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Abstract

Incorporating energy storage systems (ESS) into power systems has been studied in many
recent works, where binary variables are often introduced to model the complementary nature of
battery charging and discharging. A conventional approach for these ESS optimization problems
is to relax binary variables and convert the problem into a linear program. However, such linear
programming relaxation models can yield unrealistic fractional solutions, such as simultaneous
charging and discharging. In this paper, we develop a regularized Mixed-Integer Programming
(MIP) model for the ESS optimal power flow (OPF) problem. We prove that under mild condi-
tions, the proposed regularized model admits a zero integrality gap with its linear programming
relaxation; hence, it can be solved efficiently. By studying the properties of the regularized MIP
model, we show that its optimal solution is also near-optimal to the original ESS OPF problem,
thereby providing a valid and tight upper bound for the ESS OPF problem. The use of the
regularized MIP model allows us to solve two intractable problems: a two-stage stochastic ESS
OPF problem and a trilevel min-max-min network contingency problem.

1 Introduction

Modern electrical grids have undergone significant transformations in the past few decades with in-
creased integration of renewable energy resources and distributed energy resources. In spite of many
benefits brought by these new entrants, power grids are also experiencing increased uncertainties
due to inherent dependency on weather and short-term demand forecasts, which are challenging
to accurately predict. To mitigate these challenges, many Independent System Operators (ISOs)
are turning their attention to energy storage systems (ESS), also referred to as batteries for conve-
nience in this paper. In their most recent annual study, the U.S. Energy Information Administration
(2023) predicted 160 gigawatts of total installed battery storage capacity in the U.S. by the year
2050.

Adding batteries to the electrical grids raises many new optimization concerns, encompassing
both the market and operational sides, that must be addressed (Gür 2018). Hoffman et al. (2011)
pointed out the lack of analytical models to optimally incorporate batteries into the grid. Sioshansi
et al. (2022) discussed the challenges in energy storage modeling and summarized several essential
constraints to be added for energy storage models. These constraints form the basis of many
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works that embed ESS in their corresponding optimization models (see the details in Löhndorf and
Wozabal 2023, Wu et al. 2023).

Some previous studies that consider ESS in optimization problems include unit commitment
problems with hydro storage (see, e.g., Jiang et al. 2012), economic dispatch problems (see, e.g.,
Yan et al. 2016), optimal bidding strategy for battery operators (see, e.g., Jiang and Powell 2015),
planning problems for wind farm and battery sitting (see, e.g., Qi et al. 2015), and control policy
problems for optimizing the revenue of battery operators (see, e.g., Salas and Powell 2018).

Incorporating batteries in the optimal power flow (OPF) problems, which aim to reduce unmet
demand or overproduction in the system while meeting physical constraints in the electrical grid,
adds a unique complexity because a battery can act as both a demand and a generator. When
a battery is being charged, it is viewed as a demand, whereas when it is discharged, it works as
another generator in the system. This complementary bilinear constraint can be formulated as a
linear constraint using binary variables to indicate whether the battery is charging or discharging at
a certain time, making it a mixed-integer program (MIP). We refer to this problem as the optimal
power flow problem with batteries or energy storage systems.

In this paper, we analyze and propose a new regularized MIP model for the optimal power flow
problem with batteries.

1.1 Relevant Literature

The OPF problem itself is a long-studied topic within the domain of power and energy systems
(Carpentier 1962), where an accurate solution to the power flow problem is obtained by using the
AC power flow model. However, due to the computational intractability arising from its nonlinear
and nonconvex nature, ongoing efforts have been made to reformulate or relax the AC power flow
model into a convex one (see, for example, details in Jabr 2008, Lavaei and Low 2012, Kocuk
et al. 2016, Coffrin et al. 2015). The DC power flow model, which ignores reactive power, is
by far the most widely used model. ISOs also employ the DC power flow model in the current
electricity market. Moreover, for long-term planning problems, the DC approximation appears to
be reasonable (see, e.g., Cole et al. 2017). Therefore, we focus on the DC model of power flow
equations.

The incorporation of ESS into DCOPF problems has been of interest for more than a decade.
Chandy et al. (2010) studied the impact of batteries on generation schedules and showed that,
for the case with a single generator and a single demand load, there is a pattern for the state-
of-charge of a battery with the assumption that the battery is lossless. However, batteries are
indeed loss-incurring, and a more accurate model of battery operations formulates the problem
with binary variables to represent the complementary nature of charging and discharging for a
battery with a round-trip efficiency of less than 1. While these models represent more realistic
battery operations, they are more challenging to solve due to the nonconvex nature of the resulting
formulations. To avoid this complexity due to binary variables, many papers use convex constraints
to model the battery operations (see, e.g., Pozo et al. 2014, Lorca and Sun 2016, Kody et al.
2022). Specifically, Pozo (2022) summarized various linear programming (LP) formulations that
are valid relaxations of the MIP. Despite the convenience of incorporating battery models into
other optimization problems, these simple convex models may yield unrealistic solutions. This
issue has been discussed in Arroyo et al. (2020), where counterexamples demonstrate that a battery
charges and discharges simultaneously despite satisfying all conditions presented for strong convex
relaxation models.

Active research is ongoing to propose improved solution methodologies or tighter formulations
for related problems. For example, Kim and Powell (2011) formulated and derived an optimal
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dispatch policy for maximizing the profit of a wind farm with a co-located energy storage device.
In Nascimento and Powell (2013), the authors used approximate dynamic programming for an
economic dispatch problem with a single energy storage device. Recently, Baldick et al. (2023)
developed valid inequalities for specific types of storage systems to maximize the profit of batteries
based on price signals. However, in the context of DCOPF with ESS, there have been few attempts
to bridge this gap between using a simple model that yields an infeasible fractional solution and
using a complex model that is exact and yields feasible solutions.

1.2 Summary of Contributions

In this paper, we propose a regularized MIP model for battery operations in the DC optimal power
flow problem. The main benefits of the regularized MIP model are summarized below.

• Regularized MIP model with zero integrality gap. In the exact battery model, one must
enforce pctp

d
t = 0, where pct and pdt are the amount of power being used to charge and discharge

a battery at time t, respectively. One can view this as enforcing a very specific sparsity
condition. Often, sparsity is achieved by the addition of an ℓ1 regularizer penalty (see, e.g.,
Tibshirani 1996, Dey et al. 2022). In the same spirit, we perturb the original objective
function of DCOPF with batteries by adding ℓ1 regularizers with respect to pct and pdt for
all times t. We prove that under mild conditions that are standard in most of the literature
(see, e.g., Pozo 2022, Kody et al. 2022) and for a sufficiently large penalty, where the penalty
value depends only on the efficiency of the battery (see details in Section 3), the regularized
MIP has zero integrality gap with its LP relaxation. This regularized MIP model achieves the
goal of being simple to solve yet produces feasible solutions for the actual battery operations.
Moreover, the required penalty value is quite small for standard battery efficiencies, thus
yielding near-optimal solutions in all our studies.

• High-quality upper bound. The optimal solution of the regularized MIP model is a feasible
solution to the original MIP and provides a valid and tight upper bound. We formally study
the structural difference between the optimal solution of the regularized problem and the
original battery problem, provide an exactness condition, that is a condition under which we
obtain the same solution, and prove a worst-case bound upper bound on the gap between
their optimal objective values. We also evaluate our regularized MIP with a specific choice
of regularizer parameter and empirically show that in practice the relative gap is small.

• Application to long-term planning problems. Leveraging the benefit of having no integrality
gap for the regularized MIP, we examine two challenging applications.

The first application is a planning problem under a stochastic demand. This problem is
modeled as a two-stage stochastic optimization problem, where the first-stage decision is the
placement of batteries in the network and the second-stage decision is the optimal operation
scheme including power generations and battery operations under uncertain demand scenar-
ios. Since the second stage can be equivalently formulated as an LP instead of a MIP, this
significantly improves our ability to solve this class of problems. Our empirical studies on
standard network instances with up to 2000 nodes show that we almost always recover the
correct optimal solution to the first-stage decision variables in a significantly shorter time
than solving the original problem.

The second application is a trilevel min-max-min contingency problem involving binary de-
cision variables at each level. At the outermost level, a network designer is planning the
locations of the batteries. The middle level is an interdictor allowed to attack a budgeted
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amount of the network. The innermost minimization problem is the system operator solving
DCOPF with batteries. Using our regularized model in the third level allows us to replace
an integer program with its LP relaxation. We can then take the dual of this LP relaxation,
thus allowing the problem to be reduced to a bilevel problem with bounded dual variables
(see details in Section 4.5). The resulting bilevel problem can now be solved more efficiently
with combinatorial algorithms. We empirically test on instances with up to 2000 nodes and
are able to solve this class of challenging trilevel instances in less than 6 hours.

To the best of our knowledge, this is the first time that either the battery placement prob-
lem under stochastic demand or the N − k contingency problem for battery operations has
been studied. These models may be of independent interest to the power systems research
community.

Organization. The remainder of the paper is organized as follows. Section 2 provides a detailed
mathematical formulation of the DCOPF with ESS. Section 3 introduces the regularized MIP
model, presents its structural properties, and provides a comparison against the original MIP
model. Section 4 details the numerical experiments and demonstrates the power of using regularized
formulation on two challenging optimization problems. Section 5 concludes the paper.
Notation. The following notation is used throughout the paper. We use bold letters (e.g., x,y)
to denote vectors and matrices and use corresponding non-bold letters to denote their components.
Given an integer n, we let [n] := {1, 2, . . . , n}, and use Rn

+ := {x ∈ Rn : xi ≥ 0, ∀i ∈ [n]}. We let e
be the vector or matrix of all ones and let ei be the i-th standard basis vector. Given a finite set I,
we let |I| denote its cardinality. The indicator function 1(x ∈ R) = 1 if x ∈ R, and 0, otherwise.
Additional notations are introduced as needed.

2 Mathematical Formulation

In this section, we present the mathematical model for the DCOPF problem with batteries placed
at a subset of network buses. Consider a network with a set of buses denoted as N and a set
of transmission lines denoted as L. The batteries are placed at a subset of buses Nb ⊆ N . For
simplicity, we assume that all batteries within the network have the same initial state-or-charge
and configuration of efficiency level, lower and upper bounds on state-of-charge, charging rate,
and discharging rate. Moreover, we assume these parameters remain unchanged over time. Our
results on the regularized formulation in the next section do not require these assumptions. Let set
T = {1, . . . , T} represent the finite time horizon with equal time intervals. At each time t ∈ T , we
decide the power output of each generator pgt,i at bus i ∈ N , taking into account the minimum and

maximum generation limits, denoted Gmax
i and Gmin

i , respectively, i.e.,

Gmin
i ≤ pgt,i ≤ Gmax

i , ∀t ∈ T , i ∈ N . (1a)

Notice that if there is no generator at a certain bus i ∈ N , we set Gmin
i = Gmax

i = 0. We also decide
the power flow ft,ij through transmission line (i, j) ∈ L subject to the limit for both directions
Fij , i.e.,

− Fij ≤ ft,ij ≤ Fij , ∀t ∈ T , (i, j) ∈ L. (1b)

The flow on a transmission line is proportional to the difference in phase angles of the corresponding
buses:

ft,ij = Bij(θt,i − θt,j), ∀t ∈ T , (i, j) ∈ L, (1c)
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where Bij is the susceptance of the transmission lines (i, j) ∈ L.
For batteries placed at certain nodes i ∈ Nb, we determine the operations of the batteries. Since

a battery can only charge or discharge at a given time point, we use a binary variable ut,i ∈ {0, 1}
to denote charging (ut,i = 1) and discharging (ut,i = 0) states. When a battery is charging, we
decide the charging amount pct,i subject to its upper and lower limits, denoted as Emax

c and Emin
c ,

respectively. Similarly, when the battery is discharging, we decide the discharging amount pdt,i
subject to its upper limit Emax

d and lower limit Emin
d , i.e.,

Emin
c ut,i ≤ pct,i ≤ Emax

c ut,i, ∀t ∈ T , i ∈ Nb, (1d)

Emin
d (1− ut,i) ≤ pdt,i ≤ Emax

d (1− ut,i), ∀t ∈ T , i ∈ Nb. (1e)

We use η ∈ (0, 1] to denote the charging efficiency and 1/η to represent the discharging efficiency,
accounting for energy losses incurred during imperfect round-trip energy conversions, which may
result from factors like friction. The state-of-charge, represented by pst,i, evolves based on the
amount of battery charging and discharging. We assume an initial state-of-charge to be E0, i.e.,

pst,i = pst−1,i + η · pct,i − 1/η · pdt,i, ∀t ∈ T , i ∈ Nb, (1f)

ps0,i = E0, ∀i ∈ Nb. (1g)

The state-of-charge of batteries is subject to upper and lower bounds for reliable operations, i.e.,

Emin ≤ pst,i ≤ Emax, ∀t ∈ T , i ∈ Nb. (1h)

In case there are no batteries at certain nodes i ∈ N \ Nb, all battery-related variables are set to
zero, i.e.,

pst,i = ps0,i = pct,i = pdt,i = ut,i = 0, ∀t ∈ T , i ∈ N \ Nb. (1i)

These operational decisions may lead to load shedding plst,i if available power at bus i ∈ N is
insufficient to meet the demand Dt,i. Conversely, the system may experience excess power pext,i if
available power exceeds demand. These variables act as slack variables and are always nonnegative:

pls, pex ≥ 0. (1j)

It is important to note that in an optimal solution, only one of load shedding or excess power can
occur at a given time at each bus, ensuring that plst,ip

ex
t,i = 0 for all i ∈ N and t ∈ T .

