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Send flows at minimum cost from inputs to outputs via pools in a digraph.
Flows mixed twice: first at pools and then at outputs.
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I Network flow problem
on a tripartite directed
graph, with three type
of node: Input Nodes
(I), Pool Nodes (L),
Output Nodes (J).

I Send flow from input
nodes via pool nodes
to output nodes.

I Each of the arcs and
nodes have capacities
of flow.
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Raw material contains specifications such as concentrations of sulphur, 
carbon or density, octane number, etc.
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I Raw material has
specifications (like
sulphur, carbon, etc.).

I Raw material gets
mixed at the pool
producing new
specification level at
pools.

I The material gets
further mixed at the
output nodes.

I The output node has
required levels for each
specification.
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Data:

I λk
i : The value of

specification k at input
node i .

Variable:

I pk
l : The value of

specification k at node l

I yab: Flow along the arc
(ab).

Specification Tracking:
∑

i∈I

λk
i yil

︸ ︷︷ ︸
Inflow of Spec k

= pk
l


∑

j∈J

ylj




︸ ︷︷ ︸
Out flow of Spec k
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The pooling problem: ‘P’ formulation

max
∑

ij∈A
wijyij (Maximize profit due to flow)

Subject To:

1. Node and arc capacities.

2. Total flow balance at each node.

3. Specification balance at each pool.

∑

i∈I

λk
i yil = pk

l


∑

j∈J

ylj




4. Bounds on pk
j for all out put nodes j and specification k .
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PQ Model

New Variable:

I qil : fraction of flow to l
from i ∈ I
∑

i∈I

qil = 1,qil ≥ 0, i ∈ I.

I pk
l =

∑
i∈I λ

k
i qil

I vilj : flow from input node i
to output node j via pool
node l .

I vilj = qilylj

Introduction Relaxations MIBLP Discretization Conclusion Problem Review Approach

Proportion model : pq-formulation (Tawarmalani et al., Alfaki et al.)
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Figure: Single pool system. No pool-pool
arcs

Instead of plk , track
incoming flow ratios

qil : fraction of incoming
flow to l from i ⇥ I
⇥

i�I

qil = 1, qil � 0, i ⇥ I

plk =
�

i�I �ikqil

Can be generalized to
digraphs with pool-pool arcs
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Part 1: The Pooling Problem

Introduction

PQ Model Complete

max
∑

i∈I,j∈J

wijyij +
∑

i∈I,l∈L,j∈J

(wil + wlj)vilj

s.t. vilj = qilylj ∀i ∈ I, l ∈ L, j ∈ J∑
i∈I

qil = 1 ∀l ∈ L

ak
j

(∑
i∈I

yij +
∑
l∈L

ylj

)
≤
∑
i∈I

λk
i yij +

∑
i∈I,l∈L

λk
i vilj ≤ bk

j

(∑
i∈I

yij +
∑
l∈L

ylj

)
Capacity constraints

All variables are non-negative∑
i∈I

vilj = ylj ∀l ∈ L, j ∈ J

∑
j∈J

vilj ≤ clqil ∀i ∈ I, l ∈ L.
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Part 1: The Pooling Problem

Introduction

What do we know?

1. The Pooling problem was formally introduced by Haverly (1978).

2. The model is a Bilinear Model, this is a special case of Indefinite
quadratic program.

3. Recently, Alfaki and Haugland (2012) formally proved that the
pooling problem is NP-hard.

4. Numerous papers over the years have studied this problem.

5. This problem continues to remain challenging to solve to this day.

I am an integer programmer, so I am going to talk about IP
methods....
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Part 1: The Pooling Problem

Relaxation

Using Integer Linear Programming to Construct
Relaxation

1. S := {(x , y ,w) ∈ R3 |w = xy , xl ≤ x ≤ xu, yl ≤ y ≤ yu}.

2. Let g(x , y) : [xl , xu]× [yl , yu]→ R be a piece-wise linear
continuous function (pwl) such that g(x , y) ≥ xy .

3. Let h(x , y) : [xl , xu]× [yl , yu]→ R piece-wise linear continuous
function such that h(x , y) ≤ xy .

4. Then S ⊆ {(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤
xu, yl ≤ y ≤ yu}.

5. The set
{(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤ xu, yl ≤ y ≤ yu}
is representable as a mixed integer liner set.

