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Abstract

Incorporating energy storage systems (ESS) into power systems has been studied in many
recent works, where binary variables are often introduced to model the complementary nature of
battery charging and discharging. A conventional approach for these ESS optimization problems
is to relax binary variables and convert the problem into a linear program. However, such linear
programming relaxation models can yield unrealistic fractional solutions, such as simultaneous
charging and discharging. In this paper, we develop a regularized Mixed-Integer Programming
(MIP) model for the ESS optimal power flow (OPF) problem. We prove that under mild condi-
tions, the proposed regularized model admits a zero integrality gap with its linear programming
relaxation; hence, it can be solved efficiently. By studying the properties of the regularized MIP
model, we show that its optimal solution is also near-optimal to the original ESS OPF problem,
thereby providing a valid and tight upper bound for the ESS OPF problem. The use of the
regularized MIP model allows us to solve a trilevel min-max-min network contingency problem
which is otherwise intractable to solve.

1 Introduction

Modern electrical grids have undergone significant transformations in the past few decades with in-
creased integration of renewable energy resources and distributed energy resources. In spite of many
benefits brought by these new entrants, power grids are also experiencing increased uncertainties
due to inherent dependency on weather and short-term demand forecasts, which are challenging
to accurately predict. To mitigate these challenges, many Independent System Operators (ISOs)
are turning their attention to energy storage systems (ESS), also referred to as batteries for conve-
nience in this paper. In their most recent annual study, the U.S. Energy Information Administration
(2023) predicted 160 gigawatts of total installed battery storage capacity in the U.S. by the year
2050.

The introduction of ESS naturally leads us to revisit existing optimization problems in light
of this new market entrant. Some previous studies include unit commitment problems with hydro
storage (see, e.g., Jiang et al. 2012), economic dispatch problems (see, e.g., Yan et al. 2016), optimal
bidding strategy for battery operators (see, e.g., Jiang and Powell 2015), planning problems for wind
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farm and battery siting (see, e.g., Qi et al. 2015), and control policy problems for optimizing the
revenue of battery operators (see, e.g., Salas and Powell 2018).

In this paper, we study the problem of incorporating ESS in the optimal power flow (OPF)
problem. Incorporating batteries into the OPF problem adds a unique complexity since a battery
can act as both a demand and a generator depending on whether it is charging or discharging.
This introduces binary variables, making it a mixed-integer program (MIP) and difficult to solve
planning problems of multi-level optimization. Here, we propose a new MIP model for the DC
OPF problem with ESS that has a zero-integrality gap under certain conditions and we apply the
model to a long-term planning problem to show the efficacy of the model.

1.1 Relevant Literature

Modeling the DCOPF problem with ESS has been of interest for more than a decade. Chandy et al.
(2010) proposed a simple OPF model incorporating ESS, demonstrating a pattern for the state-of-
charge of a battery under the assumption of it being lossless for the case with a single generator
and a single demand load. However, this model oversimplifies the reality that batteries do incur
losses. Sioshansi et al. (2022) summarized several essential constraints for energy storage models
including the energy loss factors with a round-trip efficiency of less than 1. These constraints form
the basis of many works that embed ESS in their corresponding optimization models (see the details
in Löhndorf and Wozabal 2023, Wu et al. 2023). Yet the model admits a computationally simple
structure and fails to account for the complementary nature of charging and discharging.

A more accurate model of battery operations formulates the problem with binary variables to
represent the complementary nature of charging and discharging for a battery. Although binary
variables represent more realistic battery operations, mixed-integer models are more challenging to
solve due to the nonconvex nature of the resulting formulations. To avoid this complexity, many
papers use convex constraints to model the battery operations (see, e.g., Pozo et al. 2014, Lorca
and Sun 2016, Kody et al. 2022). Specifically, Pozo (2022) summarized various linear programming
(LP) formulations that are valid relaxations of the MIP. However, these simple convex models may
yield unrealistic solutions for the sake of simplicity. This issue has been discussed in Arroyo et al.
(2020), where counterexamples demonstrate that a battery charges and discharges simultaneously
despite satisfying all conditions presented for strong convex relaxation models.

The scarcity of long-term planning studies that include ESS could be attributed to the lack of
realistic yet efficient models for DCOPF with batteries, despite its potential to enhance reliability
in the smart grid. The N − k contingency problem is one of these critical long-term planning
problems that addresses disruptions or attacks within a system. Power grids face contingencies
stemming from cyber-security attacks (see U.S. Department of Energy 2021) as well as unforeseen
transmission line failures due to various physical threats, including an increasing frequency of
wildfire incidents over the years. While Yang and Nagarajan (2022) studied optimal power flow
under N −1 contingency in power systems, to the best of our knowledge, no prior work has studied
the battery placement problem under N − k contingency.

1.2 Summary of Contributions

In this paper, we propose a regularized MIP model for battery operations in the DC optimal power
flow problem. The main benefits of the regularized MIP model are summarized below.

• Regularized MIP model with zero integrality gap. In the exact battery model, one must
enforce pctp

d
t = 0, where pct and pdt are the amount of power being used to charge and discharge

a battery at time t, respectively. One can view this as enforcing a very specific sparsity

2



condition. Often, sparsity is achieved by the addition of an ℓ1 regularizer penalty (see, e.g.,
Tibshirani 1996, Dey et al. 2022). In the same spirit, we perturb the original objective
function of DCOPF with batteries by adding ℓ1 regularizers with respect to pct and pdt for
all times t. We prove that under mild conditions that are standard in most of the literature
(see, e.g., Pozo 2022, Kody et al. 2022) and for a sufficiently large penalty, where the penalty
value depends only on the efficiency of the battery (see details in Section 3), the regularized
MIP has zero integrality gap with its LP relaxation. This regularized MIP model achieves the
goal of being simple to solve yet produces feasible solutions for the actual battery operations.
Moreover, the required penalty value is quite small for standard battery efficiencies, thus
yielding near-optimal solutions in all our studies.

• High-quality upper bound. The optimal solution to the regularized MIP model is a feasible
solution to the original MIP and provides a valid and tight upper bound. We formally study
the structural difference between the optimal solution to the regularized problem and the
original battery problem, provide an exactness condition, that is a condition under which we
obtain the same solution, and prove a worst-case bound on the gap between their optimal
objective values. We also evaluate our regularized MIP with a specific choice of regularizer
parameter and empirically show that in practice the relative gap is small.

• Application to a long-term planning problem. Leveraging the benefit of having no integrality
gap for the regularized MIP, we examine the challenging application of trilevel min-max-min
problem involving binary decision variables at each level. At the outermost level, a network
designer is planning the locations of the batteries. The middle level is an interdictor allowed
to attack a budgeted amount of the network. The innermost minimization problem is the
system operator solving a DCOPF problem with batteries. Using our regularized model in
the third level allows us to replace an integer program with its LP relaxation. We can then
take the dual of this LP relaxation, thus allowing the problem to be reduced to a bilevel
problem with bounded dual variables (see details in Section 4). The resulting bilevel problem
can now be solved more efficiently with existing combinatorial algorithms (see Bienstock and
Özbay 2008 and Yang and Nagarajan 2022). We empirically test on instances with up to 2000
nodes and are able to solve this class of challenging trilevel instances in less than 6 hours.
To the best of our knowledge, this is the first time that the N − k contingency problem for
battery operations has been studied. This model may be of independent interest to the power
systems research community.

Organization. The remainder of the paper is organized as follows. Section 2 provides a detailed
mathematical formulation of the DCOPF with ESS. Section 3 introduces the regularized MIP
model, presents its structural properties, and provides a comparison against the original MIP
model. Section 4 introduces the trilevel N − k contingency problem with ESS siting. Section 5
details the experimental settings and shows the computational results that demonstrate the power
of using regularized formulation. Section 6 concludes the paper.
Notation. The following notation is used throughout the paper. We use bold letters (e.g., x,y)
to denote vectors and matrices and use corresponding non-bold letters to denote their components.
Given an integer n, we let [n] := {1, 2, . . . , n}, and use Rn

+ := {x ∈ Rn : xi ≥ 0, ∀i ∈ [n]}. We
let e be the vector or matrix of all ones and let ei be the i-th standard basis vector. Additional
notations are introduced as needed.
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2 OPF Formulation with Energy Storage Systems

In this section, we present the mathematical model for the DCOPF problem with batteries placed
at a subset of network buses. Consider a network with a set of buses denoted as N and a set
of transmission lines denoted as L. The batteries are placed at a subset of buses Nb ⊆ N . For
simplicity, we assume that all batteries within the network have the same initial state-of-charge
and configuration of efficiency level, lower and upper bounds on state-of-charge, charging rate,
and discharging rate. Moreover, we assume these parameters remain unchanged over time. Our
results on the regularized formulation in the next section do not require these assumptions. Let set
T = {1, . . . , T} represent the finite time horizon with equal time intervals. At each time t ∈ T , we
decide the power output of each generator pgt,i at bus i ∈ N , taking into account the minimum and

maximum generation limits, denoted by Gmax
i and Gmin

i , respectively, i.e.,

Gmin
i ≤ pgt,i ≤ Gmax

i , ∀t ∈ T , i ∈ N . (1a)

Notice that if there is no generator at a certain bus i ∈ N , we set Gmin
i = Gmax

i = 0. We also decide
the power flow ft,ij through transmission line (i, j) ∈ L subject to the limit for both directions
Fij , i.e.,

− Fij ≤ ft,ij ≤ Fij , ∀t ∈ T , (i, j) ∈ L. (1b)

The flow on a transmission line is proportional to the difference in phase angles of the corresponding
buses:

ft,ij = Bij(θt,i − θt,j), ∀t ∈ T , (i, j) ∈ L, (1c)

where Bij is the susceptance of the transmission lines (i, j) ∈ L.
For batteries placed at certain nodes i ∈ Nb, we determine the operations of the batteries. Since

a battery can only charge or discharge at a given time point, we use a binary variable ut,i ∈ {0, 1}
to denote charging (ut,i = 1) and discharging (ut,i = 0) states. When a battery is charging, we
decide the charging amount pct,i subject to its upper and lower limits, denoted as Emax

c and Emin
c ,

respectively. Similarly, when the battery is discharging, we decide the discharging amount pdt,i
subject to its upper limit Emax

d and lower limit Emin
d , i.e.,

Emin
c ut,i ≤ pct,i ≤ Emax

c ut,i, ∀t ∈ T , i ∈ Nb, (1d)

Emin
d (1− ut,i) ≤ pdt,i ≤ Emax

d (1− ut,i), ∀t ∈ T , i ∈ Nb. (1e)

We use ηc ∈ (0, 1] to denote the charging efficiency and 1/ηd ∈ [1,∞) to represent the discharging
efficiency, accounting for energy losses incurred during imperfect round-trip energy conversions,
which may result from factors such as friction. The state-of-charge, represented by pst,i, evolves
based on the amount of battery charging and discharging. We assume an initial state-of-charge to
be E0, i.e.,

pst,i = pst−1,i + ηc · pct,i − 1/ηd · pdt,i, ∀t ∈ T , i ∈ Nb, (1f)

ps0,i = E0, ∀i ∈ Nb. (1g)

Note that we have ηc ≤ 1/ηd, since otherwise, (1f) may result in arbitrage power.
The state-of-charge of batteries is subject to upper and lower bounds for reliable operations,

i.e.,

Emin ≤ pst,i ≤ Emax, ∀t ∈ T , i ∈ Nb. (1h)
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In case there are no batteries at certain nodes i ∈ N \ Nb, all battery-related variables are set to
zero, i.e.,

pst,i = ps0,i = pct,i = pdt,i = ut,i = 0, ∀t ∈ T , i ∈ N \ Nb. (1i)

These operational decisions may lead to load shedding plst,i if available power at bus i ∈ N is
insufficient to meet the demand Dt,i. Conversely, the system may experience excess power pext,i
if available power exceeds demand. Excess power can be interpreted as the counterpart of load
shedding. At a specific node, load shedding occurs when the available power is insufficient to meet
the demand, while excess power arises when there is more power than needed. This surplus power
can threaten grid stability and may result in curtailment (see e.g., National Renewable Energy
Laboratory 2024, Novacheck et al. 2024). With the increasing penetration of renewable energy,
which is highly variable, managing excess power is as important as managing load shedding. In
recent years, California has seen a surge in solar power being a challenge to their power grid (Osaka
2024). These variables act as slack variables and are always nonnegative:

pls, pex ≥ 0. (1j)

It is important to note that in an optimal solution, only one of load shedding or excess power can
occur at a given time at each bus, ensuring that plst,ip

ex
t,i = 0 for all i ∈ N and t ∈ T .

