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Abstract

In this paper, we present lower bounds on the rank of the split closure, the multi-branch
closure and the lattice-free closure for packing sets as a function of the integrality gap. We also
provide a similar lower bound on the split rank of covering polyhedra. These results indicate
that whenever the integrality gap is high, these classes of cutting planes must necessarily be
applied for many rounds in order to obtain the integer hull.
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1 Introduction

Split cuts are a very important class of cutting planes in integer programming both from a theoret-
ical and computational perspective (see for example [3, 4, 11]). Recently, many generalizations of
split cuts have been studied, such as the multi-branch split cuts [13, 14, 18] and the lattice-free cuts
[1, 5, 9, 20]. In order to study the strength of the cutting plane procedures, a very useful concept is
the notion of rank which represents the minimum rounds of cuts needed to obtain the integer hull.
The notion of rank was first studied in the context of Chvátal-Gomory (CG) cuts [22]. Many lower
bounds on the rank of the above mentioned closures have been proven; see [6, 7, 11, 15, 16, 18] for
the split rank, see [14] for the multi-branch rank, and see [2] for the lattice-free rank.

A standard notion describing the difficult of an integer program is the integrality gap which in
this paper refers to the ratio between the optimal objective function values of the integer program
and its linear programming relaxation. While it is natural to expect that the rank of a cutting
plane procedure should increase with the increase in the integrality gap, only a few results of this
nature exist in the literature [8, 19].
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In this paper, we present lower bounds on the rank of the split closure, the multi-branch closure
and the lattice-free closure for packing sets as a function of the integrality gap. We also provide a
similar lower bound on the split rank of covering polyhedra. These results indicate that whenever
the integrality gap is high, these classes of cutting planes must necessarily be applied for many
rounds in order to obtain the integer hull.

The rest of the paper is organized as follows. We provide all necessary definitions in Section 2.
We state all our main results in Section 3. Finally, in Section 4 and Section 5 we present the proofs
for results concerning the packing and covering cases, respectively.

2 Preliminaries

For an integer t ≥ 1, we use [t] to describe the set {1, . . . , t}. Also, we represent the jth unit vector,
the vector of ones and the vector of zeros in appropriate dimension by ej , 1 and 0, respectively.
Given a set of vectors v1, . . . , vt, we denote the linear subspace spanned by these given vectors as
span({vj}j∈[t]).

Sets. In this paper, we work with covering polyhedron and packing polyhedron which are of the
form

PC = {x ∈ Rn+ | Ax ≥ b} and PP = {x ∈ Rn+ | Ax ≤ b},

respectively, where all the data (A, b) ∈ Qm×n
+ × Qm

+ . If it is obvious from the context that the
polyhedron is of covering (resp. packing) type, we may drop the subscript C (resp. P ). For the
packing case, we also work with more general sets. We call Q ∈ Rn+ a packing set if x ∈ Q and
0 ≤ y ≤ x imply that y ∈ Q.

Throughout this paper, we make a technical assumption regarding the sets under consideration
that we call as well-behavedness. The set PC is well-behaved if Aij ≤ bi for all i ∈ [m], j ∈ [n].
Notice that this is a natural assumption since if Aij > bi for some i ∈ [m], j ∈ [n], then we can
replace the coefficient Aij by bi to obtain a tighter linear programming relaxation with the same
set of feasible integer points. A packing set Q is well-behaved if ej ∈ Q for all j ∈ [n]. This is not
a restrictive assumption since if ej /∈ Q for some j ∈ [n], then we replace Q with the packing set
{x ∈ Q | xj = 0}, which provides a tighter linear relaxation with the same set of feasible integer
points. Note that if Q is the polytope PP , then well-behavedness definition is equivalent to Aij ≤ bi
for all i ∈ [m], j ∈ [n].

Let α > 0 be a scalar. If a given covering polyhedron P̃C is a relaxation of PC and satisfies

min{c>x | x ∈ P̃C} ≥
1

α
·min{c>x | x ∈ PC}, ∀c ∈ Rn+,

then P̃C is an α-approximation of PC . Similarly, given a packing set Q and its relaxation Q̃ of
packing type, Q̃ is an α-approximation of Q if

max{c>x | x ∈ Q̃} ≤ α ·max{c>x | x ∈ Q}, ∀c ∈ Rn+.

For a set P ⊆ Rn, we define αP := {αx | x ∈ P}. The equivalent definitions of α-approximation
for covering and packing cases are provided in [8] as

1

α
P̃C ⊆ PC and Q̃ ⊆ αQ,

respectively.
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Given a polyhedron P ⊆ Rn, we denote its integer hull by P I := conv({x | x ∈ P ∩ Zn}) where
conv(·) is the convex hull operator. We let zLP (c) and zI(c) to denote the optimal value of a given
objective function c>x over P and P I , respectively. For convenience, we will sometimes refer to
zLP (c) and zI(c) as zLP and zI , respectively.

Closures. We call a set M ∈ Rn a strict lattice-free set if M ∩Zn = ∅. Note that the set M need
not to be convex. Given a set Q, one can obtain a relaxation of QI as

QM := conv(Q \M).

Given a collection of some strict lattice-free sets M, we define the corresponding closure as

M(Q) =
⋂

M∈M
QM .

For convenience, we sometimes refer to M as the closure operator or just as closure.
Next, we define three special cases of the strict lattice-free closures, namely the split closure,

the multi-branch closure and the lattice-free closure.
We denote the split set associated with (π, π0) ∈ Zn × Z by

S(π, π0) := {x ∈ Rn | π0 < π>x < π0 + 1}.

Letting the collection of all split sets by

S = {S(π, π0),∀(π, π0) ∈ Zn × Z},

the split closure of Q, denoted as S(Q), is defined to be

S(Q) =
⋂
S∈S

QS .

For convenience, we denote QS(π,π0) by Qπ,π0 which is explicitly defined as

Qπ,π0 = conv(Q \ S(π, π0)) = conv
(
(Q ∩ {π>x ≤ π0}) ∪ (Q ∩ {π>x ≥ π0 + 1})

)
.

A generalization of split closure, called as the k-branch split closure, which is defined by [18], is
obtained by removing the union of at most k split sets simultaneously. Letting

Qπ
1,...,πk;π1

0 ,...,π
k
0 : = conv

(
Q \

⋃
i∈[k]

S(πi, πi0)
)

= conv

(⋂
i

(Q ∩ {(πi)>x ≤ πi0}) ∪ (Q ∩ {(πi)>x ≥ πi0 + 1})

)
,

the k-branch split closure of Q, denoted by Sk(Q), can be written as

Sk(Q) =
⋂

(πi,πi0)∈Zn×Z, i∈[k]

Qπ
1,...,πk;π1

0 ,...,π
k
0 .