6. Gounaris et al. (2009), Misener and Floudas (2009) used this
for Pooling Problem very succesfully.

10



Analysis of MILP techniques for the Pooling Problem

Part 1: The Pooling Problem

Relaxation

Using Integer Linear Programming to Construct
Relaxation

1. S := {(x , y ,w) ∈ R3 |w = xy , xl ≤ x ≤ xu, yl ≤ y ≤ yu}.
2. Let g(x , y) : [xl , xu]× [yl , yu]→ R be a piece-wise linear

continuous function (pwl) such that g(x , y) ≥ xy .

3. Let h(x , y) : [xl , xu]× [yl , yu]→ R piece-wise linear continuous
function such that h(x , y) ≤ xy .

4. Then S ⊆ {(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤
xu, yl ≤ y ≤ yu}.

5. The set
{(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤ xu, yl ≤ y ≤ yu}
is representable as a mixed integer liner set.

6. Gounaris et al. (2009), Misener and Floudas (2009) used this
for Pooling Problem very succesfully.

10



Analysis of MILP techniques for the Pooling Problem

Part 1: The Pooling Problem

Relaxation

Using Integer Linear Programming to Construct
Relaxation

1. S := {(x , y ,w) ∈ R3 |w = xy , xl ≤ x ≤ xu, yl ≤ y ≤ yu}.
2. Let g(x , y) : [xl , xu]× [yl , yu]→ R be a piece-wise linear

continuous function (pwl) such that g(x , y) ≥ xy .

3. Let h(x , y) : [xl , xu]× [yl , yu]→ R piece-wise linear continuous
function such that h(x , y) ≤ xy .

4. Then S ⊆ {(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤
xu, yl ≤ y ≤ yu}.

5. The set
{(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤ xu, yl ≤ y ≤ yu}
is representable as a mixed integer liner set.

6. Gounaris et al. (2009), Misener and Floudas (2009) used this
for Pooling Problem very succesfully.

10



Analysis of MILP techniques for the Pooling Problem

Part 1: The Pooling Problem

Relaxation

Using Integer Linear Programming to Construct
Relaxation

1. S := {(x , y ,w) ∈ R3 |w = xy , xl ≤ x ≤ xu, yl ≤ y ≤ yu}.
2. Let g(x , y) : [xl , xu]× [yl , yu]→ R be a piece-wise linear

continuous function (pwl) such that g(x , y) ≥ xy .

3. Let h(x , y) : [xl , xu]× [yl , yu]→ R piece-wise linear continuous
function such that h(x , y) ≤ xy .

4. Then S ⊆ {(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤
xu, yl ≤ y ≤ yu}.

5. The set
{(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤ xu, yl ≤ y ≤ yu}
is representable as a mixed integer liner set.

6. Gounaris et al. (2009), Misener and Floudas (2009) used this
for Pooling Problem very succesfully.

10



Analysis of MILP techniques for the Pooling Problem

Part 1: The Pooling Problem

Relaxation

Using Integer Linear Programming to Construct
Relaxation

1. S := {(x , y ,w) ∈ R3 |w = xy , xl ≤ x ≤ xu, yl ≤ y ≤ yu}.
2. Let g(x , y) : [xl , xu]× [yl , yu]→ R be a piece-wise linear

continuous function (pwl) such that g(x , y) ≥ xy .

3. Let h(x , y) : [xl , xu]× [yl , yu]→ R piece-wise linear continuous
function such that h(x , y) ≤ xy .

4. Then S ⊆ {(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤
xu, yl ≤ y ≤ yu}.

5. The set
{(x , y ,w) ∈ R3 |h(x , y) ≤ w ≤ g(x , y), xl ≤ x ≤ xu, yl ≤ y ≤ yu}
is representable as a mixed integer liner set.