Altogether, these decisions must satisfy the power balance equation:∑
j∈δ+i

ft,ij −
∑
j∈δ−i

ft,ji = pgt,i −Dt,i − pct,i + pdt,i + plst,i − pext,i, ∀t ∈ T , i ∈ N , (1k)

where δ+i = {j ∈ N : (i, j) ∈ L} and δ−i = {j ∈ N : (j, i) ∈ L}. The objective is to minimize
the system cost including generator costs as well as load shedding and excess power over the entire
network buses i ∈ N and the time horizon t ∈ T . Since load shedding and excess power can
be detrimental to the system, usually large constant M is multiplied to estimate the cost. We
normalize the cost of load shedding and excess power to 1. We let cg(·) denote the normalized
generator cost function, which is usually linear or convex quadratic.

For the rest of the paper, for simplicity, we use p = (pg,ps,pc,pd,pls,pex), the system-wide

cost c(p) = cg(pg) +
∑

t∈T
∑

i∈N

(
plst,i + pext,i

)
, T = |T |, N = |N |, and Nb = |Nb|. Using these

notations, we are now ready to introduce the DCOPF problem with the battery, that is,

zori = min
θ,f ,p,u

{
c(p) : (1a)− (1k), u ∈ {0, 1}T×N

}
. (Battery)

Without loss of generality, we assume that 0 ≤ Fij for all (i, j) ∈ L, 0 ≤ Gmin
i ≤ Gmax

i for each
i ∈ N , 0 ≤ Emin ≤ Emax, 0 ≤ Emin

c ≤ Emax
c , and 0 ≤ Emin

d ≤ Emax
d . Hence, it follows immediately

pg, ps, pc, pd ≥ 0.

3 Regularized MIP Model

In this section, we first introduce a regularized MIP model and provide conditions such that this
regularized MIP has the same optimal objective function value as its LP relaxation. To sim-
plify the notation, we employ the function g(·) to map p to a two-dimensional vector: g(p) =(∑

t∈T
∑

i∈N pct,i,
∑

t∈T
∑

i∈N pdt,i

)⊤
. Now, we introduce a regularization function aimed at penal-

izing pc and pd with a given λ = (λc, λd)
⊤ ∈ R2

+, that is,

zreg(λ) = min
θ,f ,p,u

{
c(p) + λ⊤g(p) : (1a)− (1k), u ∈ {0, 1}T×N

}
. (Reg-Battery)
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Note that λc and λd are the penalty terms with respect to the normalized cost of load shedding pls

and the excess power pex. In (Reg-Battery) problem, the only binary decision is u ∈ {0, 1}T×N .
By relaxing this binary variable u to be continuous, we have the following convex relaxation for
(Reg-Battery) problem:

zregl (λ) = min
θ,f ,p,u

{
c(p) + λ⊤g(p) : (1a)− (1k), u ∈ [0, 1]T×N

}
. (LP-Reg-Battery)

One of our main results in this section is to provide nontrivial sufficient conditions such that
(Reg-Battery) problem and (LP-Reg-Battery) problem have the same optimal objective function
value.

Theorem 1. Suppose that Emin
c = Emin

d = 0. If λc + ηcηdλd ≥ 1 − ηcηd, then we have that
zreg(λ) = zregl (λ).

Proof. (LP-Reg-Battery) problem is a relaxation of (Reg-Battery) problem, so it remains to show
that an optimal solution to (LP-Reg-Battery) problem is achieved with ut,i ∈ {0, 1} for all t ∈ T
and i ∈ Nb, which is equivalent to showing that pct,i = 0 or pdt,i = 0 for all t ∈ T and i ∈ N .

Let (θ̂, f̂ , p̂, û) be an optimal solution to (LP-Reg-Battery) problem. Suppose that p̂ct∗,i∗ > 0 and

p̂dt∗,i∗ > 0 for some t∗ ∈ T and i∗ ∈ N . We show that we can always find another feasible solution

(θ̃, f̃ , p̃, ũ) such that at most one of p̃ct∗,i∗ and p̃dt∗,i∗ is positive for this given t∗ ∈ T and i∗ ∈ N and

the corresponding objective value is at least as good as that of (θ̂, f̂ , p̂, û). Such a solution can be
constructed as follows:

θ̃ = θ̂, f̃ = f̂ , p̃g = p̂g, p̃s = p̂s,

p̃ct,i = max{p̂ct,i − p̂dt,i/(ηcηd), 0}, ∀t ∈ T , i ∈ N , (2a)

p̃dt,i = max{p̂dt,i − ηcηdp̂
c
t,i, 0}, ∀t ∈ T , i ∈ N , (2b)

p̃lst,i = max{−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + p̃ct,i − p̃dt,i, 0}, ∀t ∈ T , i ∈ N , (2c)

p̃ext,i = max{p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i − p̃ct,i + p̃dt,i, 0}, ∀t ∈ T , i ∈ N , (2d)

ũt,i = 1
{
p̃ct,i > 0

}
, ∀t ∈ T , i ∈ N . (2e)

Obviously, (θ̃, f̃ , p̃, ũ) satisfies all the constraints of (LP-Reg-Battery) problem. In particular, for
each t ∈ T , i ∈ N , the following equality is satisfied from the power balance equation (1k):

−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i = −p̃ct,i + p̃dt,i + p̃lst,i − p̃ext,i. (3)

We also note that p̃ct,ip̃
d
t,i = 0. Suppose otherwise that p̃ct,i > 0 and p̃dt,i > 0. The first inequality

implies that ηcηdp̂
c
t,i > p̂dt,i whereas the second inequality implies the opposite, p̂dt,i > ηcηdp̂

c
t,i, a

contradiction. Since the generator level is kept the same, that is p̂g = p̃g, the generator cost in
c(p) do not change, hence we will only compare the portion in c(p) that corresponds to the load
shedding and the excess power. Now, using the fact that p̃lst,ip̃

ex
t,i = 0 and p̃ct,ip̃

d
t,i = 0 for each

t ∈ T , i ∈ N , it is sufficient to consider the following four cases.

(Case 1) When p̃dt,i = p̃lst,i = 0, the objective function of (LP-Reg-Battery) problem excluding the
generator cost portion is:

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i = p̃ext,i + λcp̃

c
t,i.
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From condition (3), we have p̃ext,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i − p̃ct,i + p̃dt,i + p̃lst,i. Then, we
substitute it for the objective value of (LP-Reg-Battery) problem, that is,

p̃ext,i + λcp̃
c
t,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i − p̃ct,i + λcp̃

c
t,i.

Based on the construction in (2a) and (2b), together with the presumption p̃dt,i = 0, we
obtain the following simplification:

p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i − p̃ct,i + λcp̃
c
t,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i + (λc − 1)

(
p̂ct,i −

p̂dt,i
ηcηd

)

= −p̂lst,i + p̂ext,i + λcp̂
c
t,i +

1− λc − ηcηd
ηcηd

p̂dt,i

≤ p̂lst,i + p̂ext,i + λcp̂
c
t,i + λdp̂

d
t,i.

The last inequality follows from the assumption λc + ηcηdλd ≥ 1 − ηcηd along with the
fact that ηcηd > 0.

(Case 2) When p̃dt,i = p̃ext,i = 0, the objective function of (LP-Reg-Battery) problem excluding the
generator cost portion:

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i = p̃lst,i + λcp̃

c
t,i.

From condition (3), we have

p̃lst,i + λcp̃
c
t,i = −p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + p̃ct,i + λcp̃

c
t,i.

Similarly, based on the construction in (2a) and (2b), together with the presumption
p̃dt,i = 0, we obtain the following simplification:

−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + p̃ct,i + λcp̃
c
t,i = −p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + (λc + 1)

(
p̂ct,i −

p̂dt,i
ηcηd

)

= p̂lst,i − p̂ext,i + λcp̂
c
t,i +

(
1− 1

ηcηd
− λc

ηcηd

)
p̂dt,i

≤ p̂lst,i + p̂ext,i + λcp̂
c
t,i + λdp̂

d
t,i.

The last inequality follows from the assumption that λc+ηcηdλd ≥ 1−ηcηd which implies
λd ≥ −1+ 1

ηcηd
− λc

ηcηd
with ηcηd > 0 and ηc ≤ 1/ηd which implies −1+ 1

ηcηd
≥ 0 ≥ 1− 1

ηcηd
.

(Case 3) When p̃ct,i = p̃lst,i = 0, the objective function of (LP-Reg-Battery) problem excluding the
generator cost portion is:

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i = p̃ext,i + λdp̃

d
t,i.

From condition (3), we have

p̃ext,i + λdp̃
d
t,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i + p̃dt,i + λdp̃

d
t,i.
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Based on the construction in (2a) and (2b), together with the presumption p̃ct,i = 0, we
obtain the following simplification:

p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i + p̃dt,i + λdp̃
d
t,i = p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i + (λd + 1)(p̂dt,i − ηcηdp̂

c
t,i)

= −p̂lst,i + p̂ext,i + (1− ηcηdλd − ηcηd) p̂
c
t,i + λdp̂

d
t,i

≤ p̂lst,i + p̂ext,i + λcp̂
c
t,i + λdp̂

d
t,i.

The last inequality follows immediately from the assumption that λc+ ηcηdλd ≥ 1− ηcηd.

(Case 4) When p̃ct,i = p̃ext,i = 0, the objective function of (LP-Reg-Battery) problem excluding the
generator cost portion is:

p̃lst,i + p̃ext,i + λcp̃
c
t,i + λdp̃

d
t,i = p̃lst,i + λdp̃

d
t,i.

From condition (3), we have

p̃lst,i + λdp̃
d
t,i = −p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i − p̃dt,i + λdp̃

d
t,i.

Similarly, based on the construction in (2a) and (2b), together with the presumption
p̃ct,i = 0, we obtain the following simplification:

−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i − p̃dt,i + λdp̃
d
t,i = −p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i + (λd − 1)(p̂dt,i − ηcηdp̂

c
t,i)

= p̂lst,i − p̂ext,i + (−ηcηdλd + ηcηd − 1) p̂ct,i + λdp̂
d
t,i

≤ p̂lst,i + p̂ext,i + λcp̂
c
t,i + λdp̂

d
t,i.

The last inequality follows from the assumption that λc+ηcηdλd ≥ 1−ηcηd which implies
λc ≥ −ηcηdλd + 1− ηcηd and ηc ≤ 1/ηd which implies 1− ηcηd ≥ 0 ≥ ηcηd − 1.

Since above four cases hold for each t ∈ T and i ∈ N , we have

c(p̃) + λ⊤g(p̃) = cg(p̃g) +
∑
t∈T

∑
i∈N

(
p̃lst,i + p̃ext,i

)
+ λc

∑
t∈T

∑
i∈N

p̃ct,i + λd

∑
t∈T

∑
i∈N

p̃dt,i

≤ cg(p̂g) +
∑
t∈T

∑
i∈N

(
p̂lst,i + p̂ext,i

)
+ λc

∑
t∈T

∑
i∈N

p̂ct,i + λd

∑
t∈T

∑
i∈N

p̂dt,i

= c(p̂) + λ⊤g(p̂).

This completes the proof. □
Theorem 1 demonstrates the equivalence between the optimal objective function value of (Reg-Battery)

problem and (LP-Reg-Battery) problem under regularization (for sufficiently high penalty) and the
assumption that Emin

c = Emin
d = 0. Note that this assumption is standard and appears in many

recent works, such as Pozo (2022) and Kody et al. (2022). The technique to devise an integral
solution by perturbing the charge and discharge levels has been used in the context of optimizing
for a single solar-battery storage system in Singh and Knueven (2021).

Theorem 1 easily leads to the following Corollary.

Corollary 1. When ηc = ηd = 1 for any λ ≥ 0, (Reg-Battery) problem and (LP-Reg-Battery)
problem are equivalent. In particular, when λ = 0, (Battery) problem, (Reg-Battery) problem, and
(LP-Reg-Battery) problem are all equivalent, i.e., zori = zreg(0) = zregl (0).
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Therefore, when efficiencies for both charging and discharging are 1 (i.e., the battery is lossless
and ηc = ηd = 1), relaxing the integrality of battery operations is exact. However, as such does not
occur in practice, most literature concerning battery operation bases numerical experiments with
ηc, ηd < 1.

Finally, we remark that the two assumptions of Theorem 1, (i.e., Emin
c = Emin

d = 0 and λc +
ηcηdλd ≥ 1 − ηcηd are the best that we may expect for the equivalence of the optimal objective
function value of the regularized MIP model and its LP relaxation. The following two examples
illustrate that (Reg-Battery) problem and (LP-Reg-Battery) problem do not have the same optimal
objective function value if either of these two assumptions in Theorem 1 is violated.