Altogether, these decisions must satisfy the power balance equation:∑
j∈δ+i

ft,ij −
∑
j∈δ−i

ft,ji = pgt,i −Dt,i − pct,i + pdt,i + plst,i − pext,i, ∀t ∈ T , i ∈ N , (1k)

where δ+i = {j ∈ N : (i, j) ∈ L} and δ−i = {j ∈ N : (j, i) ∈ L}. Since both load shedding and
excess power can be detrimental to the system, our goal is to minimize the total load shedding plst,i
and excess power pext,i over the entire network buses i ∈ N and the time horizon t ∈ T .

For the rest of the paper, for simplicity, we use p = (pg,ps,pc,pd,pls,pex), the system-wide
cost c(p) =

∑
t∈T

∑
i∈N [plst,i + pext,i], N = |N |, and Nb = |Nb|. Using these notations, we are now

ready to introduce the DCOPF problem with the battery, that is,

fori = min
θ,f ,p,u

{
c(p) : (1a)− (1k), u ∈ {0, 1}T×N

}
. (Battery)

Without loss of generality, we assume that 0 ≤ Fij for all (i, j) ∈ L, 0 ≤ Gmin
i ≤ Gmax

i for each
i ∈ N , 0 ≤ Emin ≤ Emax, 0 ≤ Emin

c ≤ Emax
c , and 0 ≤ Emin

d ≤ Emax
d . Hence, it follows immediately

pg, ps, pc, pd ≥ 0.
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3 Regularized MIP Model

In this section, we first introduce a regularized MIP model and provide conditions such that this
regularized MIP has the same optimal objective function value as its LP relaxation. To sim-
plify the notation, we employ the function g(·) to map p to a two-dimensional vector: g(p) =
(
∑

t∈T
∑

i∈N pct,i,
∑

t∈T
∑

i∈N pdt,i)
⊤. Now, we introduce a regularization function aimed at penal-

izing pc and pd with a given λ = (λc, λd)
⊤ ∈ R2

+, that is,

f reg(λ) = min
θ,f ,p,u

{
c(p) + λ⊤g(p) : (1a)− (1k), u ∈ {0, 1}T×N

}
. (Reg-Battery)

In (Reg-Battery) problem, the only binary decision is u ∈ {0, 1}T×N . By relaxing this binary
variable u to be continuous, we have the following convex relaxation for (Reg-Battery) problem:

f reg
l (λ) = min

θ,f ,p,u

{
c(p) + λ⊤g(p) : (1a)− (1k), u ∈ [0, 1]T×N

}
. (LP-Reg-Battery)

One of our main results in this section is to provide nontrivial sufficient conditions such that
(Reg-Battery) problem and (LP-Reg-Battery) problem have the same optimal objective function
value.

Theorem 1. Suppose that Emin
c = Emin

d = 0. If λc + η2λd ≥ 1 − η2, then we have that f reg(λ) =
f reg
l (λ).

Proof. (LP-Reg-Battery) problem is a relaxation of (Reg-Battery) problem, so it remains to show
that an optimal solution of (LP-Reg-Battery) problem is achieved with ut,i ∈ {0, 1} for all t ∈ T
and i ∈ Nb, which is equivalent to showing that pct,i = 0 or pdt,i = 0 for all t ∈ T and i ∈ N .

Let (θ̂, f̂ , p̂, û) be an optimal solution of (LP-Reg-Battery) problem. Suppose that p̂ct∗,i∗ > 0 and

p̂dt∗,i∗ > 0 for some t∗ ∈ T and i∗ ∈ N . We show that we can always find another feasible solution

(θ̃, f̃ , p̃, ũ) such that at most one of p̃ct∗,i∗ and p̃dt∗,i∗ is positive for this given t∗ ∈ T and i∗ ∈ N and

the corresponding objective value is at least as good as that of (θ̂, f̂ , p̂, û). Such a solution can be
constructed as follows:

θ̃ = θ̂, f̃ = f̂ , p̃g = p̂g, p̃s = p̂s,

p̃ct,i = max{p̂ct,i − 1/η2 · p̂dt,i, 0}, ∀t ∈ T , i ∈ N , (2a)

p̃dt,i = max{p̂dt,i − η2 · p̂ct,i, 0}, ∀t ∈ T , i ∈ N , (2b)

p̃lst,i = max{−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + p̃ct,i − p̃dt,i, 0}, ∀t ∈ T , i ∈ N , (2c)

p̃ext,i = max{p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i − p̃ct,i + p̃dt,i, 0}, ∀t ∈ T , i ∈ N , (2d)

ũt,i = 1
{
p̃ct,i > 0

}
, ∀t ∈ T , i ∈ N . (2e)

Obviously, (θ̃, f̃ , p̃, ũ) satisfies all the constraints of (LP-Reg-Battery) problem. In particular, for
each t ∈ T , i ∈ N , the following equality is satisfied from the power balance equation (1k):

−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i = −p̃ct,i + p̃dt,i + p̃lst,i − p̃ext,i. (3)

Then, using the fact that p̃lst,ip̃
ex
t,i = 0 and p̃ct,ip̃

d
t,i = 0 for each t ∈ T , i ∈ N , it is sufficient to consider

the following four cases.
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(Case 1) When p̃dt,i = p̃lst,i = 0, the objective value of (LP-Reg-Battery) problem is

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i = p̃ext,i + λcp̃

c
t,i.

From condition (3), we have p̃ext,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i − p̃ct,i + p̃dt,i + p̃lst,i. Then, we
substitute it for the objective value of (LP-Reg-Battery) problem, that is,

p̃ext,i + λcp̃
c
t,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i − p̃ct,i + λcp̃

c
t,i.

Based on construction in (2a) and (2b), together with the presumption p̃dt,i = 0, we know

p̂dt,i − η2 · p̂ct,i ≤ 0, which implies that p̂ct,i − p̂dt,i/η
2 ≥ 0 and p̃ct,i = p̂ct,i − p̂dt,i/η

2. Then, the
objective value of (LP-Reg-Battery) problem can be simplified as

p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i − p̃ct,i + λcp̃
c
t,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i + (λc − 1)

(
p̂ct,i −

1

η2
· p̂dt,i

)
= −p̂lst,i + p̂ext,i + λcp̂

c
t,i +

1− λc − η2

η2
p̂dt,i.

According to the assumption λc + η2λd ≥ 1 − η2 with 0 < η ≤ 1, together with the fact
that p̂lst,i is nonnegative, we have

−p̂lst,i + p̂ext,i + λcp̂
c
t,i +

1− λc − η2

η2
p̂dt,i ≤ p̂lst,i + p̂ext,i + λcp̂

c
t,i + λdp̂

d
t,i.

Thus, in this case, we have

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i ≤ p̂lst,i + p̂ext,i + λcp̂

c
t,i + λdp̂

d
t,i.

(Case 2) When p̃dt,i = p̃ext,i = 0, the objective value of (LP-Reg-Battery) problem is

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i = p̃lst,i + λcp̃

c
t,i.

From condition (3), we have

p̃lst,i + λcp̃
c
t,i = −p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + p̃ct,i + λcp̃

c
t,i.

Similarly, based on construction in (2a) and (2b), together with the presumption p̃dt,i = 0,

we have p̃ct,i = p̂ct,i − p̂dt,i/η
2. Then, the objective value of (LP-Reg-Battery) problem can

be simplified as

−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + p̃ct,i + λcp̃
c
t,i = −p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + (λc + 1)

(
p̂ct,i −

1

η2
· p̂dt,i

)
= p̂lst,i − p̂ext,i + λcp̂

c
t,i +

(
1− 1

η2
− λc

η2

)
p̂dt,i.

According to the assumption λc + η2λd ≥ 1 − η2 with 0 < η ≤ 1, together with the fact
that p̂ext,i is nonnegative, we have

p̂lst,i − p̂ext,i + λcp̂
c
t,i +

(
1− 1

η2
− λc

η2

)
p̂dt,i ≤ p̂lst,i + p̂ext,i + λcp̂

c
t,i + λdp̂

d
t,i.

Thus, in this case, we have

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i ≤ p̂lst,i + p̂ext,i + λcp̂

c
t,i + λdp̂

d
t,i.
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(Case 3) When p̃ct,i = p̃lst,i = 0, the objective value of (LP-Reg-Battery) problem is

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i = p̃ext,i + λdp̃

d
t,i.

From condition (3), we have

p̃ext,i + λdp̃
d
t,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i + p̃dt,i + λdp̃

d
t,i.

Based on construction in (2a) and (2b), together with the presumption p̃ct,i = 0, we know

p̂ct,i − p̂dt,i/η
2 ≤ 0, which implies that p̂dt,i − η2 · p̂ct,i ≥ 0 and p̃dt,i = p̂dt,i − η2 · p̂ct,i. Then, the

objective value of (LP-Reg-Battery) problem can be simplified as

p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i + p̃dt,i + λdp̃
d
t,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i + (λd + 1)(p̂dt,i − η2 · p̂ct,i)

= −p̂lst,i + p̂ext,i +
(
1− η2λd − η2

)
p̂ct,i + λdp̂

d
t,i.

According to the assumption λc + η2λd ≥ 1 − η2 with 0 < η ≤ 1, together with the fact
that p̂lst,i is nonnegative, we have

−p̂lst,i + p̂ext,i +
(
1− η2λd − η2

)
p̂ct,i + λdp̂

d
t,i ≤ p̂lst,i + p̂ext,i + λcp̂

c
t,i + λdp̂

d
t,i.

Thus, in this case, we have

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i ≤ p̂lst,i + p̂ext,i + λcp̂

c
t,i + λdp̂

d
t,i.

(Case 4) When p̃ct,i = p̃ext,i = 0, the objective value of (LP-Reg-Battery) problem is

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i = p̃lst,i + λdp̃

d
t,i.

From condition (3), we have

p̃lst,i + λdp̃
d
t,i = −p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i − p̃dt,i + λdp̃

d
t,i.

Similarly, based on construction in (2a) and (2b), together with the presumption p̃ct,i = 0,

we have p̃dt,i = p̂dt,i − η2 · p̂ct,i. Then, the objective value of (LP-Reg-Battery) problem can
be simplified as

−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i − p̃dt,i + λdp̃
d
t,i = −p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + (λd − 1)(p̂dt,i − η2 · p̂ct,i)

= p̂lst,i − p̂ext,i +
(
η2 − η2λd − 1

)
p̂ct,i + λdp̂

d
t,i.

According to the assumption λc + η2λd ≥ 1 − η2 with 0 < η ≤ 1, together with the fact
that p̂ext,i is nonnegative, we have

p̂lst,i − p̂ext,i +
(
η2 − η2λd − 1

)
p̂ct,i + λdp̂

d
t,i ≤ p̂lst,i + p̂ext,i + λcp̂

c
t,i + λdp̂

d
t,i.

Thus, in this case, we have

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i ≤ p̂lst,i + p̂ext,i + λcp̂

c
t,i + λdp̂

d
t,i.

8



Since above four cases hold for each t ∈ T and i ∈ N , we have

c(p̃) + λ⊤g(p̃) =
∑
t∈T

∑
i∈N

[
p̃lst,i + p̃ext,i

]
+ λc

∑
t∈T

∑
i∈N

p̃ct,i + λd

∑
t∈T

∑
i∈N

p̃dt,i

≤
∑
t∈T

∑
i∈N

[
p̂lst,i + p̂ext,i

]
+ λc

∑
t∈T

∑
i∈N

p̂ct,i + λd

∑
t∈T

∑
i∈N

p̂dt,i

= c(p̂) + λ⊤g(p̂).

This completes the proof. □
Theorem 1 demonstrates the equivalence between the optimal objective function value of (Reg-Battery)

problem and (LP-Reg-Battery) problem under regularization (for sufficiently high penalty) and the
assumption that Emin

c = Emin
d = 0. Note that this assumption is standard and appears in many

recent works, such as Pozo (2022) and Kody et al. (2022). The technique to devise an integral
solution by perturbing the charge and discharge levels has been used in the context of optimizing
for a single solar-battery storage system in Singh and Knueven (2021).

Theorem 1 easily leads to the following Corollary.

Corollary 1. When η = 1, for any λ ≥ 0, (Reg-Battery) problem and (LP-Reg-Battery) prob-
lem are equivalent. In particular, when λ = 0, (Battery) problem, (Reg-Battery) problem, and
(LP-Reg-Battery) problem are all equivalent, i.e., fori = f reg(0) = f reg

l (0).

Therefore, when efficiency η = 1 (i.e., the battery is lossless), relaxing the integrality of battery
operations is exact. However, as η = 1 does not occur in practice, most literature concerning
battery operation bases numerical experiments with efficiency η < 1.

Finally, we remark that the two assumptions of Theorem 1, (i.e., Emin
c = Emin

d = 0 and λc +
η2λd ≥ 1−η2) are the best that we may expect for the equivalence of the optimal objective function
value of the regularized MIP model and its LP relaxation. The following two examples illustrate
that (Reg-Battery) problem and (LP-Reg-Battery) problem do not have the same optimal objective
function value if either of these two assumptions in Theorem 1 is violated.

