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Mixing Inequalities.



The mixing set
[GUnlik and Pochet (2001)]
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The mixing set
[GUnlik and Pochet (2001)]
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Mixing Inequality is facet-defining for the Mixing Set:
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The mixing set appears as a ‘substructure’ in many
problems

The mixing inequality can be used to derive facets for:
@ Production Planning (Constant capacity lot-sizing)
@ Capacitated Facility Location
© Capacitated Network Design



The mixing set appears as a ‘substructure’ in many
problems

The mixing inequality can be used to derive facets for:
@ Production Planning (Constant capacity lot-sizing)
@ Capacitated Facility Location
@ Capacitated Network Design

Can we use mixing inequalities for general problems?



Rearranging the mixing set for simplicity

(o )e(3) (5 )n = ()

X1, X2 € Z, Yo € Ry
Letri = bi(mod1). Weassume 0 <r < <1.

Mixing Inequality: yo > (r. — r)([b2] — x2) + rn([b1] — x1)




Rearranging the mixing set for simplicity

1 0 1 b
(3 () ()m = (2)
X1,X2€Z,y0€R+

Letri = bi(mod1). Weassume 0 <r < <1.

Mixing Inequality: yo > (r. — r)([b2] — x2) + rn([b1] — x1)

Introduce non-negative slack variables:

(8w (D) (D3 ) 2

X1, X € Z, Yo, Y1, Y2 € Ry

17!’2
D

where D= (n —n)(1 —r)+nrn(1 —n).

rn—n

Mixing Inequality: D

n
— >
YO+DY1+ Yo > 1




Using mixing inequalities for general simplex tableau

5
— = — . — >
Xo+Yo— )y =06 :>8y0+8y1+8y2_1

Xit+ypo—y=14 10 10
X1, X2 627}’07}’1,}’2 ER+

Idea: Rewrite/Relax rows of simplex tableau to ‘look’ like the Mixing Set

U1 +0u> +0.5u3 + 0.9us = 1.4
Ouy +1uo +0.1u3 +0.5u4, = 0.6
uezt



Using mixing inequalities for general simplex tableau

Xityo—yn =14 10 10 5
X2+yo—y220.6 :>§y0+§y1+gy221
X1, X2 € Z7YO7,V1>}’2 S R+

Idea: Rewrite/Relax rows of simplex tableau to ‘look’ like the Mixing Set

U1 +0u> +0.5u3 + 0.9us = 1.4
Ouy +1uo +0.1u3 +0.5u4, = 0.6
uezt
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Using mixing inequalities for general simplex tableau

Xityo—yn =14 10 10 5
X2+yo—y220.6 :>§y0+§y1+§y221
X1, X2 € Z, Yo, Y1, Y2 € Ry

Idea: Rewrite/Relax rows of simplex tableau to ‘look’ like the Mixing Set

Ui +0u2 +0.5u3 +0.9us = 1.4
Ouy +1uo +0.1u3 +0.5u4, = 0.6

uezt
:H: \
(o)ur(9)wr( 52 )wr( 08 )ur( % )we( %)u = (o8
:H: \
((1)) Uy +( ?) U +< 1 )(0.5u3+0.QU4)+< _01 )(0.4u3+0.4u4) - ((1)'2
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X X2 Yo 1Z]



