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Abstract. We consider sensitivity analysis for Mixed Binary Quadratic Programs (MBQPs)
with respect to changing right-hand-sides (rhs). We show that even if the optimal solution
of a given MBQP is known, it is NP-hard to approximate the change in objective function
value with respect to changes in rhs. Next, we study algorithmic approaches to obtaining
dual bounds for MBQP with changing rhs. We leverage Burer’s completely-positive (CPP)
reformulation of MBQPs. Its dual is an instance of co-positive programming (COP), and
can be used to obtain sensitivity bounds. We prove that strong duality between the CPP
and COP problems holds if the feasible region is bounded or if the objective function is
convex, while the duality gap can be strictly positive if neither condition is met. We also
show that the COP dual has multiple optimal solutions, and the choice of the dual solution
affects the quality of the bounds with rhs changes. We finally provide a method for finding
good nearly optimal dual solutions, and we present preliminary computational results on
sensitivity analysis for MBQPs.

Sensitivity Analysis and Mixed Binary Quadratic Programming and Copositive program-
ming and Duality Theory.

Keywords: Sensitivity Analysis · Mixed Binary Quadratic Programming · Copositive pro-
gramming · Duality Theory.

1. introduction

A mixed binary quadratic program (MBQP) has the form:

(1)

z(b) := min
x≥0

x⊤Qx+ 2c⊤x

s.t. a⊤
i x = bi, ∀i ∈ {1, . . . ,m}
xj ∈ {0, 1}, ∀j ∈ B,

where Q is a symmetric matrix with rational entries of size n× n, b ∈ Qm, c ∈ Qn, ai ∈ Qn

for all i ∈ {1, . . . ,m}, and B ⊆ {1, . . . , n} is the set of variables restricted to be binary. This
is a very general optimization model that captures mixed binary linear programming [10,24],
quadratic programming [3], and several instances of mixed integer nonlinear programming
models appearing in important application areas such as power systems [25].
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Many practical optimization problems related to operational decision-making involve solving
similar MBQP instances repeatedly. Moreover, they typically need to be solved within a short
time window. This is because, unlike long-term planning problems, for such problems the
exact problem data becomes available only a short time before a good solution is required
to be implemented in practice. See, for examples, problems considered and discussed in [16,
19, 28]. In many of these applications, the constraint matrix remains the same, as these
represent constraints related to some invariant physical resources, while the right-hand-side
changes from instance to instance.

The practical consideration discussed above motivates us to study sensitivity analysis of
MBQPs with respect to changing right-hand-sides. The pioneering results on sensitivity for
integer programs (IPs) with changing right-hand-sides where obtained by Cook et al. [11].
See [8, 12, 13, 21] for many advances in this line of research. However, these results yield
trivial bounds in the case of binary variables since they rely on the infinity norm of integer
constrained variables, which is a constant for all non-zero binary vectors.

We consider an alternative approach in this paper. Specifically, we leverage Burer’s completely-
positive (CPP) reformulation of MBQP [5]. The advantage of the CPP reformulation is that,
although still challenging and NP-hard in general to solve, is a convex problem. Thus, one
can examine its dual, which is an instance of copositive programming (COP). The optimal
dual variables can provide bounds on z(b), i.e., they allow to bound the optimal objective
function of the MBQP as the right-hand-side changes. Details of the CPP reformulation and
the COP dual problem are presented in the next section. This approach of using Burer’s
CPP reformulation of MBQPs [5] to obtain shadow price information was first considered
in [17] for the electricity market clearing problem.

Section 2 presents all our results and Section 3 provides future avenues of research. Due
to lack of space, details of proofs are presented in Appendix A and Appendix B, and some
details of our experiments are presented in Appendix C.

2. Main results

Notation. Given a positive integer n, we let [n] denote the set {1, . . . , n}. For u ∈ R, we
denote its absolute value by |u|. For a discrete set B, we use |B| to denote its cardinality.
We let Sn to be the set of symmetric n×n matrices, and Sn+ to be the cone of n×n positive-
semidefinite (PSD) matrices. We denote a matrixM being PSD byM ⪰ 0 and denoteM not
being a PSD matrix by M ̸⪰ 0. We let Snp be the set of symmetric n× n matrices with non-
negative entries. We let CP to be the cone of completely positive matrices, i.e., CP = {M ∈
Sn |M = BB⊤ and B is a m × n entry-wise nonnegative matrix for some integer m}. We
let COP to be the cone of copositive matrices, i.e., COP = {M ∈ Sn |x⊤Mx ≥ 0,∀x ≥ 0}.
We use ei to denote the i-th standard basis vector.

2.1. Complexity. We begin our study by establishing formally the difficulty of approxi-
mating z(b+∆b) for varying ∆b, assuming that we know the exact value of z(b).

Definition 2.1. An algorithm is called (α, β)-approximation for some β ≥ 1 ≥ α > 0 if
it takes (A,b, c, Q,B, z(b),∆b) as input, where A, b, c, Q, B represents an instance of
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(1), z(b) is its optimal objective function value, ∆b is the change in right-hand-side, and it
outputs a scalar p satisfying

α|∆z| ≤ p ≤ β|∆z|,

where ∆z = z(b)− z(b+∆b).

We note that unlike the traditional definition of approximation for optimization, the two-
sided bound is necessary. Otherwise, an algorithm can “cheat” by returning either p = 0 or
p = ∞ depending on whether α or β is not specified. For example, to achieve p ≤ β|∆z|,
the algorithm can always return p = 0.

Our main result of this section is the following.

Theorem 2.2. It is NP-hard to achieve (α, β)-approximation for any β ≥ 1 ≥ α > 0 for
general MBQPs.

Our proof of Theorem 2.2 is based on a reduction from the edge chromatic number problem,
using the fact that deciding whether the edge chromatic equals the max degree of a graph
or one more than the max degree of a graph is NP-complete. Our proof is presented in
Appendix A.

2.2. Strong duality. We first present the results from [6], which are the starting point for
our analysis. Burer’s reformulation makes the following assumption:

(A) x ≥ 0, a⊤
i x = bi, ∀i ∈ [m] =⇒ 0 ≤ xj ≤ 1 for all j ∈ B.

As mentioned in [6], if 0 ≤ xj ≤ 1 for some j ∈ B is not implied, then we can explicitly add
a constraint of the form xj +wj = 1 where wj ≥ 0 is a slack variable. Thus, this assumption
is without any loss of generality.

Consider the following CPP problem:

(2)

zCP(b) := min ⟨C, Y ⟩
s.t. ⟨T, Y ⟩ = 1,

⟨Ai, Y ⟩ = 2bi,∀i ∈ [m]

⟨AAi, Y ⟩ = b2i , ∀i ∈ [m]

⟨Nj, Y ⟩ = 0,∀j ∈ B
Y ∈ CP ,

where Ai=

[
0 a⊤i
ai 0

]
, AAi=

[
0 0
0 aia

⊤
i

]
, T =

[
1 0
0 0

]
, Nj=

[
0 −e⊤j

−ej 2eje
⊤
j

]
, C=

[
0 c⊤

c Q

]
.

Burer [6] proves the following result.

Theorem 2.3 (Burer’s reformulation [6]). Given a feasible MBQP in the form (1) satisfying
assumption (A), then we have that z(b) = zCP(b).

3



Let us now consider the dual program to (2)1:

(3)

zCOP(b) := sup −
( m∑
i=1

2biαi + b2iβi

)
− θ

s.t. C +
m∑
i=1

(
αiAi + βiAAi

)
+
(∑
j∈B

γjNj

)
+ θT =M

M ∈ COP .

Given an optimal solution to the dual (3), say (α∗, β∗, γ∗, θ∗,M∗), and a perturbation to the
right-hand-side of (1) by ∆b ∈ Rm, we can obtain a lower bound to z(b+∆b) as:

z(b+∆b) ≥ −
( m∑
i=1

2(bi +∆bi)α
∗
i + (bi +∆bi)

2β∗
i

)
− θ∗,(4)

since this follows from weak duality.

If there is a positive duality gap between (2) and (3), then we do not expect the bound (4) to
be strong. Understanding when strong duality holds is the topic of this section. Our results
of this section are aggregated in the next theorem:

Theorem 2.4 (Strong duality). Consider a MBQP in the form (1) satisfying the assumption
(A). Let P = {x : a⊤

i x = bi, ∀i ∈ [m],x ≥ 0} ̸= ∅ denote the feasible region of (1) that is
assumed to be non-empty. Suppose l is a finite lower bound on z(b). Then:

(a) When P is bounded, there is a strictly copositive feasible solution of (3) which implies
strong duality holds between (2) and (3) by the Slater condition.

(b) When Q is PSD or P is bounded, there is a closed-form formula to construct a feasible
solution to (3) whose objective function value is l − ϵ where ϵ can be any arbitrarily
small positive number. In particular, when l is the optimal value of (MBQP), this is
a constructive proof that strong duality holds between (2) and (3).

(c) There exists examples where Q is not PSD and P is unbounded, such that there is a
positive duality gap between (2) and (3).

(d) The optimal solution of (3) is not attainable in general even if P is bounded and there
is no duality gap.

Note that part (a) of Theorem 2.4 was shown in [4], where the authors prove that strong
duality holds between (2) and (3) in a non-constructive way when P is bounded. Their
argument utilizes a recent result from [20]. Also [22] explores similar questions in a recent
presentation. To the best of our understanding, parts (b), (c), and (d) of Theorem 2.4 were
not known before.

We note that in part (b) of Theorem 2.4 the promised closed form solutions can achieve
additive ϵ-optimal solutions for any ϵ > 0. Is this an artifact of our proof technique? Clearly
when Q = 0 and B = ∅, the optimal solution of (3) can be achieved, as the dual optimal
solution can be achieved by linear programming duality (set β = 0). Part (d) shows that even
if strong duality holds, the optimal solution is not attainable in (3) in general. Therefore,

1For convenience, we have written the dual variables with ‘negative sign’.
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part (b) of Theorem 2.4 is the best we can hope for, as an optimal solution is not always
achievable. Moreover, Part (d) indicates that there is no Slater point in (2) in general when
P is bounded. One can further show via simple examples that it is possible there is no Slater
point in (3) when P is unbounded and Q is PSD.

2.2.1. Proof sketch for part (a) of Theorem 2.4: For the proof of this part, we show that

M̂ := C + λ̂ · H is a feasible solution of (3) and a strictly copositive matrix when P is

bounded, where λ̂ is sufficiently large positive quantity and

H = T +
m∑
i=1

AAi,(5)

that is, α̂i = 0 ∀i ∈ [m], β̂i = λ ∀i ∈ [m], γ̂j = 0 ∀j ∈ B, θ̂ = 0. Thus M̂ is a Slater point
leading to the required result. The full poof is in Section B.1.