Example 1. (f reg(λ) ̸= f reg
l (λ) when Emin

c , Emax > 0) Consider a simple network with N =
{1, 2}, T = {1, 2}, L = {(1, 2)}. Suppose one battery is placed at node 2 (there is no battery placed
at node 1) with Nb = {2} and Emin

c = Emin
d = τ , Emax

c = Emax
d = 2, Emin = 0, Emax = 4, E0 = 0,

and η = 1/2. Assume each node has one generator with Gmin
1 = Gmin

2 = 2 and Gmax
1 = Gmax

2 = 4.
We further assume −4 ≤ f12 ≤ 4 and the demand is D1,1 = 2, D1,2 = 4, D2,1 = 6, D2,2 = 4.
Without loss of generality, we assume that the Ohm’s law constraint (1c) is satisfied. When
λ = (3/5, 3/5)⊤, for any τ ∈ (0, 1/2], an optimal solution of (Reg-Battery) problem is

p̂c1,1 = 0, p̂c1,2 = 4τ, p̂c2,1 = 0, p̂c2,2 = 0,

p̂d1,1 = 0, p̂d1,2 = 0, p̂d2,1 = 0, p̂d2,2 = τ,

p̂ls1,1 = 0, p̂ls1,2 = 0, p̂ls2,1 = 0, p̂ls2,2 = 2− τ,

p̂ex1,1 = 0, p̂ex1,2 = 0, p̂ex2,1 = 0, p̂ex2,2 = 0,

û1,1 = 0, û1,2 = 1, û2,1 = 0, û2,2 = 0,

with the optimal objective value v̂ = 2 + 2τ .
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While an optimal solution of the corresponding (LP-Reg-Battery) problem is

p̃c1,1 = 0, p̃c1,2 = τ, p̃c2,1 = 0, p̃c2,2 =
3τ

5
,

p̃d1,1 = 0, p̃d1,2 = 0, p̃d2,1 = 0, p̃d2,2 =
2τ

5
,

p̃ls1,1 = 0, p̃ls1,2 = 0, p̃ls2,1 = 0, p̃ls2,2 = 2 +
τ

5
,

p̃ex1,1 = 0, p̃ex1,2 = 0, p̃ex2,1 = 0, p̃ex2,2 = 0,

ũ1,1 = 0, ũ1,2 = 1, ũ2,1 = 0, ũ2,2 =
3

5
,

with the optimal objective value ṽ = 2 + 7τ/5. Therefore, ṽ < v̂ for all τ ∈ (0, 1/2]. Hence,
(Reg-Battery) problem and (LP-Reg-Battery) problem are not equivalent. ⋄

Example 2. (f reg(λ) ̸= f reg
l (λ) when λc + η2λd < 1 − η2) Consider the same network as that in

Example 1 but with different battery configurations and demands. One battery is placed at node
2 (i.e., Nb = {2}) with Emin

c = Emin
d = 0, Emax

c = Emax
d = 1, Emin = 0, Emax = 6, E0 = 6, and

η2 = 1/3. Demand is D1,1 = 1, D1,2 = 2, D2,1 = 4, D2,2 = 8. Other parameters remain the same.
We assume that the Ohm’s law constraint (1c) is satisfied. Let λ = (τ, τ)⊤ for any τ ∈ [0, 1/2).
An optimal solution of (Reg-Battery) problem is

p̂c1,1 = 0, p̂c1,2 = 0, p̂c2,1 = 0, p̂c2,2 = 0,

p̂d1,1 = 0, p̂d1,2 = 0, p̂d2,1 = 0, p̂d2,2 = 1,

p̂ls1,1 = 0, p̂ls1,2 = 0, p̂ls2,1 = 0, p̂ls2,2 = 3,

p̂ex1,1 = 1, p̂ex1,2 = 0, p̂ex2,1 = 0, p̂ex2,2 = 0,

û1,1 = 0, û1,2 = 0, û2,1 = 0, û2,2 = 0,

with the optimal objective value v̂ = 4 + τ .
While an optimal solution of the corresponding (LP-Reg-Battery) problem is

p̃c1,1 = 0, p̃c1,2 = 3/4, p̃c2,1 = 0, p̃c2,2 = 0,

p̃d1,1 = 0, p̃d1,2 = 1/4, p̃d2,1 = 0, p̃d2,2 = 1,

p̃ls1,1 = 0, p̃ls1,2 = 0, p̃ls2,1 = 3, p̃ls2,2 = 0,

p̃ex1,1 = 0, p̃ex1,2 = 1/2, p̃ex2,1 = 0, p̃ex2,2 = 0,

ũ1,1 = 0, ũ1,2 = 3/4, ũ2,1 = 0, ũ2,2 = 0,

with the optimal objective value ṽ = 7/2 + 2τ . Therefore, ṽ < v̂ for all τ ∈ [0, 1/2). Hence,
(Reg-Battery) problem and (LP-Reg-Battery) problem are not equivalent. ⋄

In this section, we have shown that (Reg-Battery) problem is easy to solve, since there is no
integrality gap between this problem and its linear programming relaxation. In the next two subsec-
tions, we begin to analyze the relationship between (Reg-Battery) problem and (Battery) problem.
We would like to understand the differences between the optimal solutions and corresponding ob-
jective function values of these two problems both qualitatively and quantitatively.
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3.1 Structural Properties of the Regularized MIP Model

In this section, we provide some structural properties of (Reg-Battery) problem. First, we baseline
the value of λ. Next, we present a two-part result on the structure of an optimal solution of
the (Reg-Battery) problem as a function of the penalty coefficients λ that distinguishes (Battery)
problem and (Reg-Battery) problem.

3.1.1 Baselining the value of λ

We begin with the following standard observation from linear programming applied to the convex
hull of the feasible region of the (Reg-Battery).

Remark 1. Function f reg(λ) is concave and monotone nondecreasing with respect to λ ∈ R2
+.

As λ gets larger, (Reg-Battery) problem gets more-and-more “different” from (Battery) prob-
lem. In particular, we expect that the battery to be used less, since it now costs more to charge
or discharge. However, what is a “reasonable” value of λ? Our first result below allows us to
baseline the value of λ, by showing that if both components of λ are equal to 1 or higher, then
(Reg-Battery) problem effectively solves the problem with no batteries placed in the network.

Proposition 1. For any λ ≥ e, we have f reg(λ) = fnb where

fnb = min
θ,f ,p,u

{
c(p) : (1a)− (1k), u ∈ {0, 1}T×N , pc = pd = 0

}
. (4)

Proof. Observe that the problem corresponding to fnb is obtained by restricting the feasible region
of f reg(λ) to pc = pd = 0. Thus, we have

fnb ≥ f reg(λ), ∀λ ≥ e.

To show the opposite inequality, it is sufficient to show that there is an optimal solution for f reg(e)
such that pc = pd = 0, since we have f reg(λ) ≥ f reg(e) for all λ ≥ e from Remark 1. We use the
power balance equation (1k) written in the following form∑

j∈δ+i

ft,ij −
∑
j∈δ−i

ft,ji − pgt,i +Dt,i = −pct,i + pdt,i + plst,i − pext,i, ∀t ∈ T , i ∈ N .

To construct such a feasible solution from the current optimal solution. Let (θ̂, f̂ , p̂, û) be an
optimal solution of (Reg-Battery) problem. We can construct another feasible solution (θ̃, f̃ , p̃, ũ)
as follows:

θ̃ = θ̂, f̃ = f̂ , p̃g = p̂g, p̃s = E0e, p̃c = 0, p̃d = 0,

p̃lst,i = max{−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i, 0}, ∀t ∈ T , i ∈ N ,

p̃ext,i = max{p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i, 0}, ∀t ∈ T , i ∈ N .

Then, using the fact that plst,ip
ex
t,i = 0 and pct,ip

d
t,i = 0 for each t ∈ T , i ∈ N , we consider the following

four cases.

(Case 1) When p̂dt,i = p̂lst,i = 0, p̃lst,i = 0 and p̃ext,i = p̂ct,i + p̂ext,i. Hence, we have

p̃lst,i + p̃ext,i = p̂ct,i + p̂ext,i = p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i.
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(Case 2) When p̂dt,i = p̂ext,i = 0, p̃lst,i + p̃ext,i = |p̂lst,i − p̂ct,i| and we have

p̃lst,i + p̃ext,i = |p̂lst,i − p̂ct,i| ≤ p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i.

(Case 3) When p̂ct,i = p̂lst,i = 0, p̃lst,i + p̃ext,i = |p̂ext,i − p̂dt,i| and we have

p̃lst,i + p̃ext,i = |p̂ext,i − p̂dt,i| ≤ p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i.

(Case 4) When p̂ct,i = p̂ext,i = 0, p̃ext,i = 0 and p̃lst,i = p̂dt,i + p̂lst,i. Hence, we have

p̃lst,i + p̃ext,i = p̂dt,i + p̂lst,i = p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i.

Since the above four cases hold for all t ∈ T , i ∈ N , we have

c(p̃) + g(p̃) =
∑
t∈T

∑
i∈N

[
p̃lst,i + p̃ext,i

]
≤

∑
t∈T

∑
i∈N

[
p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i

]
= c(p̂) + g(p̂).

Therefore, (θ̃, f̃ , p̃, ũ) is an optimal solution of (Reg-Battery) problem. This completes the proof.
□

We remark that for general values of λ, the result of Proposition 1, that is fnb = f reg(λ) may
not hold. The following example shows that the battery may always be used when λ ∈ (0, 1)2.

Example 3. (f reg(λ) ̸= fnb when λ ∈ (0, 1)2) We consider the same network as that in Example 1
but with different battery configurations and demands. One battery is placed at node 2 (i.e.,
Nb = {2}) with Emin

c = Emin
d = 0, Emax

c = Emax
d = 2, Emin = 0, Emax = 20, E0 = 20 and η = 1.

Demand is D1,1 = D1,2 = D2,1 = D2,2 = 5. Other parameters remain the same. When λ ∈ (0, 1)2,
at optimality of (Reg-Battery) problem, we always have

pd1,1 = pd2,1 = 2 > 0.

This demonstrates that when violating the condition in Proposition 1, i.e., λ ∈ (0, 1)2, it is possible
that either pc or pd is always positive. ⋄

3.1.2 Structural properties of optimal solutions of Regularized MIP

The next two-part result on the structure of an optimal solution of (Reg-Battery) problem as
a function of the penalty coefficients λ shows the distinction between (Battery) problem and
(Reg-Battery) problem as a function of λ.

In the first part, we show that pct,ip
ls
t,i = 0 for all t ∈ T , i ∈ N holds for optimal solutions for all

values of λ, that is, this property is true for both (Battery) problem and (Reg-Battery) problem.
Intuitively, this property holds because when the system is incurring load shedding (plst,i > 0), it
would not create additional load shedding by charging a battery (pct,i > 0). Similar to the result
above, we may expect that when there is excess power (pext,i > 0), the amount of discharge would

not be positive (pdt,i = 0), as a positive discharge amount would further increase excess power. It

is reasonable to expect pdt,ip
ex
t,i = 0 for all t ∈ T , i ∈ N . In the second part of our result, we

demonstrate that this condition only holds when λ is sufficiently large. Indeed, it turns out that
when λ = 0, specifically in considering the (Battery) problem, the aforementioned condition might
be violated, i.e., pdt,ip

ex
t,i > 0 for some t ∈ T , i ∈ N .
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Theorem 2. Suppose Emin
c = Emin

d = 0. Let p be an optimal solution to (Reg-Battery) problem.
Then:

(i) For all λ ∈ R2
+, we have pct,ip

ls
t,i = 0 for all t ∈ T , i ∈ N .

(ii) If λc + η2 · λd > 1− η2, then we have pdt,ip
ex
t,i = 0 for all t ∈ T , i ∈ N .

Proof. See Appendix A. □
Notice that the observations in Theorem 2 can be found in standard IEEE networks with

reasonable efficiency levels (η ≥ 0.8), wherein batteries placed at specific nodes may discharge
while the system may incur excess power simultaneously. Below, we also present an example
illustrating this phenomenon with a low-efficiency level η, thus establishing structural differences
in the optimal solutions of (Battery) problem and (Reg-Battery) problem for sufficiently large λ.

Example 4. (Condition (ii) in Theorem 2) Consider a simple network with N = {1, 2}, T =
{1, 2, 3}, L = {(1, 2)}. Suppose one battery is placed at node 2 (there is no battery placed at node
1) with Nb = {2} and Emin

c = Emin
d = 0, Emax

c = Emax
d = 2, Emin = 0, Emax = 4, E0 = 4, and

η = 0.1. Assume each node has one generator with Gmin
1 = Gmin

2 = 2 and Gmax
1 = Gmax

2 = 4.
We further assume −4 ≤ f12 ≤ 4 and the demand is D1,1 = 2, D1,2 = 2, D2,1 = 1, D2,2 =
1, D3,1 = 2, D3,2 = 1. Without loss of generality, we assume that the Ohm’s law constraint (1c)
is satisfied. An optimal solution of (Battery) problem (i.e., λ = 0 in (Reg-Battery) problem),
denoted as (p∗,u∗), is

pc∗1,1 = 0, pc∗1,2 = 0, pc∗2,1 = 0, pc∗2,2 = 2, pc∗3,1 = 0, pc∗3,2 = 1,

pd
∗
1,1 = 0, pd

∗
1,2 = 0.03, pd

∗
2,1 = 0, pd

∗
2,2 = 0, pd

∗
2,1 = 0, pd

∗
2,2 = 0,

pls
∗
1,1 = 0, pls

∗
1,2 = 0, pls

∗
2,1 = 0, pls

∗
2,2 = 0, pls

∗
3,1 = 0, pls

∗
3,2 = 0,

pex∗1,1 = 0, pex∗1,2 = 0.03, pex∗2,1 = 0, pex∗2,2 = 0, pex∗3,1 = 0, pex∗3,2 = 0,

u∗1,1 = 0, u∗1,2 = 0, u∗2,1 = 0, u∗2,2 = 1, u∗3,1 = 0, u∗3,2 = 1.

Clearly, in this example, pd
∗
1,2p

ex∗
1,2 > 0. However, we can avoid this situation after considering

regularization. When λ = (0.99, 0.99)⊤, i.e., this particular choice of λ satisfies Condition (ii) in
Theorem 2, an optimal solution of (Reg-Battery) problem, denoted as (p̂, û), is

p̂c1,1 = 0, p̂c1,2 = 0, p̂c2,1 = 0, p̂c2,2 = 0, p̂c3,1 = 0, p̂c3,2 = 0,

p̂d1,1 = 0, p̂d1,2 = 0, p̂d2,1 = 0, p̂d2,2 = 0, p̂d2,1 = 0, p̂d2,2 = 0,

p̂ls1,1 = 0, p̂ls1,2 = 0, p̂ls2,1 = 0, p̂ls2,2 = 0, p̂ls3,1 = 0, p̂ls3,2 = 0,

p̂ex1,1 = 0, p̂ex1,2 = 0, p̂ex2,1 = 2, p̂ex2,2 = 0, p̂ex3,1 = 0, p̂ex3,2 = 1,

û1,1 = 0, û1,2 = 0, û2,1 = 0, û2,2 = 0, û3,1 = 0, û3,2 = 0.