6. Gounaris et al. (2009), Misener and Floudas (2009) used this
for Pooling Problem very succesfully.

10



Analysis of MILP techniques for the Pooling Problem

Part 1: The Pooling Problem

Relaxation

Using Integer Linear Programming to Construct
Relaxation: Example
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Part 1: The Pooling Problem

Restriction

Using Mixed Integer Linear Programming to
Construction Restriction

S := {(x , y ,w) ∈ R3 |w = xy , xl ≤ x ≤ xu, yl ≤ y ≤ yu}.

1. Restrictions typically obtained by restricting a subset of
variables, say y , to take values in a pre-determined finite set.

2. This restriction can be modeled using extra 0/1 variables and
unary or binary expansion models.

3. Pham et al. (2009), Alfaki et al. (2011), Gupte et al.(2012)
used for pooling problem with some success.
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Part 1: The Pooling Problem

Restriction

Using Mixed Integer Linear Programming to
Construction Restriction: Example

I w = xy , x ∈ [0,1], y ∈ [0,1]

I Replace with y ∈ 1
M z, z ∈ {0, . . . ,M}.

I Let N = dlogMe. Equivalently:
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Analysis of MILP techniques for the Pooling Problem

Part 2: Main Results

Main Results - Relaxations
Why do these MILP relaxations work so well?

Theorem
Let n denote the number of output nodes. Let z∗ denote the optimal
solution of pooling problem.

1. Bound: For any pwl MILP relaxation P, let zP be the optimal
value of the MILP. Then

z∗ ≤ zP ≤ nz∗.

2. Quality of analysis: Suppose we choose a pwl MILP relaxation
P. Then for any ε > 0, there exists an instance of the pooling
problem with

zP ≥ (n − ε)z∗.
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Analysis of MILP techniques for the Pooling Problem

Part 2: Main Results

Main Results - Computational Complexity

Corollary
There exists a polynomial-time algorithm that produces a feasible
solution with objective function value zA that satisfies zA ≥ z∗

n .

1. Note that the dimension of the pooling problem is governed by |I|
(number of input nodes), |L| (number of pools), n := |J| (number of
output nodes), |K | (number of specs.).

2. But a factor of ‘n’ is still very bad, ...

Proposition
If there exists a polynomial-time approximation algorithm with
guarantee zA ≥ z∗

n−ε for any ε > 0 for the pooling problem, then any
problem in NP has randomized polynomial time algorithm.
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Analysis of MILP techniques for the Pooling Problem

Part 2: Main Results

Main results - Computational

1. Actually the ‘approximation algorithm’ is a "rather silly
algorithm".

2. We generalize the key ideas behind the n-approximation
algorithm to construct a MILP s.t.

2.1 MILP’s feasible region is a restriction of the pooling
problem.

2.2 All solution produced by the approximation algorithnm
belong to the MILP⇒ MILP produces solutions within a
factor of n.

3. The MILP produces good results in short time. In particular, for a
number of problems in the literature, we have found the best
known solutions.
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Quality of MILP relaxation



Analysis of MILP techniques for the Pooling Problem

Part 3: Quality of MILP Relaxation

Quality of dual bound

Proposition
Let n denote the number of output nodes. Let z∗ denote the optimal
solution of pooling problem. For any pwl MILP relaxation P, let zP be
the optimal value of the MILP. Then

z∗ ≤ zP ≤ nz∗.
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Analysis of MILP techniques for the Pooling Problem

Part 3: Quality of MILP Relaxation

High level proof technique
1. We construct a general relaxation R of the pooling problem,

such that R ⊇ P, i.e. R is a relaxation of P, for all P.

2. Let zR be the optimal solution of R:

zP ≤ zR

3. We will show that

zR ≤ nz̃,

where z̃ is objective function value of a feasible solution of the
pooling problem.