2.2.2. Proof sketch for part (b) of Theorem 2.4: A key ingredient to prove this part of
Theorem 2.4 is a local stability result that may be of independent interest. Consider the
following perturbation of the original MBQP:

ζ(b, ϵ) := min
x,ε(i)

x⊤Qx+ 2c⊤x

a⊤
i x = bi + ε

(1)
i , ∀i ∈ [m]

xj + ε
(2)
j ∈ {0, 1},∀j ∈ B∥∥ε(r)∥∥∞ ≤ ϵ,∀r ∈ {1, 2}

x ≥ 0.

(MBQP(ϵ))

We prove the following result:

Theorem 2.5 (Local stability). Let l be a lower bound on z(b), i.e., a lower bound on ζ(b, 0).
When Q is PSD or P is bounded, there exists t1 > 0, t2 ≥ 0 that depends on A,b, c, Q,B
such that if 0 ≤ ϵ < t1, then ζ(b, ϵ) ≥ l − ϵt2.

We note that if we were only considering the case where Q is PSD, then the above result
could possibly be obtained using disjunctive arguments. Since we also allow for non-PSD Q
matrices (when P is bounded), our proof of Theorem 2.5 requires the use a result from [26]
characterizing the optimal solution of quadratic programs, and is presented in Appendix B.2.

The closed form solution promised in part (b) of Theorem 2.4 is built using specific build-
ing blocks or combinations of values for the variables α, β, γ, θ. In particular consider the
following two building blocks:

(i) Building block 1. For all i ∈ [m], consider the following combination: (α̂i = −bi, β̂i =
1, θ̂ = b2i ) and all other variables are zero; let the resulting matrix be:

KKi =
m∑
i=1

(
α̂iAi + β̂iAAi

)
+

(∑
j∈B

γ̂jNj

)
+ θ̂T = −biAi + AAi + b2iT.(6)

Note that KKi is the the matrix associated to quadratic form obtained by homogenizing
(bi − a⊤

i x)
2.
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(ii) Building block 2. For all j ∈ B, consider the following combination: α̃i = −fbi ∀i ∈
[m], β̃i = f ∀i ∈ [m], θ̃ = (f

∑m
i=1 b

2
i ) + r, and γ̃j = −g; let the resulting matrix be

Gj(f, g, r) =
m∑
i=1

(
α̃iAi + β̃iAAi

)
+
(∑
j∈B

γ̃jNj

)
+ θ̃T(7)

= f
( m∑
i=1

KKi

)
− gNj + rT,

where f, g, r are parameters.

The closed form solution that we construct for (3) is of the form:

U(f1, f2, g, r, τ) = C + f1

( m∑
i=1

KKi

)
+
∑
j∈B

Gj(f2, g, r) + τH − lT,(8)

where H is defined in (5). We specify values for the parameters f1, f2, g, r, τ such that the
above matrix is copositive and has objective value of l − ϵ.

Lets us first compute the objective function value of U(f1, f2, g, r, τ). Observe that for fixed
values of (f1, f2, g, r, τ) we have that αi = −bi ·(f1+f2|B|), βi = (f1+f2|B|)+τ for all i ∈ [m]
and θ =

∑m
i=1 b

2
i · (f1 + f2|B|) + r|B|+ τ − l. Thus the objective value of U(f1, f2, g, r, τ) is

−
( m∑
i=1

2biαi + b2iβi

)
− θ = l − r · |B| − τ ·

(
1 +

m∑
i=1

b2i

)
.

We show that we may choose r and τ to be arbitrarily small positive numbers, thus obtaining
an objective value of l − ϵ.

Next consider the question of showing that U(f1, f2, g, r, τ) is copositive. It is easy to verify
that KKi ⪰ 0 and therefore KKi is copositive. We also show that for sufficiently large f, g, r
we have that Gj(f, g, r) ∈ COP and H is also copositive. However, due to presence of the
terms C and −lT in U(f1, f2, g, r, τ), one has to additionally verify its copositivity. Consider
a non-negative vector y := [t;x] ≥ 0 and we need to verify that y⊤U(f1, f2, g, r, τ)y ≥ 0.
The case when t = 0 follows from the fact that Q ⪰ 0 or H is strictly copositive when
P is bounded. In the case when t > 0, the building blocks KKi’s and Gj(f, g, r)’s behave
like augmented Lagrangian penalties (see [14,15] for strong duality results for general mixed
integer convex quadratic programs) of the original constraints of the MBQP, i.e., if 1

t
x is not

feasible for MBQP(ϵ) then y⊤U(f1, f2, g, r, τ)y becomes large positive value in the following
fashion:

• If |aTi x1
t
− bi| > ϵ, then it is easy to see that y⊤KKiy = |aTi x − tbi|2 and this

“penalty” yields that y⊤U(f1, f2, g, r, τ)y ≥ 0 for the selected values of parameters
(f1, f2, g, r, τ).

• If
xj
t
∈ (ϵ, 1−ϵ)∪(1+ϵ,∞) (i.e.,

xj
t
is far from being binary), then y⊤Gj(f, g, r)y ≫ 0

and this “penalty” yields that y⊤U(f1, f2, g, r, τ)y ≥ 0 for the selected values of
parameters (f1, f2, g, r, τ).

• The remaining case is when 1
t
x is feasible for MBQP(ϵ). In this case it turns out

that Theorem 2.5 implies that y⊤U(f1, f2, g, r, τ)y ≥ 0 for the selected values of
parameters (f1, f2, g, r, τ).
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The details of our proof are presented in Appendix B.3.

Finally, note that by the construction of (2), the inequality z(b) ≥ zCP(b) trivially holds.
Part (b) of Theorem 2.4 shows that zCOP(b) ≥ z(b) − ϵ for any positive ϵ when Q is PSD
or P is bounded. Since zCP(b) ≥ zCOP(b) as a consequence of weak duality, we arrive at the
following observation.

Remark 2.6 (Alternative proof of Burer’s Theorem). The proof of part (b) of Theorem 2.4
provides an alternative proof of Theorem 2.3 in the case when Q is PSD or P is bounded.

2.2.3. Proof for part (c) of Theorem 2.4: We will provide an example where Q ̸⪰ 0 and P
is unbounded, such that (2) is feasible and has finite value while (3) is infeasible. Consider
the following instance:

min{x21 − x22|x1 − x2 = 0, x1 ≥ 0, x2 ≥ 0}.

This problem is feasible and its optimal value is zero. Hence, (2) is also feasible and has
value zero by Theorem 2.3. The COP dual is:

max− θ

s.t

0 0 0
0 1 0
0 0 −1

+ θ

1 0 0
0 0 0
0 0 0

+ α

 0 1 −1
1 0 0
−1 0 0

+ β

0 0 0
0 1 −1
0 −1 1

 =:M ∈ COP

We claim that the dual is infeasible. Let y =

 0
1

1 + ϵ

, where ϵ > 0. Then

y⊤My = 1− (1 + ϵ)2 + β(1 + (1 + ϵ)2 − 2(1 + ϵ)) = −2ϵ+ (β − 1)ϵ2

When ϵ is small enough, y⊤My < 0. This completes the proof.

Remark 2.7 (Local stability not satisfied when Q ̸⪰ 0 and P is unbounded). It is instructive
to see that the above example does not satisfy the local stability property. Indeed, for any
positive value of ϵ, it is straightforward to verify that ζ(0, ϵ) = −∞, even though ζ(0, 0) = 0.
Hence, the sufficient conditions for local stability Theorem 2.5 cannot be further relaxed.

2.2.4. Part (d) of Theorem 2.4: The proof is in Appendix B.4.

2.3. How good is the closed form solution of Theorem 2.4 for sensitivity analysis?
Previous works consider solving (3) using cutting-plane techniques [1, 2, 17, 22] as a way to
solve the original MBQP. However, in this paper we take a different perspective. We believe
that with the success of modern state-of-the-art integer programming solvers, the original
MBQP may be (in most cases) best solved directly using an integer programming solver.
The key attraction therefore of Theorem 2.4 is to be able to build a closed-form solution (8)
of the dual (3) using the optimal solution (or best known lower bound) of MBQP. One can
therefore directly start conducting sensitivity analysis after solving the original MBQP and
building the closed-form dual solutions.
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However, conducting sensitivity analysis using dual solutions is challenging due to the
presence of multiple ϵ-optimal solution. First note that, given an ϵ-optimal dual solu-
tion (α∗, β∗, γ∗, θ∗) guaranteed by strong duality verified in Theorem 2.4, we have that

z(b) = −
( m∑
i=1

2biα
∗
i + b2iβ

∗
i

)
− θ∗ + ϵ. Subtracting the right-hand-side of the above from

the right hand-side of (4), we obtain that the predicted change in the objective function
value using the dual solution (α∗, β∗, γ∗, θ∗) when the right-hand-side changes form b to
b+∆b is:

Predict(α∗, β∗, γ∗, θ∗) := −
m∑
i=1

2∆biα
∗
i −

m∑
i=1

((∆bi)
2 + 2bi∆bi)β

∗
i − ϵ.(9)

Next consider the building block KKi in (6), used to construct the closed for solution in

part (b) of Theorem 2.4, corresponding to (α̂i = −bi, β̂i = 1, θ̂ = b2i ). The objective function

value of this block is −(2biα̂i + b2i β̂i) − θ̂ = 0. Moreover, KKi ⪰ 0. Thus, we arrive at the
following observation:

Proposition 2.8. Let bi ∈ Rm be the vector with ith component equal to bi and zeros
everywhere else. If (α∗, β∗, γ∗, θ∗,M∗) is an ϵ-optimal solution of (3), then (α∗ − bi, β∗ +
ei, γ

∗, θ∗ + b2i ,M
∗ +KKi) is also an ϵ-optimal solution of (3).

On the other hand, substituting (α∗−bi, β∗+ei, γ
∗, θ∗+b2i ,M

∗+KKi) in place of (α∗, β∗, γ∗, θ∗,M∗)
in (9) we obtain:

Predict(α∗ − bi, β∗ + ei, γ
∗, θ∗ + b2i ) = Predict(α∗, β∗, γ∗, θ∗)− (∆bi)

2,

or equivalently,

|Predict(α∗ − bi, β∗ + ei, γ
∗, θ∗ + b2i )| = |Predict(α∗, β∗, γ∗, θ∗)|+ (∆bi)

2.

Thus, we arrive at the following conclusion:

Remark 2.9. If (α∗, β∗, γ∗, θ∗,M∗) is an ϵ-optimal solutions of (3), then the lower bound
obtained using the dual optimal solution (α∗ − bi, β∗ + ei, γ

∗, θ∗ + b2i ,M
∗ + KKi) for the

right-hand-side vector b+∆bi is worse than that obtained by (α∗, β∗, γ∗, θ∗,M∗).