Note that the 1-branch split closure is equivalent to the split closure, i.e, S1(Q) = S(Q).
A further generalization of the split closure is the so-called lattice-free closure, which is obtained

by considering convex sets having no integer point in their interior; see [12, 13] for relations to the
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k-branch split closure. A set L ⊆ Rn is called a lattice-free set if int(L)∩Zn = ∅ where int(·) is the
interior operator. For each integer k ≥ 2, we define Lk as the family of full-dimensional lattice-free
polyhedra L ⊂ Rn defined by at most k inequalities. (Note that it is not possible to have lattice-free
sets defined by only one inequality.) We denote the k-lattice-free closure of P by Lk(Q), i.e.,

Lk(Q) =
⋂
L∈Lk

QL,

where
QL := conv(Q \ int(L)).

Given a closure operatorM and a nonnegative objective function c ∈ Rn+, we use zM to denote
the optimal value of the minimization (or maximization) of c>x over the closure M(Q). Lastly,
we define the rank of the closure M, denoted by rankM(Q), as the minimum number of iterative
applications ofM to obtain the integer hull of Q. We note that the split rank, thus the multi-branch
rank and the lattice-free rank, are finite whenever Q is a rational polyhedron or is a bounded set
[22].

3 Main results

3.1 Packing

The main proof strategy to prove lower bounds on ranks of various cutting plane closures is pre-
sented in the proposition below.

Proposition 1. Let M be a collection of strict lattice-free sets which satisfies the following two
conditions:

1. Packing invariance: For any packing set Q, M(Q) is a packing set.

2. Constant approximation: There exists αM ≥ 1 such that Q ⊆ αMM(Q) for every well-
behaved packing set Q.

Then, for any well-behaved packing set Q,

rankM(Q) ≥


log2

(
zLP (c)
zI(c)

)
log2αM


for all c ∈ Rn+.

The proof of Proposition 1 is based on a simple iterative argument, which is provided in Sec-
tion 4.1.

3.1.1 Tools to prove the assumptions of Proposition 1

In order to use Proposition 1, we need to verify the packing invariance and constant approximation
properties. The next tool is very helpful in proving packing invariance.

Theorem 1. Let M be a collection of strict lattice-free sets. For T ⊆ [n], define H[T ] := {x ∈
Rn | xj = 0, ∀j ∈ T}. Given M ∈M, let

M [T ] := (M ∩H[T ]) + span({ej}j∈T ).

Suppose that M satisfies the following property: For any M ∈ M and T ⊆ [n], M [T ] 6= ∅ implies
that M [T ] ∈M. Then M is packing invariant.
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Note that it is straightforward to see that the set M [T ] in Theorem 1 is guaranteed to be a
strict lattice-free set by construction. The proof of Theorem 1 is essentially based on the fact that
a cut generated using a strict lattice-free set M is dominated by a packing type inequality that is
obtained using the strict lattice-free set M [T ] for a specifically chosen set T . The details of the
proof of Theorem 1 are given in Section 4.2.

We observe here that in order to use Proposition 1, we must prove constant approximation
property for general well-behaved packing sets, rather than just for polyhedra. The reason is that
the closures of the some cutting plane families we consider are not known to be polyhedral. In
order to prove constant approximation property for general well-behaved packing sets, we will find
it convenient to prove this property first for well-behaved packing polyhedra. It turns out that this
is sufficient to prove constant approximation property for any well-behaved packing set as the next
theorem states.

Theorem 2. Let M be a collection of strict lattice-free sets with the following property: There
exist αM ≥ 1 such that PP ⊆ αMM(PP ) for every well-behaved packing polyhedron PP . Then,
Q ⊆ αMM(Q) for every well-behaved packing set Q.

Theorem 2 is proven by first constructing a well-behaved packing polyhedron which is an inner
approximation of Q and is arbitrarily close to Q. We then show how to “transfer” the αM factor
from this polyhedron to Q. The details of the proof of Theorem 2 are provided in Section 4.3.

3.1.2 Applications of Proposition 1 to split, multi-branch split and lattice-free clo-
sures

We use Theorem 1 to verify the following result.

Theorem 3 (Packing invariance). M is packing invariant for M∈ {S,Sk,Lk}.

Theorem 3 is proven in Section 4.4.

Theorem 4 (Constant approximation). For M ∈ {S,Sk,Lk}, M satisfies the constant approxi-
mation property, where αS = 2, αSk = log2(min{2k, n}+ 1) and αLk = log2(min{k, n}+ 1).

Moreover, the factor αS is tight, i.e., for every ε > 0, there exists a well-behaved packing
polyhedron P̃P such that P̃P 6⊆ (2− ε)S(P̃P ).

Observe that the split cuts are a special case of multi-branch split cuts. However, we have
stated their constant approximation result separately since the general factor for multi-branch split
closure is not tight for the split closure. Indeed, proving the factor of 2 in the case of split cuts
involves more careful analyses. Moreover, this factor of 2 for the split case is tight as stated in the
theorem. The proof of Theorem 4 for the split, multi-branch split and lattice-free cases are given
in Sections 4.5.1, 4.5.2 and 4.5.3, respectively.

Note that a factor of 2 is proven in [8] as an approximation factor of the aggregation closure,
which is very similar to the result of split closure in Theorem 4. However, the split closure result
of Theorem 4 is not implied by the result of [8] since for packing polyhedra, split cuts are not
dominated by aggregation cuts, see the example given in Observation 2 in Appendix A.

Proposition 1, Theorem 3 and Theorem 4 lead us to the following lower bounds on the rank of
split closure, k-branch split closure and k-lattice-free closure of packing sets. As Corollary 1 is a
direct application of Proposition 1, we omit its proof.

Corollary 1. Let Q be a well-behaved packing set. Then, for all c ∈ Rn+,
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1. rankS(Q) ≥
⌈
log2

(
zLP (c)
zI(c)

)⌉
.

2. rankSk(Q) ≥


log2

(
zLP (c)

zI (c)

)
log2(min{2k,n}+1)

 for any k ∈ Z+, k ≥ 1.

3. rankLk(Q) ≥


log2

(
zLP (c)

zI (c)

)
log2(min{k,n}+1)

 for any k ∈ Z+, k ≥ 2.

Corollary 1 shows that if the integrality gap is high, then we cannot expect the split rank, the
multi-branch split rank or the lattice-free rank of a well-behaved packing set to be low.

To the best of our knowledge, the only other paper analyzing the rank of general lattice-free
closures is [2], and the only papers presenting lower bounds on the rank of multi-branch split closure
for very special kind of polytopes are [14] and [18]. We note that none of these bounds are related
to the optimality gap.