In this example, Condition (i) in Theorem 2 is satisfied for both (Battery) problem and (Reg-Battery)
problem whereas Condition (ii) is only satisfied for (Reg-Battery) problem. ⋄

To conclude the discussions in this subsection, we provide a summary of the choice of λ in
Figure 1.
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η2 1

1−η2

η2

1

λc + η2 · λd = 1− η2

λc

λd

f reg(λ) = f reg
l (λ) (Theorem 1)

f reg(λ) = fnb (Proposition 1)

fori = f reg(λ) (Corollary 1)

Figure 1: Model comparisons with different choices of λc and λd.

3.2 Error Quantification of the Solution from the Regularized MIP Model

As we have seen in Theorem 1, in (Reg-Battery) problem, the penalty required to have zero inte-
grality gap with the LP relaxation decreases when efficiency η gets closer to 1. Nevertheless, we
still aim for a better understanding of the quality of objective function change when we adjust the
regularizer λ. Hence, the goal of this subsection is to discuss analytical differences in comparison
to the original model with respect to the solution quality.

First, we present a sufficient condition under which the optimal solution of (Reg-Battery) can
be used to recover the optimal battery operation schedule for the original problem.

Proposition 2. Let U∗ = {u : ∃ θ, f , p such that together (θ,f ,p,u) is an optimal solution of
(Battery) problem} and P∗ = {p : ∃ θ, f , u such that together (θ,f ,p,u) is an optimal solution
of (Battery) problem}. Define the second-best optimal objective value of (Battery) problem as
fori(U∗) = minθ,f ,p,u

{
c(p) : (1a)− (1k), u ∈ {0, 1}T×N \ U∗} . Define the difference between the

best optimal objective value and the second best optimal objective value as δ = |fori(U∗)− fori| > 0.
Suppose (θ̂, f̂ , p̂, û) is an optimal solution to (Reg-Battery) problem. If λ⊤g(p∗) < δ for some
p∗ ∈ P∗, then û ∈ U∗.

Proof. We prove this by contradiction. Suppose that the presumptions hold and û /∈ U∗. Then,
(θ̂, f̂ , p̂, û) is a feasible but not an optimal solution to (Battery) problem. Since û ∈ {0, 1}T×N \U∗,
we have c(p̂) ≥ fori(U∗). Let (θ∗,f∗,p∗,u∗) be an optimal solution to (Battery) problem such that
λ⊤g(p∗) = minp∈P∗ λ⊤g(p). Then by the definition of δ, we have:

c(p̂)− c(p∗) ≥ |fori(U∗)− fori| = δ.

According to the optimality condition from (Reg-Battery) problem, we have

c(p̂) + λ⊤g(p̂) ≤ c(p∗) + λ⊤g(p∗).

Rearranging the terms, we have

c(p̂)− c(p∗) ≤ λ⊤g(p∗)− λ⊤g(p̂) ≤ λ⊤g(p∗) < δ.

Clearly, c(p̂) − c(p∗) ≥ δ and c(p̂) − c(p∗) < δ cannot hold simultaneously. Hence, this is a
contradiction. □
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Notice that when λ is small (when η is close to 1), the sufficient condition of Propostion 2
is easy to satisfy. In our computational experiments, we often see this behavior. We provide an
example to illustrate the exactness condition in Proposition 2.

Example 5. (Exactness Condition of Proposition 2) Consider a simple network with N = {1, 2},
T = {1, 2}, L = {(1, 2)}. Suppose one battery is placed at node 2 (there is no battery placed at
node 1) with Nb = {2} and Emin

c = Emin
d = 0, Emax

c = Emax
d = 2, Emin = 0, Emax = 4, E0 = 2, and

η = 0.9. Assume each node has one generator with Gmin
1 = Gmin

2 = 2 and Gmax
1 = Gmax

2 = 4. We
further assume −4 ≤ f12 ≤ 4 and the demand is D1,1 = 10, D1,2 = 4, D2,1 = 4, D2,2 = 4. Without
loss of generality, we assume that the Ohm’s law constraint (1c) is satisfied. The optimal objective
value of the (Battery) problem fori = 4.2. We enumerate all optimal solutions u that achieve this
value and find that U∗ = {û, ū} with

ū1,1 = 0, ū1,2 = 0, ū2,1 = 0, ū2,2 = 0,

û1,1 = 0, û1,2 = 0, û2,1 = 0, û2,2 = 1.

Excluding the solutions in U∗, the second-best optimal objective value fori(U∗) = 6. Hence, the dif-

ference δ = 1.8. When λ =
(
1− η2/1 + η2, 1− η2/1 + η2

)⊤
= (19/181, 19/181)⊤, argmin{g(p∗) :

p∗ ∈ P∗} = [0, 1.8]⊤. Notice that λ⊤g(p∗) < δ. Therefore, the optimal solution of (Reg-Battery)
problem should be exactly the (Battery) problem. We check this condition by solving (Reg-Battery)
problem and we confirm that the solution from (Reg-Battery) problem is indeed exact. ⋄

In general, we may not be able to show that the solution of (Reg-Battery) problem recovers
a solution to (Battery) problem. Instead, we next provide a bound that quantifies the difference
between the objective function value c(p) obtained from the optimal solution of (Battery) problem
and that obtained from the optimal solution of (Reg-Battery) problem.

Theorem 3. Let (θ∗,f∗,p∗,u∗) be the optimal solution of (Battery) problem and (θ̂, f̂ , p̂, û) the
optimal solution of (Reg-Battery) problem with regularizer (λc, λd). The gap between (Battery)
problem and (Reg-Battery) problem is

c(p̂)− c(p∗) ≤ TNbmax{Emax
c λc, E

max
d λd}. (5)

Proof. Notice that the feasible regions are the same in (Battery) problem and (Reg-Battery)
problem. Hence, (θ̂, f̂ , p̂, û) is a feasible solution to (Battery) problem and (θ∗,f∗,p∗,u∗) is a
feasible solution to (Reg-Battery) problem. By optimality, we have

c(p̂) + λ⊤g(p̂) ≤ c(p∗) + λ⊤g(p∗),

which implies that

c(p̂)− c(p∗) ≤ λ⊤g(p∗)− λ⊤g(p̂) ≤ λ⊤g(p∗).

Recall that λ⊤g(p∗) =
∑

t∈T
∑

i∈N

[
λcp

c∗
t,i + λdp

d∗
t,i

]
. Since pc∗t,ip

d∗
t,i = 0 for all t ∈ T , i ∈ N , it

follows λcp
c∗
t,i +λdp

d∗
t,i ≤ max{Emax

c λc, E
max
d λd} for all t ∈ T , i ∈ N . From (1i), pc∗t,i = pd∗t,i = 0 for all

t ∈ T , i /∈ Nb, we obtain the result in (5). □
Our next goal is then to minimize the worst-case bound predicted by Theorem 3 by selecting

specific values for λ.

Proposition 3. The best worst-case bound is acheieved at λ =
(
Emax

d −η2Emax
d

Emax
d +η2Emax

c
, Emax

c −η2Emax
c

Emax
d +η2Emax

c

)⊤
.
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Proof. Since T and Nb are fixed, minimizing the worst-case bound in Theorem 3 reduces to the
following minimization problem:

min
λc≥0,λd≥0

{
max{Emax

c λc, E
max
d λd} : λc + η2λd ≥ 1− η2

}
,

where the optimal objective value is achieved when Emax
c λc = Emax

d λd. Hence, an optimal solution
(λ∗

c , λ
∗
d) is

(λ∗
c , λ

∗
d) =

(
Emax

d − η2Emax
d

Emax
d + η2Emax

c

,
Emax

c − η2Emax
c

Emax
d + η2Emax

c

)
.

This concludes the proof. □
We remark that when Emax

c = Emax
d , an optimal choice of (λc, λd) reduces to

(λc, λd) =

(
1− η2

1 + η2
,
1− η2

1 + η2

)
,

which implies that for this specific case, the best worst-case bound in (5) is achieved when λc = λd.
Theorem 3 and Proposition 3 provide the worst-case analysis of c(p̂) − c(p∗), where p∗ is an

optimal solution of (Battery) problem and p̂ is an optimal solution of (Reg-Battery) problem.
However, we expect the actual difference between the objective function value of the problem to
be much smaller due to the following reasons: (i) In the proof of Theorem 3, we drop the charging
and discharging values of the regularized MIP solution by taking the minimum level of zero for all
times considered. Even though we expect that the amounts of charging and discharging become
smaller when λ increases, assuming them to be completely not charging or discharging may be
an underestimation (Proposition 1). Indeed for high-efficiency values, we expect the amount of
charging and discharging in the regularized MIP model to be close to the amount of charging
and discharging in the original MIP model; and (ii) Also note that we upper bound amount of
charging and discharging by Emax

c and Emax
d , respectively, which in many cases can be a significant

overestimation. Clearly, as shown in Theorem 3, the worst-case bound depends on the values of
Emax

c and Emax
d . Our empirical results in Section 4 show that the true difference is much less than

the theoretical worst-case bound in the above result.
To summarize the results of this section, in the following example, we show that when the

efficiency level increases, the optimal solution from (Reg-Battery) problem is an optimal solution
to (Battery) problem. We also illustrate how the empirical gap is much smaller than the theoretical
gap.

Example 6. (Gap between solutions) Consider a simple network with N = {1, 2}, T = {1, 2},
L = {(1, 2)}. Suppose one battery is placed at node 2 (i.e., Nb = {2}) with Emin

c = Emin
d = 0,

Emax
c = Emax

d = 1, Emin = 0, Emax = 6, and E0 = 0. Assume each node has one generator with
Gmin

1 = Gmin
2 = 2 and Gmax

1 = Gmax
2 = 4. We further assume −1 ≤ f12 ≤ 1, the demand is

D1,1 = 5, D1,2 = 1, D2,1 = 8, D2,2 = 4, and the values of the regularizers λc and λd are the same,
i.e., λ = λc = λd. In Figures 2(a)-2(c), we numerically illustrate how the values of the regularizer
affect the objective function values c(p), where the vertical axis represents the objective function
values c(p), and the horizontal axis represents the regularize values λ. Three small incremental
efficiency levels η ∈ {1/

√
2.1, 1/

√
2, 1/

√
1.9} are considered. Based on Proposition 3, we also

plot the objective function values with λ = 1− η2/1 + η2. From Figure 2(a), we see that when
η = 1/

√
2.1 ≈ 0.69, the optimal solution from the regularized MIP, with the choice of (λc, λd)

such that λc + η2λd ≥ 1− η2, is indeed not an optimal solution to the original MIP. In Figure 2(c),
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we observe that, with a higher efficiency level η = 1/
√
1.9 ≈ 0.72, the optimal solution from the

regularized MIP is the optimal solution to the original MIP, while the choice of (λc, λd) satisfying
the condition that the LP relaxation of the regularized MIP model is without the integrality gap. In
Figure 2(d), we show how the actual difference is much less than the theoretical worst-case bound
for this example. ⋄

(a) η = 1√
2.1

(b) η = 1√
2

(c) η = 1√
1.9

(d) Gap Comparisons

Figure 2: Change in the objective value with respect to λ, where λc = λd = λ in Proposition 3.
The point denotes the value with λ = (1 − η2)/(1 + η2) for Figures (a), (b), and (c). For Figure
(d), the dashed curve (the upper one) represents the theoretical worst-case bound whereas the solid
curve (the lower one) shows the empirical difference.

4 Numerical Experiments

In this section, we demonstrate the strength of the regularized MIP model in three aspects through
extensive computational experiments:

1. DCOPF with Battery: We show that the solution retrieved from (Reg-Battery) problem is
either optimal or near-optimal and better than that of (LP-Battery) problem.

2. Long-term Planning with Stochastic Demands: Next, we solve a battery placement problem
under stochastic demand, which is modeled as a two-stage stochastic programming. In this
problem, we show that the proposed method converges faster and scales to larger networks
with improvements in the solution quality.

3. Long-term Planning with N−k Contingency: Finally, we solve an N−k contingency problem,
which is modeled as a min-max-min problem with binary variables in all three levels. To the
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best of our knowledge, there is no known efficient algorithm to solve such a trilevel problem
with binary variables at all three levels. We show that (Reg-Battery) problem provides
provably high-quality solutions.

For all experiments, we use standard IEEE instances available from MATPOWER (Zimmerman
et al. 2010) and use the PowerModels package to read the network data (Coffrin et al. 2018).
All numerical instances are implemented on Julia version 1.7 (Bezanson et al. 2017) using Gurobi
version 10.0 as the optimization solver (Gurobi Optimization, LLC 2021) on a Linux x86 machine
with a 64-bit operating system with 2.3GHz processor on 64GB RAM.

4.1 Experimental Setting

4.1.1 Networks

The network instance contains generator information, demand load information, and branch infor-
mation, which is sufficient to model the DCOPF problem with batteries except for the multi-period
demand load profiles and battery parameters. In PEGASE and RTE networks, the minimum out-
put of a generator is nonnegative, whereas the minimum output is 0 in IEEE networks. For IEEE
networks, the generator minimum output is scaled to be 1/3 of the maximum output, which is
similar to the level of minimum output in PEGASE and RTE networks.