Therefore, in order to obtain the best possible sensitivity results, we would like the contribu-
tion of KKi’s in the dual optimal matrix to be as small as possible. The main role of KKi’s
is to ensure that the constructed solution is in COP . However, as an artifact of our proof of
part (b) of Theorem 2.4, the contribution of the KKi’s in the closed-form solution is much
higher than what is really needed to ensure copositivity. This fact was empirically verified
by preliminary computations.

By examining the structure of optimal solution U(f1, f2, g, r, τ) in (8) and noting that the
second building block Gj(f, g, r) is a linear combination of KKi’s, Nj’s and T , we may try
to find good dual solutions, with small contribution of KKi’s and fixed values of τ and r, as

8



follows:

(10)

min
p,γ

m∑
i=1

wipi

s.t. C +
m∑
i=1

piKKi +
∑
j∈B

γjNj + τH − (l + r)T ∈ COP ,

where wi’s are some non-negative weights. Note that part (b) of Theorem 2.4 guarantees
that the above problem finds an ϵ (whose value depending on τ and r) optimal dual solution.
In our computations, we solved a variant of the above optimization problem.

2.4. Preliminary computations.

2.4.1. Modifications to (10) . The following changes are made to improve the quality of the
bound and the computational cost.

Linear penalty. Consider a new building block corresponding to αi = −1, θ = 2bi and all
other variables zero. This block is associated to the homogenization of the linear function
(bi − a⊤

i x), and it does not contribute to the objective function, just like KKi. Setting,
Ki = 2biT − Ai, we solve the following problem:

(11)

min
p,γ,δ

m∑
i=1

w
(1)
i pi + w

(2)
i δi

s.t. C +
m∑
i=1

piKKi +
m∑
i=1

δiKi +
∑
j∈B

γjNj + τH − (l + r)T ∈ COP ,

Although including Ki into the problem is not necessary, we have empirically observed that
it leads to tighter sensitivity bounds due to the added degree of freedom. The heuristic
choice of w(1) and w(2) are presented in Appendix C.

Solving a restriction of (11). Solving a copositive program is challenging. Therefore, we
replaced the restriction of being in the copositive cone in (11) with a restriction of being
in the S+ + SP . This leads to a semidefinite program, which can be solved in polynomial
time. However, the resulting problem can become infeasible. To mitigate this problem, we
consider two more changes:

(1) Allowing non-optimal dual solutions: Instead of fixing l, we let l become a variable.
We also penalize finding a poor quality dual solution by changing the objective of

(11) to: minp,γ,δ,l −l+
∑m

i=1w
(1)
i pi+w

(2)
i δi. In this way, we may increase the chances

of finding a feasible solution, However the dual solution we find may be have lesser
objective than the known optimal value of original MBQP.

(2) McCormick inequalities: The Y variable in (2) satisfies the following well-known
McCormick inequalities:

Yij ≤ Y1,i, Yij ≤ Y1,j, Yij ≥ Y1,i + Y1,j − 1, Yij ≥ 0.(12)

We add new columns to (11) corresponding to these inequalities.
9



2.4.2. Preliminary experimental results.

Instances. In our preliminary experiments, we generate three classes of instances, which we
refer to as (COMB), (SSLP), and (SSQP).

The first class of instances are a weighted stable set problem with a cardinality constraint:

(COMB) min
{
−c⊤x |

n∑
j=1

xj ≤ p, xi + xj ≤ 1 ∀(i, j) ∈ E
}

We generate random instances in the following way. The underlying graph is a randomly
generated bipartite graph (V1∪V2, E) with |V1| = |V2| = 10 and each edge (i, j) ∈ E is present
with probability d where d ∈ {0.3, 0.5, 0.7}. Each entry of c is uniformly sampled from
{0, . . . , 10}. The right-hand-side of the cardinality constraint is p = 3. Twenty instances
were generated for each choice of d. For this class of instances, we performed sensitivity
analysis with respect to the right-hand-side of the cardinality constraint, where we increased
the value of p by ∆p ∈ {1, . . . , 10}.
The next class of instances contains continuous variables that are “turned on or off” using
binary variables. The instances have the following form:

(SSLP) min
{
−2c⊤xx+ 2c⊤yy | a⊤

i x≤bi i∈ [m], xi≤yi i∈ [n], x≥0, y∈{0, 1}n
}

We generate instances in the following way. We set n = 20 and m = 5. Each entry of cx
is uniformly sampled from {0, . . . , 10} and cy = (3, . . . , 3) is a constant vector. Each entry
of ai is uniformly sampled from {0, . . . , 10} and then each entry of ai is zeroed out with
probability d ∈ {0.3, 0.5, 0.7}. Finally, bi = ⌊1

2
a⊤
i e⌋ for all i ∈ [m]. Twenty instances were

generated for each probability. For this class of instances, we focus on sensitivity with-respect
to right-hand-side of a⊤

i x ≤ bi,∀i ∈ [m] when ∆b ∈ {0, 1, 2, 3}m.
The last class of instances is similar, except that the objective is quadratic:

(SSQP) min
{
−2c⊤xx+ 2c⊤yy + x⊤Qx | a⊤

i x≤bi i∈ [m], xi≤yi i∈ [n], x≥0, y∈{0, 1}n
}

We generate cx, cy, ai,b as before. The matrix Q is randomly generated such that Q =∑
i∈{1,2}

uiu
⊤
i where each entry of ui is uniformly sampled from {−1, 0, 1}.

Experiments conducted. Our experiments are implemented in Julia 1.9, relying on Gurobi
version 9.0.2 and Mosek 10.1 as the solvers. We solve on a Windows PC with 12th Gen
Intel(R) Core(TM) i7 processors and 16 RAM. We compare our method with other known
methods. Those methods consider certain convex relaxation of (MBQP) and obtain dual
variables of constraints to conduct sensitivity analysis via weak duality. In this case, we
consider three convex relaxations, which we call Shor1, Shor2, Cont.

First, we consider the the Shor relaxation of (MBQP):

(Shor1) min
Y ∈S+∩SP

{
⟨C, Y ⟩

∣∣∣∣ ⟨T, Y ⟩ = 1, ⟨Nj, Y ⟩ = 0,∀j ∈ B
⟨Ai, Y ⟩ = 2bi,∀i ∈ [m]

}
.
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Next, we consider the relaxation of the problem obtained by augmenting Shor1 with redun-
dant quadratic constraints and McCormick inequalities:

(Shor2) min
Y ∈S+∩SP

⟨C, Y ⟩

∣∣∣∣∣∣
⟨T, Y ⟩ = 1, ⟨Nj, Y ⟩ = 0,∀j ∈ B
⟨Ai, Y ⟩ = 2bi, ⟨AAi, Y ⟩ = b2i ,∀i ∈ [m]
McCormick inequalities (12)

 .

Finally, and assuming that Q is PSD, we obtain a convex relaxation simply by relaxing the
binary variables to be continuous variables in [0, 1]:

(Cont) min
x≥0

{
x⊤Qx+ 2c⊤x

∣∣ a⊤
i x = bi, ∀i ∈ [m], xj ∈ [0, 1] and ∀j ∈ B

}
.

The relaxations Shor1 and Shor2 are solved using Mosek, while the relaxation Cont is solved
using Gurobi. Notice that these problems may have multiple optimal solutions, so different
solvers might lead to different solutions.

We choose relaxation Shor1 as a baseline and measure the goodness of those predictions by
relative gap. Given rhs change ∆b, ground-truth z(b+∆b), the prediction p1 by Shor1 and
the prediction p2 by some method, then

relative gap =
z(b+∆b)− p2
z(b+∆b)− p1

.

This is always a non-negative number and the smaller relative gap the better performance
of the given method.

Results and discussion. Figure 1 shows an example of bounds obtained using different meth-
ods. Tables 1, 2, and 3 summarize the relative gaps obtained in the experiments mentioned
above. Appendix C provides a more detailed information, including relative gaps per density.

(a) a (COMB)
instance with

d = 0.3

(b) a (COMB)
instance with

d = 0.5

Figure 1. Two randomly generated (COMB) instances with d = 0.3 and
d = 0.5. The x-axis corresponds to ∆p and y-axis corresponds to optimal
value of the new program or different predicted value of different methods.

We observe that our method provides the tightest sensitivity bounds in all cases. Also note
that method Shor2 provides the worst bounds. This is easier to observe in Figure 1. This
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‘

Table 1. Average relative gap (COMB) – all densities

∆k 1 2 3 4 5 6 7 8 9 10 avg time(s)

Shor1 1 1 1 1 1 1 1 1 1 1 7.30
Shor2 1.33 2.04 2.7 2.71 2.76 2.79 2.87 2.88 2.94 3.03 10.17

our method 0.83 0.02 0.00 0.11 0.19 0.26 0.32 0.38 0.41 0.44 8.35
Cont 0.97 1.07 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.04 0.00

Table 2. Aver-
age relative gap for
(SSLP) – all densities

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 1 1 1 3.63
Shor2 1.20 1.48 1.64 7.21

our method 0.59 0.55 0.60 5.82
Cont 1.00 1.00 1.00 0.00

Table 3. Average relative gap
for (SSQP) – all densities

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 1 1 1 3.58
Shor2 1.24 1.39 1.54 7.08

our method 0.52 0.48 0.53 5.90
Cont 1.00 1.00 1.00 0.00

is interesting, because the SDP from Shor2 is quite similar to Burer’s formulation (with
additional McCormick inequalities). This discrepancy is most likely due to the fact that
these problems have multiple optimal solutions - similar to the discussion in Section 2.3.
The naive Shor2 approach finds an optimal dual which does not give good bounds after b
is perturbed. On the other hand, our method attempts to find a good dual solution (with
respect to producing good bounds for changing rhs) inside the ϵ-optimal face of the dual.

3. Conclusion and future direction

We proved sufficient conditions for strong duality to hold between Burer’s reformulation of
MBQPs and its dual. One direction of research is to extend such strong duality results for
reformulations of more general QCQPs [7].

We have proposed a SDP-based algorithm to conduct sensitivity analysis of general (MBQP)
which provides much better bounds than existing methods. This algorithm is motivated by
the structure of ϵ-optimal solution of the COP dual. However, the sizes of instances we can
currently perform sensitivity analysis are limited by the SDP solver. One possible future
direction is to develop a more scalable solver for the SDP in (11), for instance, using the
techniques from [23].
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Appendix A. Hardness of approximation

In this section we prove Theorem 2.2, which states that the sensitivity problem for (MBQP)
is NP-hard to approximate. Specifically, we show that computing an (α, β)-approximation
is NP-hard even if all variables are binary. Our strategy is to create a trivial binary integer
linear program which after changing one entry of b by one captures a hard combinatorial
property. The hard combinatorial property we use are edge colorings of graphs.

Let G = (V,E) be a simple graph. An edge coloring of G is an assignment of colors to edges
so that no incident edge will have the same color. The minimum number of colors required
is called edge chromatic number and denoted by χ′(G). The classical theory by Vizing [27]
states that:

Theorem A.1 (Vizing theorem). For any simple graph G, χ′(G) ∈ {∆(G),∆(G)+1} where
∆(G) is the maximum degree of vertices in G.