There have been a number of papers giving lower bounds on split ranks such as [6, 7, 11, 15, 16]
and bounds on a closely related concept, the reserve split rank [10]. To the best of our knowledge,
this is the first work connecting the integrality gap to the split rank. We note that the first part of
Corollary 1 can be seen as a generalization of the result given in [19] for the CG rank.

The lower bound on the split rank given in Corollary 1 is tight within a constant factor as
formally stated below.

Proposition 2. There exists a well-behaved packing polyhedron Q and a nonnegative objective

function c such that rankS(Q) ≤ O
(

log2

(
zLP (c)
zI(c)

))
.

The proof of Proposition 2 is given in Section 4.5.4.

3.2 Covering

We now state our results for covering polyhedron. All the proofs regarding the covering case are
given in Section 5.

Theorem 5. Let PC be well-behaved. Then, the followings hold:

(i) S(PC) is a well-behaved covering polyhedron.

(ii) 1
2PC ⊆ S(PC).

Moreover, the bound given in (ii) is tight, i.e., for every ε > 0, there exists a well-behaved covering
polyhedron P̃C such that 1

2−ε P̃C 6⊆ S(P̃C).

Regarding part (i) of Theorem 5, S(PC) is known to be a rational polyhedron since PC is
assumed to be a rational polyhedron, and it is straightforward to show that the split closure is
of covering type (Proposition 5); whereas its well-behavedness can be proven by showing that
each split cut that violates the well-behavedness property is dominated by a well-behaved split cut
(Proposition 8). Proof of part (ii) follows from a case analysis that gives the correct factor of 2
(Proposition 6). For the last statement in the theorem, we provide a tight example in Proposition
7.

Note that a similar result to Theorem 5 is proven in [8] with respect to the aggregation closure.
However, Theorem 5 is not implied by the result of [8] since for covering polyhedra, split cuts are
not dominated by aggregation cuts, see the example given in Observation 3 in Appendix A.
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Similar to the proof of Proposition 1 in the packing case, Theorem 5 yields the following lower
bound on the split rank of covering polyhedra.

Corollary 2. Let PC be well-behaved. Then, rankS(PC) ≥
⌈
log2

(
zI(c)
zLP (c)

)⌉
for all c ∈ Rn+.

Unlike the packing case, we are unable to generalize the result of Corollary 2 for the case of
k-lattice-free rank. The key technical argument that is a roadblock is to prove the well-behavedness
of the k-lattice-free closure of covering polyhedron. Notice that in the packing case, if we start from
a well-behaved set and the closure is of packing type, then trivially the closure is also well-behaved.
However, this is not the case for covering polyhedra.

4 Proofs for packing problems

We use the following observation, from [8], in some of the proofs.

Observation 1. Let φ : Rn → Rn be a bijective map, let {Si}i∈I be a collection of subsets of Rn
and let φ(S) := {φ(x) |x ∈ S}. Then φ

(⋂
i∈I S

i
)

=
⋂
i∈I φ(Si).

4.1 Proof of Proposition 1

Let M be a collection of strict lattice-free sets which satisfies the packing invariance and constant
approximation properties. Let Q ⊆ Rn be a well-behaved packing set. Since QI ⊆M(Q), we have
that ej ∈ M(Q) for all j ∈ [n]. Therefore, by the packing invariance property, M(Q) is also a
well-behaved packing set.

Let t = rankM(Q) and let c ∈ Rn+ be a given objective vector. Define zi to be the optimal
objective function value of maximizing c>x over the ith closure with respect to M of Q. Since,
M(Q) is a well-behaved packing set, by induction, the ith closure with respect toM of Q is a well-
behaved packing set. Therefore, the constant approximation property guarantees that zi ≤ 2zi+1.
Thus,

zLP (c)

zI(c)
=
zLP (c)

z1
z1

z2
. . .

zt−1

zt
≤ (αM)t.

This implies the inequality

t = rankM(Q) ≥


log2

(
zLP (c)
zI(c)

)
log2αM

 ,
which is the required result.

4.2 Proof of Theorem 1

Let M be a collection of strict lattice-free sets with the following property. For T ⊆ [n], define
H[T ] := {x ∈ Rn|xj = 0, ∀j ∈ T}. Given M ∈M, let

M [T ] := (M ∩H[T ]) + span({ej}j∈T ).

Assume that for any M ∈M and T ⊆ [n], if M [T ] 6= ∅, then M [T ] ∈M. We will show that M is
packing invariant.
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Let Q be a packing set. If Q is empty, then there is nothing to prove. Therefore, assume that
Q is nonempty.

Let M ∈ M. Let β>x ≤ δ be a valid inequality for QM . We will show that this inequality is
dominated by a packing type of inequality valid for M(Q). Let T = {j ∈ [n] : βj < 0}. If T = ∅,
there is nothing to prove. So, assume that T 6= ∅.

For convenience, we define an operator (̆·) as follows: For a given vector u ∈ Rn, ŭ ∈ Rn is

ŭj =

{
uj , if j ∈ [n] \ T
0, if j ∈ T .

We will show that β̆>x ≤ δ is a valid inequality for M(Q). Since β̆ ∈ Rn+ and {x ∈ Rn+ : β̆x ≤
δ} ⊆ {x ∈ Rn+ : β>x ≤ δ}, we obtain the required result.

Let Q̄ := Q ∩ H[T ]. As Q̄ ⊆ Q, we have that β>x ≤ δ is a valid inequality for Q̄M . Since
β̆>x = β>x for every x ∈ H[T ], we obtain that

β̆>x ≤ δ is a valid inequality for Q̄M . (1)

Now, we make two cases:

Case 1. H[T ] ∩M = ∅: In this case, we know that Q̄ = Q̄M , thus, using (1), we have that β̆x ≤ δ is
valid for Q̄. We show that β̆>x ≤ δ is valid for Q, and therefore trivially for M(Q). Assume
by contradiction that there is a point x ∈ Q such that β̆>x > δ. We have β̆>x̆ = β̆>x > δ.
As Q is a packing set, we have x̆ ∈ Q. Moreover, since x̆ ∈ H[T ], we have x̆ ∈ Q̄. Thus x̆ is
a vector in Q̄ with β̆>x̆ > δ, a contradiction since β̆x ≤ δ is valid for Q̄. Therefore, in this
case the statement is trivially satisfied.

Case 2. H[T ] ∩M 6= ∅: By the definition of M [T ], we have that M [T ] 6= ∅ and

H[T ] ∩M = H[T ] ∩M [T ].