Example 1. (zreg(λ) ̸= zregl (λ) when Emin
c , Emax > 0) Consider a simple network withN = {1, 2},

T = {1, 2}, L = {(1, 2)}. Suppose one battery is placed at node 2 (there is no battery placed at
node 1) with Nb = {2} and Emin

c = Emin
d = τ , Emax

c = Emax
d = 2, Emin = 0, Emax = 4,

E0 = 0, and ηc = ηd = 1/2. Assume each node has one generator with Gmin
1 = Gmin

2 = 2 and
Gmax

1 = Gmax
2 = 4 and generator cost cg(pg) = 0. We further assume −4 ≤ f12 ≤ 4 and the demand

is D1,1 = 2, D1,2 = 4, D2,1 = 6, D2,2 = 4. Without loss of generality, we assume that the Ohm’s
law constraint (1c) is satisfied. When λ = (3/5, 3/5)⊤, for any τ ∈ (0, 1/2], an optimal solution to
(Reg-Battery) problem is

p̂c1,1 = 0, p̂c1,2 = 4τ, p̂c2,1 = 0, p̂c2,2 = 0,

p̂d1,1 = 0, p̂d1,2 = 0, p̂d2,1 = 0, p̂d2,2 = τ,

p̂ls1,1 = 0, p̂ls1,2 = 0, p̂ls2,1 = 0, p̂ls2,2 = 2− τ,

p̂ex1,1 = 0, p̂ex1,2 = 0, p̂ex2,1 = 0, p̂ex2,2 = 0,

û1,1 = 0, û1,2 = 1, û2,1 = 0, û2,2 = 0,

with the optimal objective value v̂ = 2 + 2τ .
While an optimal solution to the corresponding (LP-Reg-Battery) problem is

p̃c1,1 = 0, p̃c1,2 = τ, p̃c2,1 = 0, p̃c2,2 =
3τ

5
,

p̃d1,1 = 0, p̃d1,2 = 0, p̃d2,1 = 0, p̃d2,2 =
2τ

5
,

p̃ls1,1 = 0, p̃ls1,2 = 0, p̃ls2,1 = 0, p̃ls2,2 = 2 +
τ

5
,

p̃ex1,1 = 0, p̃ex1,2 = 0, p̃ex2,1 = 0, p̃ex2,2 = 0,

ũ1,1 = 0, ũ1,2 = 1, ũ2,1 = 0, ũ2,2 =
3

5
,

with the optimal objective value ṽ = 2 + 7τ/5. Therefore, ṽ < v̂ for all τ ∈ (0, 1/2]. Hence,
(Reg-Battery) problem and (LP-Reg-Battery) problem are not equivalent. ⋄

Example 2. (zreg(λ) ̸= zregl (λ) when λc + ηcηdλd < 1− ηcηd ) Consider the same network as that
in Example 1 but with different battery configurations and demands. One battery is placed at
node 2 (i.e., Nb = {2}) with Emin

c = Emin
d = 0, Emax

c = Emax
d = 1, Emin = 0, Emax = 6, E0 = 6,

and η2c = η2d = 1/3. Demand is D1,1 = 1, D1,2 = 2, D2,1 = 4, D2,2 = 8. Other parameters remain
the same. We assume that the Ohm’s law constraint (1c) is satisfied. Let λ = (τ, τ)⊤ for any
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τ ∈ [0, 1/2). An optimal solution to (Reg-Battery) problem is

p̂c1,1 = 0, p̂c1,2 = 0, p̂c2,1 = 0, p̂c2,2 = 0,

p̂d1,1 = 0, p̂d1,2 = 0, p̂d2,1 = 0, p̂d2,2 = 1,

p̂ls1,1 = 0, p̂ls1,2 = 0, p̂ls2,1 = 0, p̂ls2,2 = 3,

p̂ex1,1 = 1, p̂ex1,2 = 0, p̂ex2,1 = 0, p̂ex2,2 = 0,

û1,1 = 0, û1,2 = 0, û2,1 = 0, û2,2 = 0,

with the optimal objective value v̂ = 4 + τ .
While an optimal solution to the corresponding (LP-Reg-Battery) problem is

p̃c1,1 = 0, p̃c1,2 = 3/4, p̃c2,1 = 0, p̃c2,2 = 0,

p̃d1,1 = 0, p̃d1,2 = 1/4, p̃d2,1 = 0, p̃d2,2 = 1,

p̃ls1,1 = 0, p̃ls1,2 = 0, p̃ls2,1 = 3, p̃ls2,2 = 0,

p̃ex1,1 = 0, p̃ex1,2 = 1/2, p̃ex2,1 = 0, p̃ex2,2 = 0,

ũ1,1 = 0, ũ1,2 = 3/4, ũ2,1 = 0, ũ2,2 = 0,

with the optimal objective value ṽ = 7/2 + 2τ . Therefore, ṽ < v̂ for all τ ∈ [0, 1/2). Hence,
(Reg-Battery) problem and (LP-Reg-Battery) problem are not equivalent. ⋄

In this section, we have shown that (Reg-Battery) problem is easy to solve, since there is no
integrality gap between this problem and its linear programming relaxation. In the next two subsec-
tions, we begin to analyze the relationship between (Reg-Battery) problem and (Battery) problem.
We would like to understand the differences between the optimal solutions and corresponding ob-
jective function values of these two problems both qualitatively and quantitatively.

3.1 Structural Properties of the Regularized MIP Model

In this section, we provide some structural properties of (Reg-Battery) problem. First, we baseline
the value of λ. Next, we present a two-part result on the structure of an optimal solution to
the (Reg-Battery) problem as a function of the penalty coefficients λ that distinguishes (Battery)
problem and (Reg-Battery) problem.

3.1.1 Baselining the value of λ.

We begin with the following standard observation from linear programming applied to the convex
hull of the feasible region of the (Reg-Battery).

Remark 1. Function zreg(λ) is concave and monotone nondecreasing with respect to λ ∈ R2
+.

As λ gets larger, (Reg-Battery) problem gets more-and-more “different” from (Battery) prob-
lem. In particular, we expect that the battery to be used less, since it now costs more to charge
or discharge. However, what is a “reasonable” value of λ? Our first result below allows us to
baseline the value of λ, by showing that if both components of λ are equal to 1 or higher, then
(Reg-Battery) problem effectively solves the problem with no batteries placed in the network.

Proposition 1. For any λ ≥ e, we have zreg(λ) = znb where

znb = min
θ,f ,p,u

{
c(p) : (1a)− (1k), u ∈ {0, 1}T×N , pc = pd = 0

}
. (4)
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Proof. Observe that the problem corresponding to znb is obtained by restricting the feasible region
of zreg(λ) to pc = pd = 0. Thus, we have

znb ≥ zreg(λ), ∀λ ≥ e.

To show the opposite inequality, it is sufficient to show that there is an optimal solution for zreg(e)
such that pc = pd = 0, since we have zreg(λ) ≥ zreg(e) for all λ ≥ e from Remark 1. We use the
power balance equation (1k) written in the following form∑

j∈δ+i

ft,ij −
∑
j∈δ−i

ft,ji − pgt,i +Dt,i = −pct,i + pdt,i + plst,i − pext,i, ∀t ∈ T , i ∈ N .

To construct such a feasible solution from the current optimal solution. Let (θ̂, f̂ , p̂, û) be an
optimal solution to (Reg-Battery) problem. We can construct another feasible solution (θ̃, f̃ , p̃, ũ)
as follows:

θ̃ = θ̂, f̃ = f̂ , p̃g = p̂g, p̃s = E0e, p̃c = 0, p̃d = 0,

p̃lst,i = max{−p̂ct,i + p̂dt,i + p̂lst,i − p̂ext,i, 0}, ∀t ∈ T , i ∈ N ,

p̃ext,i = max{p̂ct,i − p̂dt,i − p̂lst,i + p̂ext,i, 0}, ∀t ∈ T , i ∈ N .

Then, using the fact that plst,ip
ex
t,i = 0 and pct,ip

d
t,i = 0 for each t ∈ T , i ∈ N , we consider the following

four cases.

(Case 1) When p̂dt,i = p̂lst,i = 0, p̃lst,i = 0 and p̃ext,i = p̂ct,i + p̂ext,i. Hence, we have

p̃lst,i + p̃ext,i = p̂ct,i + p̂ext,i = p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i.

(Case 2) When p̂dt,i = p̂ext,i = 0, p̃lst,i + p̃ext,i = |p̂lst,i − p̂ct,i| and we have

p̃lst,i + p̃ext,i = |p̂lst,i − p̂ct,i| ≤ p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i.

(Case 3) When p̂ct,i = p̂lst,i = 0, p̃lst,i + p̃ext,i = |p̂ext,i − p̂dt,i| and we have

p̃lst,i + p̃ext,i = |p̂ext,i − p̂dt,i| ≤ p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i.

(Case 4) When p̂ct,i = p̂ext,i = 0, p̃ext,i = 0 and p̃lst,i = p̂dt,i + p̂lst,i. Hence, we have

p̃lst,i + p̃ext,i = p̂dt,i + p̂lst,i = p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i.

Since the above four cases hold for all t ∈ T , i ∈ N , we have

c(p̃) + g(p̃) = cg(p̃g) +
∑
t∈T

∑
i∈N

(
p̃lst,i + p̃ext,i

)
≤ cg(p̂g) +

∑
t∈T

∑
i∈N

(
p̂lst,i + p̂ext,i + p̂ct,i + p̂dt,i

)
= c(p̂) + g(p̂).

Therefore, (θ̃, f̃ , p̃, ũ) is an optimal solution to (Reg-Battery) problem. This completes the proof.
□
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We remark that for general values of λ, the result of Proposition 1, that is znb = zreg(λ) may
not hold. The following example shows that the battery may always be used when λ ∈ (0, 1)2.

Example 3. (zreg(λ) ̸= znb when λ ∈ (0, 1)2) We consider the same network as that in Example 1
but with different battery configurations and demands. One battery is placed at node 2 (i.e.,
Nb = {2}) with Emin

c = Emin
d = 0, Emax

c = Emax
d = 2, Emin = 0, Emax = 20, E0 = 20 and

ηc = ηd = 1. Demand is D1,1 = D1,2 = D2,1 = D2,2 = 5. Other parameters remain the same.
When λ ∈ (0, 1)2, at optimality of (Reg-Battery) problem, we always have

pd1,1 = pd2,1 = 2 > 0.

This demonstrates that when violating the condition in Proposition 1, i.e., λ ∈ (0, 1)2, it is possible
that either pc or pd is always positive. ⋄

3.1.2 Structural properties of optimal solutions of Regularized MIP.

The next two-part result on the structure of an optimal solution to (Reg-Battery) problem as
a function of the penalty coefficients λ shows the distinction between (Battery) problem and
(Reg-Battery) problem as a function of λ.

In the first part, we show that pct,ip
ls
t,i = 0 for all t ∈ T , i ∈ N holds for optimal solutions for all

values of λ, that is, this property is true for both (Battery) problem and (Reg-Battery) problem.
Intuitively, this property holds because when the system is incurring load shedding (plst,i > 0), it
would not create additional load shedding by charging a battery (pct,i > 0). Similar to the result
above, we may expect that when there is excess power (pext,i > 0), the amount of discharge would

not be positive (pdt,i = 0), as a positive discharge amount would further increase excess power. It

is reasonable to expect pdt,ip
ex
t,i = 0 for all t ∈ T , i ∈ N . In the second part of our result, we

demonstrate that this condition only holds when λ is sufficiently large. Indeed, it turns out that
when λ = 0, specifically in considering the (Battery) problem, the aforementioned condition might
be violated, i.e., pdt,ip

ex
t,i > 0 for some t ∈ T , i ∈ N .

Theorem 2. Suppose Emin
c = Emin

d = 0. Let p be an optimal solution to (Reg-Battery) problem.
Then:

(i) For all λ ∈ R2
+, we have pct,ip

ls
t,i = 0 for all t ∈ T , i ∈ N .

(ii) If λc + ηcηdλd > 1− ηcηd, then we have pdt,ip
ex
t,i = 0 for all t ∈ T , i ∈ N .

Proof. See Appendix A. □
Notice that the observations in Theorem 2 can be found in standard IEEE networks with

reasonable efficiency levels (ηc, ηd ≥ 0.8), wherein batteries placed at specific nodes may discharge
while the system may incur excess power simultaneously. Below, we also present an example that
illustrates this phenomenon for a simpler network, thus establishing structural differences in the
optimal solutions of (Battery) problem and (Reg-Battery) problem for sufficiently large λ.