Although Vizing theorem restricts edge chromatic number to two choices, it is still hard to
distinguish between these two choices. In fact, edge chromatic number is hard even in the
special case of cubic graphs, which are simple graph with every vertex having degree three.

Theorem A.2 ( [18]). It is NP-hard to determine the edge chromatic number of cubic graphs.

We can express edge coloring as an MBQP problem. Given a graph G = (V,E) and an
upper bound H of its edge chromatic number χ′(G), then the classic formulation is

min
∑
i∈[H]

wi

s.t.
∑
i∈[H]

xei = 1,∀e ∈ E

xri + xsi ≤ wi,∀r, s ∈ E, r ∩ s ̸= ∅,∀i ∈ [H]

x ∈ {0, 1}|E|×[H], w ∈ {0, 1}[H]

Here wi = 1 means ith color is used and xri = 1 means edge r is colored to be i. The first
set of constraints requires that every edge must be colored by exactly one color. The second
set of constraints requires that no adjacent edge will receive the same color.

When the given graph G is a cubic graph, then H = 4 is an upper bound on χ′(G) by Vizing
Theorem. Consider the following program:

z1 := min
∑
i∈[H]

wi

s.t.
∑
i∈[H]

−wi ≤ −4

∑
i∈[H]

xei = 1,∀e ∈ E

xri + xsi ≤ wi,∀r, s ∈ E, r ∩ s ̸= ∅,∀i ∈ [H]

x ∈ {0, 1}|E|×[H], w ∈ {0, 1}[H]
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By Vizing Theorem, the optimal value z1 is 4. When we change the first constraint from∑
i∈[H] −wi ≤ −4 to

∑
i∈[H] −wi ≤ −3, we obtain the following program:

z2 := min
∑
i∈[H]

wi

s.t.
∑
i∈[H]

−wi ≤ −3

∑
i∈[H]

xei = 1,∀e ∈ E

xri + xsi ≤ wi,∀r, s ∈ E, r ∩ s ̸= ∅,∀i ∈ [H]

x ∈ {0, 1}|E|×[H], w ∈ {0, 1}[H]

of Theorem 2.2. Let z1, z2 be the same as above. If the graph is 3-edge-colorable, then z2 = 3
and |∆z| = 1. Otherwise, z2 = 4 and |∆z| = 0. In this case, any (α, β)-approximation with
β ≥ α > 0 will return p > 0 if and only if the graph is 3-edge-colorable. This implies that
any such (α, β)-approximation is NP-hard. □

Appendix B. Duality theorem

In this section we prove Theorem 2.4, which characterizes when strong duality holds between
(2) and (3). Assume that the lower bound of the optimal value (MBQP) is known in advance
and denote by l. Recall that the feasible region (MBQP) is

P = {x : a⊤
i x = bi, ∀i ∈ [m],x ≥ 0} ≠ ∅.

In remaining part of this paper, we will introduce many new constants and functions. We
present the following table to where those constants and functions are defined.

Table 4. notation table

name source

k Lemma B.1
t0 Lemma B.10
t1 Theorem 2.5
t2 Theorem 2.5
t3 Proposition B.3
h(·) Remark B.5
µ(·) Remark B.6
η Theorem B.12
ρ Theorem B.12

This section is organized into several subsections. Each of the parts of Theorem 2.4 is proved
in a separate subsection. There is another subsection for the proof of Theorem 2.5, which is
used in the proof of Part (b) of Theorem 2.4.

B.1. Theorem 2.4(a): Slater point when P is bounded.

Lemma B.1. Let H := T +
∑
i∈[m]

AAi. When P is bounded, then H is strictly copositive.

Therefore, there exists some number k > 0 that depends on A such that H − kI ∈ COP.
16



Proof. H is a sum of PSD matrix and therefore H is clearly copositive. We prove that H
is strictly copositive by showing that for every non-zero y := [t;x] ≥ 0, y⊤Hy > 0. When
t > 0, this is clearly true since y⊤Hy ≥ y⊤Ty = t > 0. Thus, we may consider the case
when t = 0. Suppose H is not strictly copositive, then there exists some y′ := [0;x′] ≥ 0
(x′ ̸= 0) such that (y′)⊤Hy′ = 0. This implies that

(y′)⊤AAiy
′ = (a⊤

i x
′)2 = 0,∀i ∈ [m] =⇒ a⊤

i x
′ = 0, ∀i ∈ [m].

Note that since by assumption the constraints x ∈ P imply that 0 ≤ xj ≤ 1 for all j ∈ B,
we have that a⊤

i x
′ = 0,∀i ∈ [m] implies x′j = 0,∀j ∈ B. Thus, x′ is a non-zero recession

direction of P, implying that P is unbounded which leads to contradiction. □

of Part (a) of Theorem 2.4. By Lemma B.1, H is strictly copositive and therefore C + λH
is strictly copositive for some sufficiently large λ > 0. By Slater condition, strong duality
holds between (2) and (3). □

B.2. Theorem 2.5: Local stability. For a fixed b, we will refer the feasible region of
(MBQP(ϵ)) by S(ϵ). S(ϵ) is defined by some linear constraints and set of constraints xj +

ε
(2)
j ∈ {0, 1},∀j ∈ B. Since there are only finitely many choice of xj + ε

(2)
j , S(ϵ) can be

viewed as a union of finitely many polyhedrons. For any w ∈ {0, 1}B, we define

S(ϵ,w) :=

(x ε(i))

∣∣∣∣∣∣∣∣
a⊤
i x = bi + ε

(1)
i ,∀i ∈ [m]

xj + ε
(2)
j = wj,∀j ∈ B∥∥ε(r)∥∥∞ ≤ ϵ,∀r ∈ {1, 2}

x ≥ 0

 .

ζ(b, ϵ,w) := min
x,ε(i)

{x⊤Qx+ 2c⊤x : (x ε(i)) ∈ S(ϵ,w)}.

N(ϵ) := {w ∈ {0, 1}B : S(ϵ,w) ̸= ∅}.

N(ϵ) := {0, 1}B \N(ϵ).

Under this definition, we have

S(ϵ) =
⋃

w∈{0,1}B
S(ϵ,w) =

⋃
w∈N(ϵ)

S(ϵ,w).

ζ(b, ϵ) = min
w∈{0,1}B

ζ(b, ϵ,w) = min
w∈N(ϵ)

ζ(b, ϵ,w).

We will prove that when Q is PSD (including Q = 0) or P is bounded, ζ(b, ϵ) can be lower
bounded by some linear function on ϵ if b is fixed and ϵ is small.

To prove Theorem 2.5, we will establish several other statements. Our main idea is to
reduce obtaining lower bound on ζ(b, ϵ) to finding the lower bound of finitely many quadratic
programming problems. In particularly, we will use Vavasis’s result on characterization of
optimal solution of general quadratic programming in [26] and show that the lower bound
on ζ(b, ϵ) can be viewed as piece-wise quadratic function on ϵ when ϵ is sufficiently small.
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Proposition B.2. For any fixed ϵ ≥ 0, if P is bounded, then S(ϵ) is bounded. Moreover,
S(ϵ1) ⊆ S(ϵ2) for all ϵ2 ≥ ϵ1 ≥ 0.

Proof. For any ϵ1 ≤ ϵ2, if [x; ε
(i)] ∈ S(ϵ1), then clearly [x; ε(i)] ∈ S(ϵ2). This proves S(ϵ1) ⊆

S(ϵ2). To see that boundedness of P implies boundedness of S(ϵ), we prove the contrapositive
statement, i.e., if S(ϵ) is unbounded, then P is unbounded. Suppose S(ϵ) is unbounded, then
consider its standard relaxation

Srelax(ϵ) :=

(x ε(i))

∣∣∣∣∣∣∣∣
a⊤
i x = bi + ε

(1)
i ,∀i ∈ [m]

xj + ε
(2)
j ∈ [0, 1],∀j ∈ B∥∥ε(r)∥∥∞ ≤ ϵ,∀r ∈ {1, 2}

x ≥ 0

 .

Since Srelax(ϵ) is the relaxation of S(ϵ), Srelax(ϵ) is also unbounded. Note Srelax(ϵ) is defined

by some linear constraints, this means there exists non-zero [x0; ε
(i)
0 ] such that a⊤

i x0 =

(ε
(1)
0 )i,∀i ∈ [m], (x0)j + (ε

(2)
0 )j = 0,∀j ∈ B, (ε(r)0 )t = 0, ∀r ∈ {1, 2},x0 ≥ 0. Rewriting those

conditions, it yields there exists some non-zero [x0] such that a⊤
i x0 = 0,∀i ∈ [m], (x0)j =

0,∀j ∈ B,x0 ≥ 0. This implies that P is unbounded. □

Proposition B.3. There exists some threshold t3 > 0 that only depends on A,b,B such that
if 0 ≤ ϵ < t3, then N(ϵ) = N(0).

Proof. Observe that S(0,w) ⊆ S(ϵ,w) for all w ∈ {0, 1}B. This implies N(0) ⊆ N(ϵ). It

suffices to show when ϵ is sufficiently small, for all w ∈ N(0), we have that w ∈ N(ϵ). For

any w ∈N(0), consider the following linear programming:

tw := minφ
s.t. bi − φ ≤ a⊤

i x ≤ bi + φ,∀i ∈ [m]
xj = wj,∀j ∈ B
x ≥ 0, φ ≥ 0.

(13)

This linear program is clearly feasible by choosing φ to be sufficiently large. Moreover,
tw > 0. Otherwise, this will imply that w ∈ N(0). Since this linear program is bounded
from below and feasible, its optimal tw exists and tw > 0 (tw can not arbitrarily go to 0 due
to the attainability of linear programming). If ϵ > 0 is sufficiently small such that

max
i∈[m]

(1 + ∥ai∥1)ϵ < tw,

then we claim that w ∈ N(0) implies N(ϵ). Suppose not, w ∈ N(ϵ) and then S(ϵ,w) ̸= ∅.
That is, there exists some x̄, ε̄(i) such that

a⊤
i x̄+ ε̄

(1)
i = bi, ∀i ∈ [m]

x̄j + ε̄
(2)
j = wj,∀j ∈ B∥∥ε̄(r)∥∥∞ ≤ ϵ, r ∈ {1, 2}

x̄ ≥ 0
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Then we can construct a feasible solution x∗ for (13) where x∗j :=

{
x̄j if j /∈ B
x̄j + ε̄

(2)
j if j ∈ B.

. In

this case, for any i ∈ [m], it follows

|a⊤
i x

∗ − bi| = |a⊤
i x̄+ (

∑
j∈B

ε̄
(2)
j (ai)j)− bi|

= | − ε̄
(1)
i +

∑
j∈B

ε̄
(2)
j (ai)j|

≤ (1 + ∥ai∥1)ϵ
< tw.

