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Mixing Inequalities.



The mixing set
[Günlük and Pochet (2001)]

y0 + x1 ≥ b1
y0 + x2 ≥ b2
y0 + x3 ≥ b3
...

. . .
...

y0 + xn ≥ bn

y0 ∈ R+

xi ∈ Z ∀1 ≤ i ≤ n

Mixing Inequality is facet-defining for the Mixing Set:

y0 ≥
n∑

i=1

(b̃i − b̃i−1)(dbie − xi ) (1)

where b̃i = bi − dbie+ 1, b̃i ≥ b̃i−1 and b̃0 = 0.
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The mixing set appears as a ‘substructure’ in many
problems

The mixing inequality can be used to derive facets for:
1 Production Planning (Constant capacity lot-sizing)
2 Capacitated Facility Location
3 Capacitated Network Design

Can we use mixing inequalities for general problems?
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Rearranging the mixing set for simplicity

(
1
0

)
x1 +

(
0
1

)
x2 +

(
1
1

)
y0 ≥

(
b1

b2

)
x1, x2 ∈ Z, y0 ∈ R+

Let ri = bi (mod 1). We assume 0 < r1 < r2 < 1.

Mixing Inequality: y0 ≥ (r2 − r1)(db2e − x2) + r1(db1e − x1)

Introduce non-negative slack variables:(
1
0

)
x1 +

(
0
1

)
x2 +

(
1
1

)
y0 +

(
−1
0

)
y1 +

(
0
−1

)
y2 =

(
b1

b2

)
x1, x2 ∈ Z, y0, y1, y2 ∈ R+

Mixing Inequality:
1− r2

D
y0 +

r1

D
y1 +

r2 − r1

D
y2 ≥ 1

where D = (r2 − r1)(1− r2) + r1(1− r1).
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Using mixing inequalities for general simplex tableau

x1 + y0 − y1 = 1.4
x2 + y0 − y2 = 0.6
x1, x2 ∈ Z, y0, y1, y2 ∈ R+

⇒ 10
8

y0 +
10
8

y1 +
5
8

y2 ≥ 1

Idea: Rewrite/Relax rows of simplex tableau to ‘look’ like the Mixing Set

u1 + 0u2 + 0.5u3 + 0.9u4 = 1.4
0u1 + 1u2 + 0.1u3 + 0.5u4 = 0.6

u ∈ Z4
+

m(
1
0

)
u1 +

(
0
1

)
u2 +

(
0.5
0.5

)
u3 +

(
0.9
0.9

)
u4 +

(
0
−.4

)
u3 +

(
0
−.4

)
u4 =

(
1.4
0.6

)
m(

1
0

)
u1︸︷︷︸
x1

+

(
0
1

)
u2︸︷︷︸
x2

+

(
1
1

)
(0.5u3 + 0.9u4)︸ ︷︷ ︸

y0

+

(
0
−1

)
(0.4u3 + 0.4u4)︸ ︷︷ ︸

y2

=

(
1.4
0.6

)
⇓

10
8 (0.5u3 + 0.9u4) + 10

8 (0) + 5
8 (0.4u3 + 0.3u4) ≥ 1
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They are many possible ways to relax simplex tableau
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The ‘best’ cut

x1 + y0 − y1 = 1.4
x2 + y0 − y2 = 0.6
x1, x2 ∈ Z, y0, y1, y2 ∈ R+

⇒ 10
8

y0 +
10
8

y1 +
5
8

y2 ≥ 1

For the simplex tableau:

∑n
i=1

(
ai

1

ai
2

)
ui +

∑m
j=1

(
c j

1
c j

2

)
vj =

(
1.4
0.6

)
.

ui ∈ Z+, vj ∈ R+ (2)

The ‘best’ cut by relaxation of the simplex tableau is

n∑
i=1

φ0(ai
1, a

i
2)ui +

m∑
j=1

π0(c j
1, c

j
2)vj ≥ 1 (3)

where,

φ0(a1, a2) = min 10
8 y0 + 10

8 y1 + 5
8 y2

s.t. x1 + y0 − y1 = a1

x2 + y0 − y2 = a2

x1, x2 ∈ Z, y0, y1, y2 ∈ R+

π0(c1, c2) = min 10
8 y0 + 10

8 y1 + 5
8 y2

s.t. y0 − y1 = c1

y0 − y2 = c2

y0, y1, y2 ∈ R+
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Closed form for φ0 and π0

Let F(a1, a2) = (a1(mod 1), a2(mod 1)).

