Sensitivity analysis for mixed binary quadratic programming

Diego Cifuentes, Santanu S. Dey, Jingye Xu

Aug, 2024

Section 1

Introduction: Sensitivity analysis for operations related IPs

An example from power system: optimal transmission switching (OTS)

Optimal transmission switching is an affordable way to mitigate congestion, allowing the dispatch of cheaper generators first and reducing the overall cost.

(~5% savings)

Sensitivity analysis

$$\begin{array}{ll} f(\mbox{\emph{b}}) := \min & x^\top Q x + c^\top x \\ \text{s.t.} & A x = \mbox{\emph{b}} \\ & x \in \{0,1\}^{n_1} \times \mathbb{R}_+^{n_2} \end{array} \right\} \begin{array}{l} \text{Mixed binary} \\ \text{quadratic} \\ \text{program (MBQP)} \end{array}$$

Sensitivity analysis

$$\begin{array}{ll} f(\mbox{\emph{b}}) := \min & x^\top Q x + c^\top x \\ \text{s.t.} & A x = \mbox{\emph{b}} \\ & x \in \{0,1\}^{n_1} \times \mathbb{R}_+^{n_2} \end{array} \right\} \begin{array}{l} \text{Mixed binary} \\ \text{quadratic} \\ \text{program (MBQP)} \end{array}$$

Sensitivity: If we have solved for f(b), can we use this information to predict/obtain bounds on $f(b+\delta)$?

$$f(b+\delta) := \min \quad x^{\top}Qx + c^{\top}x$$
s.t.
$$\underbrace{A}_{\text{remains same}} x = b + \delta$$

$$\underbrace{x \in \{0,1\}^{n_1} \times \mathbb{R}_+^{n_2}}_{\text{remains same}}.$$

Motivation for sensitivity analysis

$$\begin{array}{ll} f(\mbox{\emph{b}}) := \min & x^\top Q x + c^\top x \\ \text{s.t.} & A x = \mbox{\emph{b}} \\ & x \in \{0,1\}^{n_1} \times \mathbb{R}_+^{n_2} \end{array} \right\} \begin{array}{l} \text{Mixed binary} \\ \text{quadratic} \\ \text{program (MBQP)} \end{array}$$

Why we care about sensitivity analysis?

- Many operations related optimization tasks have this flavor. (Unit commitment [Lee, Leung, Margot (2004)], [Rajan, S Takriti (2005)], [Damcı-Kurt, Küçükyavuz,Atamtürk (2013)], [Knueven, J Ostrowski, JP Watson (2019)]; Various problems in supply chain last-mile delivery [Greening, Dahan, Erera (2021)])
- A represents constraints regarding the physical/logical configuration, so remains the same
- b represents instance specific information. Example: demand changes from instance to instance.

Motivation for sensitivity analysis

$$\begin{array}{ll} f(\mbox{\emph{b}}) := \min & x^\top Q x + c^\top x \\ \text{s.t.} & A x = \mbox{\emph{b}} \\ & x \in \{0,1\}^{n_1} \times \mathbb{R}_+^{n_2} \end{array} \right\} \begin{array}{l} \text{Mixed binary} \\ \text{quadratic} \\ \text{program (MBQP)} \end{array}$$

Why we care about sensitivity analysis?

- Many operations related optimization tasks have this flavor. (Unit commitment [Lee, Leung, Margot (2004)], [Rajan, S Takriti (2005)], [Damcı-Kurt, Küçükyavuz,Atamtürk (2013)], [Knueven, J Ostrowski, JP Watson (2019)]; Various problems in supply chain last-mile delivery [Greening, Dahan, Erera (2021)])
- ► A represents constraints regarding the physical/logical configuration, so remains the same
- b represents instance specific information. Example: demand changes from instance to instance.

Getting high quality dual-bound for similar instances without needing to start solving from scratch would be very useful in this setting.

Classical approach

- Classical result by [Cook, Gerards, Schrijver, Tardos (1992)] for MILPs.
- Nice improvements: [Eisenbrand, Weismantel (2019)], [Lee, Paat, Stallknecht, Xu (2020)][Celaya, Kuhlmann, Paat, Weismantel (2022)], [Del Pia, Ma (2022)].

Classical approach

- Classical result by [Cook, Gerards, Schrijver, Tardos (1992)] for MILPs.
- Nice improvements: [Eisenbrand, Weismantel (2019)], [Lee, Paat, Stallknecht, Xu (2020)][Celaya, Kuhlmann, Paat, Weismantel (2022)], [Del Pia, Ma (2022)].

bound ∞ – norm between opt. soln. of MILP(b) and MILP(b + δ)

► This bound is useful for general integer case. In the binary case, such results are less useful, since the bounds are on the infinity norm of the integer solutions.

This talk

- Complexity of sensitivity analysis.
- Sensitivity analysis via duality theorem.
- Some preliminary computational result.

Section 2

Complexity of sensitivity analysis

Some notation

$$f(\mathbf{b}) = \min \quad x^{\top} Q x + c^{\top} x$$
s.t.
$$Ax = \mathbf{b}$$

$$x \in \{0, 1\}^{n_1} \times \mathbb{R}_+^{n_2}.$$

- Sensitivity analysis is a computational task taking the following input
 - ▶ an MBQP instance (A, b, c, Q, n_1)
 - ightharpoonup optimal value f(b) and solution
 - ightharpoonup Perturbation δ

Compute/approximate $\Delta f(\delta) := |f(b+\delta) - f(b)|$ as a function of δ .

Definition

An algorithm is called (α, β) -approximation for some $\beta \ge 1 \ge \alpha > 0$ if it takes the above input and outputs p satisfying:

$$\alpha \cdot \Delta f(\delta) \leq p \leq \beta \cdot \Delta f(\delta)$$
.