Therefore, Q̄ \M = Q̄ \M [T ], which together with (1) imply that

β̆>x ≤ δ is a valid inequality for Q̄M[T ]. (2)

We now show that β̆>x ≤ δ is a valid inequality for QM [T ]. Assume by contradiction that
there is a point x ∈ Q\M [T ] such that β̆>x > δ. We have β̆>x̆ = β̆>x > δ. As Q is a packing
set, we have x̆ ∈ Q. Moreover, since x̆ ∈ H[T ], we have x̆ ∈ Q̄. Finally, since x /∈ M [T ],
we obtain that also x̆ /∈ M [T ] by definition of M [T ]. Thus x̆ is a vector in Q̄ \M [T ] with
β̆>x̆ > δ, a contradiction to (2).

4.3 Proof of Theorem 2

Let M be a collection of strict lattice-free sets with the following property: There exist αM ≥ 1
such that PP ⊆ αMM(PP ) for every well-behaved packing polyhedron PP . Let Q be a well-behaved
packing set. We will show that Q ⊆ αMM(Q).

Our strategy to prove this statement is to first construct, in Lemma 1, a well-behaved packing
polyhedron which is an inner approximation of Q and is arbitrarily close to Q. Then, we apply the
αM factor to this polyhedral approximation and “transfer” it to Q.

Lemma 1. Let ε > 0. Then, there exists a well-behaved packing polyhedron Pε such that 1
1+εQ ⊆

Pε ⊆ Q.
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Proof. Let σQ be the support function of Q, i.e.,

σQ(u) = sup{u>x|x ∈ Q},

and
Cn := {u ∈ Rn+ | ||u||2 = 1}.

Also, let Q̃ = 1
1+εQ. We first show that there exists M > 0 such that

σQ̃(u) ≥M for all u ∈ Cn. (3)

Let S = {x ∈ Rn+ | 1>x ≤ 1} and S̃ = 1
1+εS. Since Q is well-behaved, we have that S ⊆ Q, thus

S̃ ⊆ Q̃. Therefore, σS̃(u) ≤ σQ̃(u) for all u ∈ Cn. Since σS̃(u) ≥ 1
1+ε for all u ∈ Cn, (3) holds.

Let M̄ = max{||x||∞ | x ∈ Q̃}. It is well-known that σQ̃(·) is continuous since Q̃ is a compact
convex set [21]. Moreover, as || · ||2 is also continuous, given ε > 0, for any u ∈ Cn, there exists a
neighborhood of u, say Nu, such that for all v ∈ Nu, we have

|σQ̃(u)− σQ̃(v)| < εM

4
(4)

and

||u− v||2 ≤
εM

4
√
nM̄

. (5)

Since Cn is a compact set, there exists a finite list of vectors v1, . . . , v` such that Cn = ∪`i=1Nvi .
Define

P 1
ε := {x ∈ Rn+ | (vi)

>x ≤ σQ̃(vi),∀i = 1, . . . , `, and xi ≤ M̄, ∀i = 1, . . . , n} (6)

We now show that
Q̃ ⊆ P 1

ε ⊆ (1 +
ε

2
)Q̃ ⊆ Q. (7)

Note that the first and the last containments are straightforward. In order to show the second
containment, we need to show that σP 1

ε
(u)/σQ̃(u) ≤ 1 + ε

2 for all u ∈ Cn. For a given u ∈ Cn, let
i ∈ {1, . . . , `} such that u ∈ Nvi . Observe that

σP 1
ε
(u) ≤ σP 1

ε
(vi) + σP 1

ε
(u− vi)

≤ σP 1
ε
(vi) + ||u− vi||2 · max

x∈P 1
ε

{||x||2}

≤ σP 1
ε
(vi) +

εM

2
√
nM̄

√
nM̄

= σP 1
ε
(vi) +

εM

4

≤ σQ̃(vi) +
εM

4

≤ σQ̃(u) +
εM

4
+
εM

4

= σQ̃(u) +
εM

2
, (8)

where the first inequality is due to the subadditivity property of the support functions [21], the
second is due to the Cauchy-Schwartz inequality, the third follows from (5) and (6), the fourth
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inequality is implied by the constraints defining Pε in (6), and the last inequality is satisfied by (4).
Inequality (8) can be written as

σP 1
ε
(u)

σQ̃(u)
≤ 1 +

εM

2σQ̃(u)
≤ 1 +

ε

2
,

which follows from (3).
Due to (7), P 1

ε achieves almost all the required conditions except the fact that it may not be
well-behaved. Therefore, let

Pε = conv (P 1
ε ∪ S).

First, note that Q̃ ⊆ P 1
ε ⊆ Pε ⊆ Q where the first two containments are straightforward, and the

last containment follows from the fact that S ⊆ Q and P 1
ε ⊆ Q. It remains to verify that Pε is a

packing polyhedron which would imply that it is well-behaved packing polyhedron since S ⊆ Pε.
However, observe that Pε is the convex hull of the union of two packing polyhedra, and therefore
it is straightforward to verify that it is a packing polyhedron.

Noting that

M(Q) =
⋂

M∈M
QM ,

it is sufficient to prove that
Q ⊆ (αM)QM , (9)

(see Observation 1).
Let ε > 0 and Pε be the well-behaved packing polyhedron satisfying the conditions of Lemma

1. Then, observe that
1

1 + ε
Q ⊆ Pε ⊆ (αM)(Pε)

M ⊆ (αM)QM , (10)

where the first and the last containments follow due to 1
1+εQ ⊆ Pε ⊆ Q, whereas the second one

holds by assumption and the fact that Pε is well-behaved.
Note that (10) can be written as Q ⊆ (1 + ε)(αM)QM . Since ε can be arbitrarily small, we

obtain that Q ⊆ (αM)QM .

4.4 Proof of Theorem 3

Note that it is sufficient to prove the statement for M ∈ {Sk,Lk} since S is a special case of Sk.
We will use Theorem 1 to prove this statement. That is, letting T ⊆ [n], we will show that for
every M ∈M, we have M [T ] ∈M as well.

For convenience, we define an operator (̆·) as follows: For a given vector u ∈ Rn, ŭ ∈ Rn is
defined as

ŭj =

{
uj , if j ∈ [n] \ T
0, if j ∈ T .

Case of Sk: Consider an arbitrary element of Sk as

M =
⋃
i∈[k]

S(πi, πi0).
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Observe that
M [T ] =

⋃
i∈[k]

S(π̆i, πi0).

If π̆i = 0, then S(π̆i, πi0) = ∅. Therefore, M [T ] is also a k-branch split set since k-branch split
is defined to be the union of at most k split sets.

Case of Lk: Consider an arbitrary element of Lk as

M = {x ∈ Rn|(πi)>x < πi0, i = 1, . . . , k}.

Observe that
M [T ] = {x ∈ Rn|(π̆i)>x < πi0, i = 1, . . . , k}.