This contradicts the fact that tw is the optimal value of (13).

Therefore to ensure N(ϵ) = N(0) , one can choose t3 :=
min

w∈N(0)
tw

max
i∈[m]

(1+∥ai∥1)
> 0. □

Proposition B.4. When Q is PSD or P is bounded, then ζ(b, ϵ,w) exists for all ϵ ≥ 0 and
w ∈ N(ϵ).

Proof. If P is bounded, then S(ϵ) is bounded by Proposition B.2. Since S(ϵ,w) ⊆ S(ϵ), we
have that S(ϵ,w) is bounded as well. Thus ζ(b, ϵ,w) is the optimal value of minimizing a
quadratic over a compact set and therefore ζ(b, ϵ,w) exists.

If Q is PSD, we will use Vavasis’ characterization of optimal solution of quadratic program-
ming in [26]. We would like to point out when Q = 0, there is a simpler argument. When
Q = 0, ζ(b, ϵ,w) is the optimal value of some linear program whose right-hand-side is param-
eterized by ϵ. When ϵ = 0, ζ(b, 0,w) exists and therefore this linear program is both dual
feasible and primal feasible. When ϵ > 0, the corresponding linear program is primal feasible
as S(0,w) ⊆ S(ϵ,w). Moreover, the feasible region of the dual linear program remains the
same and therefore it is dual feasible. In this case, ζ(b, ϵ,w) exists.

When Q ̸= 0 and Q is PSD, suppose ζ(b, ϵ,w) does not exist. By the result of [26],ζ(b, ϵ,w)
must diverge to negative infinity and there exists x̄, ε̄(1), ε̄(2),d0,d1,d2 such that for all
large enough t, [x̄ + td0; ε̄

(1) + td1; ε̄
(2) + td2] is feasible and has a decreasing objective

function. Since S(ϵ,w) is defined by some linear constraints, this implies that d1 = 0,d2 =
0, a⊤

i d0 = 0,∀i ∈ [m] and (d0)j = 0,∀j ∈ B and d0 ≥ 0. Its objective function takes form
of (x̄+ td0)

⊤Q(x̄+ td0) + 2c⊤(x̄+ td0) = (x̄)⊤Qx̄+ 2td⊤
0 Qx̄+ t2d⊤

0 Qd0 + 2c⊤x̄+ 2tc⊤d0.
Since for all large t, the objective function is decreasing with large enough t and Q is PSD, it
must be that d⊤

0 Qd0 = 0 and therefore Qd0 = 0, since Q is PSD. This further implies that
c⊤d0 < 0 since the objective function is decreasing. In this case, there exists some d0 such
that Qd0 = 0 and c⊤d0 < 0 and a⊤

i d0 = 0,∀i ∈ [m] and (d0)j = 0,∀j ∈ B and d0 ≥ 0. Pick
any x ∈ S(0,w), one can verify that x + td0 is feasible for all t ≥ 0 and its objective value
goes to negative infinity as t goes to infinity. This shows the ζ(b, 0,w) diverges to negative
infinity, which leads to a contradiction.

□

Now we are ready to present a proof for Theorem 2.5.
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of Theorem 2.5. By Proposition B.3, when ϵ < t3 for some t3 > 0 only depends on A,b,B
, N(ϵ) = N(0). Pick any w ∈ N(ϵ), we would like to study ζ(b, ϵ,w) which is the value
function of a quadratic program whose right-hand side is parameterized by ϵ. By Proposition
B.4, ζ(b, ϵ,w) is finite. Now we are going to use Vavasis characterization of optimal solution
of quadratic program in [26]. Consider any quadratic program (possibly non-convex) of form

qv(g) :=miny⊤Hy + 2d⊤y

s.t. My ≤ g.

Vavasis [26] proved that any quadratic program with finite optimal value can be reduced to
a certain convex quadratic program QM̃ :

miny y
⊤Hy + 2d⊤y

s.t. M̃y = g̃,
(QP (M̃))

where (i) M̃ is a (k + l) × n matrix and first k rows corresponding to some k inequalities
of original inequalities My ≤ g satisfied exactly and the last l rows corresponding to some
entries of y are zero and (ii) H is positive definite when restricted to the special affine
subspace defined by M̃y = g̃. The key fact we need for this result is that these requirements
only depends on M̃ and independent of g̃. The convex program admits a unique solution yM̃
and its optimal value qvM̃(g) where yM̃ is a linear function of g and qvM̃(g) is a quadratic
function of g.

Note that yM̃ only satisfies some of original constraints and it is not necessarily feasible. We

say M̃ is good if yM̃ is feasible and we say M̃ is almost good if yM̃ is infeasible. We denote

the set of all good M̃ by M1 and denote the set of all almost good M̃ by M2. Due to the
definition of M̃ , both M1,M2 are finite sets and M1∪M2 is independent of g. Vavasis [26]
proves that optimal solution will be some yM̃ for some M̃ that is good.

In our case, we can express our program in inequality form to apply Vavasis’s result:

min
x,ε(i)

x⊤Qx+ 2c⊤x

bi − ε
(1)
i ≤ a⊤

i x ≤ bi + ε
(1)
i ,∀i ∈ [m]

wj − ε
(2)
j ≤ xj ≤ wj + ε

(2)
j ,∀j ∈ B

0 ≤ ε
(r)
t ≤ ϵ,∀r ∈ {1, 2}

x ≥ 0.

(14)

The right hand side depends on ϵ and w. Let us we refer toM1,M2,yM̃ , qvM̃(g) correspond-

ing to some ϵ and w as M1(ϵ,w),M2(ϵ,w),y(ϵ,w, M̃), qv(ϵ,w, M̃). As our right hand side
is a linear function of ϵ, qv(ϵ,w, M̃) is a quadratic function of ϵ once w and M̃ are fixed.

We fix somew ∈ N(ϵ) and prove that there exists some t4 > 0 depending only onA,b, c, Q,B,
such that if ϵ < t4, then M1(ϵ,w) ⊆ M1(0,w). As pointed out earlier M1(ϵ,w)∪M2(ϵ,w)
is independent of right hand sides and therefore is independent of ϵ. Thus it suffices to prove
that M2(0,w) ⊆ M2(ϵ,w). For M̃ ∈ M2(ϵ,w), yM̃(ϵ,w) is a continuous function of ϵ and
therefore a⊤

i yM̃(ϵ,w) is a continuous function of ϵ. Thus, for sufficiently small values of ϵ if

M̃ ∈ M2(0,w), then M̃ ∈ M2(ϵ,w).
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Thus when ϵ < min{t3, t4}, we have:

ζ(b, ϵ) = min
w∈N(ϵ)

min
M̃∈M1(ϵ,w)

qv(ϵ,w, M̃)

= min
w∈N(0)

min
M̃∈M1(ϵ,w)

qv(ϵ,w, M̃)

≥ min
w∈N(0)

min
M̃∈M1(0,w)

qv(ϵ,w, M̃) := T (ϵ).

T (ϵ) is the lower bound of ζ(b, ϵ) with T (0) = ζ(b, 0) ≥ l. Since there are only finitely
many choice of w and M̃ , T (ϵ) is a a piece-wise quadratic function on ϵ. In this case, we can
lower bound T (ϵ) with a linear function when ϵ ∈ [0,min{t3, t4}]. That is, there exists some
t2 > 0 that depends on A,b, c, Q,B, T (ϵ) ≥ l − t2ϵ for ϵ ∈ [0,min{t3, t4}] and this proves
that ζ(b, ϵ) ≥ l − t2ϵ for all ϵ ∈ [0,min{t3, t4}]. □

B.3. Theorem 2.4(b): Constructing near optimal solution for (COP-dual). In this
subsection we prove part (b) of Theorem 2.4 utilizing Theorem 2.5. We first consider the
case where the feasible set is bounded and then the case where it is unbounded and Q is
PSD. Before that, we present some preliminary lemmas.

Given some number f, g, l, τ , we remind the reader the two building blocks:

KKi := b2iT − biAi + AAi,∀i ∈ [m],

Gj(f, g, r) := f

∑
i∈[m]

KKi

− gNj + rT,∀j ∈ B.

and

H := T +
∑
i∈[m]

AAi.

Also let:

U0 := U0(τ, l) := C +

(
m∑
i=1

|λmin(Q)|+ 1

k
KKi

)
+ (τH) + (−lT ),

where k is defined in Lemma B.1. As mentioned earlier, KKi will serve as a penalty block of
a⊤
i x = bi and Gj(f, g, r) will serve as a penalty block of xj ∈ {0, 1}. Consider y := [t;x] ∈

Rn+1
+ , it follows

y⊤(KKi)y
⊤ = (bit− a⊤

i x)
2,∀i ∈ [m],

y⊤(−Nj)y
⊤ = 2xj(t− xj),∀j ∈ B.

Note that all of H,KKi are PSD matrices and therefore copositive. To see that KKi is PSD,
note it can be written as

KKi =

[
b2i −bi(a)⊤i

−biai ai(a)
⊤
i

]
=

([
−bi
ai

])([
−bi
ai

])⊤

.

The matrix Gj(f, g, r) is parameterized by f, g, r. It is no necessarily copositive for arbitrary
choice of f, g, r and Gj(f, g, r) has objective value equals to r. The next lemma proves that
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for any positive r and positive g, one can choose sufficient large f so that Gj(f, g, r) is
copositive.

In the remaining of this section, for any matrix A ∈ Sn+1, we will use (A)[x] to refer to
principal submatrix of A corresponding to the indices of [x]. We will refer other principal
submatrices like (A)[xj ] in the similar manner. Recall that we make the following assumption
(A):

x ≥ 0, a⊤
i x = bi, ∀i ∈ [m] =⇒ 0 ≤ xj ≤ 1 for all j ∈ B.

We first establish several remarks related to the assumption (A).

Remark B.5. Fix some index j ∈ B and some positive number η > 0. Then for any
x ≥ 0 such that xj ≥ η, there exists some strict positive number hj(η) > 0 that only depends
on A, b, η, j such that

max
i∈[m]

|a⊤
i x| ≥ hj(η).

Proof. Consider the following linear programming:

h(η) := minh
s.t.− h ≤ a⊤

i x ≤ h,∀i ∈ [m],
x ≥ 0, h ≥ 0,
xj ≥ η.

(15)

(15) is clearly feasible by choosing sufficiently large h. Moreover, h(η) > 0. Otherwise, if
h(η) = 0, let x∗, h∗ be the corresponding optimal solution. Note that x∗ ̸= 0. Pick x0 ∈ P,
it follows that x0 +λx∗ ∈ P,∀λ ≥ 0. With sufficiently large λ, the assumption (A) for j ∈ B
will be violated. □

Similarly, one can prove the following remarks using the similar approach :

Remark B.6. Fixed j ∈ B and η > 0. Then for any x ≥ 0 such that xj ≥ 1 + η, there
exists some strict positive number uj(η) > 0 that only depends on A, b, η, j such that

max
i∈[m]

|a⊤
i x− bi| ≥ uj(η).