Some notation

$$f(\mathbf{b}) = \min \quad x^{\top} Q x + c^{\top} x$$

s.t.
$$Ax = \mathbf{b}$$
$$x \in \{0, 1\}^{n_1} \times \mathbb{R}^{n_2}_+.$$

- Sensitivity analysis is a computational task taking the following input
 - ▶ an MBQP instance (A, b, c, Q, n_1)
 - ightharpoonup optimal value f(b) and solution
 - ightharpoonup Perturbation δ

Compute/approximate $\Delta f(\delta) := |f(b+\delta) - f(b)|$ as a function of δ .

Definition

An algorithm is called (α, β) -approximation for some $\beta \ge 1 \ge \alpha > 0$ if it takes the above input and outputs p satisfying:

$$\alpha \cdot \Delta f(\delta) \leq p \leq \beta \cdot \Delta f(\delta).$$

Unlike classic approximation algorithm setting, two-sided bounds are required.

NP-hardness of sensitivity analysis with respect to rhs changes

Theorem (Cifuentes, D., Xu [2023])

It is NP-hard to achieve (α, β) -approximation for any $\beta \geq 1 \geq \alpha > 0$ for general MBQPs, even if exactly one entry of b is changed by one.

► The proof idea is to find some trivial IP, which becomes non-trivial after changing one entry of *b*.

Section 3

Sensitivity analysis via duality

Given K a convex cone and K^* its dual cone where $K^* := \{x : \langle x, y \rangle \geq 0, \forall y \in K\}.$

$$v_{p}(b) := \min_{x} c^{\top} x \qquad v_{d} := \max_{y} b^{\top} y$$

$$(P) \text{ s.t. } Ax = b \qquad (D) \text{ s.t. } A^{*}y + s = c$$

$$x \in \mathcal{K} \qquad s \in \mathcal{K}^{*}$$

Given \mathcal{K} a convex cone and \mathcal{K}^* its dual cone where $\mathcal{K}^* := \{x : \langle x, y \rangle \geq 0, \forall y \in \mathcal{K}\}.$

$$v_{p}(b) := \min_{x} c^{\top} x \qquad v_{d} := \max_{y} b^{\top} y$$

$$(P) \text{ s.t. } Ax = b \qquad \geq \qquad (D) \text{ s.t. } A^{*}y + s = c$$

$$x \in \mathcal{K} \qquad \qquad s \in \mathcal{K}^{*}$$

Two nice properties:

- weak duality: $v_p \ge v_d$
- feasible region of (D) is independent of b

Given \mathcal{K} a convex cone and \mathcal{K}^* its dual cone where $\mathcal{K}^* := \{x : \langle x, y \rangle \geq 0, \forall y \in \mathcal{K}\}.$

$$v_{p}(b) := \min_{x} c^{\top} x \qquad v_{d} := \max_{y} b^{\top} y$$

$$(P) \text{ s.t. } Ax = b \qquad \geq \qquad (D) \text{ s.t. } A^{*}y + s = c$$

$$x \in \mathcal{K} \qquad \qquad s \in \mathcal{K}^{*}$$

Two nice properties:

- weak duality: $v_p \ge v_d$
- feasible region of (D) is independent of b

Find a good dual solution $y_0 \Rightarrow v_p(b+\delta) \ge (b+\delta)^\top y_0$ Sensitivity analysis is to find a good dual solution

Given \mathcal{K} a convex cone and \mathcal{K}^* its dual cone where $\mathcal{K}^* := \{x : \langle x, y \rangle \geq 0, \forall y \in \mathcal{K}\}.$

$$v_{p}(b) := \min_{x} c^{\top} x \qquad v_{d} := \max_{y} b^{\top} y$$

$$(P) \text{ s.t. } Ax = b \qquad \geq \qquad (D) \text{ s.t. } A^{*}y + s = c$$

$$x \in \mathcal{K} \qquad \qquad s \in \mathcal{K}^{*}$$

Two nice properties:

- weak duality: $v_p \ge v_d$
- feasible region of (D) is independent of b

Find a good dual solution $y_0 \Rightarrow v_p(b+\delta) \ge (b+\delta)^\top y_0$ Sensitivity analysis is to find a good dual solution

Given \mathcal{K} a convex cone and \mathcal{K}^* its dual cone where $\mathcal{K}^* := \{x : \langle x, y \rangle \geq 0, \forall y \in \mathcal{K}\}.$

$$v_{p}(b) := \min_{x} c^{\top} x$$
 $v_{d} := \max_{y} b^{\top} y$
 $(P) \text{ s.t. } Ax = b$ \geq $(D) \text{ s.t. } A^{*}y + s = c$
 $x \in \mathcal{K}$ $s \in \mathcal{K}^{*}$

Two nice properties:

- weak duality: $v_p \ge v_d$
- feasible region of (D) is independent of b

Find a good dual solution $y_0 \Rightarrow v_p(b+\delta) \ge (b+\delta)^\top y_0$ Sensitivity analysis is to find a good dual solution

This leads to the following framework:

$$\boxed{\mathsf{MBQP}} \implies \boxed{ \begin{array}{c} \mathsf{convex} & \mathsf{conic} & \mathsf{relax-} \\ \mathsf{ation} \end{array} } \implies \boxed{ \begin{array}{c} \mathsf{sensitivity} & \mathsf{analysis} & \mathsf{from} \\ \mathsf{dual} \end{array} }$$

Given \mathcal{K} a convex cone and \mathcal{K}^* its dual cone where $\mathcal{K}^* := \{x : \langle x, y \rangle \geq 0, \forall y \in \mathcal{K}\}.$

$$v_p(b) := \min_{x} c^{\top} x \qquad v_d := \max_{y} b^{\top} y$$

$$(P) \text{ s.t. } Ax = b \qquad = (D) \text{ s.t. } A^* y + s = c$$

$$x \in \mathcal{K} \qquad s \in \mathcal{K}^*$$

Two nice properties:

- weak duality: $v_p \ge v_d$
- feasible region of (D) is independent of b

Find a good dual solution $y_0 \Rightarrow v_p(b+\delta) \ge (b+\delta)^\top y_0$ Sensitivity analysis is to find a good dual solution

This leads to the following framework:

sensitivity analysis from dual

- ▶ The first question solved by [Burer (2009)].
- ► Considering the dual of Burer's conic reformulation was first suggested by [Guo, Bodur, Taylor (2021)].