If π̆i = 0, then either the inequality (π̆i)>x < πi0 is trivially satisfied, or M [T ] = ∅. Therefore,
M [T ] is also a k-lattice-free set since k-lattice-free set is defined to be the union of at most k
lattice-free sets.

4.5 Proof of Theorem 4

4.5.1 Case of S

We show that αS = 2 in Proposition 3. The proof of Proposition 3 involves a reduction to analyzing
split closure of a packing polyhedron in R2, and a case analysis in R2 gives the correct factor of 2
(Lemma 2). For the last statement in the theorem, we provide a tight example in Proposition 4.

Lemma 2. Let PP ⊆ R2 be well-behaved. Then PP ⊆ 2S(PP ).

Proof. By Theorem 3, the set S(PP ) is a well-behaved packing polyhedron, thus we just need to
show that for all facet-defining inequalities β>x ≤ δ of S(PP ), the inequality β>x ≤ 2δ is valid
for PP . This is trivially satisfied for the facet-defining inequalities of S(PP ) of the type xi ≥ 0,
thus it remains to be shown for the other facet-defining inequalities of S(PP ). By Theorem 3,
S(PP ) is packing, thus such facet-defining inequalities are of the form β>x ≤ δ with β ∈ R2

+. Let
P TP := conv(PP \ intT ), where T is a strip. We know that P TP ⊆ PP ∩{x | β>x ≤ δ}. Therefore, to
complete the proof of the proposition, we just need to show that for every strip T , and for every
β ∈ R2

+, there exists x̂ ∈ P TP that satisfies max{β>x | x ∈ PP } ≤ 2β>x̂. (Note that the polyhedra
P TP are not necessarily packing.)

Fix β ∈ R2
+, and let x̄ := max{β>x | x ∈ PP }. Since PP is a packing polyhedron, we have

x̄ ≥ 0. We divide the proof in three main cases based on the position of vector x̄.
1. In the first case we assume that x̄ ≥ (1, 1), and we define x̂ := bx̄c. Since PP is a packing

polyhedron, we have that x̂ ∈ PP ∩Z2 ⊆ P TP . As x̄ ≥ (1, 1), we have 2x̂ ≥ x̄. Finally, β ≥ 0 implies
2β>x̂ ≥ β>x̄ as desired.

2. In the second case we assume that x̄ ≤ (1, 1). Since PP is well-behaved, we have that
points (1, 0) and (0, 1) are in PP and therefore in P TP . If β1 ≥ β2, we define x̂ := (1, 0). Then
2β>x̂ = 2β1 ≥ β1 + β2. Since β ≥ 0 and x̄ ≤ (1, 1), we have β1 + β2 ≥ β>x̄, which implies
2β>x̂ ≥ β>x̄ as desired. Symmetrically, if β2 ≥ β1, we define x̂ := (0, 1), and obtain 2β>x̂ ≥ β>x̄.

3. In the third case we assume that x̄1 < 1 and x̄2 > 1. (The same argument works for the
symmetric case x̄2 < 1 and x̄1 > 1.)

Assume first that T is not a vertical strip T = {x | t ≤ x1 ≤ t + 1} for some integer t. Define
now x̂1 := bx̄c = (0, bx̄2c). Since PP is packing, vector x̂1 is in PP ∩ Z2, and therefore in P TP . If
2β>x̂1 = 2β>(0, bx̄2c) ≥ β>x̄, then we are done, thus we now assume 2β>(0, bx̄2c) ≤ β>x̄.
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We show 2β>(x̄1, x̄2 − 1) ≥ β>x̄. Since bx̄2c ≥ 1 and β2 ≥ 0, we have β>x̄ ≥ 2β2bx̄2c ≥ 2β2.
By adding β>x̄ to both sides we obtain 2β>x̄− 2β2 ≥ β>x̄, thus 2β>(x̄1, x̄2 − 1) ≥ β>x̄. Since T
is not a vertical strip, it can be shown that vector x̂2 := (x̄1, x̄2 − 1) is in P TP , and we are done.

Finally, assume that T is a vertical strip T = {x | t ≤ x1 ≤ t + 1} for some integer t. Define
now x̂1 := (1, 0). Since PP is well-behaved, vector x̂1 is in PP ∩ Z2, and therefore in P TP . If
2β>x̂1 = 2β>(1, 0) ≥ β>x̄, then we are done, thus we now assume 2β>(1, 0) ≤ β>x̄.

We show 2β>(0, x̄2) ≥ β>x̄. Since β1 ≥ 0 and x̄1 < 1, we have 2β1x̄1 < 2β1. By summing the
latter with 2β1 ≤ β>x̄ we obtain 2β1x̄1 ≤ β>x̄. By adding and subtracting 2β2x̄2 to the left-hand,
we get 2β>x̄− 2β2x̄2 ≤ β>x̄ which implies 2β2x̄2 ≥ β>x̄ as desired. Since T is a vertical strip, the
vector x̂2 := (0, x̄2) is in P TP , and we are done.

Proposition 3 (αS = 2). Let Q ⊆ Rn be a well-behaved packing set. Then, Q ⊆ 2S(Q).

Proof. It is sufficient to prove this proposition for a packing polyhedron, PP , due to Theorem
2. Let (π, π0) ∈ Zn × Z and let β>x ≤ δ be a valid inequality for (PP )π,π0 . Note that, due to
Observation 1, it is sufficient to show that β>x ≤ 2δ is valid for PP . Due to Farkas’ Lemma, there
exist λ ∈ Rm+ , µ ∈ Rk+ and σ ∈ Rn+ such that for any j ∈ [n], we have

βj =

m∑
i=1

λ1iAij + µ1πj − σ1j =

m∑
i=1

λ2iAij − µ2πj − σ2j .

Let
Q := {x | (λ1)>Ax ≤ (λ1)>b, (λ2)>Ax ≤ (λ2)>b, x ≥ 0}.

Now, observe that Q ⊇ PP . Therefore, it is sufficient to show that β>x ≤ 2δ is valid for Q. We
will prove that the following holds:

Q ⊆ 2Qπ,π0 . (11)

Since β>x ≤ δ is valid for Qπ,π0 by the definition of Q, this will imply that β>x ≤ 2δ is valid for
Q.

In order to show that (11) holds, we verify that

max{c>x | x ∈ Q} ≤ 2 max{c>x | x ∈ Qπ,π0}, (12)

for any objective vector c ∈ Rn+. Let x∗ be a vertex of Q that maximizes c>x over Q. As Q
is defined by two linear inequalities, together with non-negativities, we know that at least n − 2
components of x∗ are zero, say x∗j = 0 for all j = 3, . . . , n. We will focus on the restriction of Q to
the first two variables, which we denote by Q|R2 .