Proposition
Consider two rows of a simplex tableau:

∑n
i=1 aixi +

∑m
j=1 ciyi = b, xi ∈ Z+, yi ∈ R+.

Then the inequality
∑n

i=1 φ
0(F(ai ))xi +

∑m
i=1 π

0(ci )yi ≥ 1 is valid inequality where,

φ0(w1,w2) =



σ1(1− w1) + σ2(1− w2) (w1,w2) ∈ R1

σ3(w1) + σ2(1− w2) (w1,w2) ∈ R2

σ1(1− w1) + σ2(1− w2) (w1,w2) ∈ R3

σ1(1− w1) + σ4(w2) (w1,w2) ∈ R4

σ3(w1) + σ2(−w2) (w1,w2) ∈ R5

σ1(−w1) + σ4(w2) (w1,w2) ∈ R6

(4)

where (r1, r2) = F(c) and σ1 = r1
r2−(r1)2−r2(r2−r1)

, σ2 = r2−r1
r2−(r1)2−r2(r2−r1)

,

σ3 = 1−r1
r2−(r1)2−r2(r2−r1)

, σ4 = 1−r2+r1
r2−(r1)2−r2(r2−r1)

and

π0(c) = limh↓0
φ(ch)

h
(5)

Observation: The closed form of φ0 depends only on the fractional part of columns of
integer variables.
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Observation: The closed form of φ0 depends only on the fractional part of columns of
integer variables.
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Closed form for φ0 and π0

Let F(a1, a2) = (a1(mod 1), a2(mod 1)).

Proposition
Consider two rows of a simplex tableau:

∑n
i=1 aixi +

∑m
j=1 ciyi = b, xi ∈ Z+, yi ∈ R+.

Then the inequality
∑n

i=1 φ
0(F(ai ))xi +

∑m
i=1 π

0(ci )yi ≥ 1 is valid inequality where,
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σ1(1− w1) + σ4(w2) (w1,w2) ∈ R4
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Closed form for φ0 contd.
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Is it possible to get a stronger general-purpose
‘mixing-type’ cut?

Yes!

More precisely:
(φ0, π0) represents a valid inequality for the infinite group relaxation of
mixed integer programs.
We show that there exist functions (φM , π0) that strictly dominate (φ0, π0)
and are extreme for the infinite group relaxation of mixed integer
programs.
Upshot: Better cut coefficients can be obtained using the function
(φM , π0) that improve upon the coefficients obtained by (φ0, π0).

We proceed step-by-step in the following slides.
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The Framework: Infinite Group Relaxation.



Infinite relaxation of two-rows of simplex tableau

The mixed integer relaxation: MG(I2,R2, f ):∑
a∈I2

ax(a) +
∑

w∈R2

wy(w) + f =

(
1
0

)
xB1 +

(
0
1

)
xB2

xB1 , xB2 ∈ Z, x(a) ∈ Z+, y(w) ∈ R+

x , y have finite support , (6)

where I2 = {(a1, a2) ∈ R2 | 0 ≤ a1, a2 ≤ 1}, i.e. set of all columns of two fractions.

Assuming all the nonbasic variables are continuous: MG(∅,R2, f ):∑
w∈R2

wy(w) + f =

(
1
0

)
xB1 +

(
0
1

)
xB2

xB1 , xB2 ∈ Z, y(w) ∈ R+

y has a finite support . (7)
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Problem statement precisely
Now that we have defined the infinite relaxation, we proceed to ask the following
precise questions...

The function (φ0, π0) represents a valid inequality for MG(I2,R2, f ) as:
If (x̄ , ȳ) satisfies:∑

a∈I2

ax(a) +
∑

w∈R2

wy(w) + f =
(

1
0

)
xB1 +

(
0
1

)
xB2

xB1 , xB2 ∈ Z, x(a) ∈ Z+, y(w) ∈ R+,

then (x̄ , ȳ) satisfies:∑
a∈I2

φ0(a)x(a) +
∑

w∈R2

π0(w)y(w) ≥ 1 (8)

Question: Do there exist functions (φ′, π′), φ′ : I2 → R+ and π′ : R2 → R+

such that: φ′ ≤ φ0 and π′ ≤ π0 and∑
a∈I2

φ′(a)x(a) +
∑

w∈R2

π′(w) ≥ 1 (9)

is a valid inequality?
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Analysis of π0: The Strength of Continuous
Coefficients.