Remark B.7. For any x ≥ 0, if a⊤
i x = 0,∀i ∈ [m], then xj = 0,∀i ∈ B.

Lemma B.8. For any j ∈ B, g > 0, r > 0, let hj(η) be as defined in Remark B.5. There
exists some strictly positive number pj > 0 that only depends on A,b, r, g, j such that if f
satisfies

f ≥ max

{
2g

hj(1)2
,
2g

pj2
,
g2 + 2rg

rpj2

}
,(16)

then Gj(f, g, r) = (f
∑
i∈[m]

KKi)− gNj + rT is copositive.

Proof. For any y = [t;x] ≥ 0, we consider several cases of y and assert that

Λ := y⊤((f
∑
i∈[m]

KKi)− gNj + rT )y ≥ 0.
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Note that since both
∑
i∈[m]

KKi and T are PSD, the only term that could potentially make Λ

negative is −gNj.

If t = 0, note that (−gNj)[x] is a diagonal matrix with one negative entry such that
(−gNj)[xj ] = −2g and other entries all zeros. Therefore, if xj = 0, then Λ ≥ 0. If xj ̸= 0, we
can further assume xj = 1 after scaling properly. Let hj(1) > 0 be the constant in Remark
B.5. Then it follows that

Λ = y⊤

(f
∑
i∈[m]

KKi)− gNj + rT

y

= x⊤

f ∑
i∈[m]

aia
⊤
i

x− 2g

= f

∑
i∈[m]

(a⊤
i x)

2

− 2g

≥ fhj(1)
2 − 2g (by Remark B.5)

≥ 0. (by (16))

If t ̸= 0, we may assume t = 1 after scaling properly. If t = 1 ≥ xj, y
⊤(−gNj)y

⊤ ≥ 0. Since
all KKi and T are PSD, then Λ ≥ 0. Thus it remains to consider the case when t < xj, t = 1
and let v := xj − t = xj − 1 > 0. If v ≤ min{ r

4g
, 1}, then it follows that

Λ = y⊤

(f
∑
i∈[m]

KKi)− gNj + rT

y

≥ y⊤ (−gNj + rT )y

= −2g(v + 1)v + r

≥ −4gv + r (0 ≤ v ≤ 1)

≥ 0. (v ≤ r

4g
)

So we may assume that v ≥ min{ r
4g
, 1}. In this case, we show that at least one of |a⊤xi− bi|

is considerably large and increases at least linearly with respect to v. To be more precise,
we are considering the following linear fractional programming:

pj := min
x,ψ,v

ψ
v

s.t. bi − ψ ≤ a⊤
i x ≤ bi + ψ,∀i ∈ [m],

xj ≥ 1 + v,
v ≥ min{ r

4g
, 1},

x ≥ 0, ψ ≥ 0.

(17)
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This linear fractional programming can be exactly formulated as the following linear pro-
gramming, which is known as Charnes-Cooper transformation [9].

pj := min
x̃,ψ̃,ṽ,s

ψ̃

s.t. bis− ψ̃ ≤ a⊤
i x̃ ≤ bis+ ψ̃,∀i ∈ [m],

x̃j ≥ s+ ṽ,
ṽ ≥ min{ r

4g
, 1}s,

x̃ ≥ 0, s ≥ 0, ψ̃ ≥ 0, ṽ = 1.

(18)

We can further claim that pj > 0 otherwise if pj = 0 and let x̃∗, ψ̃∗, ṽ∗, s∗ be the corresponding
optimal solution of (18). If s∗ = 0, then a⊤

i x̃
∗ = 0,∀i ∈ [m]. By Remark B.7, this implies

that x̃j = 0. However, this contradicts that x̃j ≥ s + ṽ ≥ 1. In the case when s∗ > 0, one

can again verify that x̃∗

s∗
will violate assumption (A) by using Remark B.6. Finally, it follows

that

Λ = y⊤

f ∑
i∈[m]

KKi

− gNj + rT

y

= f

∑
i∈[m]

(a⊤
i x− bi)

2

− 2g(v + 1)v + r

≥ fpj
2v2 − 2g(v + 1)v + r (by the definition of pj)

= (fpj
2 − 2g)v2 − 2gv + r

≥ 0. (by (16))

The last inequality comes from the fact that the lower bound (fpj
2 − 2g)v2 − 2gv + r) is a

quadratic function with respect to v. If fpj
2 − 2g ≥ 0 and g2 − r(fpj

2 − 2g) ≤ 0, then this
lower bound is non-negative for all v and this condition is guaranteed by our choice of f . □

Remark B.9. Consider two symmetric matrices A,B such that B ⪰
COP

ηI for some η > 0,

then A+ |λmin(A)|+1
η

B is strictly copositive.

Lemma B.10. Recall U0 = U0(τ, l) = C +
(∑m

i=1
|λmin(Q)|+1

k
KKi

)
+ (τH) + (−lT ). If P is

bounded, then there exists some t0 > 0 that only depends on A,b, c, Q, l, τ such that for any
y := [t x] ≥ 0 with t < t0 and ∥[t x]∥2 = 1, y⊤U0y ≥ 0.

Proof. We first show that (U0)[x] is strictly copositive. By Lemma B.1, we have H ⪰
COP

kI.

This implies that (H)[x] ⪰
COP

kI. As (H)[x] =
∑
i∈[m]

ai(ai)
⊤, this means that

∑
i∈[m]

ai(ai)
⊤ ⪰

COP

kI. Applying Remark B.9, we obtain that (U0)[x] = Q + |λmin(Q)|+1
k

(
∑
i∈[m]

(aia
⊤
i )) + τH[x] is
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strictly copositive. Consider the following program:

t0 :=min t

s.t. y = [t x] ≥ 0,

∥y∥2 = 1,

y⊤U0y ≤ 0.

If this program is infeasible, we may set t0 = ∞. Since the feasible region is a compact set and
if this program is feasible, the optimal value exists and is attained. We first claim that t0 > 0.
Otherwise, there exits some y′ := [0;x′] ≥ 0 such that (y′)⊤U0y

′ ≤ 0. This contradicts the
fact that (U0)[x] is strictly copositive. In this case, the definition of t0 guarantees that for
any y := [t;x] ≥ 0 with t < t0 and ∥[t x]∥2 = 1, y⊤U0y > 0. □

We proceed to prove Part (b) of Theorem 2.4 in the case that the feasible set is bounded.

Theorem B.11. (Part (b) of Theorem 2.4- bounded case) Let l be the lower bound of the
optimal value of (MBQP) that is l ≤ z(b) and l+ := max{l, 0}. Let k be the constant defined
in Lemma B.1, let t1, t2 be as in Theorem 2.5 and let uj(·) be the constant defined in Remark
B.6. When P is bounded, for any ϵ0 ∈ (0, t1) and any r > 0,

U := U(f1, f2, g, r, τ, l) := C + f1

∑
i∈[m]

KKi

+
∑
j∈B

Gj(f2, g, r) + τH − lT

is copositive for f1, f2, g, α satisfying the following rules:

(rule.i) f2, g, r satisfies the condition in Lemma B.8 so that Gj(f2, g, r) is copositive,
(rule.ii) τ = ϵ0t2

k
,

(rule.iii) t0 is defined in Lemma B.10, which depends on τ, l and therefore depends on
ϵ0, l,

(rule.iv) f1 ≥ max

{
|λmin(Q)|+1

k
, −λmin(C)+l+

t20ϵ
2
0

,max
j∈B

{λmin(C)+l+
t20uj(ϵ0)

2 }
}
,

(rule.v) g ≥ λmin(C)−l+
2ϵ20t

2
0

.

Moreover, the objective value of U is l − τ · (1 +
∑
i∈[m]

b2i ) − r · |B|. This objective value can

be arbitrarily closed to l as r and ϵ0 goes to zero.

We would like to point out our bound in Theorem B.11 is rather loose and we are only
seeking sufficient condition to ensure U is copositive. We begin to prove Theorem B.11.

Proof. By (rule.iv), it follows that

f1 −
|λmin(Q)|+ 1

k
≥ 0.

This further implies

U − U0 =

(
f1 −

|λmin(Q)|+ 1

k

)∑
i∈[m]

KKi

+
∑
j∈B

Gj(f2, g, r) ⪰
COP

0.
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Combining with Lemma B.10, this implies that there exists some t0 > 0 such that any
y := [t x] ≥ 0 with t < t0 and ∥[t x]∥2 = 1, y⊤Uy ≥ 0. Thus we can assume that t ≥ t0 and
define the following two sets:

I(ϵ0) :=
{
(t,x) ≥ 0 :

xj
t

∈ [0, ϵ0] ∪ [1− ϵ0, 1 + ϵ0],∀j ∈ B
}
,(19)

P(ϵ0) :=
{
(t,x) ≥ 0 :

1

t
(a⊤

i x) ∈ [bi − ϵ0, bi + ϵ0],∀i ∈ [m]

}
.(20)

One interpretation of such sets is that I(ϵ0) is the approximate version of 0-1 integrality and
P(ϵ0) is the approximate version of P.
Now assume y ≥ 0 := [t;x] with ∥y∥2 = 1 and t ≥ t0. We are going to prove that for all
such y ≥ 0,y⊤Uy ≥ 0. We consider three cases:

(case.1) [t x] ∈P(ϵ0)
(case.2) [t x] ∈ P(ϵ0) ∩ I(ϵ0)

(case.3) [t x] ∈ P(ϵ0) ∩ I(ϵ0)

Recall that

y⊤Uy = y⊤Cy +
∑
i∈[m]

y⊤f1(KKi)y︸ ︷︷ ︸
≥0

+
∑
j∈B

y⊤(Gj(f2, g, r))y︸ ︷︷ ︸
≥0

+y⊤τHy︸ ︷︷ ︸
≥0

−y⊤lTy

The only term that only potentially makes y⊤Uy negative is y⊤Cy + y⊤(−lT )y. Given
∥y∥2 = 1, a (trivial) lower bound on y⊤Cy + y⊤(−lT )y is

y⊤Cy + y⊤(−lT )y = y⊤Cy − t2l ≥ λmin(C)− l+.(21)

(case.1) If [t;x] ∈P(ϵ0), there must exist an index e ∈ [m] such that∣∣∣∣1t (a⊤
e x)− be

∣∣∣∣ > ϵ0.(22)

It follows that

y⊤Uy ≥ y⊤Cy + y⊤(−lT )y + y⊤KKiy

= y⊤Cy + y⊤(−lT )y + t2f1

(
1

t
(a⊤

e x+ se)− be

)2

≥ λmin(C)− l+ + t20f1ϵ
2
0 (by (21), (22))

≥ 0 (by (rule.iv)).