- ▶ The first question solved by [Burer (2009)].
- Considering the dual of Burer's conic reformulation was first suggested by [Guo, Bodur, Taylor (2021)].

We require the following cones to describe the convex relaxation and it dual that we use:

Completely positive cone $\mathcal{CP} = \{X \text{ is n-by-n symmetric matrix } : X = UU^{\top} \text{ for some } U \geq 0\}$

- ▶ The first question solved by [Burer (2009)].
- Considering the dual of Burer's conic reformulation was first suggested by [Guo, Bodur, Taylor (2021)].

We require the following cones to describe the convex relaxation and it dual that we use:

- ► Completely positive cone $\mathcal{CP} = \{X \text{ is n-by-n symmetric matrix } : X = UU^{\top} \text{ for some } U \geq 0\}$
- Its dual cone, copositive cone $\mathcal{COP} = \{X \text{ is n-by-n symmetric matrix}: y^\top Xy \ge 0, \forall y \ge 0\}$

- ▶ The first question solved by [Burer (2009)].
- Considering the dual of Burer's conic reformulation was first suggested by [Guo, Bodur, Taylor (2021)].

We require the following cones to describe the convex relaxation and it dual that we use:

- ► Completely positive cone $\mathcal{CP} = \{X \text{ is n-by-n symmetric matrix } : X = UU^{\top} \text{ for some } U \geq 0\}$
- Its dual cone, copositive cone $\mathcal{COP} = \{X \text{ is n-by-n symmetric matrix}: y^\top Xy \ge 0, \forall y \ge 0\}$

$$\begin{array}{ll} f(b) = & \min & x^\top Q x + 2c^\top x \\ & \text{s.t.} & A x = b \\ & & x \in \{0,1\}^{n_1} \times \mathbb{R}_+^{n_2}. \end{array} \right\} \begin{array}{l} \text{Mixed binary} \\ \text{quadratic} \\ \text{program (MBQP)} \end{array}$$

$$f(b) = \begin{array}{ccc} \min & x^{\top}Qx + 2c^{\top}x \\ \text{s.t.} & Ax = b \\ & x \in \{0,1\}^{n_1} \times \mathbb{R}^{n_2}_+. \end{array} \right\} \begin{array}{c} \text{Mixed binary} \\ \text{quadratic} \\ \text{program (MBQP)} \end{array}$$

$$f_{\mathcal{CP}}(b) = \quad \text{inf} \quad \begin{array}{ll} Q \cdot X + 2c^\top x \\ \text{s.t.} \quad a_i^\top x = b_i, i \in [m] \\ a_i^\top X a_i = b_i^2, i \in [m] \\ X_{jj} = x_j, \forall j \in [n_1] \\ \begin{bmatrix} 1 & x^\top \\ x & X \end{bmatrix} \in \mathcal{CP} \end{array} \right\} \begin{array}{ll} \text{Competely-positive} \\ \text{program (CPP)} \end{array}$$

$$f(b) = \begin{array}{ccc} \min & x^{\top}Qx + 2c^{\top}x \\ \text{s.t.} & Ax = b \\ & x \in \{0,1\}^{n_1} \times \mathbb{R}^{n_2}_+. \end{array} \right\} \begin{array}{c} \text{Mixed binary} \\ \text{quadratic} \\ \text{program (MBQP)} \end{array}$$

It is convenient to work with the following notation:

$$f_{\mathcal{CP}}(b) := \inf \left\langle C, Y \right\rangle \\ \text{s.t. } \left\langle T, Y \right\rangle = 1 \\ \left(\text{Original constraints} \right) \qquad \left\langle A_i, Y \right\rangle = 2b_i, \forall i \in [m] \\ \left(\text{Square original constraint} \right) \qquad \left\langle A_i, Y \right\rangle = b_i^2, \forall i \in [m] \\ \left(\text{implied by binary} \right) \qquad \left\langle N_i, Y \right\rangle = 0, \forall j \in [n_1] \\ Y \in \mathcal{CP} \\ \end{aligned} \text{ where } C = \begin{bmatrix} 0 & c^\top \\ c & Q \end{bmatrix}, \ T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \ A_i = \begin{bmatrix} 0 & a_i^\top \\ a_i & 0 \end{bmatrix}, \\ AA_i = \begin{bmatrix} 0 & 0 \\ 0 & a_i a_i^\top \end{bmatrix}, \ N_j = \begin{bmatrix} 0 & -e_j^\top \\ -e_i & 2e_j e_i^\top \end{bmatrix}$$

where

Theorem ([Burer (2009)]) $f(b) = f_{CP}(b)$.

Lets talk about the dual

$$\mathsf{MBQP} \underset{\mathit{Burer}[2009]}{\underbrace{\equiv}} \underbrace{\mathsf{Completely-positive}}_{(\mathsf{CPP})} \underbrace{\underbrace{\mathsf{Co-positive}}_{?} \underbrace{\mathsf{dual}}_{(\mathsf{DUAL})}}_{?}$$

Completely-positive reformulation (CPP)

$$f_{\mathcal{CP}} := \inf \langle C, Y \rangle$$
s.t. $\langle T, Y \rangle = 1$ (θ)

$$\langle A_i, Y \rangle = 2b_i, \forall i \in [m] \quad (\alpha_i)$$

$$\langle AA_i, Y \rangle = b_i^2, \forall i \in [m] \quad (\beta_i)$$

$$\langle N_j, Y \rangle = 0, \forall j \in [n_1] \quad (\eta_i)$$

$$Y \in \mathcal{CP}$$

$\frac{\mathsf{Co\text{-}positive\ dual}}{(\mathsf{DUAL})}$

$$\begin{array}{l} f_{\text{DUAL}} := \sup \theta + \\ \sum_{i=1}^{m} (\alpha_i \cdot 2b_i + \beta_i \cdot b_i^2) \\ \text{s.t. } C - (\theta \cdot T + \\ \sum_{i=1}^{m} \alpha_i \cdot A_i + \\ \sum_{i=1}^{m} \beta_i \cdot AA_i + \\ \sum_{i=1}^{n_1} \eta_j \cdot N_j) \in \mathcal{COP} \end{array}$$

As discussed, weak duality always holds.