Observe that
max{c>x | x ∈ Q} = max{c1x1 + c2x2|(x1, x2) ∈ Q|R2}. (13)

Moreover, we have

max{c>x | x ∈ Qπ,π0} ≥ max{c1x1 + c2x2|(x1, x2) ∈ (Q|R2)π,π0} (14)

because (Q|R2)π,π0 = Qπ,π0 |R2 as {x ∈ Rn|(x1, x2) ∈ Q|R2 , xj = 0, j = 3, . . . , n} is a face of Q [11,
Equation 9].

Due to (13) and (14), in order to prove (12), it is sufficient to only prove (12) in R2. Since Q|R2

is well-behaved, this immediately follows from Lemma 2.

Proposition 4 (Tight example). For every ε > 0, there exists a well-behaved packing polyhedron
P̃P such that P̃P 6⊆ (2− ε)S(P̃P ).
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Proof. Let ε > 0 and M = max{1, d2ε − 1e}. Consider the instance max{x1 + x2 |x ∈ P̃P }, where

P̃P = {x ∈ R2
+ |x1 +Mx2 ≤M, Mx1 + x2 ≤M}.

Note that P̃P is well-behaved. It is sufficient to show that zLP

zS
≥ 2− ε for this instance.

1. zLP ≥ 2M
M+1 : It can be checked that the point x̄1 = x̄2 = M

M+1 is in P̃P . Thus, zLP ≥ 2M
M+1 .

2. zS ≤ 1: Adding the two constraints defining P̃P we obtain the valid inequality

x1 + x2 ≤
2M

M + 1

The corresponding CG cut is x1 + x2 ≤ 1. Since each CG cut is also a split cut we obtain
zS ≤ 1.

Thus, zLP

zS
≥ 2M

M+1 ; and our choice of M completes the proof.

We note that the example given in Proposition 4 is the same as the one used in [8] to show that
the 2-approximation bound for the CG closure of a well-behaved packing polyhedron is tight.

4.5.2 Case of Sk

We will show that αSk = log2(min{2k, n}+1). It is sufficient to prove this proposition for a packing
polyhedron, PP , due to Theorem 2.

Let PP = {x ∈ Rn|Ax ≤ b, x ≥ 0} and πi ∈ Zn, πi0 ∈ Z for all i ∈ [k]. It is sufficient to prove

that (min{2k, n}+ 1) (PP )π
1,...,πk;π1

0 ,...,π
k
0 ⊇ PP .

Let β>x ≤ δ be a valid inequality for (PP )π
1,...,πk;π1

0 ,...,π
k
0 . Since 0 ∈ (PP )π

1,...,πk;π1
0 ,...,π

k
0 , we have

δ ≥ 0. Therefore, it is sufficient to prove that

(min{2k, n}+ 1)
(
{x|β>x ≤ δ}

)
⊇ PP .

Let G = {G ⊆ [n] : (PP )
π1,...,πk;π1

0 ,...,π
k
0

G 6= ∅}, where (PP )
π1,...,πk;π1

0 ,...,π
k
0

G is defined as

(PP )
π1,...,πk;π1

0 ,...,π
k
0

G = PP ∩
(⋂
i∈G
{(πi)>x ≥ πi0 + 1)}

)
∩
 ⋂
i∈[n]\G

{(πi)>x ≤ πi0)}

 .

By Farkas’ Lemma, we know that β>x ≤ δ is valid for

{x ∈ Rn+|(λG)>Ax ≤ (λG)>b, (πi)>x ≥ πi0 + 1, ∀ i ∈ G, (πi)>x ≤ πi0, ∀ i ∈ [n] \G}, (15)

for some λG ∈ Rm+ .
Let

Q = {x ∈ Rn+|(λG)>Ax ≤ (λG)>b, ∀G ∈ G}

which is well-behaved since PP is assumed to be well-behaved. Now, observe that

(min{2k, n}+1)
(
{x|β>x ≤ δ}

)
⊇ (min{|G|, n}+1)

(
{x|β>x ≤ δ}

)
⊇ (min{|G|, n}+1)QI ⊇ Q ⊇ PP ,

where the second containment follows from (15), the third one follows from Proposition 6 of [8]
since Q is well-behaved, and the last one is straightforward.
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4.5.3 Case of Lk

We show that αLk = log2(min{k, n} + 1). It is sufficient to prove this proposition for a packing
polyhedron, PP , due to Theorem 2.

Let PP = {x ∈ Rn|Ax ≤ b, x ≥ 0} and

L = {x ∈ Rn|(πj)>x ≤ πj0, j = 1, . . . , k}.

Then, observe that

(PP )L = conv(PP \ int(L)) = conv

 k⋃
j=1

{
x ∈ PP | (πj)>x ≥ πj0

} . (16)

Without loss of generality, assume that the set {x ∈ PP | (πj)>x ≥ πj0} is non-empty if j ≤ r, and
empty otherwise, for some r with 1 ≤ r ≤ k.

Let β>x ≤ δ be a valid inequality for (PP )L. Since the origin is contained in (PP )L, we have
δ ≥ 0. Therefore, it is sufficient to prove that

(min{k, n}+ 1)
(
{x|β>x ≤ δ}

)
⊇ PP .

By equation (16) and Farkas’ Lemma, we know that β>x ≤ δ is valid for

{x ∈ Rn+|(λj)>Ax ≤ (λj)>b, (πj)>x ≥ πj0}, (17)

for j = 1, . . . , r where λj ∈ Rm+ .
Let

Q = {x ∈ Rn+|(λj)>Ax ≤ (λj)>b, j = 1, . . . , r}

which is well-behaved since PP is assumed to be well-behaved. Now, observe that

(min{k, n}+ 1)
(
{x|β>x ≤ δ}

)
⊇ (min{k, n}+ 1)QI ⊇ Q ⊇ PP ,

where the first containment follows from (17) and L being a lattice-free set, the second one follows
from Proposition 6 of [8] since Q is well-behaved, and the last one is straightforward.

4.5.4 Proof of Proposition 2

Let PP be the standard relaxation of the stable set polytope:

PP = {x ∈ Rn+ |xi + xj ≤ 1 ∀i, j ∈ [n], i < j}.

Corresponding to the clique inequality 1>x ≤ 1, we optimize the all ones vector over PP and (PP )I ,
and obtain zLP = n/2 and zI = 1, respectively. The CG rank of the clique inequality is known to
be dlog2(n− 1)e [17], therefore it also constitutes an upper bound on the split rank.