4. Therefore, z̃ ≤ z∗

5. Combining we obtain: zP ≤ zR ≤ nz̃ ≤ nz∗, i.e., zP ≤ nz∗
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Analysis of MILP techniques for the Pooling Problem

Part 3: Quality of MILP Relaxation

High level proof technique
1. We construct a general relaxation R of the pooling problem,

such that R ⊇ P, i.e. R is a relaxation of P as well.

2. Let zR be the optimal objective function value of R:

zP ≤ zR

3. We will show that

zR ≤ nz̃,

where z̃ is objective function value of a feasible solution of the
pooling problem.

4. Therefore, z̃ ≤ z∗
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Part 3: Quality of MILP Relaxation

Inconsistent Pool Outflow Problem (IPOP)

max
∑

i∈I,j∈J

wijyij +
∑

i∈I,l∈L,j∈J

(wil + wlj)vilj

s.t. vilj = qilylj ∀i ∈ I, l ∈ L, j ∈ J∑
i∈I

qil = 1 ∀l ∈ L

ak
j

(∑
i∈I

yij +
∑
l∈L

ylj

)
≤
∑
i∈I

λk
i yij +

∑
i∈I,l∈L

λk
i vilj ≤ bk

j

(∑
i∈I

yij +
∑
l∈L

ylj

)
Capacity constriants

All variables are non-negative∑
i∈I

vilj = ylj ∀l ∈ L, j ∈ J

∑
j∈J

vilj ≤ clqil ∀i ∈ I, l ∈ L.
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)
Capacity constriants

All variables are non-negative∑
i∈I

vilj = ylj ∀l ∈ L, j ∈ J

Bilinear constraint relaxed: vilj = qilylj

1. This is a relaxation of P (any piecewise linear MILP relaxation).

2. vilj
ylj

= qil : Implies the spec value in the different outer arc from a pool to
be consistent.
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Part 3: Quality of MILP Relaxation

Rounding IPOP Solution

Let (y , v) be optimal to IPOP and j∗ ∈ J be most ‘profitable output’:

j∗ ∈ argmaxj∈J




∑

i∈I

wijyij +
∑

i∈I,l∈L

(wil + wlj )vilj





A. Gupte Informs 2013

ROUNDING IPOP

Let (y,v) be optimal to IPOP and j* ∈ J be most profitable output  

11

j⇤ 2 arg max
j2J

hX

i2I

fijyij +
X

i2I,l2L

(fil + flj)vilj

i

1

I

1

2

L

2

1

j*

J

Monday, October 7, 13
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Rounding IPOP Solution
Let (y , v) be optimal to IPOP and j∗ ∈ J be most ‘profitable output’:

j∗ ∈ argmaxj∈J




∑

i∈I

wijyij +
∑

i∈I,l∈L

(wil + wlj )vilj





A. Gupte Informs 2013

ROUNDING IPOP

Let (y,v) be optimal to IPOP and j* ∈ J be most profitable output  

Denote this rounded solution by (y,v,q) 

11

j⇤ 2 arg max
j2J

hX

i2I

fijyij +
X

i2I,l2L

(fil + flj)vilj

i

1

I

1

2

L

2

1

j*

J

Send only to j* 

All other flows zero

If ylj* > 0
  set qil = vilj*/ylj*

Else qil = 1/indeg(l) 

Monday, October 7, 13

v̄ilj =

{
0 j 6= j∗

v∗ilj j = j∗

ȳlj =

{
0 j 6= j∗

y∗lj j = j∗

q̄il =





v̄ilj∗

ȳlj∗
ȳlj∗ > 0

1
indeg(l)

ȳlj∗ = 0
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Part 3: Quality of MILP Relaxation

Final details

Lemma
(ȳ , v̄ , q̄) is a valid solution to the pooling problem.

Proposition
zR ≤ nz̃
Proof:

1. (y , v) is optimal solution of IPOP

2. (ȳ , v̄ , q̄) is a valid solution for pooling problem.