Example 4. (Condition (ii) in Theorem 2) Consider a simple network with N = {1, 2}, T =
{1, 2, 3}, L = {(1, 2)}. Suppose one battery is placed at node 2 (there is no battery placed at
node 1) with Nb = {2} and Emin

c = Emin
d = 0, Emax

c = Emax
d = 2, Emin = 0, Emax = 4,

E0 = 4, and ηc = ηd = 0.1. Assume each node has one generator with Gmin
1 = Gmin

2 = 2 and
Gmax

1 = Gmax
2 = 4 and generator costs cg(pg) = 0. We further assume −4 ≤ f12 ≤ 4 and the

demand is D1,1 = 2, D1,2 = 2, D2,1 = 1, D2,2 = 1, D3,1 = 2, D3,2 = 1. Without loss of generality,
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we assume that the Ohm’s law constraint (1c) is satisfied. An optimal solution to (Battery) problem
(i.e., λ = 0 in (Reg-Battery) problem), denoted as (p∗,u∗), is

pc∗1,1 = 0, pc∗1,2 = 0, pc∗2,1 = 0, pc∗2,2 = 2, pc∗3,1 = 0, pc∗3,2 = 1,

pd
∗
1,1 = 0, pd

∗
1,2 = 0.03, pd

∗
2,1 = 0, pd

∗
2,2 = 0, pd

∗
2,1 = 0, pd

∗
2,2 = 0,

pls
∗
1,1 = 0, pls

∗
1,2 = 0, pls

∗
2,1 = 0, pls

∗
2,2 = 0, pls

∗
3,1 = 0, pls

∗
3,2 = 0,

pex∗1,1 = 0, pex∗1,2 = 0.03, pex∗2,1 = 0, pex∗2,2 = 0, pex∗3,1 = 0, pex∗3,2 = 0,

u∗1,1 = 0, u∗1,2 = 0, u∗2,1 = 0, u∗2,2 = 1, u∗3,1 = 0, u∗3,2 = 1.

Clearly, in this example, pd
∗
1,2p

ex∗
1,2 > 0. However, we can avoid this situation after considering

regularization. When λ = (0.99, 0.99)⊤, i.e., this particular choice of λ satisfies Condition (ii) in
Theorem 2, an optimal solution to (Reg-Battery) problem, denoted as (p̂, û), is

p̂c1,1 = 0, p̂c1,2 = 0, p̂c2,1 = 0, p̂c2,2 = 0, p̂c3,1 = 0, p̂c3,2 = 0,

p̂d1,1 = 0, p̂d1,2 = 0, p̂d2,1 = 0, p̂d2,2 = 0, p̂d2,1 = 0, p̂d2,2 = 0,

p̂ls1,1 = 0, p̂ls1,2 = 0, p̂ls2,1 = 0, p̂ls2,2 = 0, p̂ls3,1 = 0, p̂ls3,2 = 0,

p̂ex1,1 = 0, p̂ex1,2 = 0, p̂ex2,1 = 2, p̂ex2,2 = 0, p̂ex3,1 = 0, p̂ex3,2 = 1,

û1,1 = 0, û1,2 = 0, û2,1 = 0, û2,2 = 0, û3,1 = 0, û3,2 = 0.

In this example, Condition (i) in Theorem 2 is satisfied for both (Battery) problem and (Reg-Battery)
problem whereas Condition (ii) is only satisfied for (Reg-Battery) problem. ⋄

To conclude the discussions in this subsection, we provide a summary of the choice of λ in
Figure 1.

η2 1

1−η2

η2

1

λc + η2 · λd = 1− η2

λc

λd

zreg(λ) = f reg
l (λ) (Theorem 1)

zreg(λ) = znb (Proposition 1)

zori = zreg(λ) (Corollary 1)

Figure 1: Model comparisons with different choices of λc and λd.

3.2 Error Quantification of the Solution from the Regularized MIP Model

As we have seen in Theorem 1, in (Reg-Battery) problem, the penalty required to have zero inte-
grality gap with the LP relaxation decreases when efficiency η gets closer to 1. Nevertheless, we
still aim for a better understanding of the quality of objective function change when we adjust the
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regularizer λ. Hence, the goal of this subsection is to discuss analytical differences in comparison
to the original model with respect to the solution quality.

First, we present a sufficient condition under which the optimal solution to (Reg-Battery) can
be used to recover the optimal battery operation schedule for the original problem.

Proposition 2. Let U∗ = {u : ∃ θ, f , p such that together (θ,f ,p,u) is an optimal solution to
(Battery) problem} and P∗ = {p : ∃ θ, f , u such that together (θ,f ,p,u) is an optimal solution
to (Battery) problem}. Define the second-best optimal objective value of (Battery) problem as
zori(U∗) = minθ,f ,p,u

{
c(p) : (1a)− (1k), u ∈ {0, 1}T×N \ U∗} . Define the difference between the

best optimal objective value and the second best optimal objective value as δ = |zori(U∗)− zori| > 0.
Suppose (θ̂, f̂ , p̂, û) is an optimal solution to (Reg-Battery) problem. If λ⊤g(p∗) < δ for some
p∗ ∈ P∗, then û ∈ U∗.

Proof. We prove this by contradiction. Suppose that the presumptions hold and û /∈ U∗. Then,
(θ̂, f̂ , p̂, û) is a feasible but not an optimal solution to (Battery) problem. Since û ∈ {0, 1}T×N \U∗,
we have c(p̂) ≥ zori(U∗). Let (θ∗,f∗,p∗,u∗) be an optimal solution to (Battery) problem such that
λ⊤g(p∗) = minp∈P∗ λ⊤g(p). Then by the definition of δ, we have:

c(p̂)− c(p∗) ≥ |zori(U∗)− zori| = δ.

According to the optimality condition from (Reg-Battery) problem, we have

c(p̂) + λ⊤g(p̂) ≤ c(p∗) + λ⊤g(p∗).

Rearranging the terms, we have

c(p̂)− c(p∗) ≤ λ⊤g(p∗)− λ⊤g(p̂) ≤ λ⊤g(p∗) < δ.

Clearly, c(p̂) − c(p∗) ≥ δ and c(p̂) − c(p∗) < δ cannot hold simultaneously. Hence, this is a
contradiction. □

Notice that when λ is small (when η is close to 1), the sufficient condition of Propostion 2
is easy to satisfy. In our computational experiments, we often see this behavior. We provide an
example to illustrate the exactness condition in Proposition 2.

Example 5. (Exactness Condition of Proposition 2) Consider a simple network with N = {1, 2},
T = {1, 2}, L = {(1, 2)}. Suppose one battery is placed at node 2 (there is no battery placed
at node 1) with Nb = {2} and Emin

c = Emin
d = 0, Emax

c = Emax
d = 2, Emin = 0, Emax = 4,

E0 = 2, and ηc = ηd = 0.9. Assume each node has one generator with Gmin
1 = Gmin

2 = 2 and
Gmax

1 = Gmax
2 = 4 and generator costs cg(pg) = 0. We further assume −4 ≤ f12 ≤ 4 and the

demand is D1,1 = 10, D1,2 = 4, D2,1 = 4, D2,2 = 4. Without loss of generality, we assume that
the Ohm’s law constraint (1c) is satisfied. The optimal objective value of the (Battery) problem
fori = 4.2. We enumerate all optimal solutions u that achieve this value and find that U∗ = {û, ū}
with

ū1,1 = 0, ū1,2 = 0, ū2,1 = 0, ū2,2 = 0,

û1,1 = 0, û1,2 = 0, û2,1 = 0, û2,2 = 1.

Excluding the solutions in U∗, the second-best optimal objective value zori(U∗) = 6. Hence, the dif-

ference δ = 1.8. When λ =
(
1− η2/1 + η2, 1− η2/1 + η2

)⊤
= (19/181, 19/181)⊤, argmin{g(p∗) :

p∗ ∈ P∗} = [0, 1.8]⊤. Notice that λ⊤g(p∗) < δ. Therefore, the optimal solution to (Reg-Battery)
problem should be exactly the (Battery) problem. We check this condition by solving (Reg-Battery)
problem and we confirm that the solution from (Reg-Battery) problem is indeed exact. ⋄
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In general, we may not be able to show that the solution of (Reg-Battery) problem recovers a
solution to (Battery) problem as verifying the condition λ⊤g(p∗) in Proposition 2 is challenging
and would almost imply that we can solve the original problem directly. Instead, we next provide
a bound that quantifies the difference between the objective function value c(p) obtained from the
optimal solution to (Battery) problem and that obtained from the optimal solution to (Reg-Battery)
problem.

Theorem 3. Let (θ∗,f∗,p∗,u∗) be the optimal solution to (Battery) problem and (θ̂, f̂ , p̂, û) the
optimal solution to (Reg-Battery) problem with regularizer (λc, λd). The gap between (Battery)
problem and (Reg-Battery) problem is

c(p̂)− c(p∗) ≤ TNbmax{Emax
c λc, E

max
d λd}. (5)

Proof. Notice that the feasible regions are the same in (Battery) problem and (Reg-Battery)
problem. Hence, (θ̂, f̂ , p̂, û) is a feasible solution to (Battery) problem and (θ∗,f∗,p∗,u∗) is a
feasible solution to (Reg-Battery) problem. By optimality, we have

c(p̂) + λ⊤g(p̂) ≤ c(p∗) + λ⊤g(p∗),

which implies that

c(p̂)− c(p∗) ≤ λ⊤g(p∗)− λ⊤g(p̂) ≤ λ⊤g(p∗).

Recall that λ⊤g(p∗) =
∑

t∈T
∑

i∈N

[
λcp

c∗
t,i + λdp

d∗
t,i

]
. Since pc∗t,ip

d∗
t,i = 0 for all t ∈ T , i ∈ N , it

follows λcp
c∗
t,i +λdp

d∗
t,i ≤ max{Emax

c λc, E
max
d λd} for all t ∈ T , i ∈ N . From (1i), pc∗t,i = pd∗t,i = 0 for all

t ∈ T , i /∈ Nb, we obtain the result in (5). □
Our next goal is then to minimize the worst-case bound predicted by Theorem 3 by selecting

specific values for λ.

Proposition 3. The best worst-case bound is achieved at λ =
(
Emax

d −η2Emax
d

Emax
d +η2Emax

c
, Emax

c −η2Emax
c

Emax
d +η2Emax

c

)⊤
.

Proof. Since T and Nb are fixed, minimizing the worst-case bound in Theorem 3 reduces to the
following minimization problem:

min
λc≥0,λd≥0

{max{Emax
c λc, E

max
d λd} : λc + ηcηdλd ≥ 1− ηcηd} ,

where the optimal objective value is achieved when Emax
c λc = Emax

d λd. Hence, an optimal solution
(λ∗

c , λ
∗
d) is

(λ∗
c , λ

∗
d) =

(
Emax

d − ηcηdE
max
d

Emax
d + ηcηdEmax

c

,
Emax

c − ηcηdE
max
c

Emax
d + ηcηdEmax

c

)
.

This concludes the proof. □
We remark that when Emax

c = Emax
d , an optimal choice of (λc, λd) reduces to

(λc, λd) =

(
1− ηcηd
1 + ηcηd

,
1− ηcηd
1 + ηcηd

)
,

which implies that for this specific case, the best worst-case bound in (5) is achieved when λc = λd.
Theorem 3 and Proposition 3 provide the worst-case analysis of c(p̂) − c(p∗), where p∗ is an

optimal solution to (Battery) problem and p̂ is an optimal solution to (Reg-Battery) problem.
However, we expect the actual difference between the objective function value of the problem to
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be much smaller due to the following reasons: (i) In the proof of Theorem 3, we drop the charging
and discharging values of the regularized MIP solution by taking the minimum level of zero for all
times considered. Even though we expect that the amounts of charging and discharging become
smaller when λ increases, assuming them to be completely not charging or discharging may be
an underestimation (Proposition 1). Indeed for high-efficiency values, we expect the amount of
charging and discharging in the regularized MIP model to be close to the amount of charging
and discharging in the original MIP model; and (ii) Also note that we upper bound amount of
charging and discharging by Emax

c and Emax
d , respectively, which in many cases can be a significant

overestimation. Clearly, as shown in Theorem 3, the worst-case bound depends on the values of
Emax

c and Emax
d .

To summarize the results of this section, we show that when the efficiency level increases, in
the following example, the optimal solution from (Reg-Battery) problem is an optimal solution to
(Battery) problem, and the empirical gap is much smaller than the theoretical gap. Our empirical
results in Section 5 further demonstrate that the true difference is much less than the theoretical
worst-case bound in the above result.