Using mixing inequalities for general simplex tableau

Xityo—yn =14 10 10 5
X2+yo—y220.6 :>§y0+§y1+§y221
X1, X2 € Z, Yo, Y1, Y2 € Ry

Idea: Rewrite/Relax rows of simplex tableau to ‘look’ like the Mixing Set

Ui +0u2 +0.5u3 +0.9us = 1.4
Ouy +1uo +0.1u3 +0.5u4, = 0.6

uezt

II09 0 0 1.4

1 0 0.5 . :
(o)ut(9) (05 ) e 08 Jur( %)t ( % )u = (o5,

v N
1 U + 0 U + 1 (0.5U3 + O,QU4)—|— 0 (0.4U3 + O.4U4) = 1.4
0)~~ 1)~ 1) — 2\ 1 — 0.6,

X1 X2 Yo Y2
U

19(0.5u3 + 0.9us) + 22(0) + 2(0.4us + 0.3us) > 1



They are many possible ways to relax simplex tableau

uy + 0uo +0.5u3 +0.9uy = 1.4
Ouy +1up +0.1u3 + 0.5u4 = 0.6
uezt



They are many possible ways to relax simplex tableau

uy + 0uo +0.5u3 +0.9uy = 1.4
Ouy +1up +0.1u3 + 0.5u4 = 0.6
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They are many possible ways to relax simplex tableau

uy + 0uo +0.5u3 +0.9uy = 1.4
Ouy +1up +0.1u3 + 0.5u4 = 0.6
uezt

?

(o) us(3) (o1 ) (85w (o Jeor( % )= (o5)

?

1 —1 1.4
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They are many possible ways to relax simplex tableau

uy + 0uo +0.5u3 +0.9uy = 1.4
Ouy +1up +0.1u3 + 0.5u4 = 0.6

uezt
s
1 0 1.1 0.9 —.6 0 1.4
(£ (2o o (B2 o %)= (32)
s
— \
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X X2 Yo 1 Y2
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19(0.1u3 +0.9us) + 2(0.6u3) + 2(0.3us) > 1



They are many possible ways to relax simplex tableau

u; +0ur +0.5u3 +0.9uy = 1.4
Ouy +1ur +0.1u3 + 0.5u4 = 0.6

uezt
(3
1 0 1.1 0.9 —.6 0 1.4
(0)ue(5 )+ (ar ) oo (08 ) (6% oo (% )= ()
(3
— 4
( 8>(U1 +1U3)+< ?) Uo +< 1 )(0.1U3+049U4)+< 01 )O_6U3+< _01 )0.4U4: ( 2)6
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(0.1u3 4+ 0.9uy) + 2(0.6u3) + 2(0.3u4) > 1



The ‘best’ cut

Xx+Yo—yi=14
X2+ Yo—y2=006
X1, X2 627}’07}/1,}/2 €R+

For the simplex tableau:

:>E +E +§ > 1
8,Vo 8,V1 8}’2,

n i m c 1.4
. (4)ermn ()= (58)

Ui € Zy,vi € Ry



The ‘best’ cut

X2+yo—y2=0.6

X1 +Yo—y1=14 10
X1, X2 GZ:Y07Y17}/2 €R+

For the simplex tableau:

A A N N AR '
Zi:1( a& )U:+Z,:1( Cé Vi = 0.6 :
Ui € Zy,vi € Ry

The ‘best’ cut by relaxation of the simplex tableau is
Z(Z5 31782 U;+Z C{],CI V/>1

where,

8,Vo-l- 8,\/1 8}’221



The ‘best’ cut

X2+ Yo—y2=006 8yo+8y1 8y221

X1 +Yo—y1=14 10
X1, X2 GZ:Y07Y17}/2 €R+

For the simplex tableau:
no(a Y, «m (), (14
Zi:1 ( a& ) ui +Z,-:1 ( Cé Vi = 06 /-
Ui € Zy,vi € Ry

The ‘best’ cut by relaxation of the simplex tableau is
Zcb a, a u,+z (e, )y > 1

where,

#°(a1, &) = min %}’0 + %}’1 + %}/2
S.t. X1+ Yo— Y1 = a1
Xoe+Yo—Yo= a2

X1, X2 € Z, Yo, Y1, Y2 € Ry

10



The ‘best’ cut

X2+ Yo—y2=006 8yo+8y1 8y221

X1 +Yo—y1=14 10
X1, X2 GZ:Y07Y17}/2 €R+

For the simplex tableau:

0 (4 m (Y, (14
(4w (3)- ()