What about strong duality?

Main result

Theorem (Cifuentes, D., Xu [2023])

Given a feasible and bounded MBQP, if

- ► Either the feasible region of MBQP is bounded (i.e., the continuous variables are bounded), or
- the objective function of the MBQP is convex,

then $f_{CP} = f_{DUAL}$.

	Obj. func. convex	Obj. func. not convex
Bounded Feas.R.	√	✓
Unbounded Feas.R.	√	

Main result

Theorem (Cifuentes, D., Xu [2023])

Given a feasible and bounded MBQP, if

- ► Either the feasible region of MBQP is bounded (i.e., the continuous variables are bounded), or
- the objective function of the MBQP is convex,

then $f_{CP} = f_{DUAL}$.

	Obj. func. convex	Obj. func. not convex
Bounded	/	/
Feas.R.	v	v
Unbounded	/	
Feas.R.	v	×

Main result

Theorem (Cifuentes, D., Xu [2023])

Given a feasible and bounded MBQP, if

- ► Either the feasible region of MBQP is bounded (i.e., the continuous variables are bounded), or
- the objective function of the MBQP is convex,

then $f_{CP} = f_{DUAL}$.

	Obj. func. convex	Obj. func. not convex
Bounded	./	/
Feas.R.	v	v
Unbounded		
Feas.R.	v	

- ▶ [Brown, Bernal Neira, Venturelli, Pavone (2022)] Proved the bounded case. [non-constructive proof]
- ▶ [Guo, Bodur, Taylor (2021)] Empirically validated these results.
- ► [Linderoth, Raghunathan (2022)]

Non-convex, unbounded feasible region

Consider the following example:

min
$$x_1^2 - x_2^2$$

s.t. $x_1 - x_2 = 0$
 $x_1, x_2 \ge 0$

- ▶ Opt value of above M(B)QP is 0, i.e. f = 0.
- ▶ By Burer's result, $f_{CP} = f = 0$.

Non-convex, unbounded feasible region

Consider the following example:

min
$$x_1^2 - x_2^2$$

s.t. $x_1 - x_2 = 0$
 $x_1, x_2 \ge 0$

- ▶ Opt value of above M(B)QP is 0, i.e. f = 0.
- ▶ By Burer's result, $f_{CP} = f = 0$.
- ► The co-positive dual is infeasible! Proof:

Non-convex, unbounded feasible region

Consider the following example:

min
$$x_1^2 - x_2^2$$

s.t. $x_1 - x_2 = 0$
 $x_1, x_2 \ge 0$

- ▶ Opt value of above M(B)QP is 0, i.e. f = 0.
- ▶ By Burer's result, $f_{CP} = f = 0$.
- ► The co-positive dual is infeasible! Proof:

$$\begin{aligned} \mathbf{M} &:= & \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} + \theta \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \alpha \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \\ \mathbf{M} &\in & \mathcal{COP}. \end{aligned}$$

Consider
$$y = \begin{bmatrix} 0 \\ 1 \\ 1 + \epsilon \end{bmatrix}$$
,
$$y^{\top} M y = 1 - (1 + \epsilon)^2 + \beta (1 + (1 + \epsilon)^2 - 2(1 + \epsilon))$$
$$= -\epsilon^2 - 2\epsilon + \beta \epsilon^2 < 0 \text{ (for sufficiently small } \epsilon)$$

Strong duality result - our proof is constructive

Theorem

Consider a feasible and bounded instance of MBQP where either the feasible region is bounded or objective function is convex. Given:

- ▶ a valid low bound I on the objective function value of MBQP, and
- $ightharpoonup \epsilon > 0$

then there we can construct a <u>feasible solution to the DUAL</u> and its <u>objective</u> value is at least $l - \epsilon$.

Strong duality result - our proof is constructive

Theorem

Consider a feasible and bounded instance of MBQP where either the feasible region is bounded or objective function is convex. Given:

- ▶ a valid low bound I on the objective function value of MBQP, and
- $ightharpoonup \epsilon > 0$

then there we can construct a <u>feasible solution to the DUAL</u> and its <u>objective</u> value is at least $l - \epsilon$.

► This gives an alternate proof of Burer's Theorem for the case of bounded feasible region or convex objective function.

Strong duality result - our proof is constructive

Theorem

Consider a feasible and bounded instance of MBQP where either the feasible region is bounded or objective function is convex. Given:

- ▶ a valid low bound I on the objective function value of MBQP, and
- $ightharpoonup \epsilon > 0$

then there we can construct a <u>feasible solution to the DUAL</u> and its <u>objective</u> value is at least $l - \epsilon$.

- ► This gives an alternate proof of Burer's Theorem for the case of bounded feasible region or convex objective function.
- ► We can construct copositive dual solutions "easily" and start obtaining dual bounds for perturbed instances.

Brief comments on proof techniques

A key lemma in the construction of the COP solution is the following.