4.1.2 Hourly Load Scenarios

Since network information provides a single nominal load demand, we expand the given load demand
to the time horizon considered on an hourly basis for one day, i.e., T = 24. We benchmark the
hourly demand load of power in the U.S. lower region reported from U.S. Energy Information
Administration (2022) and shape the demand load in each network data to create one T = 24
hourly demand load at each demand bus for a demand load profile in one day. Specifically, suppose
that the benchmark demand is denoted as D0 ∈ RT

+. Let Di ∈ R+ denote the nominal load demand
at a demand node i ∈ N . In order to have the optimal solutions with nontrivial battery operations,
we rescale Di so that Di ≈ 0.8Gmax

i . Then, the demand at time t ∈ T for node i ∈ N is given
by Dt,i = DiD

0
t /D

0
1. When considering the stochastic demand, for each random demand D̃, we

add a Gaussian noise with a standard deviation, which is a certain fraction σ̂ of the demand, to
obtain the stochastic demand D̃. Formally, that is, with some finite number of demand scenarios
considered, D̃j

t,i = Dt,i + rt,i,j where rt,i,j ∼ N (0, σ2
t,i) and σt,i = σ̂ ·Dt,i for all scenarios j.

Figure 3: Benchmark Load Demand D0.

4.1.3 Battery Parameters

Battery parameters are largely adopted from Kody et al. (2022) and modified to account for the size
of the network. Table 1 summarizes the battery parameters used for networks including IEEE 73,
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PEGASE 89, IEEE 118, and IEEE 162-bus systems. For smaller networks, the maximum storage
limit, charge rate, and discharge rate are divided by 5 for the IEEE 14-bus system. For a slightly
larger network IEEE 300-bus system, maximum limit/rates are multiplied by 2.5. Similarly, for
large networks including PEGASE 1354 and RTE 1888, multiplication is by 5. Unless otherwise
stated, these standard battery parameters are used for all numerical experiments in the paper.

Table 1: Battery Parameters for a Medium-Size Network

Parameter Value

Minimum storage limit ps 0.00 p.u.
Maximum storage limit p̄s 1.00 p.u.
Efficiency η 0.95
Minimum charge rate pc 0.00 p.u./hour
Maximum charge rate p̄c 0.95 p.u./hour
Minimum discharge rate pd 0.00 p.u./hour
Maximum discharge rate p̄d 0.95 p.u./hour

4.2 Methods

We report the results with respect to the following three models:

• (Battery): The original MIP formulation.

• (LP-Battery): An LP relaxation of the original MIP formulation. We formally define the LP
relaxation as:

fori
l = min

θ,f ,p,u

{
c(p) : (1a)− (1k), u ∈ [0, 1]T×N

}
. (LP-Battery)

• (Reg-Battery): The proposed regularized MIP formulation with the value of the regularizer
determined based on Proposition 3.

Heuristic for Recovery of Feasible Solution From LP Relaxation. When relevant, to
restrict the comparison to the primal solution, for any partial u resulting from (LP-Battery), we
restore integrality by setting ut,i = 1 if pst,i > pst−1,i and ut,i = 0 otherwise for each t ∈ T , i ∈ N .

Charging levels (pct,i) and discharging levels (pdt,i) are adjusted accordingly by maintaining the state-

of-charge (pst,i) and setting either of pct,i and pdt,i to zero depending on ut,i. We remark that this
solution restoration process from LP solution uses the result from Theorem 1, and such a process
is not easy to incorporate when the problem is nested in larger planning problems.

4.3 Results on DCOPF with Battery

We have proved in Section 3.2 that there exists an exactness condition and the best worst-case
bound for the feasible solution produced by the regularized MIP model. In this subsection, we
first empirically show that the exactness condition is satisfied in many cases, or the regularized
MIP produces a near-optimal feasible solution to the DCOPF problem with batteries. We solve
(Battery) to find the true optimal solution and evaluate the solution from the regularized MIP
model, i.e., (Reg-Battery). We also compare the feasible solution restored from the LP relaxation,
i.e., (LP-Battery) against the true optimal solution. Table 2 shows the average relative gap (com-
puted as (zm−z∗)/z∗ where zm is the objective value of the feasible solution from the method used
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and z∗ is the optimal objective value of (Battery)) when the problem is solved with 40 random
demand scenarios on networks. In this setting, b number of batteries are placed on selected buses
with the largest power outputs. Since the actual efficiencies of grid-scale batteries are known to be
higher than 80%, we consider different efficiency levels η ∈ {0.85, 0.9, 0.95}.

The experiment demonstrates that the regularized MIP yields solutions close to the optimal
solution. The average across networks is limited to less than 0.5% for different efficiency levels
considered. When compared to the solutions restored from LP relaxation, regularized MIP per-
forms almost always better. LP relaxation performs better for certain instances with some specific
efficiency η, such as in the IEEE 73-bus system. This loss, however, is limited and the maximum
loss is still less than 0.5% Moreover, LP relaxation tends to have larger variances and unpredictable
proximity to the optimal solution. For the RTE 1888-bus system with η = 0.95, despite the aver-
age relative gap being less than 2%, the largest gap is 10.25%, which can be detrimental to a large
network system.

Table 2: The average relative gap with respect to the optimal objective value

(Reg-Battery) (LP-Battery)

Network b η = 0.85 η = 0.90 η = 0.95 η = 0.85 η = 0.90 η = 0.95

IEEE 14 2 0.00% 0.00% 0.00% 11.88% 0.00% 0.00%
IEEE 73 2 0.33% 0.23% 0.11% 0.30% 0.17% 0.07%
PEGASE 89 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
IEEE 118 2 0.00% 0.00% 0.00% 4.18% 3.96% 3.73%
IEEE 162 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
IEEE 300 3 0.08% 0.05% 0.02% 0.81% 0.43% 0.10%
PEGASE 1354 5 0.00% 0.00% 0.00% 4.51% 0.26% 0.26%
RTE 1888 5 0.05% 0.02% 0.03% 8.16% 5.43% 1.74%

Average 0.06% 0.04% 0.02% 3.73% 1.28% 0.74%

4.4 Results on Long-Term Planning Problem with Stochastic Demands

In this section, instead of having a fixed location of batteries, the placement of batteries is a set of
decisions. Since the placement can be considered as a long-term decision, this is modeled as a two-
stage stochastic programming, where the first-stage decision is to determine the battery locations
and the second-stage problem is the DCOPF problem with batteries placed and stochastic demand.

Formulation and Methodology. See Appendix B for details of the formulation and method-
ology.

Performance Metric. We calculate the relative gap from the best objective value achieved.
Specifically, we let zm be the objective function value from a feasible solution obtained by model
m where m is one of three models. Let ẑ = min{zm}, then, the relative gap is (zm − ẑ)/ẑ. Note
that when a problem can be solved with (Battery), this achieves the optimal solution hence ẑ is
the objective value from (Battery).

Computational Results. We simulate different values of noise level σ̂ over 10 times. Specifically,
for a given network and a choice of model, this particular optimization problem is solved 10 times
with different sets of stochastic load demand scenarios for the specified noise level. We set a time
limit of 6 hours for each optimization problem.
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Since the budget to install a fixed number of batteries is constant, we are interested in the
expected value of the second-stage cost. In general, we observe that using (Reg-Battery) consis-
tently provides high-quality solutions while reducing the computational time. Note that not all
optimization problems for this experiment are solved to optimality or find feasible primal solutions.
Therefore, Table 3, reports the average solution time and the primal solution quality of the first-
stage solution, measured by the relative gap with respect to the best solution found against the
three methods. The main benefits of using (Reg-Battery) are summarized below:

1. Within the time limit, in most cases, using (Reg-Battery) often yields solutions that are
optimal or near-optimal compared to those obtained using (Battery) for smaller networks.
Note that in all instances, the average relative gaps are at most 1%.

2. For larger networks, such as PEGASE 1354 and RTE 1888-bus systems, (Reg-Battery) con-
sistently yields better performance than (Battery) and (LP-Battery). Although all three
models may find feasible solutions, (Battery) and (LP-Battery) models produce significantly
sub-optimal solutions compared to those obtained with (Reg-Battery). For example, from
Table 3, the average relative gap in PEGASE 1354-bus system can be as high as 1.27% for
noise level σ̂ = 0.1 and in RTE 1888-bus system as high as 1.18% for noise level σ̂ = 0.15
when using (LP-Battery). This difference can indeed mean significant loss for large systems.

3. Using (Reg-Battery) speeds up the solution process. Although the solution times are relatively
similar for smaller networks, the differences grow in the larger networks. One might expect
that modeling the second stage with (LP-Battery) and modeling it with (Reg-Battery) would
have similar computational times, as the second stages are both linear and continuous, but
this is not the case. Notably, this difference is particularly evident in larger networks.

All instances are available in the Dropbox via the link http://tinyurl.com/regularizedbattery.

4.5 Results on Long-Term Planning Under Contingency

In order to improve transmission reliability by strategically siting batteries, we consider a N − k
contingency problem with a deterministic demand. The N − k contingency problem, addressing
disruptions or attacks within the system, is an important question that has long been studied,
but its importance has grown notably in recent years due to increased uncertainties across various
aspects of the system (see Birge et al. (2023) for a supply chain example). Contingencies can be
due to some cyber-security attacks (see Garifi et al. 2021) as well as unforeseen transmission line
failures due to various physical threats including a higher frequency of wildfire incidents which are
growing over the years. While Yang and Nagarajan (2022) studied optimal power flow under N −1
contingency in power systems, to the best of our knowledge, there is no prior work studying the
DCOPF problem with N − k contingency with the battery placement problem.

Formulation. This problem can also be understood as a trilevel min-max-min problem (or a
defender-attacker-defender problem). A network designer makes a long-term decision on whether
to install an energy storage system for node i ∈ N , represented by variable xi, to enhance the
robustness of the power system. The system operator has a budget of b batteries to add. The
second level is an interdictor who can disrupt up to k transmission lines with the goal of maximizing
load shedding or excess power. The lowest level is a system operator solving DCOPF. The overall
trilevel problem is presented in Figure 4. For simplicity, following the theoretical and computational
results in Johnson and Dey (2022), we remove the Ohm’s law constraint from the DCOPF in the
third level. The detailed formulation is provided in Appendix B.
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Table 3: The average solution time in seconds and the average relative gap against the best solution

σ̂ = 0.10

(Reg-Battery) (LP-Battery) (Battery)

Network Time (sec) Rel. Gap Time (sec) Rel. Gap Time (sec) Rel. Gap

IEEE 14 760 0.00% 584 0.09% 13 0.00%
IEEE 73 907 0.00% 519 2.50% 524 0.00%
PEGASE 89 3262 0.05% 5655 0.14% 2719 0.00%
IEEE 118 5719 0.00% 9371 0.41% 19197 0.03%
IEEE 162 4213 0.08% 10577 0.02% 8723 0.00%
IEEE 300 4037 0.12% 20010 0.24% 16541 0.03%
PEGASE 1354 19537 0.09% 20573 1.27% 21600 0.89%
RTE 1888 21600 0.08% 21600 0.41% 21600 0.65%

σ̂ = 0.15

(Reg-Battery) (LP-Battery) (Battery)

Network Time (sec) Rel. Gap Time (sec) Rel. Gap Time (sec) Rel. Gap

IEEE 14 724 0.00% 446 0.00% 15 0.00%
IEEE 73 932 0.13% 604 0.56% 606 0.00%
PEGASE 89 2339 0.08% 3743 0.20% 2535 0.00%
IEEE 118 2398 0.15% 6728 0.99% 16701 0.36%
IEEE 162 5016 0.09% 13593 0.02% 11743 0.00%
IEEE 300 5104 0.12% 20623 0.16% 12960 0.07%
PEGASE 1354 19601 0.04% 20546 1.17% 21600 1.00%
RTE 1888 19739 0.08% 21600 1.18% 19440 0.91%

σ̂ = 0.20

(Reg-Battery) (LP-Battery) (Battery)

Network Time (sec) Rel. Gap Time (sec) Rel. Gap Time (sec) Rel. Gap

IEEE 14 639 0.00% 281 0.00% 14 0.00%
IEEE 73 703 0.06% 373 0.37% 396 0.00%
PEGASE 89 7245 0.07% 4128 0.12% 4142 0.00%
IEEE 118 7789 0.01% 6817 0.14% 10800 0.03%
IEEE 162 4169 0.08% 7652 0.79% 5558 0.00%
IEEE 300 7937 0.14% 20497 0.26% 19050 0.04%
PEGASE 1354 21600 0.05% 21600 0.83% 21600 0.78%
RTE 1888 21600 0.10% 21600 1.15% 21600 0.59%

Time
Planner places battery
in certain nodes to limit
the scope of attacker

Attacker disrupts
k transmission lines
in the battery-placed grid

Operator optimizes the
power dispatch and battery
after observing the attack

first level (x)

second level (y)

third level (θ, f , p, u)

Figure 4: Long-term planning under N −k contingency problem is a trilevel min-max-min problem
with binary decision variables in each level.

Solution Methodology. There are a few algorithms proposed to solve bilevel or trilevel problems
(see, e.g., Johnson et al. 2021, Zeng and An 2014, Bienstock and Özbay 2008). However, for this
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particular trilevel problem with binary variables in all three stages, applying existing methods is
computationally intractable. Even for the smallest instance of the IEEE 14-bus system and with the
first-stage decision x fixed, solving the bilevel max -min problem using the state-of-the-art algorithm
proposed by Zeng and An (2014) does not converge in 6 hours. Hence, solving the original trilevel
problem is intractable using the (Battery) formulation. However, using the (Reg-Battery) in the
third level has the advantage that the third level becomes an LP per Theorem 1. Then, by taking
the dual of the third level, the trilevel problem can be reduced to a bilevel problem. Moreover, we
can make the following remark.

Remark 2. Explicit bounds can be found for all dual variables of the third level problem that appear
in bilinear terms together with the second level variables.

This allows the exact linearization for bilinear terms that appear in the objective function using
McCormick inequalities. We then apply the algorithm by Bienstock and Özbay (2008) to solve the
resulting bilevel optimization problem. The details of the boundedness result (Proposition 5) and
the algorithm are presented in Appendix B.