5 Proofs for covering problems

Proposition 5. S(PC) is a covering polyhedron.
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Proof. If PC is empty, then there is nothing to prove. So, assume that PC is not empty. It is known
that the split closure of a polyhedron is also a polyhedron [11]. Let β>x ≥ δ be a valid inequality
for S(PC). Then, there exists (π, π0) ∈ Zn × Z such that β>x ≥ δ is valid for P π,π0C . If one side of
the disjunction is empty, then we already know that β>x ≥ δ is of covering type as it is a CG cut.
Now, assume that both sides are nonempty. Then, due to Farkas’ Lemma, there exist multipliers
λ1, λ2 ∈ Rm+ , µ1, µ2 ∈ R+ and σ1, σ2 ∈ Rn+ for the aggregation

(λ1) Ax ≥ b (λ2) Ax ≥ b
(µ1) − π>x ≥ −π0 (µ2) π>x ≥ π0 + 1

(σ1j ) xj ≥ 0 (σ2j ) xj ≥ 0 j = 1, . . . , n

such that, for any j = 1, . . . , n,

βj =
m∑
i=1

λ1iAij − µ1πj + σ1j =
m∑
i=1

λ2iAij + µ2πj + σ2j . (18)

This implies that, for any j = 1, . . . , n, we have βj ≥ 0 (based on the sign of πj , either the middle
or the last expression is nonnegative). Lastly, note that if δ < 0, then β>x ≥ δ is dominated by
β>x ≥ 0, which concludes the proof.

Proposition 6. Let PC be well-behaved, i.e., Aij ≤ bi for all i ∈ [m], j ∈ [n]. Then,

zLP ≥ 1

2
zS .

Proof. Let β>x ≥ δ be a facet-defining inequality for S(PC). Note that, due to Observation 1, it
is sufficient to show that β>x ≥ δ

2 is valid for PC . If β>x ≥ δ is a CG cut, then the result follows
from the similar result in [8]. Otherwise, let (π, π0) ∈ Zn × Z be a corresponding vector such that
β>x ≥ δ is valid for P π,π0C . Let

Q := {x | (λ1)>Ax ≥ (λ1)>b, (λ2)>Ax ≥ (λ2)>b, x ≥ 0},

where λ1 and λ2 are the multipliers that satisfy (18). Now, observe that Q ⊇ PC . Therefore, it is
sufficient to show that β>x ≥ δ

2 is valid for Q. We will prove that the following holds:

Q ⊆ 1

2
Qπ,π0 . (19)

Since β>x ≥ δ is valid for Qπ,π0 by the definition of Q, this will imply that β>x ≥ δ
2 is valid for Q.

In order to show that (19) holds, we verify that

min{c>x | x ∈ Q} ≥ 1

2
min{c>x | x ∈ Qπ,π0}, (20)

for any objective vector c ∈ Rn+. Let x∗ be a vertex of Q that minimizes c>x over Q. If x∗ belongs
to Qπ,π0 , we are done. Thus, assume that x∗ /∈ Qπ,π0 . We will prove (20) by showing that there
exists a point x̂ ∈ Qπ,π0 such that c>x̂ ≤ 2c>x∗. As Q is defined by two linear inequalities, together
with non-negativities, we know that at least n − 2 components of x∗ are zero, say x∗j = 0 for all

j = 3, . . . , n. We will focus on this restriction of Q in R2
+ in order to identify x̂. Without loss of

generality, assume that c1 ≥ c2. A key observation that follows from the definition of split cuts is

(x∗1 + 1, x∗2,0) ∈ Qπ,π0 ∨ (x∗1, x
∗
2 + 1,0) ∈ Qπ,π0 . (21)
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Now, we will consider two cases to prove (20).

Case 1. x∗1 ≥ 1: Let x̂ = (x∗1 + 1, x∗2,0). Note that x̂ ∈ Qπ,π0 by (21). It is sufficient to show that

c>x∗ ≥ 1

2
(c>x∗ + c1),

which is equivalent to c>x∗ ≥ c1, and holds because c1 ≥ c2.

Case 2. 0 ≤ x∗1 < 1: Note that by construction, Q is a well-behaved covering polyhedron. Now,
consider the following two subcases:

Case 2a. (π, π0) 6= (e1, 0): In this case, let x̂ = (x∗1 + 1, x∗2,0), which belongs to Qπ,π0 by (21). It
is sufficient to show that

c>x∗ ≥ 1

2
(c>x∗ + c2),

which is equivalent to c>x∗ ≥ c2. This holds as we have x∗1 + x∗2 ≥ 1 since Q is well-behaved.

Case 2b. (π, π0) = (e1, 0): Let x̂ = (x∗1, x
∗
2 + x∗1x

∗
2,0). We will first show that x̂ ∈ Qπ,π0 .

Figure 1 illustrates the restriction of Q to the first two variables, which we denote by Q|R2 .
Observe that Q|R2 is a well-behaved covering polyhedron (with at most three vertices) because Q
is a well-behaved covering polyhedron. Let (0, y) be one of the vertices of Q|R2 . Note that x∗1 > 0
due to the assumption x∗ /∈ Qe1,0. Since (x∗1, x

∗
2) is a vertex of Q|R2 , we know that (0, y) 6= (x∗1, x

∗
2).

Let (h, 0) be the intercept of the line passing through the vertices (0, y) and (x∗1, x
∗
2). Then, we

have

(x∗1, x
∗
2)

(0, y)

(0, h)
x

Figure 1: The set Q|R2

y

h
=
y − x∗2
x∗1

⇒ h =
yx∗1
y − x∗2

. (22)

Note that h ≥ 1 due to well-behavedness of Q|R2 . This implies

yx∗1 ≥ y − x∗2 ⇐⇒ y ≤ x∗2
1− x∗1

⇒ (0,
x∗2

1− x∗1
,0) ∈ Qe1,0.

The last implication follows from the fact that Q is a covering polyhedron, (0, y,0) ∈ Q and
(π, π0) = (e1, 0). Similarly, we have (1, x∗2,0) ∈ Qe1,0. The following convex combination of these
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two points yields x̂ as

(1− x∗1)(0,
x∗2

1− x∗1
,0) + x∗1(1, x

∗
2,0) = (x∗1, x

∗
2 + x∗1x

∗
2,0) = x̂.

Finally, observe that

c>x∗ ≥ 1

2
(c>x∗ + c2x

∗
1x
∗
2) ⇐⇒ c>x∗ ≥ c2x∗1x∗2 ⇐⇒ c>x∗ ≥ c2x∗2 ≥ c2x∗1x∗2,

which completes the proof.

We now show that Proposition 6 is tight. In order to do so, we exhibit an instance of a well-
behaved covering polyhedron and a nonnegative objective function such that LP is not better than
a 2-approximation of S. The construction given in the following example is the same that we used
in [8] to show that our 2-approximation bounds for 1-row closure and 1-row CG closure are tight.