3. Because j∗ was picked greedily, we have that
n(Obj. value(ȳ , v̄ , q̄)) ≥ (Obj. value(y , v)).
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Analysis of MILP techniques for the Pooling Problem

Part 3: Quality of MILP Relaxation

Analysis is tight

Proposition (Quality of analysis)
Suppose we choose a pwl MILP relaxation P. Then for any ε > 0,
there exists an instance of the pooling problem with

zP ≥ (n − ε)z∗.
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Part 3: Quality of MILP Relaxation

Analysis is tight : High level idea
Construct a pooling problem with:

1. 2 input nodes, 1 pool node, n out put nodes, 2 specs, no direct arcs
between input and output nodes.

2. Each output node has a capacity of 1.

3. The spec requirement of the n output nodes to not match; If j 6= k :

{(u, v) ∈ R2 | a1
j ≤ u ≤ b1

j , a
2
j ≤ u ≤ b2

j } ∩

{(u, v) ∈ R2 | a1
k ≤ u ≤ b1

k , a
2
k ≤ u ≤ b2

k} = ∅

On the other hand the are very "similar": aj ≈ ak , bj ≈ bk .

4. Maximize the total flow through the pool.

1. Pooling Problem: In the actual problem flow can be sent to at most one
output node. Therefore max flow = 1.

2. IPOP: On the other hand in the pwl relaxation since vilj ≈ qilylj and
since aj ≈ ak , bj ≈ bk , we can set ylj ≈ 1 for all j ∈ J.
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On the other hand the are very "similar": aj ≈ ak , bj ≈ bk .

4. Maximize the total flow through the pool.

1. Pooling Problem: In the actual problem flow can be sent to at most one
output node. Therefore max flow = 1.
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Part 4: Approximation Algorithm

Algorithm

‘Algorithm’:

1. Solve IPOP

2. Round it to make it feasible for pooling problem.

Is it possible to obtain a better approximation ratio in polynomial time?
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Analysis of MILP techniques for the Pooling Problem

Part 4: Approximation Algorithm

Approximation preserving reduction from Stable Set
Theorem (Hardness to Approximate Max Stable Set
(Håstad))
In a graph with n nodes, the max stable set problem cannot be approximated
in polynomial time within a factor n1−ε, for any constant ε > 0, unless any
problem in NP can be solved in probabilistic polynomial time.

Proposition (Approximation Factor Preserving Reduction
from Stable Set Problem)
Given a simple graph with n vertices, there exists an instance of the pooling
problem with n output nodes and of size polynomial in the size of the input
graph such that

1. The size of the maximum stable set of the input graph is less than or
equal to the optimal objective function value of the instance of the
pooling problem.

2. Given any feasible solution for the instance of the pooling problem with
objective function value t, it is possible to construct a stable set in the
input graph of cardinality greater than or equal to t in polynomial time.
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A new MILP restriction and computational result



Analysis of MILP techniques for the Pooling Problem

Part 5: A New MILP Restriction

‘Improving’ the solutions from the approximation
algorithm - I

1. Construct an IP whose feasible region contains all the feasible
solutions generated by the approximation algorithm.

2. Improve further by having "as many as possible" solutions of the
pooling problem not generated by the approximation algorithm.

We constructed a feasible solution of the pooling problem such that
only one output node j∗ ∈ J receives positive flow.

m

Solve a multicommodity flow problem with the additional condition
that all flow must go to one output node
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Analysis of MILP techniques for the Pooling Problem

Part 5: A New MILP Restriction

‘Improving’ the solutions from the approximation
algorithm - II

Solve a multicommodity flow problem with the additional condition
that all flow must go to one output node

⊆ Solve a multicommodity flow problem with the additional condition
that flow from every pool goes to atmost one output node.