Lemma (Stability)

$$f(b, \epsilon_0) = \begin{array}{ll} \min_{x, \epsilon^{(1)}, \epsilon^{(2)}} & x^\top Q x + 2c^\top x \\ \text{s.t.} & Ax = b + \epsilon^{(1)} \\ & x_j + \epsilon_j^{(2)} \in \{0, 1\} \ \forall j \in [n_1] \\ & x_j \geq 0 \ \forall j \in [n] \\ & |\epsilon^{(1)}|_\infty \leq \epsilon_0 \\ & |\epsilon^{(2)}|_\infty \leq \epsilon_0 \end{array} \right\} \begin{array}{ll} \text{Perturbed mixed} \\ \text{binary} \\ \text{quadratic} \\ \text{program} \end{array}$$

If the feasible region of MBQP is bounded or $Q \succeq 0$, then there exists $\epsilon^* > 0$ and $s \in \mathbb{R}$ that only depend on A, b, c, Q such that

$$f(b, \epsilon_0) \geq f(b, 0) - s \cdot \epsilon_0$$

for all $0 < \epsilon_0 < \epsilon^*$.

Example where strong duality does not hold:

$$0 = f(0) := \min x_1^2 - x_2^2$$
s.t. $x_1 - x_2 = 0$
 $x_1, x_2 \ge 0$

Example where strong duality does not hold:

$$f(\epsilon_0) := \min \quad x_1^2 - x_2^2$$
s.t.
$$x_1 - x_2 = \epsilon$$

$$x_1, x_2 \ge 0$$

$$|\epsilon| \le \epsilon_0$$

Example where strong duality does not hold:

$$f(\epsilon_0) := \quad \min \quad x_1^2 - x_2^2$$

$$\text{s.t.} \quad x_1 - x_2 = \epsilon$$

$$x_1, x_2 \ge 0$$

$$|\epsilon| \le \epsilon_0$$
 For any fixed $\epsilon < 0$
$$\lim_{x_1 \to \infty} x_1^2 - (x_1 - \epsilon)^2 = -\infty$$

Example where strong duality does not hold:

$$\begin{array}{lll}
-\infty = f(\epsilon_0) := & \min & x_1^2 - x_2^2 \\ & \text{s.t.} & x_1 - x_2 = \epsilon \\ & x_1, x_2 \ge 0 \\ & |\epsilon| \le \epsilon_0
\end{array}$$

So the stability lemma does not hold here.

For simplicity, we consider pure binary case.

$$\begin{array}{l} f_{\text{DUAL}} := \sup \ -\theta - \sum_{i=1}^{m} (\alpha_i \cdot 2b_i + \beta_i \cdot b_i^2) \\ \text{s.t.} \ \ C + (\theta \cdot T \ + \sum_{i=1}^{m} \alpha_i \cdot A_i + \sum_{i=1}^{m} \beta_i \cdot AA_i + \sum_{i=1}^{n_1} \eta_j \cdot N_j) \in \mathcal{COP} \end{array}$$

For simplicity, we consider pure binary case.

$$\begin{array}{l} \textit{f}_{\text{DUAL}} := \sup \ -\theta - \sum_{i=1}^{m} (\alpha_i \cdot 2b_i + \beta_i \cdot b_i^2) \\ \text{s.t.} \ \ \textit{C} + (\theta \cdot \textit{T} \ + \sum_{i=1}^{m} \alpha_i \cdot \textit{A}_i + \sum_{i=1}^{m} \beta_i \cdot \textit{AA}_i + \sum_{i=1}^{n_1} \eta_j \cdot \textit{N}_j) \in \mathcal{COP} \end{array}$$

Given any lower bound I and ϵ , we construct M such that

- M = C + Block 1 + Block 2 + Block 3
- ► Each block $= \theta' \cdot T + \sum_{i=1}^{m} \alpha'_i \cdot A_i + \sum_{i=1}^{m} \beta'_i \cdot AA_i + \sum_{i=1}^{n_1} \eta'_i \cdot N_i$

some combination of dual variables

For simplicity, we consider pure binary case.

$$\begin{array}{l} \textit{f}_{\text{DUAL}} := \sup \ -\theta - \sum_{i=1}^{m} (\alpha_i \cdot 2b_i + \beta_i \cdot b_i^2) \\ \text{s.t.} \ \ \textit{C} + (\theta \cdot \textit{T} \ + \sum_{i=1}^{m} \alpha_i \cdot \textit{A}_i + \sum_{i=1}^{m} \beta_i \cdot \textit{AA}_i + \sum_{i=1}^{n_1} \eta_j \cdot \textit{N}_j) \in \mathcal{COP} \end{array}$$

Given any lower bound I and ϵ , we construct M such that

- M = C + Block 1 + Block 2 + Block 3
- ► Each block = $\theta' \cdot T$ + $\sum_{i=1}^{m} \alpha'_i \cdot A_i + \sum_{i=1}^{m} \beta'_i \cdot AA_i + \sum_{i=1}^{n_1} \eta'_i \cdot N_i$

some combination of dual variables

Goal:

- ▶ The total objective value is $I \epsilon$
- ► M is copositive: $y^{\top}My \ge 0, \forall y = \begin{bmatrix} t \\ x \end{bmatrix} \ge 0.$

For simplicity, we consider pure binary case.

$$\begin{array}{l} f_{\text{DUAL}} := \sup \ -\theta - \sum_{i=1}^m (\alpha_i \cdot 2b_i + \beta_i \cdot b_i^2) \\ \text{s.t.} \ \ C + (\theta \cdot T \ + \sum_{i=1}^m \alpha_i \cdot A_i + \sum_{i=1}^m \beta_i \cdot AA_i + \sum_{i=1}^{n_1} \eta_j \cdot N_j) \in \mathcal{COP} \end{array}$$

Given any lower bound I and ϵ , we construct M such that

- M = C + Block 1 + Block 2 + Block 3
- ► Each block = $\theta' \cdot T$ + $\sum_{i=1}^{m} \alpha'_i \cdot A_i + \sum_{i=1}^{m} \beta'_i \cdot A_i + \sum_{i=1}^{n_1} \eta'_i \cdot N_i$

some combination of dual variables

Goal:

- ▶ The total objective value is $I \epsilon$
- ► M is copositive: $y^{\top}My \ge 0, \forall y = \begin{bmatrix} t \\ x \end{bmatrix} \ge 0.$

For our construction, t = 0 is easy to check. Sufficient to assume t = 1.