Example 6. (Gap between solutions) Consider a simple network with N = {1, 2}, T = {1, 2},
L = {(1, 2)}. Suppose one battery is placed at node 2 (i.e., Nb = {2}) with Emin

c = Emin
d = 0,

Emax
c = Emax

d = 1, Emin = 0, Emax = 6, and E0 = 0. Assume each node has one generator with
Gmin

1 = Gmin
2 = 2 and Gmax

1 = Gmax
2 = 4 and generator costs cg(pg) = 0. We further assume

−1 ≤ f12 ≤ 1, the demand is D1,1 = 5, D1,2 = 1, D2,1 = 8, D2,2 = 4, and the values of the
regularizers λc and λd are the same, i.e., λ = λc = λd. In Figures 2(a)-2(c), we numerically
illustrate how the values of the regularizer affect the objective function values c(p), where the
vertical axis represents the objective function values c(p), and the horizontal axis represents the
regularize values λ. Three small incremental efficiency levels η ∈ {1/

√
2.1, 1/

√
2, 1/

√
1.9} are

considered where ηc = ηd = η. Based on Proposition 3, we also plot the objective function values
with λ = 1− η2/1 + η2. From Figure 2(a), we see that when η = 1/

√
2.1 ≈ 0.69, the optimal

solution from the regularized MIP, with the choice of (λc, λd) such that λc + η2λd ≥ 1 − η2, is
indeed not an optimal solution to the original MIP. In Figure 2(c), we observe that, with a higher
efficiency level η = 1/

√
1.9 ≈ 0.72, the optimal solution from the regularized MIP is the optimal

solution to the original MIP, while the choice of (λc, λd) satisfying the condition that the LP
relaxation of the regularized MIP model is without the integrality gap. In Figure 2(d), we show
how the actual difference is much less than the theoretical worst-case bound for this example. ⋄

4 Trilevel N − k Contingency Problem with ESS Siting

We apply the regularized MIP model to the long-term planning with N −k contingency problem to
improve transmission reliability by strategically siting batteries. Battery placement problem under
N − k contingency is modeled as a min-max-min problem with binary variables in all three levels.
To the best of our knowledge, there is no known efficient algorithm to solve such a trilevel problem
with binary variables at all three levels. We show that (Reg-Battery) problem provides provably
high-quality solutions.

4.1 Formulation

The trilevel min-max-min problem can be also understood as a defender-attacker-defender problem.
A network designer makes a long-term decision on whether to install an energy storage system for
node i ∈ N , represented by variable xi, to enhance the robustness of the power system. The system
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(a) η = 1√
2.1

(b) η = 1√
2

(c) η = 1√
1.9

(d) Gap Comparisons

Figure 2: Change in the objective value with respect to λ, where λc = λd = λ in Proposition 3.
The point denotes the value with λ = (1 − η2)/(1 + η2) for Figures (a), (b), and (c). For Figure
(d), the orange dashed line represents the theoretical worst-case bound where the blue solid line
shows the empirical difference.

operator has a budget of b batteries to add. The second level is an interdictor who can disrupt
up to k transmission lines with the goal of maximizing load shedding or excess power. The lowest
level is a system operator solving DCOPF. The overall trilevel problem is presented in Figure 3.
For simplicity, following the theoretical and computational results in Johnson and Dey (2022), we
remove the Ohm’s law constraint from the DCOPF in the third level. Furthermore, we assume that
the generator cost cg(pg) = 0, since the primary focus of this long-term planning problem under
contingency is to meet the demand exactly. The detailed formulation is provided in Appendix B.

Time
Planner places battery
in certain nodes to limit
the scope of attacker

Attacker disrupts
k transmission lines
in the battery-placed grid

Operator optimizes the
power dispatch and battery
after observing the attack

first level (x)

second level (y)

third level (θ, f , p, u)

Figure 3: Long-term planning under N −k contingency problem is a trilevel min-max-min problem
with binary decision variables in each level.
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4.2 Solution Methodology

There are a few algorithms proposed to solve bilevel or trilevel problems (see, e.g., Johnson et al.
2023, Zeng and An 2014, Bienstock and Özbay 2008). However, for this particular trilevel problem
with binary variables in all three stages, applying existing methods is computationally intractable.
Even for the smallest instance of the IEEE 14-bus system and with the first-stage decision x fixed,
solving the bilevel max -min problem using the state-of-the-art algorithm proposed by Zeng and An
(2014) does not converge in 6 hours. Hence, applying the existing bilevel algorithms to the original
trilevel problem is intractable using the (Battery) formulation. However, using the (Reg-Battery)
in the third level has the advantage that the third level becomes an LP per Theorem 1. Moreover,
we make the following remark.

Remark 2. Explicit bounds can be found for all dual variables of the third-level problem that appear
in bilinear terms together with the second-level variables.

The above remark allows the exact linearization for bilinear terms that appear in the objective
function using McCormick inequalities. We then apply the algorithm by Bienstock and Özbay
(2008) to solve the resulting bilevel optimization problem. The details of the boundedness result
(Proposition 5) and the algorithm are presented in Appendix B.

Using the regularized MIP model in the third level has another crucial advantage in that it
can provide a feasible solution with an upper bound, along with the optimality-gap derived using
the LP relaxation of the third level to obtain lower bounds. In particular, the general form of our
trilevel problem is the following:

zOPT = min
x∈X

{
max
y∈Y

{
min

θ,f ,p,u∈F(x,y)
c(p)

}}
. (6)

The set Y is finite as there are a finite number of edges and only finite possible attack strategies
are available. Let Y = {y1, · · · ,yK}. Then (6) can be equivalently reformulated as the following:

zOPT = min
x∈X ,ξ

ξ,

s.t. ξ ≥ min{c(p) : θ,f ,p,u ∈ F(x,yi)} ∀i ∈ [K].
(7)

Then, due to Theorem 1, using the regularized MIP model in the third level is equivalent to solving
the following:

zREG = min
x∈X ,ξ

ξ,

s.t. ξ ≥ min{c(p) + λ⊤g(p) : θ,f ,p,u ∈ F(x,yi)} ∀i ∈ [K].
(8)

Similarly, using the LP relaxation of the original MIP formulation in the third level can be formu-
lated as:

zLP = min
x∈X ,ξ

ξ,

s.t. ξ ≥ min{c(p) : θ,f ,p,u ∈ R(x,yi)} ∀i ∈ [K],
(9)

where R(x,y) is a linear relaxation of F(x,y). It is then easy to verify that zLP ≤ zOPT ≤ zREG.
For example, let η(x,y) = min{c(p) : θ,f ,p,u ∈ F(x,y)} and γ(x,y) = min{c(p) + λ⊤g(p) :
θ,f ,p,u ∈ F(x,y)}. Let (ξ∗,x∗,y∗) and (ξ̂, x̂, ŷ) be optimal solutions corresponding to zOPT and
zREG respectively. Let y̌ ∈ arg maxy∈Yη(x̂,y). Then we have zREG = ξ̂ = γ(x̂, ŷ) ≥ γ(x̂, y̌) ≥
η(x̂, y̌) ≥ η(x∗,y∗) = ξ∗ = zOPT , where the first inequality follows from (8) and the optimality
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of ŷ for the second-level max optimization problem when x is fixed to x̂, the second inequality
follows from the definition of η(·) and γ(·), and the last inequality follows from the optimality
of x∗ for (7). A similar proof can be used to verify that zLP ≤ zOPT . Also note that if x̂ is
the optimal solution of zREG, then using the notation from the previous paragraph, we have that
maxy∈Y{minθ,f ,p,u∈F(x̂,y) c(p)} = η(x̂, y̌) ≤ γ(x̂, ŷ) = zREG. Thus, we arrive at the following
conclusion.

Proposition 4. Let x̂ be an optimal solution of (8). Then this solution is a solution for the trilevel
problem (7) with an optimality-gap of at most (zREG − zLP )/zREG.

Lastly, we consider one of the tightened LP relaxations from Pozo (2023), which is referred to
as vertex-representation convex hull (VCH):

zV CH = min
x∈X ,ξ

ξ,

s.t. ξ ≥ min{c(p) : θ,f ,p,u ∈ H(x,yi)} ∀i ∈ [K],
(10)

where H(x,y) is the tightened linear relaxation of F(x, y) using the vertex-representation. Follow-
ing the same rationale above, we have zV CH ≤ zOPT .

5 Numerical Experiment

In this section, we demonstrate the strength of the regularized MIP model by (i) testing the quality
of the solution from the regularized MIP model against the original MIP model; and (ii) applying
the regularized MIP model to solve the long-term planning N − k contingency problem to improve
transmission reliability by strategically sitting batteries. The rest of this section is organized as
follows. In Section 5.1, we provide the experimental setting including the description of the networks
being used, load scenarios, and relevant battery parameters. Sections 5.2 and 5.3 present results
on the performance of the regularized MIP model to solve DCOPF and trilevel N − k contingency
problem respectively.

5.1 Experimental Setting

We use standard IEEE instances available from MATPOWER (Zimmerman et al. 2010) and use
the PowerModels package to read the network data (Coffrin et al. 2018). All numerical instances
are implemented on Julia version 1.7 (Bezanson et al. 2017) using Gurobi version 10.0 as the opti-
mization solver (Gurobi Optimization, LLC 2021) on a Linux x86 machine with a 64-bit operating
system with 2.3GHz processor on 64GB RAM.

5.1.1 Networks.

The network instance contains generator information, demand load information, and branch infor-
mation, which is sufficient to model the DCOPF problem with batteries except for the multi-period
demand load profiles and battery parameters. In PEGASE and RTE networks, the minimum out-
put of a generator is nonnegative, whereas the minimum output is 0 in IEEE networks. For IEEE
networks, the generator minimum output is scaled to be 1/3 of the maximum output, which is
similar to the level of minimum output in PEGASE and RTE networks.

19



5.1.2 Hourly Load Scenarios.

Since network information provides a single nominal load demand, we expand the given load demand
to the time horizon considered on an hourly basis for one day, i.e., T = 24. We benchmark the
hourly demand load of power in the U.S. lower region reported from the U.S. Energy Information
Administration (2022) and shape the demand load in each network data to create one T = 24
hourly demand load at each demand bus for a demand load profile in one day. Specifically, suppose
that the benchmark demand is denoted as D0 ∈ RT

+. Let Di ∈ R+ denote the nominal load
demand at a demand node i ∈ N . In order to have the optimal solutions with nontrivial battery
operations, we rescale Di so that Di ≈ 0.8Gmax

i . Then, the demand at time t ∈ T for node i ∈ N
is given by Dt,i = DiD

0
t /D

0
1. When running multiple simulations, we add a Gaussian noise with a

standard deviation, which is a certain fraction σ̂ of the demand, to obtain different demand profiles
for each simulation. Formally, that is, with some finite number of demand scenarios considered,
D̃j

t,i = Dt,i + rt,i,j where rt,i,j ∼ N (0, σ2
t,i) and σt,i = σ̂ ·Dt,i for simulation j.

Figure 4: Benchmark Load Demand D0.

5.1.3 Battery Parameters.

Battery parameters are largely adopted from Kody et al. (2022) and modified to account for the size
of the network. Table 1 summarizes the battery parameters used for networks including IEEE 73,
PEGASE 89, IEEE 118, and IEEE 162-bus systems. For smaller networks, the maximum storage
limit, charge rate, and discharge rate are divided by 5 for the IEEE 14-bus system. For a slightly
larger network IEEE 300-bus system, maximum limit/rates are multiplied by 2.5. Similarly, for
large networks including PEGASE 1354 and RTE 1888, multiplication is by 5. Unless otherwise
stated, these standard battery parameters are used for all numerical experiments in the paper.

Table 1: Battery Parameters for a Medium-Size Network

Parameter Value

Minimum storage limit Emin 0.00 p.u.
Maximum storage limit Emax 1.00 p.u.
Efficiency η 0.95
Minimum charge rate Emin

c 0.00 p.u./hour
Maximum charge rate Emax

c 0.95 p.u./hour
Minimum discharge rate Emin

d 0.00 p.u./hour
Maximum discharge rate Emax

d 0.95 p.u./hour

5.2 Testing the Regularized MIP Model on DCOPF with ESS

In this section, we show the computational results of applying the regularized MIP model to the
DCOPF problem with ESS. We solve (Battery) to find the true optimal solution and evaluate the
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solution from the regularized MIP model, i.e., (Reg-Battery). Table 2 shows the average optimality
gap computed as (ẑ−z∗)/z∗ where ẑ is the objective value of the feasible solution from (Reg-Battery)
and z∗ is the optimal objective value of (Battery). The problem is solved with 40 random demand
scenarios on networks. In this setting, b number of batteries are placed on selected buses with the
largest power outputs. Since the actual efficiencies of grid-scale batteries are known to be higher
than 80%, we consider different efficiency levels η ∈ {0.85, 0.9, 0.95}. This computational result
demonstrates that the regularized MIP yields solutions close to the optimal solution. The average
gap across networks is limited to less than 0.5% for different efficiency levels considered.