(case.2) If [t;x] ∈ P(ϵ0) ∩ I(ϵ0), then
1
t
(x) is a feasible solution of MBIP(ϵ0). Since ϵ0 < t1

by our choice, Theorem 2.5 implies that(
1

t
x

)⊤

Q

(
1

t
x

)
+ 2c⊤

1

t
x ≥ l − t2ϵ0.(23)
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Therefore, it follows that

y⊤Uy ≥ y⊤Cy + y⊤(−lT )y + y⊤τHy

= x⊤Qx+ 2tcx+ t2(−l) + y⊤τHy

= t2

((
1

t
x

)⊤

Q

(
1

t
x

)
+ 2c⊤

1

t
x− l

)
+ y⊤τHy

≥ t2(l − t2ϵ0 − l) + y⊤τHy (by (23))

≥ (−t2ϵ0) + τk (H is strictly copositive and t ≤ 1)

= 0 (by (rule.iii)).

(case.3) If [t;x] ∈ P(ϵ0) ∩ I(ϵ0), this implies that there exists e ∈ B such that

either
xe
t

∈ (1 + ϵ0,∞) or
xe
t

∈ (ϵ0, 1− ϵ0).

If xe
t

∈ (1 + ϵ0,∞), by Remark B.6, there exists some w ∈ [m], some e ∈ B and some
ue(ϵ0) > 0 such that ∣∣∣∣1t (a⊤

wx)− bw

∣∣∣∣ > ue(ϵ0)(24)

and it follows that

y⊤Uy ≥ y⊤Cy + y⊤(−lT )y + y⊤KKwy

= y⊤Cy + y⊤(−lT )y + t2f1

(
1

t
(a⊤

wx)− bw

)2

≥ λmin(C)− l+ + t20f1ue(ϵ0)
2 (by (21), (24))

≥ 0 (by (rule.iv)).

If xe
t
∈ (ϵ0, 1− ϵ0), this implies that

xe ≥ ϵ0t ≥ ϵ0t0 and t− xe ≥ ϵ0t ≥ ϵ0t0.(25)

Therefore, it follows that

y⊤Uy ≥ y⊤Cy + y⊤(−lT )y + y⊤(Ge(f2, g, r))y

≥ λmin(C)− l+ + y⊤(Ge(f2, g, r))y (by (21))

≥ λmin(C)− l+ + y⊤(−gNj)y

= λmin(C)− l+ + 2g(t− xe)xe

≥ λmin(C)− l+ + 2gϵ20t
2
0 (by 25)

≥ 0 (by (rule.v)).

This completes the proof. □

We now consider the case where the feasible set is unbounded andQ is PSD. The construction
is similar to the one in Theorem B.11, but the argument is slightly more complex since
Lemmas B.1 and B.10 fail in the unbounded case. Instead, we will make use of Theorem
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2.5 and Lemma B.8, which hold when Q is PSD. We will also use that Q can be written as
V V ⊤ for some V .

Theorem B.12. (Part (b) of Theorem 2.4 - unbounded case) Let l be the lower bound of the
optimal value that l ≤ z(b). Let t1, t2 be the same in Theorem 2.5 and let uj(·) the same in
Remark B.6. When Q is PSD, there exists some ρ, τ > 0 that only depend on A,b, c, Q,B,
such that for any ϵ0 ∈ (0, t1) and any r > 0,

U := U(f1, f2, g, r, α, l) = C + f1

∑
i∈[m]

KKi

+
∑
j∈B

Gj(f2, g, r) + τH − lT

is copositive for f1, f2, g, τ satisfying the following rules:

(rule.i) f2, g, r satisfies the condition in Lemma B.8 so that Gj(f2, g, r) is copositive,
(rule.ii) τ = t2ϵ0,

(rule.iii) f1 ≥ max

{
ρ+ l, 1

2τ
, ρ+l
ϵ20
,max
j∈B

{
ρ+l

uj(ϵ0)2

}}
,

(rule.iv) g ≥ ρ+l
ϵ20
.

Moreover, the objective value of U is l − τ · (1 +
∑
i∈[m]

b2i ) − r · |B|. This objective value can

be arbitrarily closed to l as r and ϵ0 goes to zero.

Proof. Let y := [t;x] ≥ 0, since Lemma B.8 still holds by rule.i, we can still express y⊤Uy
in the following way:

y⊤Uy = y⊤Cy +
∑
i∈[m]

y⊤f1(KKi)y︸ ︷︷ ︸
≥0

+
∑
j∈B

y⊤(Gj(f2, g, r))y︸ ︷︷ ︸
≥0

+y⊤τHy︸ ︷︷ ︸
≥0

−y⊤lTy

Again, the only term that is potentially negative is y⊤(−lT )y + y⊤Cy = −lt2 + 2tc⊤x +
x⊤Qx. Since Q is PSD, this term is non-negative when t = 0. Therefore when t = 0,
y⊤Uy ≥ 0. Therefore, we may assume that t = 1. We will consider two cases:

(case.1) [1 x] ∈ P(ϵ0) ∩ I(ϵ0).
(case.2) [1 x] /∈ P(ϵ0) ∩ I(ϵ0),

where P(ϵ0) and I(ϵ0) are defined in (19) and (20).

(case.1) If [1;x] ∈ P(ϵ0) ∩ I(ϵ0), then x is a feasible solution of MBQP(ϵ0). Since ϵ0 < t1 by
our choice, Theorem 2.5 implies that

2c⊤x+ x⊤Qx ≥ l − t2ϵ0.(26)
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Thus it follows that

y⊤Uy ≥ y⊤Cy + y⊤(−lT )y + y⊤τHy

= 2c⊤x+ x⊤Qx+ (−l) + y⊤τHy

≥ 2c⊤x+ x⊤Qx+ (−l) + y⊤τTy

≥ l − t2ϵ0 − l + τ (by 26)

= −t2ϵ0 + τ

= 0 (by (rule.ii)).

(case.2) If (1,x) ̸∈ P(ϵ0) ∩ I(ϵ0), the difficulty here is that y⊤Cy = 2c⊤x + x⊤Qx could
potentially go to negative infinity. This is different from the proof of Theorem B.11 because
y is normalized in a different way.

Since Q is PSD, there exists some V ∈ Rr×n such that Q = V ⊤V and x⊤Qx = (V x)⊤(V x).
Consider the following linear program:

τ := min
x,φ

φ

s.t. 2c⊤x = −1,
−φe ≤ V x ≤ φe,
−φ ≤ a⊤

i x ≤ φ, ∀i ∈ [m],
x ≥ 0, φ ≥ 0

(27)

First observe that τ > 0. If τ = 0, this implies that there exists some d such that 2c⊤d < 0
and V d = 0 and a⊤

i d = 0, ∀i ∈ [m] and d ≥ 0, implying that dj = 0,∀j ∈ B. Pick any
feasible solution x∗ of (MBQP), one can verify that x∗ + td remains feasible for all t ≥ 0
and its objective value goes to negative infinity as t goes to infinity. This shows that the
optimal value of the original (MBQP) is unbounded, which leads to contradiction. Since
(27)is feasible and bounded from below, we have that τ > 0 exists.

Select λ0 such that for all λ ≥ λ0, τ
2λ2 − 2λ− l ≥ 0 and then select

ρ := max{λ0,max
i∈[m]

{|bi|+ 1

τ
}}.(28)

If 2c⊤x ≥ −ρ, since y /∈ P(ϵ0) ∩ I(ϵ0), applying the same argument in the proof of Theorem
B.11, one of the following must hold:

∃e1 ∈ [m], |(a⊤
e1
x)− be1| > ϵ0,

∃e2 ∈ [m], j2 ∈ B, xj2 > 1 + ϵ0implying that |(a⊤
e2
x)− be2| > uj2(ϵ0),

∃j3 ∈ B, xj3 ∈ (ϵ0, 1− ϵ0).

This implies one of the following must hold:

∃e1 ∈ [m],y⊤(f1KKe1)y ≥ ϵ20f1,

∃e2 ∈ [m], j2 ∈ B,y⊤(f1KKe2)y ≥ (uj2(ϵ0))
2f1,

∃j3 ∈ B,y⊤(Gj3(f2, g, r))y ≥ y⊤Nj3y ≥ 2ϵ20g

Since y⊤(−lT )y+y⊤Cy ≥ −ρ−l, with (rule.iii) and (rule.iv), one can assert that y⊤Uy ≥ 0.
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It remains to consider the case when 2c⊤x < −ρ. We may write x = λx1 where 2c
⊤x1 = −1

and λ > ρ. Since x1 is a feasible solution in (27) and by definition τ , one of the following
must hold:

∃j4 ∈ [n], |(V x1)j4| = τ,(29)

∃e5 ∈ [m], |a⊤
e5
x1| = τ(30)

If (29) occurs, since λ > ρ ≥ λ0 by (28), it follows that

y⊤Uy ≥ y⊤(−lT )y + y⊤Cy

= 2c⊤x+ x⊤Qx− l

= 2λc⊤x1 + λ2(x1)
⊤Qx1 − l

≥ −2λ+ λ2τ 2 − l (by (29))

≥ 0 (by our choice of λ0 and λ > λ0)

If (30) occurs, since 2c⊤x < −ρ, let 2c⊤x = −ρ− ξ. Then we may write x = x2+ ξx1 where

x1,x2 ≥ 0, ξ > 0,x2 = ρx1. Since ρ ≥ max
i∈[m]

{ |bi|+1
τ

} by (28), then it follows that

|a⊤
e5
x− be5| = |a⊤

e5
x2 + ξa⊤

e5
x1 − be5| ≥ 1 + τξ.(31)

This implies

y⊤Uy ≥ y⊤(−lT )y + y⊤Cy + y⊤f1KKe5y

≥ (−ρ− l − ξ) + f1(1 + ξτ)2 (by (31))

= f1τ
2ξ2 + (2f1τ − 1)ξ + f1 − ρ− l

≥ 0 (by (rule.iii))

The last inequality comes from the fact that this lower bound f1τ
2ξ2+(2f1τ−1)ξ+f1−ρ−l is

a quadratic function on ξ and as long as f1−ρ− l ≥ 0, 2f1τ−1 ≥ 0, we can ensure y⊤Uy ≥ 0
for all ξ ≥ 0 and this condition is implied by (rule.iii).

□

B.4. Theorem 2.4(d): (COP-dual) is not attainable in general.