Maximal lattice-free convex sets

[Lovász(1989)]

Definition
A set S is called a maximal lattice-free convex set in R2 if it is convex and

1 interior(S) ∩ Z2 = ∅,
2 There exists no convex set S′ satisfying (1), such that S ( S′. �

[Borozan and Cornuéjols (2007), Andersen, Louveaux, Weismantel, and Wolsey
(2007)]

Theorem

For the system MG(∅,R2, f ), an inequality of the form
∑

w∈R2 π(w)y(w) ≥ 1 is
un-dominated, if the set

P(π) = {w ∈ R2|π(w − f ) ≤ 1} (10)

is a maximal lattice-free convex set. �
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Strength of continuous coefficients, i.e., π0

π0(w1,w2) = min
10
8

y0 +
10
8

y1 +
5
8

y2

s.t. y0 − y1 = w1

y0 − y2 = w2

y0, y1, y2 ∈ R+

We construct P(π0) : {w ∈ R2|π(w − f ) ≤ 1}:

-0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0

0.5

1

(f
1
, f
2
)

For all r , P(π0) is a maximal
lattice-free triangle.

∴ π0 is undominated by
any inequality:

i.e. @ π′ : R2 → R+ such
that π′ ≤ π0, π′(w) < π0(w)
for some w ∈ R2 where
π′ is valid inequality for
MG(∅,R2, r).
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π0 is an extreme inequality for MG(∅,R2, r)

[Cornuéjols and Margot(2008)]

Theorem
If P(π) is a maximal lattice-free triangle, then π represents an extreme inequality for
MG(∅,R2, f ), i.e, @ π1, π2 : R2 → R+ such that π1 and π2 represent valid inequalities,
π1 6= π2, and π = 1

2π1 + 1
2π2.

Corollary
The function representing coefficient of continuous variable obtained using mixing
inequalities, i.e., π0, is extreme for MG(∅,R2, r).

We cannot improve the coefficient of continuous variables in the mixing cut.
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Analysis of φ0: The Strength of Integer Coefficients.



It is possible to strengthen φ0

φ0(a1, a2) = min 10
8 y0 + 10

8 y1 + 5
8 y2

s.t. x1 + y0 − y1 = a1

x2 + y0 − y2 = a2

x1, x2 ∈ Z, y0, y1, y2 ∈ R+

π0(c1, c2) = min 10
8 y0 + 10

8 y1 + 5
8 y2

s.t. y0 − y1 = c1

y0 − y2 = c2

y0, y1, y2 ∈ R+

We can rewrite:

φ0(a1, a2) = minx1,x2∈Z(π0(a1 − x1, a2 − x2)). (11)

(11) is the fill-in function [Gomory and Johnson (1972)].

[D. and Wolsey (2008)]

Theorem
If P(π) is a lattice-free triangle with non-integral vertices and exactly one integer point
in the interior on each side, then φ0 : I2 → R+ defined as in (11) is not an undominated
inequality. �

∃ a function φ′ : I2 → R+ such that φ′ represents a valid inequality and φ′ < φ0.
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A stronger inequality φM
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Comparing φM with φ0
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Main result: (φM , π0) is extreme inequality for
MG(I2,R2, r)

Theorem
Given 0 < r1 < r2 < 1 such that r1 + r2 ≤ 1, the functions (φM , π0) represent
an extreme inequality for MG(I2,R2, r)

Note: The condition r1 + r2 ≤ 1 is not very ‘serious’, since given any two rows
of tableau such that r1 + r2 > 1, multiple both the rows with −1. Then for the
resulting rows, r1 + r2 ≤ 1.

Steps in Proof:
1 Prove function results in a valid inequality:

Show that
φM(u) + φM(v) ≥ φM(u + v)∀u, v ∈ I2, i.e., prove φM : I2 → R+ is
subadditive.

2 Prove function is un-dominated: Easily verified that,
φM(u) + φM(r − u) = 1 ∀u ∈ I2. Therefore, by [Johnson’s (1974)] φM is an
un-dominated inequality.