Using the regularized MIP model in the third level has another crucial advantage in that it
can provide a feasible solution with an upper bound, along with the optimality gap derived using
the LP relaxation of the third level to obtain lower bounds. In particular, the general form of our
trilevel problem is the following:

zOPT = min
x∈X

{
max
y∈Y

{
min

θ,f ,p,u∈F(x,y)
c(p)

}}
. (6)

The set Y is finite as there are a finite number of edges and only finite possible attack strategies
are available. Let Y =

{
y1, ...,yK

}
. Then (6) can be equivalently reformulated as the following:

zOPT = min
x∈X ,ξ

ξ

s.t. ξ ≥ min{c(p) : θ,f ,p,u ∈ F(x,yi)} ∀i ∈ [K].
(7)

Then, due to Theorem 1, using the regularized MIP model in the third level is equivalent to solving
the following:

zREG = min
x∈X ,ξ

ξ

s.t. ξ ≥ min{c(p) + λ⊤g(p) : θ,f ,p,u ∈ F(x,yi)} ∀i ∈ [K].
(8)

Similarly, using the LP relaxation can be formulated as:

zLP = min
x∈X ,ξ

ξ

s.t. ξ ≥ min{c(p) : θ,f ,p,u ∈ R(x,yi)} ∀i ∈ [K]
(9)

where R(x,y) is a linear relaxation of F(x,y). It is then easy to verify that zLP ≤ zOPT ≤ zREG.
For example, let η(x,y) = min{c(p) : θ,f ,p,u ∈ F(x,y)} and γ(x,y) = min{c(p) + λ⊤g(p) :
θ,f ,p,u ∈ F(x,y)}. Let (ξ∗,x∗,y∗) and (ξ̂, x̂, ŷ) be optimal solutions corresponding to zOPT and
zREG respectively. Let y̌ ∈ arg maxy∈Yη(x̂,y). Then we have zREG = ξ̂ = γ(x̂, ŷ) ≥ γ(x̂, y̌) ≥
η(x̂, y̌) ≥ η(x∗,y∗) = ξ∗ = zOPT , where the first inequality follows from (8) and the optimality of
ŷ for the second-level max optimization problem when x is fixed to x̂, the second inequality follows
from the definition of η(·) and γ(·), and the last inequality follows from the optimality of x∗ for
(7). A similar proof can be used to verify that zLP ≤ zOPT .
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Also note that if x̂ is the optimal solution of zREG, then using the notation from the previous
paragraph, we have that maxy∈Y

{
minθ,f ,p,u∈F(x̂,y) c(p)

}
= η(x̂, y̌) ≤ γ(x̂, ŷ) = zREG. Thus, we

arrive at the following conclusion.

Proposition 4. Let x̂ be an optimal solution of (8). Then this solution is a solution for the trilevel
problem (7) with an optimality gap of at most (zREG − zLP )/zREG.

Computational Results. In Table 4, we report the minimum, maximum, and average of the
optimality gap of 10 simulations for each network instance and different combinations of the max-
imum number of batteries placed and the maximum number of contingencies. Since (8) and (9)
are not always solved to optimality, we use the upper bound of zREG and lower bound of zLP to
compute the gap. We observe that for smaller network systems, the regularized MIP generates
provably near-optimal solutions. For PEGASE 1354 and RTE 1888-bus systems, the gap is larger,
but most likely this is due to having a poor lower bound on zLP as (9) is not solved to optimality
within the given time limit of 6 hours. Note that the gap in solving (8) and (9) is reported in
Tables 5-8 in Appendix C. We observe that solving the trilevel problem with the regularized formu-
lation is efficient. For most of the instances, (8) is solved to optimality well within the time limit.
Only the larger network instances take the entire 6-hour time limit with a small optimality gap.
Hence, using the regularized formulation not only gives a quality upper bound but can be used to
solve such trilevel problems efficiently (see Tables 5-8 in Appendix C). Despite some gaps in larger
instances, using the regularized MIP model provides a solution methodology with a guarantee that
was not possible previously with existing methods.

Table 4: Solution Quality for N − k Contingency Problem

Optimality Gap
b = 2, k = 3 b = 2, k = 5 b = 3, k = 5 b = 5, k = 10

Network Min Max Avg Min Max Avg Min Max Avg Min Max Avg

IEEE 14 0.62% 0.63% 0.62% 0.57% 0.58% 0.57% 0.57% 0.58% 0.57% 0.57% 0.58% 0.57%
IEEE 73 0.00% 0.07% 0.03% 0.00% 0.49% 0.06% 0.00% 0.49% 0.06% 0.00% 0.02% 0.01%
PEGASE 89 0.15% 0.24% 0.16% 0.12% 0.12% 0.12% 0.18% 0.18% 0.18% 0.27% 1.16% 1.04%
IEEE 118 1.05% 1.78% 1.25% 1.38% 2.47% 1.65% 2.06% 2.88% 2.40% 2.07% 4.78% 3.38%
IEEE 162 0.23% 0.24% 0.24% 0.22% 0.22% 0.22% 2.34% 4.50% 2.60% 2.42% 2.79% 2.63%
IEEE 300 3.69% 4.08% 3.81% 3.41% 3.64% 3.48% 3.69% 6.73% 4.09% 6.21% 8.24% 7.63%
PEGASE 1354 9.81% 19.43% 14.25% 7.86% 14.98% 13.53% 15.00% 22.33% 18.68% 16.98% 27.45% 19.26%
RTE 1888 6.73% 13.07% 8.12% 6.32% 12.50% 8.30% 12.11% 18.33% 14.84% 17.66% 26.87% 25.59%

5 Conclusion

In this paper, we proposed a new model to solve the DCOPF problem with battery operations.
We regularized the objective function by penalizing the charge and discharge of batteries. In
Theorem 1, we present a sufficient condition on the regularizers so that there is no integrality gap
between the regularized MIP problem and its LP relaxation. When the efficiency of the battery is
relatively high, this penalty is very small. Empirical results show that the optimal solution from
this regularized model is often a true optimal solution to the original model or close to the optimal
solution, performing much better than the theoretical guarantees verified in Theorem 3. Moreover,
we prove in Theorem 2 that the optimal solution from the regularized model is more reasonable in
that the battery operation does not contribute to further load-shedding or excess power depending
on the state of the system at the time. This property may be of interest to the system operator.

24



For a simpler problem that only considers the battery operation with η = 1, a polynomial
algorithm has been proposed in Bakhshi and Ostrowski (2023). However, only a few studies have
focused on the complexity associated with the general efficiency level with 0 < η < 1. Bansal and
Günlük (2023) proved an NP-hardness for a similar problem where the storage level varies over time
based on two complementary variables. The proof of NP-hardness relies on time-varying bounds
and their result shows that (Battery) problem with time-varying bounds on pc and pd is NP-hard
to solve. However, it remains an open problem that for a fixed bound on charge and discharge
levels with a loss-incurring battery system (0 < η < 1), the problem is NP-hard.

We introduce two optimization problems that are related to solving the battery siting problem;
one with a stochastic demand and the other one with N − k contingency. Both these problems are
intractable to solve using the exact battery formulation. We use the main benefit of the regularized
formulation model to reformulate these challenging problems, and show that the regularized for-
mulation solves large-scale instances of these problems efficiently and yields near-optimal solutions
in most cases.
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Appendix A Proof of Theorem 2

Theorem 2. Suppose Emin
c = Emin

d = 0. Let p be an optimal solution to (Reg-Battery) problem.
Then:

(i) For all λ ∈ R2
+, we have pct,ip

ls
t,i = 0 for all t ∈ T , i ∈ N .

(ii) If λc + η2 · λd > 1− η2, then we have pdt,ip
ex
t,i = 0 for all t ∈ T , i ∈ N .

The proof of Theorem 2 is divided into two parts via Lemma 1 and Lemma 2.

Lemma 1. Suppose Emin
c = Emin

d = 0. For any λ ∈ R2
+, let p be an optimal solution to

(Reg-Battery) problem. Then, pct,ip
ls
t,i = 0 for all t ∈ T , i ∈ N .

Proof. By contradiction, suppose there exists an optimal solution (θ̂, f̂ , p̂, û) of (Reg-Battery)
problem such that p̂ct,i > 0 and p̂lst,i > 0 for at least one (t, i) ∈ T ×N .

Without loss of generality, we show the proof for one such i ∈ N as the proof can be extended
for any multiple nodes. Let τ0 ∈ T be the first time period such that p̂cτ0,i > 0 and p̂lsτ0,i > 0. Let

τ1, . . . , τk ∈ {τ0 + 1, . . . , T} such that p̂dτj ,i > 0 for j ∈ [k] and p̂dt.i = 0 for t ∈ {τ0 + 1, . . . , T} \
{τ1, . . . , τk}. We define adjustments to the state-of-charge as the following:

δτj ,i =

{
−η ·min{p̂cτ0,i, p̂

ls
τ0,i

} j = 0,

δτj−1,i +max
{
Emin − p̂sτj ,i − δτj−1,i, 0

}
∀j ∈ [k].

Note that δτ0,i < 0. We proceed to construct a solution (θ̃, f̃ , p̃, ũ) from the current optimal

solution (θ̂, f̂ , p̂, û), where θ̃ = θ̂, f̃ = f̂ , ũ = û, p̃ex = p̂ex, p̃g = p̂g, and changing values only
corresponding to node i as follows:

p̃ct,i =

{
p̂ct,i, ∀t ∈ T \ {τ0},
p̂cτ0,i −min{p̂cτ0,i, p̂

ls
τ0,i

}, t = τ0,

p̃dt,i =

{
p̂dt,i, ∀t ∈ T \ {τ1, . . . , τk},
p̂dt,i − η ·max

{
Emin − p̂sτj ,i − δτj−1,i, 0

}
, t = τj , ∀j ∈ [k],

p̃lst,i =


p̂lst,i, ∀t ∈ T \ {τ0, τ1, . . . , τk},
p̂lst,i −min{p̂cτ0,i, p̂

ls
τ0,i

}, t = τ0,

p̂lst,i + η ·max
{
Emin − p̂sτj ,i − δτj−1,i, 0

}
, t = τj , ∀j ∈ [k],

p̃st,i =

{
p̂st,i, ∀t ∈ [τ0 − 1],

p̂st,i + δτj ,i, ∀t ∈ {τj , . . . , τj+1 − 1}, ∀j ∈ {0, . . . , k},

where τk+1 − 1 = T.
The new solution p̃ above is created in the following fashion: We first reduce both p̂cτ0,i and

p̂lsτ0,i, which causes p̂st,i to reduce in time periods following τ0. In particular, it may fall below Emin.
In order to fix this, we need to modify the discharging levels (and loss values of corresponding
time periods) to ensure that the storage levels meet the minimum requirement Emin. We carefully
decrease the values of p̂dt,i so that the minimum discharge level is satisfied and the state-of-charge

level is never below Emin at the same time.

Claim 1. (θ̃, f̃ , p̃, ũ) is a feasible solution to (Reg-Battery) with given λ.

Proof. It suffices to show that p̃ satisfies (1d)− (1f), (1h) and (1j)− (1k).
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• (1d): It is straightforward to verify that p̃ct,i ≥ 0 = Emin
c for all t ∈ T .

• (1e): We want to show that p̃dt,i ≥ 0 = Emin
d for all t ∈ T . It is sufficient to prove this for

t = {τ1, . . . , τk}. There are two cases:

(i) If Emin − p̂sτj ,i − δτj−1,i ≤ 0: This case is straightforward as p̃dt,i = p̂dt,i ≥ 0.

(ii) If Emin − p̂sτj ,i − δτj−1,i > 0: In this case, note that from the proof above of p̃st,i ≥ Emin,

we have that p̃sτj ,i = Emin. Also p̃sτj−1,i ≥ Emin. Therefore, p̃dτj ,i = η · (p̃sτj−1,i − p̃sτj ,i) ≥ 0.

• (1f): It is straightforward to verify that p̃st,i = p̃st−1,i + η · p̃ct,i − 1/η · p̃dt,i for all t ∈ T .

• (1h): We want to show that p̃st,i ≥ Emin for all t ∈ T . Clearly p̃st,i = p̂st,i ≥ Emin for all
t ∈ [τ0 − 1]. For t ≥ τ0, we show this in three parts:

(i) For t = τ0, from (1f) and the constructions above, we have p̂sτ0,i = p̂sτ0−1,i + η · p̂cτ0,i ≥
Emin + η ·min{p̂cτ0,i, p̂

ls
τ0,i

}. Therefore, p̃sτ0,i = p̂sτ0,i − η ·min{p̂cτ0,i, p̂
ls
τ0,i

} ≥ Emin.

(ii) For t = τj for all j ∈ [k], we have p̃sτj ,i = p̂sτj ,i+ δτj ,i = p̂sτj ,i+ δτj−1,i+max{Emin− p̂sτj ,i−
δτj−1,i, 0} ≥ Emin.

(iii) Finally, for any t ∈ {τj + 1, . . . , τj+1 − 1} for j ∈ {0, . . . , k}, observe that since p̂dτj+1,i =

· · · = p̂dτj+1−1,i = 0, we have p̃st,i = p̂st,i + δτj ,i ≥ p̂sτj ,i + δτj ,i = p̃τj ,i ≥ Emin, where the last
inequality follows from the above.

• (1j): It is straightforward to verify that p̃lst,i ≥ 0 for all t ∈ T .

• (1k): It is straightforward to verify that p̂ct,i + p̂ext,i − p̂dt,i − p̂lst,i = p̃ct,i + p̃ext,i − p̃dt,i − p̃lst,i for all
t ∈ T .

□
Observe that p̃cτ0,i · p̃

ls
τ0,i

= 0. Next, we claim that the total additional adjustment made to δ
over time is upper bounded.

Claim 2.
∑k

j=1max{Emin − p̂sτj ,i − δτj−1,i, 0} ≤ |δτ0,i|.