Each Block

There exists some closed-form formula: Block1

- PSD and has objective value 0
- ▶ $(\begin{bmatrix} 1 \\ x \end{bmatrix})^{\top}$ Block $1(\begin{bmatrix} 1 \\ x \end{bmatrix})$ is large positive number if x significantly violates original linear constraints. (If $(a^i)^{\top}x = b_i + \epsilon$ and " $|\epsilon|$ is large")

Each Block

There exists some closed-form formula: Block1

- PSD and has objective value 0
- ▶ $(\begin{bmatrix} 1 \\ x \end{bmatrix})^{\top}$ Block $1(\begin{bmatrix} 1 \\ x \end{bmatrix})$ is large positive number if x significantly violates original linear constraints. (If $(a^i)^{\top}x = b_i + \epsilon$ and " $|\epsilon|$ is large")

Block2

- Copositive and has objective value arbitrarily close to 0
- ▶ $(\begin{bmatrix} 1 \\ x \end{bmatrix})^{\top}$ Block $2(\begin{bmatrix} 1 \\ x \end{bmatrix})$ is large positive number if x significantly violates being binary

Block3

Each Block

There exists some closed-form formula: Block1

- PSD and has objective value 0
- $(\begin{bmatrix} 1 \\ x \end{bmatrix})^{\top}$ Block $1(\begin{bmatrix} 1 \\ x \end{bmatrix})$ is large positive number if x significantly violates original linear constraints. (If $(a^i)^{\top}x = b_i + \epsilon$ and " $|\epsilon|$ is large")

Block2

- Copositive and has objective value arbitrarily close to 0
- ▶ $(\begin{bmatrix} 1 \\ x \end{bmatrix})^T$ Block $2(\begin{bmatrix} 1 \\ x \end{bmatrix})$ is large positive number if x significantly violates being binary

Block3

- **PSD** and has objective value $I \epsilon$

Remember
$$M = C + \underbrace{\mathsf{Block}\ 1}_{copositive} + \underbrace{\mathsf{Block}\ 2}_{copositive} + \underbrace{\mathsf{Block}\ 3}_{copositive}$$

Remember
$$M = C + \underbrace{\mathsf{Block}\ 1}_{copositive} + \underbrace{\mathsf{Block}\ 2}_{copositive} + \underbrace{\mathsf{Block}\ 3}_{copositive}$$

For any
$$y = \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0$$
, we partition x into three cases:

x "significantly" violates original linear constraints, then

$$y^\top M y \geq y^\top C y + \underbrace{y^\top Block 1 y}_{\textit{very large postive number}} \geq 0$$

Remember
$$M = C + \underbrace{\mathsf{Block}\ 1}_{\mathsf{copositive}} + \underbrace{\mathsf{Block}\ 2}_{\mathsf{copositive}} + \underbrace{\mathsf{Block}\ 3}_{\mathsf{copositive}}.$$

For any $y = \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0$, we partition x into three cases:

x "significantly" violates original linear constraints, then

$$y^\top \textit{M} y \geq y^\top \textit{C} y + \underbrace{y^\top \textit{Block1} y}_{\textit{very large postive number}} \geq 0$$

x "significantly" violates being binary, then

$$y^{\top} \textit{M} y \geq y^{\top} \textit{C} y + \underbrace{y^{\top} \textit{Block2} y}_{\textit{very large positive number}} \geq 0$$

Remember
$$M = C + \underbrace{\mathsf{Block}\ 1}_{copositive} + \underbrace{\mathsf{Block}\ 2}_{copositive} + \underbrace{\mathsf{Block}\ 3}_{copositive}$$

For any $y = \begin{vmatrix} 1 \\ x \end{vmatrix} \ge 0$, we partition x into three cases:

x "significantly" violates original linear constraints, then

$$y^\top \textit{M} y \geq y^\top \textit{C} y + \underbrace{y^\top \textit{Block} 1 y}_{\textit{very large postive number}} \geq 0$$

x "significantly" violates being binary, then

$$y^{\top} M y \ge y^{\top} C y + \underbrace{y^{\top} Block 2 y}_{very\ large\ postive\ number} \ge 0$$

x "almost" satisfies original linear constraints and "almost" being binary, then stability lemma implies that

$$y^{\top}Cy \approx I$$

and

$$y^{\top}My \ge y^{\top}Cy + y^{\top}Block3y \ge I - I + \hat{\epsilon} \ge 0$$

Existence of infinitely many solution

• Given I, ϵ , one can construct nearly optimal dual solution without solving copositive programming.

Existence of infinitely many solution

- ▶ Given l, ϵ , one can construct nearly optimal dual solution without solving copositive programming.
- Remember Block 1 is PSD with zero objective
- Let M be an ϵ -optimal dual solution, then

$$M^* = M + r$$
 Block 1

is also ϵ -optimal dual solution for any r>0.

Existence of infinitely many solution

- Given I, ϵ , one can construct nearly optimal dual solution without solving copositive programming.
- Remember Block 1 is PSD with zero objective
- Let M be an ϵ -optimal dual solution, then

$$M^* = M + r$$
 Block 1 recession direction

is also ϵ -optimal dual solution for any r > 0.

- M*, M are dual solution with the same objective. Larger r provides a weaker sensitivity analysis. Our constructed solution has too large r.
- Subtracting multiples of r improves the quality of the sensitivity analysis.

Select for the "best" optimal dual solution

We want DUAL optimal solution that have small contributions from r. $\inf_{\lambda} \quad \lambda$ s.t. $\underbrace{\mathcal{M}}_{\text{our closed-form formula}} + \lambda \cdot \text{Block1} \in \mathcal{COP}$

Select for the "best" optimal dual solution

We want DUAL optimal solution that have small contributions from r.

$$\inf_{\lambda} \quad \lambda$$
 s.t.
$$\underbrace{\mathcal{M}}_{\text{our closed-form formula}} + \lambda \cdot \mathsf{Block1} \in \mathcal{COP}$$

 Actual problem solved in experiments involves solving a restriction of COP with some other 'engineering' tricks.