3 Prove function is extreme.
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Proving φM is a subadditive function

[D. and Richard (2008)]

Proposition

Let φ be a continuous, piecewise linear and nonnegative function on I2 such
that φ(u) + φ(r − u) = 1. Let V and E be the set of ‘vertices’ and ‘edges’ of φ.
Then φ is subadditive iff

φ(v1) + φ(v2) ≥ φ(v1 + v2) ∀v1, v2 ∈ V(φ)

φ(e1) + φ(e2) ≥ φ(v3) where

e1 ∈ q1,e2 ∈ q2,e1 + e2 = v3,∀v3 ∈ V(φ) ∪ V′(φ) ,∀q1,q2 ∈ E(φ).

To check subadditivity of a piecewise linear function we need to check only
the function at the ‘vertices’ and ‘edges’.
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Proving φM is a subadditive function: Too many cases!

0 0.5 1

-0.5

0

0.5

1

1.5

v
1

v
2

v
1
 + v

2

0 0.5 1

-0.5

0

0.5

1

1.5

~ 28 Cases ~ 440 Cases

v
1

v
2

v
1
 +v

2

After checking these case we prove that the function φM is a valid inequality.
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A value-function interpretation of φM
In fact, by the subadditivity of φM we obtain the following result:

Proposition
If r1 + r2 ≤ 1, then for the problem:(

1
0

)
x1+

(
0
1

)
x1+

(
1+r1−r2

2r1+r2
2

)
x3 +

(
1
1

)
y0+

(
−1
0

)
y1+

(
0
−1

)
y2 =

(
r1
r2

)
x1, x2 ∈ Z, x3 ∈ Z+, y0, y1, y2 ∈ R+

The following inequality is valid:

(r2 − r1)(1− r2)

2D
x3 +

1− r2

D
y0 +

r1

D
y1 +

r2 − r1

D
y2 ≥ 1

Then φM can be obtained as follows:

φM(a1, a2) = min
(r2 − r1)(1− r2)

2D
x3 +

1− r2

D
y0 +

r1

D
y1 +

r2 − r1

D
y2

s.t. x1 + (1+
r1 − r2

2
)x3 + y0 − y1 = a1

x2 +
r1 + r2

2
x3 + y0 − y2 = a2

x1, x2 ∈ Z, x3 ∈ Z+, y0, y1, y2 ∈ R+

Without the terms corresponding to x3 the above reduces to the problem corresponding to φ0.
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Proving (φM , π0) is extreme inequality for MG(I2,R2, r)
[D. and Wolsey (2008)]

Theorem
1 Let π : R2 → R+ be a extreme inequality for MG(∅,R2, r).

2 Let u0 ∈ I2 and define V = maxn∈Z+,n≥1{
1−π(w)

n |F(u0n + w) = r}. . . . Lifting.

3 Define φ : I2 → R+ as φ(v) = minn∈Z+{nV + π(w)|F(u0n + w) = v}. . . . Fill-in.

If (φ, π) is an un-dominated inequality for MG(I2,R2, r), then (φ, π) is an extreme inequality for
MG(I2,R2, r).

In our case, u0 = (1+r1−r2
2 ,

r1+r2
2 ) and

(r2 − r1)(1− r2)

2D
= maxn∈Z+,n≥1{

1− π0(w)

n
|F(u0n + w) = r}

and

φM(a1, a2) = min
(r2 − r1)(1− r2)

2D
x3 +

1− r2

D
y0 +

r1

D
y1 +

r2 − r1

D
y2

s.t. x1 + (1 +
r1 − r2

2
)x3 + y0 − y1 = a1

x2 +
r1 + r2

2
x3 + y0 − y2 = a2

x1, x2 ∈ Z, x3 ∈ Z+, y0, y1, y2 ∈ R+
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Proving (φM , π0) is extreme inequality for MG(I2,R2, r)
[D. and Wolsey (2008)]
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Discussion

1 We illustrated techniques to use mixing inequalities for general two-rows
of a simplex tableau.

2 We showed that when applying the mixing inequalities for general
two-rows of a simplex tableau, the inequality can be strengthened.

3 A new class of extreme inequality for two-row mixed integer infinite group
problem.

Challenges:
1 The proof of validity of the stronger inequality is not elegant: More

importantly the proof does not extend to more rows of a mixing
inequalities.
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Thank You.
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