Table 2: The average optimality gap with respect to the optimal objective value

Efficiency Level
Network b η = 0.85 η = 0.90 η = 0.95

IEEE 14 2 0.00% 0.00% 0.00%
IEEE 73 2 0.33% 0.23% 0.11%
PEGASE 89 2 0.00% 0.00% 0.00%
IEEE 118 2 0.00% 0.00% 0.00%
IEEE 162 3 0.00% 0.00% 0.00%
IEEE 300 3 0.08% 0.05% 0.02%
PEGASE 1354 5 0.00% 0.00% 0.00%
RTE 1888 5 0.05% 0.02% 0.03%

Average 0.06% 0.04% 0.02%

5.3 Computational Results on N − k Contingency Problem with ESS Siting

We note that the solution methodology from Section 4.2 to solve trilevel min-max-min problems
(8) – (9) may not return the optimal solutions within a specified time limit. In such cases, we use
the maximum of: (i) lower bound of zLP ; or (ii) lower bound of zV CH and the upper bound of
zREG to estimate the optimality-gap as the algorithm returns the upper bound and lower bound
at each iteration. Specifically, let zLP and zLP be the upper and lower bounds of zLP respectively,
zV CH and zV CH be the upper and lower bounds of zV CH respectively, and zREG and zREG be the
upper and lower bounds of zREG respectively. Then, we have the following inequality:

optimality-gap =
|zUB − zLB|

|zUB|
≤ |zREG −max{zLP , zV CH}|

|zREG|
(11)

≤ |zREG −max{zLP , zV CH}|
|zREG|

=: solution-gap (12)

where zUB and zLB are the upper and lower bounds of the optimal objective value zOPT respectively.
The first inequality follows from Proposition 4. Let us define the right-hand side in (11) as a
solution-gap. The criteria for the solution algorithm to terminate is either when the gap between
the upper bound (e.g., zREG) and the lower bound (e.g., zREG) is less than the specified limit of
0.5% or the algorithm runs for a time limit of 6 hours (i.e., 21600 seconds). In Table 3, we report
the minimum, maximum, and average of the solution-gap from 10 simulations for each network
instance and different combinations of the maximum number of batteries placed and the maximum
number of contingencies.

We observe that for smaller network systems, the regularized MIP generates provably near-
optimal solutions. The fact that the solution-gap is 0.00% implies that the optimality-gap is 0.00%
and zREG = max{zLP , zV CH} = zOPT implying that both solving with the regularized MIP model
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Table 3: Solution-Gap for N − k Contingency Problem

Optimality-Gap
b = 2, k = 3 b = 2, k = 5 b = 3, k = 5 b = 5, k = 10

Network Min Max Avg Min Max Avg Min Max Avg Min Max Avg

IEEE 14 0.62% 0.63% 0.62% 0.57% 0.58% 0.57% 0.57% 0.58% 0.57% 0.57% 0.58% 0.57%
IEEE 73 0.00% 0.07% 0.03% 0.00% 0.04% 0.01% 0.00% 0.03% 0.01% 0.00% 0.02% 0.01%
PEGASE 89 0.12% 0.12% 0.12% 0.10% 0.10% 0.10% 0.10% 0.18% 0.16% 0.27% 1.16% 1.04%
IEEE 118 0.88% 1.07% 0.95% 1.12% 1.73% 1.42% 1.81% 2.88% 2.33% 2.07% 4.78% 3.38%
IEEE 162 0.20% 0.20% 0.20% 0.18% 0.18% 0.18% 0.12% 2.77% 1.32% 0.34% 2.79% 2.22%
IEEE 300 3.69% 4.08% 3.81% 3.41% 3.61% 3.48% 3.69% 4.03% 3.82% 6.21% 8.19% 6.96%
PEGASE 1354 9.81% 10.15% 10.06% 7.83% 8.44% 8.03% 15.00% 16.10% 15.53% 16.98% 20.04% 18.21%
RTE 1888 6.73% 7.21% 6.95% 6.32% 7.14% 6.69% 12.11% 14.48% 12.90% 17.66% 26.72% 22.83%

and solving with one of the LP relaxation models yield the true optimal solution to the trilevel
problem. For PEGASE 1354 and RTE 1888-bus systems, the solution-gap is larger, but this is most
likely due to having a poor lower bound on either zLP or zV CH as zLP and zLP do not converge in
(9) or zV CH and zV CH do not converge in (10) within the given time limit of 6 hours. Generally,
the VCH model was found to perform better than the LP relaxation especially for larger networks.
For most of the instances when we see VCH has larger gap than LP, both VCH and LP have relative
gaps less than 0.5%, which is one of the termination criteria of the bilevel algorithm.

Let us define another measure, trilevel-gap, to indicate the gap we obtain from the algorithm
in solving the trilevel problem of the form (8), (9), or (10). For example, the trilevel-gap of (8) is:

trilevel-gap of (8) =
|zREG − zREG|

|zREG|
.

These trilevel-gaps in solving (8) – (10) are reported in Tables 4-7 where we see that the averages
of trilevel-gaps of (9) and (10) for PEGASE 1354-bus system can reach beyond 18% and for RTE
1888-bus system 22%.

There are also cases where both algorithms using the regularized MIP model and the LP relax-
ation model achieve 0.00% trilevel-gaps but result in the solution-gap that is greater than 0.00%,
which implies that there is a true gap in approximating the true model with either the regularized
MIP model or the LP relaxation model. This is the case for some of the smaller network systems
like the PEGASE 89-bus system. Nevertheless, for these smaller systems, the solution-gap remains
relatively limited. For example, for the PEGASE 89-bus system with b = 2 and k = 3 case, the
average solution-gap is 0.16% which implies that the optimal objective value of the regularized MIP
overestimates the optimal objective value of the original MIP model by no more than 0.16%.

We observe that solving the trilevel problem with the regularized formulation is efficient. For
most of the instances, (8) is solved to optimality well within the time limit so that the trilevel-gap is
0.00%. Only the larger network instances take the entire 6-hour time limit with a small trilevel-gap.
Hence, using the regularized formulation not only gives a quality upper bound but can be used to
solve such trilevel problems efficiently.

6 Conclusion

In this paper, we proposed a new model to solve the DCOPF problem with battery operations.
We regularized the objective function by penalizing the charge and discharge of batteries. In
Theorem 1, we present a sufficient condition on the regularizers so that there is no integrality gap
between the regularized MIP problem and its LP relaxation. When the efficiency of the battery is
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Table 4: Average Solution Time and Trilevel-Gap (b = 2 and k = 3)

zREG zLP zV CH

Network Time (sec) Trilevel-Gap Time (sec) Trilevel-Gap Time (sec) Trilevel-Gap

IEEE 14 8 0.00% 7 0.00% 7 0.00%
IEEE 73 479 0.00% 522 0.00% 763 0.05%
PEGASE 89 12 0.00% 70 0.02% 171 0.00%
IEEE 118 9970 0.00% 7817 0.19% 15852 0.07%
IEEE 162 14 0.00% 137 0.00% 394 0.00%
IEEE 300 63 0.13% 3238 3.33% 5564 3.52%
PEGASE 1354 20272 2.21% 19388 13.25% 21600 9.06%
RTE 1888 8961 0.14% 22304 7.46% 22517 6.77%

Table 5: Average Solution Time and Trilevel-Gap (b = 2 and k = 5)

zREG zLP zV CH

Network Time (sec) Trilevel-Gap Time (sec) Trilevel-Gap Time (sec) Trilevel-Gap

IEEE 14 8 0.00% 7 0.00% 8 0.00%
IEEE 73 601 0.00% 697 0.05% 843 0.12%
PEGASE 89 16 0.00% 113 0.00% 273 0.00%
IEEE 118 3752 0.67% 2804 0.25% 5005 0.37%
IEEE 162 34 0.00% 550 0.00% 473 0.33%
IEEE 300 92 0.07% 3618 3.11% 5113 3.25%
PEGASE 1354 14453 1.83% 21600 13.04% 21600 7.32%
RTE 1888 12267 0.67% 21600 7.65% 21600 6.63%

Table 6: Average Solution Time and Trilevel-Gap (b = 3 and k = 5)

zREG zLP zV CH

Network Time (sec) Trilevel-Gap Time (sec) Trilevel-Gap Time (sec) Trilevel-Gap

IEEE 14 7 0.00% 8 0.00% 6 0.00%
IEEE 73 993 0.00% 730 0.05% 1006 0.20%
PEGASE 89 16 0.00% 245 0.00% 669 0.06%
IEEE 118 4441 0.98% 2205 0.22% 8857 0.75%
IEEE 162 32 0.04% 1325 2.24% 1384 1.29%
IEEE 300 192 0.12% 3356 3.53% 7749 3.51%
PEGASE 1354 21600 3.89% 21600 17.70% 21600 14.82%
RTE 1888 14262 0.24% 21600 14.19% 21600 12.84%

Table 7: Average Solution Time and Trilevel-Gap (b = 5 and k = 10)

zREG zLP zV CH

Network Time (sec) Trilevel-Gap Time (sec) Trilevel-Gap Time (sec) Trilevel-Gap

IEEE 14 9 0.00% 9 0.00% 10 0.00%
IEEE 73 1155 0.00% 1010 0.00% 1410 0.35%
PEGASE 89 21 0.01% 374 0.80% 1354 0.96%
IEEE 118 16742 0.25% 19982 1.22% 22267 4.67%
IEEE 162 16 0.21% 523 1.94% 2032 1.63%
IEEE 300 22 0.09% 1241 6.96% 4121 6.53%
PEGASE 1354 12653 1.54% 21600 18.14% 21600 18.46%
RTE 1888 21600 1.29% 21600 24.97% 21600 22.70%

relatively high, this penalty is very small. Empirical results show that the optimal solution from
this regularized model is often a true optimal solution to the original model or close to the optimal
solution, performing much better than the theoretical guarantees verified in Theorem 3. Moreover,
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we prove in Theorem 2 that the optimal solution from the regularized model is more reasonable in
that the battery operation does not contribute to further load-shedding or excess power depending
on the state of the system at the time. This property may be of interest to the system operator.
We note that these properties depend on the structure of the objective function and the constraint.
It will be interesting to study the structure with respect to different objective functions, which we
leave to future works.

For a simpler problem that only considers the battery operation with ηc = ηd = 1, a polynomial
algorithm has been proposed in Bakhshi and Ostrowski (2023). However, only a few studies have
focused on the complexity associated with the general efficiency level with 0 < ηc, ηd < 1. Bansal
and Günlük (2023) proved an NP-hardness for a similar problem where the storage level varies
over time based on two complementary variables. The proof of NP-hardness relies on time-varying
bounds and their result shows that (Battery) problem with time-varying bounds on pc and pd is
NP-hard to solve. However, it remains an open problem that for a fixed bound on charge and
discharge levels with a loss-incurring battery system (0 < ηc, ηd < 1), the problem is NP-hard.

We introduce a long-term planning problem that includes the battery siting problem with N−k
contingency. This problem is intractable to solve using the exact battery formulation. We use the
main benefit of the regularized formulation model to reformulate this challenging problem and show
that the regularized formulation solves large-scale instances of these problems efficiently and yields
near-optimal solutions in most cases.
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Appendix A Proof of Theorem 2

Theorem 2. Suppose Emin
c = Emin

d = 0. Let p be an optimal solution to (Reg-Battery) problem.
Then:

(i) For all λ ∈ R2
+, we have pct,ip

ls
t,i = 0 for all t ∈ T , i ∈ N .

(ii) If λc + ηcηdλd > 1− ηcηd, then we have pdt,ip
ex
t,i = 0 for all t ∈ T , i ∈ N .

The proof of Theorem 2 is divided into two parts via Lemma 1 and Lemma 2.

Lemma 1. Suppose Emin
c = Emin

d = 0. For any λ ∈ R2
+, let p be an optimal solution to

(Reg-Battery) problem. Then, pct,ip
ls
t,i = 0 for all t ∈ T , i ∈ N .

Proof. By contradiction, suppose there exists an optimal solution (θ̂, f̂ , p̂, û) of (Reg-Battery)
problem such that p̂ct,i > 0 and p̂lst,i > 0 for at least one (t, i) ∈ T ×N .

Without loss of generality, we show the proof for one such i ∈ N as the proof can be extended
for any multiple nodes. Let τ0 ∈ T be the first time period such that p̂cτ0,i > 0 and p̂lsτ0,i > 0. Let

τ1, . . . , τk ∈ {τ0 + 1, . . . , T} such that p̂dτj ,i > 0 for j ∈ [k] and p̂dt.i = 0 for t ∈ {τ0 + 1, . . . , T} \
{τ1, . . . , τk}. We define adjustments to the state-of-charge as the following:

δτj ,i =

{
−ηc ·min{p̂cτ0,i, p̂

ls
τ0,i

}, j = 0,

δτj−1,i +max
{
Emin − p̂sτj ,i − δτj−1,i, 0

}
, ∀j ∈ [k].