Proof. Suppose that S ⊆ [k] such that max{Emin − p̂sτj ,i − δτj−1,i, 0} = Emin − p̂sτj ,i − δτj−1,i. Let

S = {j1, j2, . . . , jm}. If S = ∅, then there is nothing to verify. Otherwise, it is straightforward to
verify that:

k∑
j=1

max{Emin − p̂sτj ,i − δτj−1,i, 0}

= (Emin − p̂sτj1 ,i
− δτ0,i) + (Emin − p̂sτj2 ,i

− δτj2−1,i) + · · ·+ (Emin − p̂sτjm ,i − δτjm−1,i)

= (Emin − p̂sτj1 ,i
− δτ0,i) + (p̂sτj1 ,i

− p̂sτj2 ,i
) + · · ·+ (p̂sτjm−1

,i − p̂sτjm ,i)

= Emin − p̂sτjm ,i − δτ0,i ≤ |δτ0,i|.

The second equality is due to the fact that δτjl ,i = Emin − p̂sτjl ,i
and δτjl+1

−1,i = δτjl ,i for all

l = 1, ...,m. □
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Finally, we are ready to compute the difference in objective function value of the two solutions:

c(p̃) + λ⊤g(p̃)− c(p̂)− λ⊤g(p̂)

=
∑
t∈T

∑
i∈N

(
p̃lst,i − p̂lst,i + p̃ext,i − p̂ext,i + λc(p̃

c
t,i − p̂ct,i) + λd(p̃

d
t,i − p̂dt,i)

)
=−min{p̂cτ0,i, p̂

ls
τ0,i}+

∑
j∈[k]

η ·max
{
Emin − p̂sτj ,i − δτj−1,i, 0

}
− λc ·min{p̂cτ0,i, p̂

ls
τ0,i} − λd ·

∑
j∈[k]

η ·max
{
Emin − p̂sτj ,i − δτj−1,i, 0

}

=− (1 + λc) ·
|δτ0,i|
η

+ (1− λd) · η ·

∑
j∈[k]

max
{
Emin − p̂sτj+1,i − δτj−1,i, 0

}
≤− |δτ0,i|

η
− λc

|δτ0,i|
η

+ (1− λd) · η · |δτ0,i|

=η · |δτ0,i|
(
1− λd − (1 + λc)/η

2
)
< 0,

where the last inequality is from Claim 2. Therefore, c(p̃) + λ⊤g(p̃) < c(p̂) + λ⊤g(p̂), hence a
contradiction. □

Lemma 2. Suppose Emin
c = Emin

d = 0. For any (λc, λd) such that λc + η2 · λd > 1 − η2 with a
given η ∈ (0, 1], let p be an optimal solution to (Reg-Battery) problem. Then, pdt,ip

ex
t,i = 0 for all

t ∈ T , i ∈ N .

Proof. By contradiction, suppose there exists an optimal solution (θ̂, f̂ , p̂, û) of (Reg-Battery)
problem such that p̂dt,i > 0 and p̂ext,i > 0 for at least one (t, i) ∈ T ×N .

Without loss of generality, we show the proof for one such i ∈ N as the proof can be extended
for any multiple nodes. Let τ0 ∈ T be the first time period such that p̂dτ0,i > 0 and p̂exτ0,i > 0. Let
τ1, . . . , τk ∈ {τ0 + 1, . . . , T} such that p̂cτj ,i > 0 for j ∈ [k] and p̂ct.i = 0 for t ∈ {τ0 + 1, . . . , T} \
{τ1, . . . , τk}. We define adjustments to the state-of-charge as the following:

δτj ,i =

{
1/η ·min{p̂dτ0,i, p̂

ex
τ0,i

} j = 0,

δτj−1,i −max
{
p̂sτj ,i + δτj−1,i − Emax, 0

}
∀j ∈ [k].

Note that δτ0,i < 0. We proceed to construct a solution (θ̃, f̃ , p̃, ũ) from the current optimal

solution (θ̂, f̂ , p̂, û), where θ̃ = θ̂, f̃ = f̂ , ũ = û, p̃ex = p̂ex, p̃g = p̂g, and changing values only
corresponding to node i as follows:

p̃dt,i =

{
p̂dt,i, ∀t ∈ T \ {τ0},
p̂dτ0,i −min{p̂dτ0,i, p̂

ex
τ0,i

}, t = τ0,

p̃ct,i =

{
p̂ct,i, ∀t ∈ T \ {τ1, . . . , τk},
p̂ct,i − 1

η ·max
{
p̂sτj ,i + δτj−1,i − Emax, 0

}
, t = τj , ∀j ∈ [k],

p̃ext,i =


p̂ext,i, ∀t ∈ T \ {τ0, τ1, . . . , τk},
p̂ext,i −min{p̂dτ0,i, p̂

ex
τ0,i

}, t = τ0,

p̂ext,i +
1
η ·max

{
p̂sτj ,i + δτj−1,i − Emax, 0

}
, t = τj , ∀j ∈ [k],

p̃st,i =

{
p̂st,i, ∀t ∈ [τ0 − 1],

p̂st,i + δτj ,i, ∀t ∈ {τj , . . . , τj+1 − 1}, ∀j ∈ {0, . . . , k},
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where τk+1 − 1 = T .
The new solution p̃ above is created in the following fashion: We first reduce both p̂dτ0,i and p̂exτ0,i,

which causes p̂st,i to increase in time periods following τ0. In particular, it may increase beyond
Emax. In order to fix this, we need to modify the charging levels (and excess values of corresponding
time periods) to ensure that the storage levels meet the maximum requirement Emax. We carefully
decrease the values of p̂ct,i so that the minimum charge level is satisfied and the state-of-charge level
is never beyond Emax at the same time.

Claim 3. (θ̃, f̃ , p̃, ũ) is a feasible solution to (Reg-Battery) with given λ.

Proof. It suffices to show that p̃ satisfies (1d)− (1f), (1h) and (1j)− (1k).

• (1d): We want to show that p̃ct,i ≥ 0 = Emin
c for all t ∈ T . It is sufficient to prove this for

t = {τ1, . . . , τk}. There are two cases:

(i) If p̂sτj ,i + δτj−1,i − Emax ≤ 0: This case is straightforward as p̃ct,i = p̂ct,i ≥ 0.

(ii) If p̂sτj ,i+δτj−1,i−Emax > 0: In this case, note that from the proof above of p̃st,i ≤ Emax, we

have that p̃sτj ,i = Emax. Also p̃sτj−1,i ≤ Emax. Therefore, p̃cτj ,i = 1/η · (p̃sτj ,i − p̃sτj−1,i
) ≥ 0.

• (1e): It is straightforward to verify that p̃dt,i ≥ 0 = Emin
d for all t ∈ T .

• (1f): It is straightforward to verify that p̃st,i = p̃st−1,i + η · p̃ct,i − 1/η · p̃dt,i for all t ∈ T .

• (1h): We want to show that p̃st,i ≤ Emax for all t ∈ T . Clearly p̃st,i = p̂st,i ≤ Emax for all
t ∈ [τ0 − 1]. For t ≥ τ0, we show this in three parts:

(i) For t = τ0, from (1f) and the constructions above, we have p̂sτ0,i = p̂sτ0−1,i − 1/η · p̂dτ0,i ≤
Emax − 1/η ·min{p̂dτ0,i, p̂

ex
τ0,i

}. Therefore, p̃sτ0,i = p̂sτ0,i + 1/η ·min{p̂dτ0,i, p̂
ex
τ0,i

} ≤ Emax.

(ii) For t = τj for all j ∈ [k], we have p̃sτj ,i = p̂sτj ,i+δτj ,i = p̂sτj ,i+δτj−1,i−max{p̂sτj ,i+δτj−1,i−
Emax, 0} ≤ Emax.

(iii) Finally, for any t ∈ {τj + 1, . . . , τj+1 − 1} for j ∈ {0, . . . , k}, observe that since p̂cτj+1,i =
· · · = p̂cτj+1−1,i = 0, we have that p̃st,i = p̂st,i + δτj ,i ≤ p̂sτj ,i + δτj ,i = p̃τj ,i ≤ Emax, where
the last inequality follows from the above.

• (1j): It is straightforward to verify that p̃ext,i ≥ 0 for all t ∈ T .

• (1k): It is straightforward to verify that p̂ct,i + p̂ext,i − p̂dt,i − p̂lst,i = p̃ct,i + p̃ext,i − p̃dt,i − p̃lst,i for all
t ∈ T .

□
Observe that p̃dτ0,i · p̃

ex
τ0,i

= 0. Next, we claim that the total additional adjustment made to δ
over time is upper bounded.

Claim 4.
∑k

j=1max{p̂sτj ,i + δτj−1,i − Emax, 0} ≤ |δτ0,i|.

Proof. Suppose that S ⊆ [k] such that max{p̂sτj ,i + δτj−1,i − Emax, 0} = p̂sτj ,i + δτj−1,i − Emax. Let

S = {j1, j2, . . . , jm}. If S = ∅, then there is nothing to verify. Otherwise, it is straightforward to
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verify that:

k∑
j=1

max{p̂sτj ,i + δτj−1,i − Emax, 0}

= (p̂sτj1 ,i
+ δτ0,i − Emax) + (p̂sτj2 ,i

+ δτj2−1,i − Emax) + · · ·+ (p̂sτjm ,i + δτjm−1,i − Emax)

= (p̂sτj1 ,i
+ δτ0,i − Emax) + (p̂sτj1

, i− p̂sτj2 ,i
) + · · ·+ (p̂sτjm−1

,i − p̂sτjm ,i)

= p̂sτjm ,i + δτ0,i − Emax ≤ |δτ0,i|.

The second equality is due to the fact that δτjl ,i = Emax − p̂sτjl ,i
and δτjl+1

−1,i = δτjl ,i for all

l = 1, ...,m. □
Finally, we are ready to compute the difference in objective function value of the two solutions:

c(p̃) + λ⊤g(p̃)− c(p̂)− λ⊤g(p̂)

=
∑
t∈T

∑
i∈N

(
p̃lst,i − p̂lst,i + p̃ext,i − p̂ext,i + λc(p̃

c
t,i − p̂ct,i) + λd(p̃

d
t,i − p̂dt,i)

)
=−min{p̂dτ0,i, p̂

ex
τ0,i}+

∑
j∈[k]

1

η
·max

{
p̂sτj ,i + δτj−1,i − Emax, 0

}
− λc ·

∑
j∈[k]

1

η
·max

{
p̂sτj ,i + δτj−1,i − Emax, 0

}
− λd ·min{p̂dτ0,i, p̂

ex
τ0,i}

=− η|δτ0,i| − λdη|δτ0,i|+
1− λc

η
·

 k∑
j=1

max
{
p̂sτj ,i + δτj−1,i − Emax, 0

}
≤− η|δτ0,i| − λdη|δτ0,i|+

1− λc

η
· |δτ0,i|

=η · |δτ0,i|
(
−1− λd + (1− λc)/η

2
)
< 0.

When −1−λd+(1−λc)/η
2 < 0 (i.e., under the assumption that λc+η2λd > 1−η2), c(p̃)+λ⊤g(p̃) <

c(p̂) + λ⊤g(p̂), hence a contradiction. □
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Appendix B Detailed Formulation for Numerical Studies

B.1 Placement of Batteries under Stochastic Demand in Section 4.4

B.1.1 Problem Formulation

We introduce a two-stage stochastic programming that determines the locations for battery instal-
lation and power operations to minimize expected load shedding and excess power under stochastic
demand. The first-stage (here-and-now) decision, denoted as x, involves placing batteries in the
grid subject to a given budget b ∈ Z+:

x ∈ {0, 1}N , (10a)∑
i∈N

xi ≤ b. (10b)

The second-stage decision is operating the system with the same objective under the exogenous
demand uncertainty. Specifically, let Ξ be the set of demand scenarios. The power balance equation,
which previously depended on deterministic demand, now varies with scenario D ∈ Ξ. We use Dt,i

to represent the stochastic demand for each time t and node i, and the power balance equation is
modified as follows:∑

j∈δ+i

ft,ij −
∑
j∈δ−i

ft,ji = pgt,i −Dt,i − pct,i + pdt,i + plst,i − pext,i, ∀t ∈ T , i ∈ N . (10c)

Initial state-of-charge as well as upper and lower bounds of state-of-charge of a battery depends on
whether a battery is sited or not:

ps0,i = E0xi, ∀i ∈ N , (10d)

Eminxi ≤ pst,i ≤ Emaxxi, ∀t ∈ T , i ∈ N . (10e)

When there is no battery at node i ∈ N , pst,i = 0 for all t ∈ T , so we can expand the state-of-charge
over time to the entire N :

pst,i = pst−1,i + η · pct,i − 1/η · pdt,i, ∀t ∈ T , i ∈ N . (10f)

The bounds on charging and discharging, similarly, depend on whether a battery exists at a node
and whether the battery is charging or discharging, represented by ut,i:

u ∈ {0, 1}T×N , (10g)

Emin
c ut,i ≤ pct,i ≤ Emax

c ut,i, ∀t ∈ T , i ∈ N , (10h)

Emin
d (xi − ut,i) ≤ pdt,i ≤ Emax

d (xi − ut,i), ∀t ∈ T , i ∈ N . (10i)

Finally, a battery can only operate when there is a battery installed at the node:

ut,i ≤ xi, ∀t ∈ T , i ∈ N . (10j)

Bounds on generator outputs (1a), limits on transmission lines (1b), power flow approximation
(1c), and nonnegativity constraint on load shedding and excess power (1j) do not change. Then
the two-stage stochastic formulation is

min
x

EP
[
Q(x, D̃)

]
,

s.t. (10a)− (10b),
(11)
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where for a particular realization D, we have

Q(x,D) = min
θ,f ,p,u

c(p),

s.t. (1a)− (1c), (10c)− (10j).

Suppose that the distribution P of random parameters D̃ is an equiprobable empirical one generated
from NS independent and identically distributed (i.i.d.) samples Dj

{j∈[NS ]}, with P{D̃ = Dj} =

1/NS . The first-stage objective function can be written as EP[Q(x, D̃)] =
∑

j∈[NS ]
1/NSQ(x,Dj),

where Q(x,Dj) is the optimal second-stage value for the scenario Dj given the first-stage decision
x.