Ui €Zy,vi e Ry (2)
The ‘best’ cut by relaxation of the simplex tableau is
Z(Z5 a1 ag U/-‘rz C{hCI V/>1 (3)
where,
(ar,a) = min  Pyo+ Ly + 3y m°(c1,c2) = min  Pyo+ Py + 3y
S.t. X1+ Yo— Y1 = a1 st. Yo— Y1 =¢C
Xo+Yo—)o=ar Yo—Yoe=0C2

X1, X2 € Z, Yo, Y1, Y2 € Ry Yo, y1, 2 € Ry

10



Closed form for ¢° and =°
Let F(ai, a) = (a1(mod 1), az(mod 1)).



Closed form for ¢° and =°
Let F(ai, a) = (a1(mod 1), az(mod 1)).

Proposition

Consider two rows of a simplex tableau: 37, aixi + 3 [ iyi = b, Xi € Z, yi € Ry
Then the inequality 3", ¢°(F(a))xi + S, 7°(ci)yi > 1 is valid inequality where,

0'1(1 —W1)+O‘2(1—W2) (W1,W2)€R1
0’3(W1) + 02(1 - W2) (W17 Wg) c Fi'z
0 0'1(1 — W1) +0’2(1 — Wg) (W17 Wz) (S R®
Wy, We) =

¢ (W, we) o1(1 = wi) + oa(wa) (s, me) € R*
0'3(W1)—|-02(—W2) (W1,W2) S Fl's
o1(—wr) + oa(ws) (wy, W) € R

_ _ n — ro—n
where (i, r2) = 7(c) and oy = B—(1P—na-m’ %2 = -(nP—nm-n)’

o3 = 1—n o4 = 1—ro+n and

r—(r1)2—r(n—r)’ r—(r1)2—r(n—r)

p(ch)

7T0(C) = /I.mhl() h

(4)




Closed form for ¢° and =°
Let F(ai, a) = (a1(mod 1), az(mod 1)).
Proposition

Consider two rows of a simplex tableau: 37, aixi + 3", ciyi = b, Xi € Z, yi € R.
Then the inequality 3", ¢°(F(a))xi + S, 7°(ci)yi > 1 is valid inequality where,

0'1(1 —W1)+O‘2(1—W2) (W1,W2)€R1
0’3(W1) + 02(1 - W2) (W17 Wg) c Fi'z
0 0'1(1 — W1) +02(1 — Wg) (W17 Wz) (S R®
Wi, Wa) = 4
¢ (W, we) o1(1 = wi) + oa(wa) (s, me) € R* @
0'3(W1)—|—02(—W2) (W1,W2) c Rs
o1(—wr) + oa(ws) (wy, W) € R
where (1, r2) = 7(c) and oy = ra—(r )2f’2(’2—’1)’ 92 = );2:’,21(’2—’1)’
_ 1—n _ 1—ro+n
8= —(hP—ne—r) 7 T B=(nP—r(n—n) and
. ch
WO(C) = /Imhl() ¢(h ) (5)

y

Observation: The closed form of ¢° depends only on the fractional part of columns of
integer variables.



Closed form for ¢° contd.
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Is it possible to get a stronger general-purpose
‘mixing-type’ cut?
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More precisely:

@ (¢°,70) represents a valid inequality for the infinite group relaxation of
mixed integer programs.



Is it possible to get a stronger general-purpose
‘mixing-type’ cut?

Yes!

More precisely:
@ (¢°,70) represents a valid inequality for the infinite group relaxation of
mixed integer programs.
@ We show that there exist functions (¢, 7°) that strictly dominate (¢°, 7°)
and are extreme for the infinite group relaxation of mixed integer
programs.



Is it possible to get a stronger general-purpose
‘mixing-type’ cut?

Yes!

More precisely:

@ (¢°,70) represents a valid inequality for the infinite group relaxation of
mixed integer programs.

@ We show that there exist functions (¢, 7°) that strictly dominate (¢°, 7°)
and are extreme for the infinite group relaxation of mixed integer
programs.