Note that δτ0,i < 0 and δτj ,i ≤ 0 for all j ∈ [k]. We proceed to construct a solution (θ̃, f̃ , p̃, ũ) from

the current optimal solution (θ̂, f̂ , p̂, û), where θ̃ = θ̂, f̃ = f̂ , ũ = û, p̃ex = p̂ex, p̃g = p̂g, and
changing values only corresponding to node i as follows:

p̃ct,i =

{
p̂ct,i, ∀t ∈ T \ {τ0},
p̂cτ0,i −min{p̂cτ0,i, p̂

ls
τ0,i

}, t = τ0,

p̃dt,i =

{
p̂dt,i, ∀t ∈ T \ {τ1, . . . , τk},
p̂dt,i − ηd ·max

{
Emin − p̂sτj ,i − δτj−1,i, 0

}
, t = τj , ∀j ∈ [k],

p̃lst,i =


p̂lst,i, ∀t ∈ T \ {τ0, τ1, . . . , τk},
p̂lst,i −min{p̂cτ0,i, p̂

ls
τ0,i

}, t = τ0,

p̂lst,i + ηd ·max
{
Emin − p̂sτj ,i − δτj−1,i, 0

}
, t = τj , ∀j ∈ [k],

p̃st,i =

{
p̂st,i, ∀t ∈ [τ0 − 1],

p̂st,i + δτj ,i, ∀t ∈ {τj , . . . , τj+1 − 1}, ∀j ∈ {0, . . . , k},

where τk+1 − 1 = T.
The new solution p̃ above is created in the following fashion: We first reduce both p̂cτ0,i and

p̂lsτ0,i, which causes p̂st,i to reduce in time periods following τ0. In particular, it may fall below Emin.
In order to fix this, we need to modify the discharging levels (and loss values of corresponding
time periods) to ensure that the storage levels meet the minimum requirement Emin. We carefully
decrease the values of p̂dt,i so that the minimum discharge level is satisfied and the state-of-charge

level is never below Emin at the same time.

Claim 1. (θ̃, f̃ , p̃, ũ) is a feasible solution to (Reg-Battery) with given λ.
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Proof. It suffices to show that p̃ satisfies (1d)− (1f), (1h) and (1j)− (1k).

• (1d): It is straightforward to verify that p̃ct,i ≥ 0 = Emin
c for all t ∈ T .

• (1e): We want to show that p̃dt,i ≥ 0 = Emin
d for all t ∈ T . It is sufficient to prove this for

t = {τ1, . . . , τk}. There are two cases:

(i) If Emin − p̂sτj ,i − δτj−1,i ≤ 0: This case is straightforward as p̃dt,i = p̂dt,i ≥ 0.

(ii) If Emin − p̂sτj ,i − δτj−1,i > 0: In this case, note that p̃dt,i = ηd(p̃
s
t−1,i − p̃st,i) > ηd(p̃

s
t−1,i +

δτj−1,i − Emin) = ηd(p̂
s
t−1,i − Emin) ≥ 0, where the first equality comes from (1f).

• (1f): It is straightforward to verify that p̃st,i = p̃st−1,i + ηc · p̃ct,i − 1/ηd · p̃dt,i for all t ∈ T .

• (1h): We want to show that p̃st,i ≥ Emin for all t ∈ T . Clearly p̃st,i = p̂st,i ≥ Emin for all
t ∈ [τ0 − 1]. For t ≥ τ0, we show this in three parts:

(i) For t = τ0, from (1f) and the constructions above, we have p̂sτ0,i = p̂sτ0−1,i + ηc · p̂cτ0,i ≥
Emin + ηc ·min{p̂cτ0,i, p̂

ls
τ0,i

}. Therefore, p̃sτ0,i = p̂sτ0,i − ηc ·min{p̂cτ0,i, p̂
ls
τ0,i

} ≥ Emin.

(ii) For t = τj for all j ∈ [k], we have p̃sτj ,i = p̂sτj ,i+ δτj ,i = p̂sτj ,i+ δτj−1,i+max{Emin− p̂sτj ,i−
δτj−1,i, 0} ≥ Emin.

(iii) Finally, for any t ∈ {τj + 1, . . . , τj+1 − 1} for j ∈ {0, . . . , k}, observe that since p̂dτj+1,i =

· · · = p̂dτj+1−1,i = 0, we have p̃st,i = p̂st,i + δτj ,i ≥ p̂sτj ,i + δτj ,i = p̃τj ,i ≥ Emin, where the last
inequality follows from the above.

• (1j): It is straightforward to verify that p̃lst,i ≥ 0 for all t ∈ T .

• (1k): It is straightforward to verify that p̂ct,i + p̂ext,i − p̂dt,i − p̂lst,i = p̃ct,i + p̃ext,i − p̃dt,i − p̃lst,i for all
t ∈ T .

□
Observe that p̃cτ0,i · p̃

ls
τ0,i

= 0. Next, we claim that the total additional adjustment made to δ
over time is upper bounded.

Claim 2.
∑k

j=1max{Emin − p̂sτj ,i − δτj−1,i, 0} ≤ |δτ0,i|.

Proof. Suppose that S ⊆ [k] such that max{Emin − p̂sτj ,i − δτj−1,i, 0} = Emin − p̂sτj ,i − δτj−1,i. Let

S = {j1, j2, . . . , jm}. If S = ∅, then there is nothing to verify. Otherwise, it is straightforward to
verify that:

k∑
j=1

max{Emin − p̂sτj ,i − δτj−1,i, 0}

= (Emin − p̂sτj1 ,i
− δτ0,i) + (Emin − p̂sτj2 ,i

− δτj2−1,i) + · · ·+ (Emin − p̂sτjm ,i − δτjm−1,i)

= (Emin − p̂sτj1 ,i
− δτ0,i) + (p̂sτj1 ,i

− p̂sτj2 ,i
) + · · ·+ (p̂sτjm−1

,i − p̂sτjm ,i)

= Emin − p̂sτjm ,i − δτ0,i ≤ |δτ0,i|.

The second equality is due to the fact that δτjl ,i = Emin − p̂sτjl ,i
and δτjl+1

−1,i = δτjl ,i for all

l = 1, ...,m. □
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Finally, we are ready to compute the difference in objective function value of the two solutions:

c(p̃) + λ⊤g(p̃)− c(p̂)− λ⊤g(p̂)

=
∑
t∈T

∑
i∈N

(
p̃lst,i − p̂lst,i + p̃ext,i − p̂ext,i + λc(p̃

c
t,i − p̂ct,i) + λd(p̃

d
t,i − p̂dt,i)

)
=−min{p̂cτ0,i, p̂

ls
τ0,i}+

∑
j∈[k]

ηd ·max
{
Emin − p̂sτj ,i − δτj−1,i, 0

}
− λc ·min{p̂cτ0,i, p̂

ls
τ0,i} − λd ·

∑
j∈[k]

ηd ·max
{
Emin − p̂sτj ,i − δτj−1,i, 0

}

=− (1 + λc) ·
|δτ0,i|
ηc

+ (1− λd) · ηd ·

∑
j∈[k]

max
{
Emin − p̂sτj+1,i − δτj−1,i, 0

}
≤− |δτ0,i|

ηc
− λc

|δτ0,i|
ηc

+ (1− λd) · ηd · |δτ0,i|

=
|δτ0,i|
ηc

(−1 + ηcηd − λc − ηcηdλd) < 0,

where the last inequality is from Claim 2. Therefore, c(p̃) + λ⊤g(p̃) < c(p̂) + λ⊤g(p̂), hence a
contradiction. □

Lemma 2. Suppose Emin
c = Emin

d = 0. For any (λc, λd) such that λc + ηcηd · λd > 1 − ηcηd with
a given ηc, ηd ∈ (0, 1], let p be an optimal solution to (Reg-Battery) problem. Then, pdt,ip

ex
t,i = 0 for

all t ∈ T , i ∈ N .

Proof. By contradiction, suppose there exists an optimal solution (θ̂, f̂ , p̂, û) of (Reg-Battery)
problem such that p̂dt,i > 0 and p̂ext,i > 0 for at least one (t, i) ∈ T ×N .

Without loss of generality, we show the proof for one such i ∈ N as the proof can be extended
for any multiple nodes. Let τ0 ∈ T be the first time period such that p̂dτ0,i > 0 and p̂exτ0,i > 0. Let
τ1, . . . , τk ∈ {τ0 + 1, . . . , T} such that p̂cτj ,i > 0 for j ∈ [k] and p̂ct.i = 0 for t ∈ {τ0 + 1, . . . , T} \
{τ1, . . . , τk}. We define adjustments to the state-of-charge as the following:

δτj ,i =

{
1/ηd ·min{p̂dτ0,i, p̂

ex
τ0,i

}, j = 0,

δτj−1,i −max
{
p̂sτj ,i + δτj−1,i − Emax, 0

}
, ∀j ∈ [k].

Note that δτ0,i < 0 and δτj ,i ≤ 0 for all j ∈ [k]. We proceed to construct a solution (θ̃, f̃ , p̃, ũ) from

the current optimal solution (θ̂, f̂ , p̂, û), where θ̃ = θ̂, f̃ = f̂ , ũ = û, p̃ex = p̂ex, p̃g = p̂g, and
changing values only corresponding to node i as follows:

p̃dt,i =

{
p̂dt,i, ∀t ∈ T \ {τ0},
p̂dτ0,i −min{p̂dτ0,i, p̂

ex
τ0,i

}, t = τ0,

p̃ct,i =

{
p̂ct,i, ∀t ∈ T \ {τ1, . . . , τk},
p̂ct,i − 1

ηc
·max

{
p̂sτj ,i + δτj−1,i − Emax, 0

}
, t = τj , ∀j ∈ [k],

p̃ext,i =


p̂ext,i, ∀t ∈ T \ {τ0, τ1, . . . , τk},
p̂ext,i −min{p̂dτ0,i, p̂

ex
τ0,i

}, t = τ0,

p̂ext,i +
1
ηc

·max
{
p̂sτj ,i + δτj−1,i − Emax, 0

}
, t = τj , ∀j ∈ [k],

p̃st,i =

{
p̂st,i, ∀t ∈ [τ0 − 1],

p̂st,i + δτj ,i, ∀t ∈ {τj , . . . , τj+1 − 1}, ∀j ∈ {0, . . . , k},
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where τk+1 − 1 = T .
The new solution p̃ above is created in the following fashion: We first reduce both p̂dτ0,i and p̂exτ0,i,

which causes p̂st,i to increase in time periods following τ0. In particular, it may increase beyond
Emax. In order to fix this, we need to modify the charging levels (and excess values of corresponding
time periods) to ensure that the storage levels meet the maximum requirement Emax. We carefully
decrease the values of p̂ct,i so that the minimum charge level is satisfied and the state-of-charge level
is never beyond Emax at the same time.

Claim 3. (θ̃, f̃ , p̃, ũ) is a feasible solution to (Reg-Battery) with given λ.

Proof. It suffices to show that p̃ satisfies (1d)− (1f), (1h) and (1j)− (1k).

• (1d): We want to show that p̃ct,i ≥ 0 = Emin
c for all t ∈ T . It is sufficient to prove this for

t = {τ1, . . . , τk}. There are two cases:

(i) If p̂sτj ,i + δτj−1,i − Emax ≤ 0: This case is straightforward as p̃ct,i = p̂ct,i ≥ 0.

(ii) If p̂sτj ,i + δτj−1,i − Emax > 0: In this case, note that p̃ct,i =
1
ηc
(p̃st,i − p̃st−1,i) >

1
ηc
(Emax −

p̃st−1,i − δτj−1,i) ≥ 0, where the first equality comes from (1f).

• (1e): It is straightforward to verify that p̃dt,i ≥ 0 = Emin
d for all t ∈ T .

• (1f): It is straightforward to verify that p̃st,i = p̃st−1,i + ηc · p̃ct,i − 1/ηd · p̃dt,i for all t ∈ T .

• (1h): We want to show that p̃st,i ≤ Emax for all t ∈ T . Clearly p̃st,i = p̂st,i ≤ Emax for all
t ∈ [τ0 − 1]. For t ≥ τ0, we show this in three parts:

(i) For t = τ0, from (1f) and the constructions above, we have p̂sτ0,i = p̂sτ0−1,i − 1/ηd · p̂dτ0,i ≤
Emax − 1/ηd ·min{p̂dτ0,i, p̂

ex
τ0,i

}. Therefore, p̃sτ0,i = p̂sτ0,i + 1/ηd ·min{p̂dτ0,i, p̂
ex
τ0,i

} ≤ Emax.

(ii) For t = τj for all j ∈ [k], we have p̃sτj ,i = p̂sτj ,i+δτj ,i = p̂sτj ,i+δτj−1,i−max{p̂sτj ,i+δτj−1,i−
Emax, 0} ≤ Emax.

