, 1}|E |×[H],w ∈ {0, 1}[H]

z2 := min
∑
i∈[H]

wi

s.t.
∑
i∈[H]

wi ≥ 3

∑
i∈[H]

xei = 1,∀e ∈ E

xri + xsi ≤ wi ,∀(r , s) adjacent

x ∈ {0, 1}|E |×[H],w ∈ {0, 1}[H]

▶ Any (α, β)-approximation to predict |z1 − z2| is equivalent to deciding
χ′(G) = 3 or 4
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Sketch of constructive proof - Block 1

For each constraints i ∈ [m],

Ri := b2
i T − biAi + AAi =

[
b2
i −bia

⊤
i

−biai b2
i aia

⊤
i

]
▶ Ri is psd and therefore copositive.

▶ Ri has zero objective value.

▶ If y =

[
1
x

]
≥ 0, y⊤Riy = (bi − a⊤i x)

2

▶ If x significantly violates bi = a⊤i x , then y⊤Riy is a large positive number.

Block 1 = t1︸︷︷︸
a positive scalar

∑
i∈[m]

Ri

▶ y⊤(Block1)y is large if x significantly violates original linear constraints.
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Sketch of constructive proof - Block 2

For any j ∈ [n1],

Wj := fj
∑
i∈m

Ri − Nj + rjT

Lemma
For any positive rj > 0, there exists some fj such that Wj is copositive

▶ Wj is not psd. This distinguishes COP relaxation from SDP relaxation.

▶ Wj has arbitrarily small objective value.

▶ If y =

[
1
x

]
≥ 0, y⊤Wjy ≥ max{0, xj(1− xj)}

▶ If xj significantly violates xj ∈ {0, 1}, then y⊤Wjy is a large positive
number.

Block 2 = t2︸︷︷︸
a positive scalar

∑
j∈[n1]

Wj

▶ y⊤(Block2)y is large if x significantly violates being binary
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Sketch of constructive proof - Block 3

Block3 = t3︸︷︷︸
a positive scalar

∑
i∈m

AAi − lT =

[
−l 0
0 t3

∑
i∈m a⊤i ai

]

▶ Block3x,x is strictly copositive.

▶ Block3 has objective value l − ϵ by choosing t3 properly

▶ For y =

[
1
x

]
≥ 0, y⊤(Block3)y ≥ −l + ϵ1︸︷︷︸

small postive number
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