@ Upshot: Better cut coefficients can be obtained using the function
(oM, 7°) that improve upon the coefficients obtained by (¢°, 7°).

We proceed step-by-step in the following slides.



The Framework: Infinite Group Relaxation.



Infinite relaxation of two-rows of simplex tableau

The mixed integer relaxation: MG(?,R?, f):

> ax(a) + Y Wy(w)-f—f:((1))x51+(?)x32

aclk? wER?
XB1 ) XBZ S Z,X(a) € Z+7y(w) € R+
X, ¥ have finite support , (6)

where 2 = {(ay, &) € R?|0 < a,a < 1}, i.e. set of all columns of two fractions.




Infinite relaxation of two-rows of simplex tableau

The mixed integer relaxation: MG(?,R?, f):

> ax(a) + Y Wy(w)-f—f:((1))x51+(?)x32

aclk? wER?
XB1 ) XBZ S Z,X(a) € Z+7y(w) € R+
X, ¥ have finite support , (6)

where 2 = {(ay, &) € R?|0 < a,a < 1}, i.e. set of all columns of two fractions.

Assuming all the nonbasic variables are continuous: MG(0, R?, f):

Z Wy(w)+f:(g))xB1+<?>xB2

weR2
Xg,, X, € L, y(w) € Ry
¥ has a finite support . (7)




Problem statement precisely
Now that we have defined the infinite relaxation, we proceed to ask the following
precise questions...



Problem statement precisely

Now that we have defined the infinite relaxation, we proceed to ask the following

precise questions...

The function (¢°, 7°) represents a valid inequality for MG(/?,R?, f) as:

If (x,y) satisfies:

> ax(a)+ ) wy(w)+f:((1))x31+(?)x,32

aclk?
Xg,,Xg, € Z,x(a) € Z+,y(w) € R,

then (X, y) satisfies:

Yo @x@+ Y w(w)y(w) =1

acl weR?

Question: Do there exist functions (¢',7'), ¢’ : P — Ry and 7' : R? — R,

such that: ¢’ < ¢° and n’ < 7% and
Z¢/(3)X(a) + Z m'(w) > 1
acl? weR?

is a valid inequality?




Analysis of 70: The Strength of Continuous
Coefficients.



Maximal lattice-free convex sets

[Lovasz(1989)]
Definition
A set Sis called a maximal lattice-free convex set in R? if it is convex and
@ interior(S) N 7Z2 = 0,
@ There exists no convex set S’ satisfying (1), such that S ¢ S'. O

[Borozan and Cornuéjols (2007), Andersen, Louveaux, Weismantel, and Wolsey
(2007)]

Theorem

For the system MG(0,R?, f), an inequality of the form y",, .. m(w)y(w) > 1 is
un-dominated, if the set

P(r) = {w € R¥m(w — f) < 1} (10)

is a maximal lattice-free convex set. O




Strength of continuous coefficients, i.e., 7°
(Wi, we) = min EJ/o + E}ﬁ + §}’2
8 8 8
st. Yo— Y1 =W
Yo—Yo=W2
Yo, 1,2 € Ry



Strength of continuous coefficients, i.e., 7°
(Wi, Wo) = min E}/0 + E% + §}’2
’ 8 8 8
st. Yo— Y1 =W
Yo—Yo=W2
Yo, y1, Y2 € Ry
We construct P(7°) : {w € R%|x(w — f) < 1}:

05r

-0.5F

-0.5 102 25



Strength of continuous coefficients, i.e., 7°
(Wi, Wo) = min E}/0 + E}ﬁ + §}’2
’ 8 8 8
st. Yo— Y1 =W
Yo—Yo=W2
Yo, y1, Y2 € Ry
We construct P(7°) : {w € R%|x(w — f) < 1}:

1 o For all r, P(z°) is a maximal
lattice-free triangle.
0.5+ 0 .
m is undominated by
any inequality:
0r e}
ie. A7 : R® — R, such
05} that 7’ < 7°, 7'(w) < 7%(w)

for some w € R? where
' is valid inequality for
_ MG(0,R?, r).