Can we try and do better?
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Part 5: A New MILP Restriction

Using IP technology: A new method to discretize

                                                  Akshay Gupte MIBLP and the Pooling problem

Introduction  Relaxation  MIBLP  Discretization  Conclusion MILP models  Node splitting  Results 

Discretizing outflow ratios
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MILP formulation

max
y,v ,w,ζ

∑

i∈I,j∈J

wijyij +
∑

i∈I,l∈L,j∈J

(wil + wlj ) vilj (1a)

s.t. vilj =
τ∑

t=1

filt j ∀i ∈ I, l ∈ L, j ∈ J (1b)

∑

j∈J

filt j = γlt

∑

j∈J

vilj ∀i ∈ I, l ∈ L, t ∈ {1, . . . , τ} (1c)

ylj =
∑

i∈I

vilj ∀l ∈ L, j ∈ J (1d)

0 ≤ filt j ≤ cljζlt j ∀i ∈ I, l ∈ L, t ∈ {1, . . . , τ}, j ∈ J(1e)
∑

j∈J

ζlt j = 1 ∀l ∈ L, t ∈ {1, . . . , τ} (1f)

ζlt j ∈ {0,1} ∀l ∈ L, t ∈ {1, . . . , τ}, j ∈ J (1g)
Spec bounds for j ∈ J, k ∈ K , y is feasible flow.
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More details
Some reasonable choices for γ:

1. γt = M−1

2. γt = 1
1−2−M 2−t

Theorem

1. Let z̃ be the optimal solution of the MILP restriction and let z∗ be
the optimal solution of the pooling problem. Then

z̃ ≥ z∗

n
.

2. Let γ be a rational vector. Then there exists a pooling instance
such that

z̃ =
z∗

n
.
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Computational Experiment

Instances:

Source Label Inputs Pools Outputs Specs
|I| |L| |J| |K |

Alfaki et al. (2012) stdA0-9 20 10 15 12
Alfaki et al. (2012) stdB0-5 35 17 21 17
Alfaki et al. (2012) stdC0-3 60 30 40 20

Random randstd11-20 25 18 25 8
Random randstd21-30 25 22 30 10
Random randstd31-40 30 22 35 10
Random randstd41-50 40 30 45 10
Random randstd51-60 40 30 50 14
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Experiment Details
Solvers

1. BARON 9.0.7: (24 hours)

2. SNOPT (1 hr)

3. Alternating LP technique

4. MILP (1hr) (CPLEX 12.2)

Metric

1. %gap = 100×
(BestRelax

BestFeas − 1
)

2. τM(I) :=
the best solution value for instance I until termination of method M.

3. ηM(I) := τmax (I)−τM (I)
τmax (I)−τmin(I)
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Performance profile
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Geometric Average of % gap versus number of
outputs |J| = n.

n Global U(1) U(2) U(3) A(3) SNOPT AltLP
15 1.13% 2.95% 2.09% 1.70% 1.63% 2.81% 25%
21 8% 1.00% 1.57% 1.72% 1.89% 5.18% 12%
25 0.60% 3.75% 2.15% 2.18% 1.82% 10% 63%
30 3.50% 2.78% 1.75% 1.82% 1.87% 4.09% 39%
35 6% 2.73% 3.54% 5.63% 4.71% 5.79% 29%
40 370% 12% 15% 15% 18% 115% 38%
45 485% 5% 26% 203% 135% 22% 71%
50 550% 1.87% 10% 30% 59% 11% 35%

G. Ave. 15% 3.00% 4.36% 7.16% 7.18% 8.46% 36%
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Discussion
1. For 19 out of the 20 Alfaki et al. instances, MILP heuristic

produces the best known results.

Open Problems:

1. The performance of the MILP heuristic is surprising. Can we
better explain this?

2. For a fixed value of out degree of the pool nodes, what is the
complexity status of this problem?

3. If we fix the number of specifications, what is the complexity of
the problem?

4. Is it possible to obtain a better guarantee than n (n is the number
of output nodes), by using some other MILP restrictions of the
pooling problem?
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Thank you

Thank You!
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