B.1.2 Methods

When modeling the second-stage stage with (Battery), note that any two-stage stochastic opti-
mization with finite scenario support can be reformulated to the exact deterministic formulation.
That is to say, in our setting, we solve one large MILP with N + T × N × NS binary variables
(N for the first-stage decision x and T × N × NS for NS number of the second-stage decisions
u ∈ {0, 1}T×N ). Another methodology is to use an integer L-shaped method (see the details in
Laporte and Louveaux 1993). We iteratively add valid cuts to the master problem based on the
LP-relaxed solution of the second stage and a cut based on the integer solution of the second stage.
Let θj be an overestimator of the optimal second-stage cost Q(x̃,Dj) with a feasible first-stage
solution x̃. The algorithm first solves an LP relaxation of the second-stage problem given the
first-stage solution x̃. If the second-stage cost from LP relaxation for a scenario j ∈ [NS ], denoted
as QLP (x̃,Dj), exceeds the overestimator of the optimal second-stage cost θj for any j ∈ [NS ], we
add the following optimality cut to the master problem:

θj ≥ QLP (x̃,Dj) + πj(x− x̃),

where πj be the subgradient of QLP (x̃,Dj) with respect to x. Once an optimality cut is added,
the algorithm proceeds to solve the master problem with the added cut. If no optimality cut is
added, we solve the integer second-stage problem for a given x̃. If Q(x̃,Dj) > θj , the following
integer optimality cut is added:

θj ≥ QLP (x̃,Dj) +
[
Q(x̃,Dj)−QLP (x̃,Dj)

]1 +
∑

i/∈S(x̃)

xi −
∑

i∈S(x̃)

(1− xi)

 ,

where S(x̃) is the set of indexes where x̃i = 1, i.e., S(x̃) = {i : x̃i = 1, ∀i ∈ [N ]}. Notice
that feasibility is guaranteed for the second-stage problem as the objective is to reduce both load
shedding and excess power, hence we have a complete recourse problem. We take the best solution
achieved from either the deterministic formulation or the integer L-shaped method.

We employ two common techniques for the L-shaped method and Bender’s decomposition: (i)
building a single search tree and generating cuts in a delayed cut generation through callback
functionality; and (ii) including one scenario in the master problem so that when scenarios are not
too far from each other, this first-stage decision can be a near-optimal solution for other scenarios
as well. We acknowledge that there are many acceleration techniques for Bender’s decomposition
and integer L-shaped method (Magnanti and Wong 1981, Angulo et al. 2016) that may improve
computational results.
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B.2 N − k Contingency Problem in Section 4.5

B.2.1 Problem Formulation

We formally give a mathematical formulation of this problem. The first decision by a planner,
denoted as x, is to place batteries in the grid subject to the given budget b ∈ Z+.

x ∈ {0, 1}N , (12a)∑
i∈N

xi ≤ b. (12b)

Then a network interdictor decides whether or not to destroy a transmission line (i, j) ∈ L by a
binary variable yij . The interruption can happen to at most k transmission lines in the system and
impacts the performance of transmission lines throughout the time period considered:

y ∈ {0, 1}L, (12c)∑
e∈L

ye ≤ k, (12d)

− Fij(1− yij) ≤ ft,ij ≤ Fij(1− yij), ∀t ∈ T , (i, j) ∈ L. (12e)

Bounds on generator output (1a), limits on transmission lines (1b), nonnegativity constraint
on load shedding and excess power (1j), and power balance equation (1k) do not change from the
optimal power flow with the battery problem. Operational constraints for battery (10d) - (10j) are
also the same as two-stage stochastic programming studied in the previous section. For purposes
of this problem, we omit Ohm’s law constraint (see, e.g., Johnson and Dey 2022), and therefore the
third-level problem becomes a network flow problem. Throughout the time period considered, the
network operator then aims to generate power and send power flows to minimize the load shedding
and lost power. We now provide the formulation below:

min
x

max
y

min
f ,p,u

{c(p) : (1a), (1b), (1j), (1k), (10d)− (10j), (12a)-(12e)} . (13)

B.2.2 Solution Methodology

Computationally, a min-max-min problem is not an easy problem to solve. In literature, two-stage
robust programs, a special case of the min-max-min problem, have been discussed extensively in
the literature (see, e.g., Atamtürk and Zhang 2007, Jiang et al. 2014, van Hulst et al. 2017, Mattia
et al. 2017). Jeroslow (1985) showed NP-hardness and Ben-Ayed and Blair (1990) also discussed the
computational difficulties of bilevel linear problems. Problem (13) is a trilevel problem with binary
variables at each level resulting in a particularly challenging optimization problem, which forbids
the classical approach to formulating the trilevel problem into a bilevel problem and applying
techniques to solve bilevel optimization problems. Using the regularized MIP model, however,
enables us to linearize the third-level problem and convert it to a bilevel problem by taking the
dual of the third-level problem.

It is often undesirable to have unbounded dual variables. A popular heuristic is to use the
big-M method to bound such unbounded variables to a reasonable number. We prove that in our
formulation the dual variables are bounded. This allows the exact reformulation for bilinear terms
that appear in the objective function.

Once we obtain the bilevel formulation, we apply a generic iterative algorithm to solve the
bilevel optimization problem. In particular, we use the algorithm outlined in Bienstock and Özbay
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2008. The stopping criterion was either: (i) the iteration reaches maximum iteration of 1000; (ii)
the iteration has run more than 6 hours; or (iii) the upper bound and lower bound gap is less than
0.5%.

B.2.3 Detailed Bilevel Formulation

We present here the reformulation to the bilevel min-max problem. Since variables associated
with the third level are linear, we dualize the third level. For notational simplicity, let θ =
(α,β±, δ,γ±, τ , τ 0,µ±,ν±,ω±,µ±,ϕ). The primal variable associated with a constraint for the
third level is provided on the left.

min
x

max
y,θ,z

−
∑
t∈T

∑
i∈N

Dt,iαt,i −
∑

t∈T ,(i,j)∈L

Fij(1− yij)(β
+
t,ij + β−

t,ij)

+
∑
t∈T

∑
i∈N

Gmin
i γ+t,i −

∑
t∈T

∑
i∈N

Gmax
i γ−t,i +

∑
i∈N

E0xiτ
0
i

+
∑
t∈T

∑
i∈N

Eminxiµ
+
t,i −

∑
t∈T

∑
i∈N

Emaxxiµ
−
t,i

+
∑
t∈T

∑
i∈N

Emin
d xiω

+
t,i −

∑
t∈T

∑
i∈N

Emax
d xiω

−
t,i −

∑
t∈T

∑
i∈N

xiϕt,i, (14a)

s.t.

plst,i, p
ex
t,i · · · · · · − 1 ≤ αt,i ≤ 1, ∀t ∈ T , i ∈ N , (14b)

ft,ij · · · · · · αt,i − αt,j + β+
t,ij − β−

t,ij = 0, ∀t ∈ T , (i, j) ∈ L, (14c)

pgt,i · · · · · · − αt,i + γ+t,i − γ−t,i = 0, ∀t ∈ T , i ∈ N , (14d)

pct,i · · · · · · αt,i − η · τt,i + ν+t,i − ν−t,i = λc, ∀t ∈ T , i ∈ N , (14e)

pdt,i · · · · · · − αt,i + 1/η · τt,i + ω+
t,i − ω−

t,i = λd, ∀t ∈ T , i ∈ N , (14f)

pst,i · · · · · · τt,i − τt+1,i + µ+
t,i − µ−

t,i = 0, ∀t ∈ T \ {T}, i ∈ N ,

(14g)

psT,i · · · · · · τT,i + µ+
T,i − µ−

T,i = 0, ∀i ∈ N , (14h)

ps0,i · · · · · · τ0i − τ1,i = 0, ∀i ∈ N , (14i)

u0,i · · · · · · Emin
c ν+t,i − Emax

c ν−t,i − Emin
d ω+

t,i + Emax
d ω−

t,i + ϕt,i ≥ 0, ∀t ∈ T , i ∈ N , (14j)

β±,γ±,ν±,ω±,µ±,ϕ ≥ 0, (14k)∑
i∈N

xi ≤ b, (14l)∑
l∈L

yl ≤ k, (14m)

x ∈ {0, 1}N , y ∈ {0, 1}L. (14n)

Proposition 5. Independent of the values of λc and λd, there exists an optimal solution of (14)
for which the following inequalities are valid:

0 ≤ β±
t,ij ≤ 2, ∀t ∈ T , (i, j) ∈ L.

Proof. In the objective function (14a), we focus on optimizing β+ and β−. Notice that Fij ≥ 0
for all (i, j) ∈ L and t ∈ T . Then, for a given (i, j) ∈ L and t ∈ T and the associated β+

t,ij , β
−
t,ij , we
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optimize

max
β+
t,ij≥0,β−

t,ij≥0
− β−

t,ij − β+
t,ij ,

s.t. β+
t,ij = αt,j − αt,i + β−

t,ij ,

which is equivalent to optimizing

vβt,ij = min
β+
t,ij≥0,β−

t,ij≥0
β−
t,ij + β+

t,ij ,

s.t. β+
t,ij − β−

t,ij = αt,j − αt,i,

where the optimal value is vβ
∗

t,ij = |αt,j − αt,i|. From constraint (14b), we know −1 ≤ αt,i ≤ 1 and

−1 ≤ αt,j ≤ 1, then we have 0 ≤ vβ
∗

t,ij ≤ 2, which implies that

0 ≤ β−
t,ij + β+

t,ij ≤ 2.

Hence, we have the desired result. □
We can then use McCormick inequalities to exactly reformulate the bilinear terms of the form

β±y that appear in dualizing the third level of this trilevel problem.
In the objective function, the only bilinear terms are {yijβ+

t,ij}t∈T ,(i,j)∈L and {yijβ−
t,ij}t∈T ,(i,j)∈L.

Since we show that all dual variables are bounded, especially 0 ≤ β± ≤ 2, bilinear terms can be
reformulated exactly by applying the McCormick Envelopes (see, e.g., McCormick 1976):

z+t,ij ≥ 0, z+t,ij ≥ β+
t,ij + 2yij − 2, z+t,ij ≤ β+

t,ij , z+t,ij ≤ 2yij , ∀t ∈ T , (i, j) ∈ L,
z−t,ij ≥ 0, z−t,ij ≥ β−

t,ij + 2yij − 2, z−t,ij ≤ β−
t,ij , z−t,ij ≤ 2yij , ∀t ∈ T , (i, j) ∈ L.

Note that this is an exact reformulation of the bilinear terms, not a relaxation. Hence, the objective
function can replaced with the reformulation and additional constraints from (15) are added to the
formulation. This completes converting the trilevel formulation to bilevel formulation.
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Appendix C Additional Tables for Section 4.5

The algorithm to solve the trilevel min-max-min problem produces upper bound and lower bound
at each iteration. The algorithm terminates when the gap between the upper bound and the lower
bound is less than the specified limit of 0.5%. For a time limit of 6 hours, the algorithm may not
terminate, and we report the final gap produced from the algorithm along with the solution time.

Table 5: Average Solution Time and Optimality Gap of Iteration for N − k Contingency Problem
with b = 2 and k = 3

(Reg-Battery) (LP-Battery)

Time (sec) Opt. Gap Time (sec) Opt. Gap

IEEE 14 8 0.00% 7 0.00%
IEEE 73 479 0.00% 522 0.00%
PEGASE 89 12 0.00% 70 0.02%
IEEE 118 9970 0.00% 7817 0.19%
IEEE 162 14 0.00% 137 0.00%
IEEE 300 63 0.13% 3238 3.33%
PEGASE 1354 20272 2.21% 19388 13.25%
RTE 1888 8961 0.14% 21600 7.46%

Table 6: Average Solution Time and Optimality Gap of Iteration for N − k Contingency Problem
with b = 2 and k = 5

(Reg-Battery) (LP-Battery)

Time (sec) Opt. Gap Time (sec) Opt. Gap

IEEE 14 8 0.00% 7 0.00%
IEEE 73 601 0.00% 697 0.05%
PEGASE 89 16 0.00% 113 0.00%
IEEE 118 3752 0.67% 2804 0.25%
IEEE 162 34 0.00% 550 0.00%
IEEE 300 92 0.07% 3618 3.11%
PEGASE 1354 14453 1.83% 21600 13.04%
RTE 1888 12267 0.67% 21600 7.65%

Table 7: Average Solution Time and Optimality Gap of Iteration for N − k Contingency Problem
with b = 3 and k = 5

(Reg-Battery) (LP-Battery)

Time (sec) Opt. Gap Time (sec) Opt. Gap

IEEE 14 7 0.00% 8 0.00%
IEEE 73 993 0.00% 730 0.05%
PEGASE 89 16 0.00% 245 0.00%
IEEE 118 4441 0.98% 2205 0.22%
IEEE 162 32 0.04% 1325 2.24%
IEEE 300 192 0.12% 3356 3.53%
PEGASE 1354 21600 3.89% 21600 17.70%
RTE 1888 14262 0.24% 21600 14.19%
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Table 8: Average Solution Time and Optimality Gap of Iteration for N − k Contingency Problem
with b = 5 and k = 10

(Reg-Battery) (LP-Battery)

Time (sec) Opt. Gap Time (sec) Opt. Gap

IEEE 14 9 0.00% 9 0.00%
IEEE 73 1155 0.00% 1010 0.00%
PEGASE 89 21 0.01% 374 0.80%
IEEE 118 16742 0.25% 19982 1.22%
IEEE 162 16 0.21% 523 1.94%
IEEE 300 22 0.09% 1241 6.96%
PEGASE 1354 12653 1.54% 21600 18.14%
RTE 1888 21600 1.29% 21600 24.97%
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