Proposition 7. For every ε > 0, there exists a well-behaved covering polyhedron P̃C such that
1

2−ε P̃C 6⊆ S(P̃C).

Proof. Let ε > 0 and n = max{2, d1ε e}. Consider the instance min{
∑n

j=1 xj |x ∈ P̃C}, where

P̃C = {x ∈ Rn+ |xi +
∑

j∈[n]\{i}

2xj ≥ 2, ∀i ∈ [n]}.

Note that P̃C is well-behaved. It is sufficient to show that zS

zLP
≥ 2− ε for this instance.

1. zLP ≤ 2n
2n−1 : It can be checked that the point x̄j = 2

2n−1 for each j ∈ [n] is in P̃C . Thus,

zLP ≤ 2n
2n−1 .

2. zS ≥ 2: Adding all the constraints defining P̃C we obtain the valid inequality∑
j∈[n]

xj ≥
2n

2n− 1
.

The corresponding CG cut is
∑

j∈[n] xj ≥ 2. Since each CG cut is also a split cut we obtain

zS ≥ 2.

Thus, zS

zLP
≥ 2− 1

n ; and our choice of n completes the proof.

Proposition 8. Let PC be well-behaved, i.e., Aij ≤ bi for all i ∈ [m], j ∈ [n]. Then, S(PC) is
well-behaved.

Proof. Let β>x ≥ δ be a facet-defining (i.e., nondominated) inequality for S(PC). If it is a CG
cut, then we are done. Thus, we assume that it is a non-CG cut. For a contradiction, suppose that
β1 > δ.

We know that β>x ≥ δ is valid for P π,π0C for some (π, π0) ∈ Zn×Z. Then, there exist multipliers
λ1, λ2 ∈ Rm+ , µ1, µ2 ∈ R+ and σ1, σ2 ∈ Rn+ such that

(β, δ) = λ1(A, b) + µ1(−π,−π0) + σ1(1, 0) (23)

(β, δ) = λ2(A, b) + µ2(−π̄,−π̄0) + σ2(1, 0) (24)
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where (π̄, π̄0) = (−π,−π0 − 1). Note that if σ11 > 0 and σ21 > 0, then we can obtain another split
cut by decreasing both σ11 and σ21 by min{σ11, σ21}, which dominates the given split cut β>x ≥ δ.
Therefore, we assume, WLOG, that σ21 = 0. Then, we make the following two cases:

Case 1. −π̄0 ≥ −π̄1: This implies that λ2A·1 + µ2(−π̄1) ≤ λ2b + µ2(−π̄0) (where A·1 denotes the
first column of A), equivalently β1 ≤ δ, which is a contradiction.

Case 2. −π̄0 ≤ −π̄1: This condition is equivalent to 1 − π1 < −π0. We first claim that σ11 > µ1.
From (23) and β1 > δ, we have

λ1A·1 − µ1π1 + σ11 > λ1b+ µ1(−π0) > λ1b+ µ1(1− π1),

which implies that
(λ1A·1 − λ1b) + σ11 − µ1 > 0.

As PC is well-behaved, we have λ1A·1 − λ1b ≤ 0, thus we get σ11 > µ1. Next, we let

π̃ := π − e1, σ̃1 := σ1 − µ1e1, σ̃2 := σ2 + µ2e1.

Note that σ̃11 > 0. Also, due to (23) and (24), we have

(β, δ) = λ1(A, b) + µ1(−π̃,−π0) + σ̃1(1, 0) = λ2(A, b) + µ2(π̃,−π̄0) + σ̃2(1, 0). (25)

Note that µ2 > 0 since otherwise, i.e., when µ2 = 0, the equation (24) and σ21 = 0 give the
contradiction β1 = λ2A·1 ≤ λ2b = δ. Therefore, we have σ̃21 > 0 as well. If we reduce both σ̃11 and
σ̃21 by a sufficiently small ε > 0, so that they are still nonnegative, from (25) we obtain another
valid split cut (β − 2εe1)

>x ≥ δ which dominates β>x ≥ δ, hence a contradiction.
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In Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R.
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey, editors, 50 Years of
Integer Programming 1958-2008, chapter 19, pages 727–801. Springer, 2010.

[21] R. T. Rockafeller. Convex Analysis. Princeton University Press, New Jersey, NJ, 1970.

[22] A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291–296, 1980. Combina-
torics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part II.

19



A Additional proofs

Observation 2. For packing polyhedra, split cuts are not necessarily aggregation cuts.

Proof. An example, where there exists a split cut that cannot be obtained as an aggregation
cut, is provided in Figure 2. In the figure, the shaded region represents the packing polyhedron

7

2

7/4

1

1

Figure 2: A packing polyhedron for which there exists a split cut that cannot be obtained as an
aggregation cut.

P = {x ∈ R2
+ | 7x1 + x2 ≤ 7, 4x2 ≤ 7}. It is easy to see that 7x1 + 4x2 ≤ 7 (the dashed line in the

figure) is a split cut obtained by using the split set S(e1, 0). Note that this cut separates both of
the points (0, 2) and (1, 1). We next show that this cut is not an aggregation cut by proving that
(0, 2) and (1, 1) are not separated at the same time by any aggregation cut. An inequality is an
aggregation cut for P if it is valid for the set P (α) := conv({x ∈ R2

+ | (7−7α)x1 +(3α+1)x2 ≤ 7})
for some α ∈ [0, 1]. It can be easily verified that if α ≤ 5/6, then (0, 2) ∈ P (α), and if α ≥ 1/4,
then (1, 1) ∈ P (α).

Observation 3. For covering polyhedra, split cuts are not necessarily aggregation cuts.

Proof. An example, where there exists a split cut that cannot be obtained as an aggregation
cut, is provided in Figure 3. In the figure, the shaded region represents the covering polyhedron

7
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7/4

1

1

Figure 3: A covering polyhedron for which there exists a split cut that cannot be obtained as an
aggregation cut.

P = {x ∈ R2
+ | 7x1 + x2 ≥ 7, 4x2 ≥ 7}. It is easy to see that 21x1 + 4x2 ≥ 28 (the dashed line in

the figure) is a split cut obtained by using the split set S(e1, 0). Note that this cut separates both
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of the points (0, 6) and (1, 1). We next show that this cut is not an aggregation cut by proving that
(0, 6) and (1, 1) are not separated at the same time by any aggregation cut. An inequality is an
aggregation cut for P if it is valid for the set P (α) := conv({x ∈ R2

+ | (7−7α)x1 +(3α+1)x2 ≥ 7})
for some α ∈ [0, 1]. It can be easily verified that if α ≥ 1/18, then (0, 6) ∈ P (α), and if α ≤ 1/4,
then (1, 1) ∈ P (α).
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