Consider the maximum stable set problem for a graph G = (V,E). This can be written as
the following (MBQP):

min−2
∑
j∈V

xi

s.t xu + xv + se = 1,∀e := {u, v} ∈ E

x ∈ {0, 1}V , s ≥ 0
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By Theorem B.11, strong duality holds between its (CP-primal) and (COP-dual). Its copos-
itive dual (COP-dual) is

max−(
∑
e∈E

2αe + βe)− θ

s.t. C +
∑
e∈E

(αeAe + βeAAe) + (
∑
j∈V

γjNj) + θT =M

M ∈ COP
Without losing generality, we may substitute Ae with KKe := T − Ae + AAe. In this case,
we can write (COP-dual) as

max−(
∑
e∈E

βe)− θ

s.t. C +
∑
e∈E

(µeR
(1)
e + βeAA

(1)
e ) + (

∑
j∈V

γjNj) + θT =M

M ∈ COP

(32)

of Part (d) of Theorem 2.4. Consider the above COP problem for the special case where the
graph G is a clique of size six. The stability number of a clique is one, so the optimal value
of (32) is −2. Suppose the value of (32) is attained. Then there exists some µ∗

e, β
∗
e , θ

∗, γ∗j
such that

(
∑
e∈E

β∗
e ) + θ∗ = 2

M∗ :=M(µ∗
e, β

∗
e , θ

∗, γ∗j ) ∈ COP

Since the graph is a clique, the problem is invariant under any permutation of vertices. Since
(32) is a convex program, there exists an optimal solution that is invariant under the given
symmetry. More specifically, there exists some µ∗, β∗, γ∗ such that

µ∗
a = µ∗, β∗

a = β∗,∀a ∈ E

γv = γ∗,∀v ∈ V

For the sake of contradiction, we will construct some non-negative vectors {yi := [ti;xi; si] ≥
0} such that (yi)

⊤M∗yi ≥ 0 can not hold simultaneously. We will construct those vectors
sequentially. We first show that γ∗ is rather negative. To see this, choose y1 := [1; 1

2
e; 0], In

this case, we have:

y⊤
1 M

∗y1 = −6 + (
∑
e∈E

β∗ + θ∗)︸ ︷︷ ︸
=2

−1

2

∑
j∈V

γ∗ ≥ 0

=⇒ −4− 3γ∗ ≥ 0 =⇒ γ∗ ≤ −4

3
.

Now for sufficiently small ϵ > 0 and pick some arbitrary v ∈ V , we choose y+ in the following
way:

t = 1 + ϵ, xj =

{
1 if j = v

0 otherwise
, se =

{
0 if e ∈ δ(v)

1 otherwise,
.

31



Since M∗ is copositive, we have (y+)
⊤M∗y+ ≥ 0

=⇒ − 2(1 + ϵ) + ((1 + ϵ)2θ∗ + (
∑
e∈E

β∗))− 2γ∗ϵ+ O(ϵ2)︸ ︷︷ ︸
introduced by y⊤

+KKiy+

≥ 0

=⇒ − 2(1 + ϵ) + (2ϵθ∗ + ϵ2θ∗) + (θ∗ + (
∑
e∈E

β∗)︸ ︷︷ ︸
=2

−2γ∗ϵ+O(ϵ2) ≥ 0

=⇒ − 2ϵ+ 2ϵθ∗ − 2γ∗ϵ+O(ϵ2) ≥ 0

=⇒ − 1 + θ∗ − γ∗ +O(ϵ) ≥ 0.

Applying the same idea, we choose y− by replace ϵ with −ϵ and then derive

−1 + θ∗ − γ∗ +O(ϵ) ≤ 0.

Combining with previous result, we get

−O(ϵ) ≤ θ∗ − γ∗ − 1 ≤ O(ϵ) =⇒ θ∗ − γ∗ − 1 = 0.(33)

For the last vector, for sufficiently small ϵ > 0 and one arbitrary vertex u ∈ V , we construct
y2 in the following way:

t = 1, xj =

{
1 + ϵ if j = u

0 otherwise
, se =

{
0 if e ∈ δ(u)

1 otherwise
.

Since M∗ is copositive, we have y⊤
2 M

∗y2 ≥ 0,

=⇒ − 2(1 + ϵ) + θ∗ + (
∑
e∈δ(u)

(1 + ϵ)2β∗) + (
∑
e/∈δ(u)

β∗) + 2γ∗(1 + ϵ)ϵ+ O(ϵ2)︸ ︷︷ ︸
introduced by (y2)⊤KKiy2

≥ 0

=⇒ − 2(1 + ϵ) + θ∗ + (
∑
e∈E

β∗)︸ ︷︷ ︸
=2

+ (
∑
e∈δ(u)

2ϵβ∗)

︸ ︷︷ ︸
=10ϵβ∗= 2

3
ϵ(2−θ∗)

+(
∑
e∈δ(u)

ϵ2β∗)

︸ ︷︷ ︸
=O(ϵ2)

+2γ∗(1 + ϵ)ϵ+O(ϵ2) ≥ 0

=⇒ − 2ϵ+
2

3
ϵ(2− θ∗) + 2γ∗(1 + ϵ)ϵ+O(ϵ2) ≥ 0

=⇒ − 2 +
2

3
(2− θ∗) + 2γ∗(1 + ϵ) +O(ϵ) ≥ 0

=⇒ − 2 +
2

3
(1− γ∗) + 2γ∗(1 + ϵ) +O(ϵ) ≥ 0 (by (33))

=⇒ − 2 +
2

3
(1− γ∗) + 2γ∗ +O(ϵ) ≥ 0

=⇒ − 4

3
+

4

3
γ∗ +O(ϵ) ≥ 0 (contradiction since γ∗ < 0).

□

The above result implies that when P is unbounded and Q is PSD then (2) may not have a
Slater point in the general case. This can also be shown through a simpler construction: let
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Q = ([n− 1;−e])([n− 1;−e])⊤ ∈ Rn, consider the following instance of (MBQP):

min{x⊤Qx|x ≥ 0}.
By (Part (b) of Theorem 2.4), strong duality holds. Its (COP-dual) takes form of

max−t

s.t.

[
t 0
0 Q

]
=M,M ∈ COP .(34)

One can see that there is no Slater point in (34) since [0; 1; e]⊤M [0; 1; e] = 0 no matter what
t is.

Appendix C. Further details on computational results

This section provides additional details on the preliminalry computational experiments from
Section 2.4. As mentioned in Section 2.4, our lower bounds are produced by optimizing the
following objective function

(35) min
p,γ,δ,l

−l +
m∑
i=1

(w
(1)
i pi + w

(2)
i δi).

for some given nonnegative vectors w(1),w(2). Though any vectors w(1),w(2) ≥ 0 allow us
to derive lower bounds, we can obtain better practical results by selecting them carefully.
Assume that the target range of ∆bi is {0, 1, . . . , rgi}. We select the vectors w(1),w(2) as
follows:

w
(1)
i =

∑rgi
ρ=0 ρ

2

rgi + 1
and w

(2)
i =

∑rgi
ρ=0 2ρ

rgi + 1
.

The motivation behind such a choice is to maximize the average predicted lower bound over
all ∆b in the target range, as explained next.

Given optimal l∗, p∗, δ∗, the predicted lower bound of z(b+∆b) is

Predict(∆b; l∗, p∗, δ∗) = l∗ −
m∑
i=1

[p∗i (∆bi)
2 − 2δ∗i∆bi].

Note that the the average of (∆bi)
2 over the target range is (

∑rgi
ρ=0 ρ

2)/(rgi + 1), and

the average of 2∆bi is (
∑rgi

ρ=0 2ρ)/(rgi + 1). Hence, our choice of w(1),w(2) means that

the objective value in (35) corresponds to maximizing the average predicted lower bound
Predict(∆b; l∗, p∗, δ∗) over all the ∆b in the target range.

The remaining of this section provides more refined information regarding the tables from
Section 2.4. Specifically, Tables 8–10 expand on Table 1 by providing results for each density
level. Similarly, Tables 5–7 expand on Table 2, and Tables 11–13 expand on Table 3.
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Table 5. Average relative gap (COMB) – density=0.3

∆k 1 2 3 4 5 6 7 8 9 10 avg time(s)

Shor1 1 1 1 1 1 1 1 1 1 1 1.02
Shor2 1.21 2.60 3.94 3.41 3.38 3.30 3.25 3.17 3.17 3.22 1.97

our method 0.83 0.15 0.01 0.22 0.32 0.40 0.47 0.54 0.57 0.60 1.10
Cont 0.75 0.91 1.08 1.06 1.05 1.04 1.03 1.03 1.03 1.02 0.00

Table 6. Average relative gap (COMB) – density=0.5

∆k 1 2 3 4 5 6 7 8 9 10 avg time(s)

Shor1 1 1 1 1 1 1 1 1 1 1 4.9
Shor2 0.71 1.59 1.86 1.85 1.88 1.92 1.96 1.96 1.99 2.04 7.6

our method 0.78 0.09 0.01 0.14 0.23 0.31 0.37 0.44 0.48 0.51 5.61
Cont 0.82 1.05 1.07 1.06 1.05 1.04 1.03 1.03 1.03 1.02 0.00

Table 7. Average relative gap (COMB) – density=0.7

∆k 1 2 3 4 5 6 7 8 9 10 avg time(s)

Shor1 1 1 1 1 1 1 1 1 1 1 15.90
Shor2 1.33 2.04 2.7 2.71 2.76 2.79 2.87 2.88 2.94 3.03 20.85

our method 0.83 0.02 0.00 0.11 0.19 0.26 0.32 0.38 0.41 0.44 18.35
Cont 0.97 1.07 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.04 0.00

Table 8. Average relative gap (SSLP) – density=0.3

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 1 1 1 3.68
Shor2 1.25 1.63 1.83 7.14

our method 0.54 0.50 0.56 5.64
Cont 1.00 1.00 1.00 0.00

Table 9. Average relative gap (SSLP) – density=0.5

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 1 1 1 3.53
Shor2 1.09 1.18 1.26 7.11

our method 0.68 0.64 0.68 5.68
Cont 1.00 1.00 1.00 0.00

Table 10. Average relative gap (SSLP) – density=0.7

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 1 1 1 3.69
Shor2 1.03 1.08 1.11 7.38

our method 0.74 0.70 0.73 6.15
Cont 1.00 1.00 1.00 0.00
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Table 11. Average relative gap (SSQP) – density=0.3

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 1 1 1 3.53
Shor2 1.35 1.56 1.76 7.11

our method 0.52 0.48 0.53 6.12
Cont 1.00 1.00 1.00 0.00

Table 12. Average relative gap (SSQP) – density=0.5

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 1 1 1 3.59
Shor2 1.02 1.06 1.1 7.10

our method 0.51 0.48 0.52 5.56
Cont 1.00 1.00 1.00 0.00

Table 13. Average relative gap (SSQP) – density=0.7

∥∆b∥∞ ≤ 1 ≤ 2 ≤ 3 avg time(s)

Shor1 1 1 1 3.62
Shor2 0.97 0.98 1.0 7.00

our method 0.63 0.62 0.67 6.02
Cont 1.00 1.00 1.00 0.00
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