(iii) Finally, for any t ∈ {τj + 1, . . . , τj+1 − 1} for j ∈ {0, . . . , k}, observe that since p̂cτj+1,i =
· · · = p̂cτj+1−1,i = 0, we have that p̃st,i = p̂st,i + δτj ,i ≤ p̂sτj ,i + δτj ,i = p̃τj ,i ≤ Emax, where
the last inequality follows from the above.

• (1j): It is straightforward to verify that p̃ext,i ≥ 0 for all t ∈ T .

• (1k): It is straightforward to verify that p̂ct,i + p̂ext,i − p̂dt,i − p̂lst,i = p̃ct,i + p̃ext,i − p̃dt,i − p̃lst,i for all
t ∈ T .

□
Observe that p̃dτ0,i · p̃

ex
τ0,i

= 0. Next, we claim that the total additional adjustment made to δ
over time is upper bounded.

Claim 4.
∑k

j=1max{p̂sτj ,i + δτj−1,i − Emax, 0} ≤ |δτ0,i|.

Proof. Suppose that S ⊆ [k] such that max{p̂sτj ,i + δτj−1,i − Emax, 0} = p̂sτj ,i + δτj−1,i − Emax. Let

S = {j1, j2, . . . , jm}. If S = ∅, then there is nothing to verify. Otherwise, it is straightforward to
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verify that:

k∑
j=1

max{p̂sτj ,i + δτj−1,i − Emax, 0}

= (p̂sτj1 ,i
+ δτ0,i − Emax) + (p̂sτj2 ,i

+ δτj2−1,i − Emax) + · · ·+ (p̂sτjm ,i + δτjm−1,i − Emax)

= (p̂sτj1 ,i
+ δτ0,i − Emax) + (p̂sτj1

, i− p̂sτj2 ,i
) + · · ·+ (p̂sτjm−1

,i − p̂sτjm ,i)

= p̂sτjm ,i + δτ0,i − Emax ≤ |δτ0,i|.

The second equality is due to the fact that δτjl ,i = Emax − p̂sτjl ,i
and δτjl+1

−1,i = δτjl ,i for all

l = 1, ...,m. □
Finally, we are ready to compute the difference in objective function value of the two solutions:

c(p̃) + λ⊤g(p̃)− c(p̂)− λ⊤g(p̂)

=
∑
t∈T

∑
i∈N

(
p̃lst,i − p̂lst,i + p̃ext,i − p̂ext,i + λc(p̃

c
t,i − p̂ct,i) + λd(p̃

d
t,i − p̂dt,i)

)
=−min{p̂dτ0,i, p̂

ex
τ0,i}+

∑
j∈[k]

1

ηc
·max

{
p̂sτj ,i + δτj−1,i − Emax, 0

}
− λc ·

∑
j∈[k]

1

ηc
·max

{
p̂sτj ,i + δτj−1,i − Emax, 0

}
− λd ·min{p̂dτ0,i, p̂

ex
τ0,i}

=− ηd|δτ0,i| − λdηd|δτ0,i|+
1− λc

ηc
·

 k∑
j=1

max
{
p̂sτj ,i + δτj−1,i − Emax, 0

}
≤− ηd|δτ0,i| − λdηd|δτ0,i|+

1− λc

ηc
· |δτ0,i|

=
|δτ0,i|
ηc

(1− ηcηd − λc − ηcηdλd).

When 1 − ηcηd − λc − ηcηdλd < 0 (i.e., under the assumption that λc + ηcηdλd > 1 − ηcηd),
c(p̃) + λ⊤g(p̃) < c(p̂) + λ⊤g(p̂), hence a contradiction. □
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Appendix B Detailed Formulation for Trilevel N − k Contingency
Problem

B.1 Problem Formulation

We formally give a mathematical formulation of this problem. The first decision by a planner,
denoted as x, is to place batteries in the grid subject to the given budget b ∈ Z+.

x ∈ {0, 1}N , (13a)∑
i∈N

xi ≤ b. (13b)

Then a network interdictor decides whether or not to destroy a transmission line (i, j) ∈ L by a
binary variable yij . The interruption can happen to at most k transmission lines in the system and
impacts the performance of transmission lines throughout the time period considered:

y ∈ {0, 1}L, (13c)∑
e∈L

ye ≤ k, (13d)

− Fij(1− yij) ≤ ft,ij ≤ Fij(1− yij), ∀t ∈ T , (i, j) ∈ L. (13e)

Initial state-of-charge as well as upper and lower bounds of state-of-charge of a battery depends on
whether a battery is sited or not:

ps0,i = E0xi, ∀i ∈ N , (13f)

Eminxi ≤ pst,i ≤ Emaxxi, ∀t ∈ T , i ∈ N . (13g)

When there is no battery at node i ∈ N , pst,i = 0 for all t ∈ T , so we can expand the state-of-charge
over time to the entire N :

pst,i = pst−1,i + η · pct,i − 1/η · pdt,i, ∀t ∈ T , i ∈ N . (13h)

The bounds on charging and discharging, similarly, depend on whether a battery exists at a node
and whether the battery is charging or discharging, represented by ut,i:

u ∈ {0, 1}T×N , (13i)

Emin
c ut,i ≤ pct,i ≤ Emax

c ut,i, ∀t ∈ T , i ∈ N , (13j)

Emin
d (xi − ut,i) ≤ pdt,i ≤ Emax

d (xi − ut,i), ∀t ∈ T , i ∈ N . (13k)

Finally, a battery can only operate when there is a battery installed at the node:

ut,i ≤ xi, ∀t ∈ T , i ∈ N . (13l)

Bounds on generator output (1a), limits on transmission lines (1b), nonnegativity constraint
on load shedding and excess power (1j), and power balance equation (1k) do not change from the
optimal power flow with the battery problem. Operational constraints for battery (13f) - (13l) are
also the same as two-stage stochastic programming studied in the previous section. For purposes
of this problem, we omit Ohm’s law constraint (see, e.g., Johnson and Dey 2022), and therefore the
third-level problem becomes a network flow problem. Throughout the time period considered, the
network operator then aims to generate power and send power flows to minimize the load shedding
and lost power. We now provide the formulation below:

min
x

max
y

min
f ,p,u

{c(p) : (1a), (1b), (1j), (13a)-(13l)} . (14)
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B.2 Solution Methodology

Computationally, a min-max-min problem is not an easy problem to solve. In literature, two-stage
robust programs, a special case of the min-max-min problem, have been discussed extensively in
the literature (see, e.g., Atamtürk and Zhang 2007, Jiang et al. 2014, van Hulst et al. 2017, Mattia
et al. 2017). Jeroslow (1985) showed NP-hardness and Ben-Ayed and Blair (1990) also discussed the
computational difficulties of bilevel linear problems. Problem (14) is a trilevel problem with binary
variables at each level resulting in a particularly challenging optimization problem, which forbids
the classical approach to formulating the trilevel problem into a bilevel problem and applying
techniques to solve bilevel optimization problems. Using the regularized MIP model, however,
enables us to linearize the third-level problem and convert it to a bilevel problem by taking the
dual of the third-level problem.

It is often undesirable to have unbounded dual variables. A popular heuristic is to use the
big-M method to bound such unbounded variables to a reasonable number. We prove that in our
formulation the dual variables are bounded. This allows the exact reformulation for bilinear terms
that appear in the objective function.

Once we obtain the bilevel formulation, we apply a generic iterative algorithm to solve the
bilevel optimization problem. In particular, we use the algorithm outlined in Bienstock and Özbay
2008. The stopping criterion was either: (i) the iteration reaches maximum iteration of 1000; (ii)
the iteration has run more than 6 hours; or (iii) the upper bound and lower bound gap is less than
0.5%.

B.3 Detailed Bilevel Formulation

We present here the reformulation to the bilevel min-max problem. Since variables associated
with the third level are linear, we dualize the third level. For notational simplicity, let θ =
(α,β±, δ,γ±, τ , τ 0,µ±,ν±,ω±,µ±,ϕ). The primal variable associated with a constraint for the
third level is provided on the left.

min
x

max
y,θ,z

−
∑
t∈T

∑
i∈N

Dt,iαt,i −
∑

t∈T ,(i,j)∈L

Fij(1− yij)(β
+
t,ij + β−

t,ij)

+
∑
t∈T

∑
i∈N

Gmin
i γ+t,i −

∑
t∈T

∑
i∈N

Gmax
i γ−t,i +

∑
i∈N

E0xiτ
0
i

+
∑
t∈T

∑
i∈N

Eminxiµ
+
t,i −

∑
t∈T

∑
i∈N

Emaxxiµ
−
t,i

+
∑
t∈T

∑
i∈N

Emin
d xiω

+
t,i −

∑
t∈T

∑
i∈N

Emax
d xiω

−
t,i −

∑
t∈T

∑
i∈N

xiϕt,i, (15a)

s.t.

plst,i, p
ex
t,i · · · · · · − 1 ≤ αt,i ≤ 1, ∀t ∈ T , i ∈ N , (15b)

ft,ij · · · · · · αt,i − αt,j + β+
t,ij − β−

t,ij = 0, ∀t ∈ T , (i, j) ∈ L, (15c)

pgt,i · · · · · · − αt,i + γ+t,i − γ−t,i = 0, ∀t ∈ T , i ∈ N , (15d)

pct,i · · · · · · αt,i − η · τt,i + ν+t,i − ν−t,i = λc, ∀t ∈ T , i ∈ N , (15e)

pdt,i · · · · · · − αt,i + 1/η · τt,i + ω+
t,i − ω−

t,i = λd, ∀t ∈ T , i ∈ N , (15f)

pst,i · · · · · · τt,i − τt+1,i + µ+
t,i − µ−

t,i = 0, ∀t ∈ T \ {T}, i ∈ N ,

(15g)
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psT,i · · · · · · τT,i + µ+
T,i − µ−

T,i = 0, ∀i ∈ N , (15h)

ps0,i · · · · · · τ0i − τ1,i = 0, ∀i ∈ N , (15i)

u0,i · · · · · · Emin
c ν+t,i − Emax

c ν−t,i − Emin
d ω+

t,i + Emax
d ω−

t,i + ϕt,i ≥ 0, ∀t ∈ T , i ∈ N , (15j)

β±,γ±,ν±,ω±,µ±,ϕ ≥ 0, (15k)∑
i∈N

xi ≤ b, (15l)∑
l∈L

yl ≤ k, (15m)

x ∈ {0, 1}N , y ∈ {0, 1}L. (15n)

Proposition 5. Independent of the values of λc and λd, there exists an optimal solution of (15)
for which the following inequalities are valid:

0 ≤ β±
t,ij ≤ 2, ∀t ∈ T , (i, j) ∈ L.

Proof. In the objective function (15a), we focus on optimizing β+ and β−. Notice that Fij ≥ 0
for all (i, j) ∈ L and t ∈ T . Then, for a given (i, j) ∈ L and t ∈ T and the associated β+

t,ij , β
−
t,ij , we

optimize

max
β+
t,ij≥0,β−

t,ij≥0
− β−

t,ij − β+
t,ij ,

s.t. β+
t,ij = αt,j − αt,i + β−

t,ij ,

which is equivalent to optimizing

vβt,ij = min
β+
t,ij≥0,β−

t,ij≥0
β−
t,ij + β+

t,ij ,

s.t. β+
t,ij − β−

t,ij = αt,j − αt,i,

where the optimal value is vβ
∗

t,ij = |αt,j − αt,i|. From constraint (15b), we know −1 ≤ αt,i ≤ 1 and

−1 ≤ αt,j ≤ 1, then we have 0 ≤ vβ
∗

t,ij ≤ 2, which implies that

0 ≤ β−
t,ij + β+

t,ij ≤ 2.

Hence, we have the desired result. □
We can then use McCormick inequalities to exactly reformulate the bilinear terms of the form

β±y that appear in dualizing the third level of this trilevel problem.
In the objective function, the only bilinear terms are {yijβ+

t,ij}t∈T ,(i,j)∈L and {yijβ−
t,ij}t∈T ,(i,j)∈L.

Since we show that all dual variables are bounded, especially 0 ≤ β± ≤ 2, bilinear terms can be
reformulated exactly by applying the McCormick Envelopes (see, e.g., McCormick 1976):

z+t,ij ≥ 0, z+t,ij ≥ β+
t,ij + 2yij − 2, z+t,ij ≤ β+

t,ij , z+t,ij ≤ 2yij , ∀t ∈ T , (i, j) ∈ L,
z−t,ij ≥ 0, z−t,ij ≥ β−

t,ij + 2yij − 2, z−t,ij ≤ β−
t,ij , z−t,ij ≤ 2yij , ∀t ∈ T , (i, j) ∈ L.

Note that this is an exact reformulation of the bilinear terms, not a relaxation. Hence, the objective
function can replaced with the reformulation and additional constraints from (16) are added to the
formulation. This completes converting the trilevel formulation to bilevel formulation.
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