Section 4

Preliminary computational results

Stable set with side cardinality constraint

Given a bipartite graph $G = (V_1 \cup V_2, E)$, we consider the following instances:

$$\begin{array}{ll} \min_{x} & -2c^{\top}x \\ \text{s.t.} & e^{\top}x \leq k \\ & x_{i} + x_{j} \leq 1, \forall (i,j) \in E \\ & x \in \{0,1\}^{|V_{1}| + |V_{2}|} \end{array} \tag{Cardinality constraint, Changing k}$$

- ▶ G is random bipartite graph with $|V_1| = |V_2| = 10$ and each edge (i,j) is present in E with probability $\{0.3, 0.5, 0.7\}$ and each entries of c_i is uniformly sampled from $\{0, \ldots, 10\}$;
- **Each** entry of a_i is uniformly sampled from $\{0, \ldots, 10\}$.
- For each setting, 20 instances are generated.

Sensitivity with respect to rhs of Cardinality constraint (k)

Sensitivity with respect to rhs of Cardinality constraint (k)

$$\mathsf{Gap} = rac{\mathsf{IP} - \mathsf{Dual} \; \mathsf{Val}}{\mathsf{IP} - \mathsf{Shor}}$$

Table: Average relative gap

Δk	1	2	3	4	5	6	7	8	9	10	avg time(s
Shor1 (SDP)	1	1	1	1	1	1	1	1	1	1	7.30
Shor2 (SDP)	1.33	2.04	2.7	2.71	2.76	2.79	2.87	2.88	2.94	3.03	10.17
Our method	0.83	0.02	0.00	0.11	0.19	0.26	0.32	0.38	0.41	0.44	8.35
Cont (LP)	0.97	1.07	1.09	1.08	1.07	1.06	1.05	1.05	1.04	1.04	0.00
									A		= .000

Fixed charge models

```
\begin{aligned} & \min_{x,y} - 2c^\top x + 2d^\top y \\ & \text{s.t. } a_i^\top x \leq b_i, \forall i \in [m] \\ & \quad x_i \leq y_i, \forall i \in [n] \\ & \quad x \geq 0, y \in \{0,1\}^n. \end{aligned} \tag{LP constraints, Changing b}
```

- n = 20, m = 5
- ▶ Each entry of *c* is uniformly sampled from [0, 5] and *d* is all ones vector.
- **Each** entry of a_i is uniformly sampled from $\{0, \ldots, 10\}$

Sensitivity with respect to rhs of $Ax \leq b$

$$\begin{aligned} & \min_{x,y} -2c^\top x + 2d^\top y \\ & \text{s.t.} \ \ a_i^\top x \leq \underset{i}{b_i}, \forall i \in [m] \\ & \quad x_i \leq y_i, \forall i \in [n] \\ & \quad x \geq 0, y \in \{0,1\}^n. \end{aligned} \tag{LP constraints, Changing b}$$

Table: Average relative gap for (SSLP) – all densities

$\ \Delta b\ _{\infty}$	≤ 1	≤ 2	≤ 3	avg time(s)
Shor1 (SDP)	1		1	3.63
Shor2 (SDP)	1.20	1.48	1.64	7.21
Our method	0.59	0.55	0.60	5.82
Cont	1.00	1.00	1.00	0.00

Conclusions

- We formally studied the computational complexity of sensitivity analysis.
- ► On the dual side, we analyzed the COP-dual of Burer's CPP reformulation, its properties and use.

Conclusions

- We formally studied the computational complexity of sensitivity analysis.
- ► On the dual side, we analyzed the COP-dual of Burer's CPP reformulation, its properties and use.

Future directions:

- Find faster ways to solve the *modified COP-duals*.
- More general problems than MBQPs, for example, general quadratically constrained quadratic programs.

Thank you!

https://arxiv.org/abs/2312.06714

Let G=(V,E) be a simple graph. An edge coloring of G is an assignment of colors to edges so that no incident edge will have the same color. The minimum number of colors required is called *edge chromatic number* and denoted by $\chi'(G)$.

Theorem (Vizing theorem)

For any simple graph G, $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$ where $\Delta(G)$ is the maximum degree of vertices in G.

Theorem

It is NP-hard to determine the edge chromatic number of cubic graphs, which is to distinguish $\chi'(G) = 3$ or $\chi'(G) = 4$

Theorem

For any simple graph G, $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$ where $\Delta(G)$ is the maximum degree of vertices in G.

Let G be a cubic graph.

$$z_1 := \min \sum_{i \in [H]} w_i$$

s.t.
$$\sum_{i\in[H]}w_i\geq 4$$

$$\sum_{i \in [H]} x_{ei} = 1, \forall e \in E$$

$$x_{ri} + x_{si} \leq w_i, \forall (r, s) \text{ adjacent}$$

$$x \in \{0,1\}^{|E| \times [H]}, w \in \{0,1\}^{[H]}$$

Theorem

For any simple graph G, $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$ where $\Delta(G)$ is the maximum degree of vertices in G.

Let G be a cubic graph.

$$\begin{split} z_1 := \min \sum_{i \in [H]} w_i \\ \text{s.t.} \quad \sum_{i \in [H]} w_i \ge 4 \\ \sum_{i \in [H]} x_{ei} = 1, \forall e \in E \\ x_{ri} + x_{si} \le w_i, \forall (r, s) \text{ adjacent} \\ x \in \{0, 1\}^{|E| \times [H]}, w \in \{0, 1\}^{[H]} \end{split}$$

s.t.
$$\sum_{i \in [H]} w_i \ge 3$$
$$\sum_{i \in [H]} x_{ei} = 1, \forall e \in E$$
$$x_{ri} + x_{si} \le w_i, \forall (r, s) \text{ adjacent}$$
$$x \in \{0, 1\}^{|E| \times [H]}, w \in \{0, 1\}^{[H]}$$

 $z_2 := \min \sum w_i$

Theorem

For any simple graph G, $\chi'(G) \in \{\Delta(G), \Delta(G) + 1\}$ where $\Delta(G)$ is the maximum degree of vertices in G.

Let G be a cubic graph.

$$\begin{split} z_1 := \min \sum_{i \in [H]} w_i & z_2 := \min \sum_{i \in [H]} w_i \\ \text{s.t.} & \sum_{i \in [H]} w_i \geq 4 \\ & \sum_{i \in [H]} x_{ei} = 1, \forall e \in E \\ & \sum_{i \in [H]} x_{ei} = 1, \forall e \in E \\ & \sum_{i \in [H]} x_{ei} = 1, \forall e \in E \\ & \sum_{i \in [H]} x_{ei} = 1, \forall e \in E \\ & x_{ri} + x_{si} \leq w_i, \forall (r, s) \text{ adjacent} \\ & x \in \{0, 1\}^{|E| \times [H]}, w \in \{0, 1\}^{[H]} \\ & x \in \{0, 1\}^{|E| \times [H]}, w \in \{0, 1\}^{[H]} \end{split}$$

Any (α, β) -approximation to predict $|z_1 - z_2|$ is equivalent to deciding $\chi'(G) = 3$ or 4

For each constraints $i \in [m]$,

$$R_i := b_i^2 T - b_i A_i + A A_i = \begin{bmatrix} b_i^2 & -b_i a_i^{\top} \\ -b_i a_i & b_i^2 a_i a_i^{\top} \end{bmatrix}$$

- $ightharpoonup R_i$ is psd and therefore copositive.
- R_i has zero objective value.

For each constraints $i \in [m]$,

$$R_i := b_i^2 T - b_i A_i + A A_i = \begin{bmatrix} b_i^2 & -b_i a_i^\top \\ -b_i a_i & b_i^2 a_i a_i^\top \end{bmatrix}$$

- $ightharpoonup R_i$ is psd and therefore copositive.
- R_i has zero objective value.
- ▶ If x significantly violates $b_i = a_i^\top x$, then $y^\top R_i y$ is a large positive number.

For each constraints $i \in [m]$,

$$R_i := b_i^2 T - b_i A_i + A A_i = \begin{bmatrix} b_i^2 & -b_i a_i^\top \\ -b_i a_i & b_i^2 a_i a_i^\top \end{bmatrix}$$

- $ightharpoonup R_i$ is psd and therefore copositive.
- R_i has zero objective value.
- $\blacktriangleright \text{ If } y = \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0, \ y^\top R_i y = (b_i a_i^\top x)^2$
- ▶ If x significantly violates $b_i = a_i^\top x$, then $y^\top R_i y$ is a large positive number.

Block
$$1 = \underbrace{t_1}_{a \text{ positive scalar } i \in [m]} R_i$$

▶ $y^{\top}(Block1)y$ is large if x significantly violates original linear constraints.

For any $j \in [n1]$,

$$W_j := f_j \sum_{i \in m} R_i - N_j + r_j T$$

Lemma

For any positive $r_i > 0$, there exists some f_i such that W_i is copositive

- \triangleright W_i is not psd. This distinguishes \mathcal{COP} relaxation from SDP relaxation.
- $ightharpoonup W_j$ has arbitrarily small objective value.

For any $j \in [n1]$,

$$W_j := f_j \sum_{i \in m} R_i - N_j + r_j T$$

Lemma

For any positive $r_i > 0$, there exists some f_i such that W_i is copositive

- \triangleright W_i is not psd. This distinguishes \mathcal{COP} relaxation from SDP relaxation.
- $ightharpoonup W_j$ has arbitrarily small objective value.
- ► If $y = \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0$, $y^{\top} W_j y \ge \max\{0, x_j (1 x_j)\}$
- ▶ If x_j significantly violates $x_j \in \{0,1\}$, then $y^\top W_j y$ is a large positive number.

For any $j \in [n1]$,

$$W_j := f_j \sum_{i \in m} R_i - N_j + r_j T$$

Lemma

For any positive $r_i > 0$, there exists some f_i such that W_i is copositive

- \triangleright W_i is not psd. This distinguishes \mathcal{COP} relaxation from SDP relaxation.
- \triangleright W_i has arbitrarily small objective value.
- ► If $y = \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0$, $y^{\top} W_j y \ge \max\{0, x_j (1 x_j)\}$
- ▶ If x_j significantly violates $x_j \in \{0, 1\}$, then $y^\top W_j y$ is a large positive number.

Block 2 =
$$\sum_{\substack{a \text{ positive scalar } j \in [n1]}} W_j$$

 \triangleright $y^{\top}(Block2)y$ is large if x significantly violates being binary

Block3 =
$$\sum_{\substack{a \text{ positive scalar} \\ i \in m}} \sum_{i \in m} AA_i - IT = \begin{bmatrix} -I & 0 \\ 0 & t_3 \sum_{i \in m} a_i^\top a_i \end{bmatrix}$$

- ▶ Block $3_{x,x}$ is strictly copositive.
- ▶ Block3 has objective value $I \epsilon$ by choosing t_3 properly

Block3 =
$$\sum_{\substack{a \text{ positive scalar} \\ i \in m}} AA_i - IT = \begin{bmatrix} -I & 0 \\ 0 & t_3 \sum_{i \in m} a_i^\top a_i \end{bmatrix}$$

- ▶ Block $3_{x,x}$ is strictly copositive.
- ▶ Block3 has objective value $I \epsilon$ by choosing t_3 properly

▶ For
$$y = \begin{bmatrix} 1 \\ x \end{bmatrix} \ge 0$$
, $y^{\top}(Block3)y \ge -I + \underbrace{\epsilon_1}_{small\ postive\ number}$