102 25

-0.5



70 is an extreme inequality for MG(0), R?, r)

[Cornuéjols and Margot(2008)]

Theorem

If P(r) is a maximal lattice-free triangle, then w represents an extreme inequality for
MG(0,R?, f), i.e, # 71, m2 : R? — R, such that 1 and m, represent valid inequalities,
™ # me, and T = %771 + %71’2.

Corollary

The function representing coefficient of continuous variable obtained using mixing
inequalities, i.e., 7°, is extreme for MG((, R?, r).

We cannot improve the coefficient of continuous variables in the mixing cut.

20



Analysis of ¢°: The Strength of Integer Coefficients.



It is possible to strengthen ¢°

¢°(ai,a) = min %}/o + %}/1 + g}/2
S.t. X1+ Yo— Y1 = a1
Xo+Yo— Vo= a2

X1, X2 € Z7,V0,}’17}’2 S R+

29

7T0(C1 s Cz) =

min
S.t.

%YO + %% + %yg

Yo—y1 =06
Yo—)o=0C
Yo, yi, Y2 € Ry



It is possible to strengthen ¢°

(ar, @)= min Lyo+ Lyi+ 3 7o(cr,c2) = min  Ryo+ Ly + 2y
s.t. X1+ Yo— Y1 = a1 st. Yo— Y1 =0¢C
Xo+Yo— Vo= a2 Yo—)Yo=0C
X1,Xo € Z, Yo, Y1, Y2 € Ry Yo 1,2 € Ry

We can rewrite:

¢°(a1,a2) Zminxhxzez(ﬂ'o(.% —X1,82—X2)). (11)

29



It is possible to strengthen ¢°

(ar, @)= min Lyo+ Lyi+ 3 7o(cr,c2) = min  Ryo+ Ly + 2y
S.t. X1+ Yo— Y1 = a1 st. Yo— Y1 =0¢C
Xo+Yo—Yo=a Yo—)o=0C
X1, X2 € Z, Yo, Y1, Y2 € Ry Yo, yi, e € Ry

We can rewrite:

¢°(a1,a2) Zminxhxzez(ﬂ'o(.% —X1,ag—X2)). (11)

(11) is the fill-in function [Gomory and Johnson (1972)].

[D. and Wolsey (2008)]

Theorem

If P(r) is a lattice-free triangle with non-integral vertices and exactly one integer point
in the interior on each side, then ¢° : I> — R, defined as in (11) is not an undominated
inequality. O

Jafunction ¢’ : 7 — R such that ¢’ represents a valid inequality and ¢’ < ¢°.

29
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Comparing ¢M with ¢°
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Main result: (¢V, 7°) is extreme inequality for
MG(P, R?, r)

Theorem

Given0 < ry < r, < 1 such thatry + r, < 1, the functions (¢", 7°) represent
an extreme inequality for MG(I?,R?, r)

Note: The condition ry + r> < 1 is not very ‘serious’, since given any two rows
of tableau such that ry + r» > 1, multiple both the rows with —1. Then for the
resulting rows, ry + r» < 1.

Steps in Proof:
@ Prove function results in a valid inequality:

25



Main result: (¢V, 7°) is extreme inequality for
MG(P, R?, r)

Theorem

Given0 < ry < r, < 1 such thatry + r, < 1, the functions (¢", 7°) represent
an extreme inequality for MG(I?,R?, r)

Note: The condition ry + r> < 1 is not very ‘serious’, since given any two rows
of tableau such that ry + r» > 1, multiple both the rows with —1. Then for the
resulting rows, ry + r» < 1.

Steps in Proof:

@ Prove function results in a valid inequality: Show that
oM(u) + oM(v) > oM(u + v)Vu,v € P, i.e., prove oM : P — R, is
subadditive.
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Main result: (¢V, 7°) is extreme inequality for
MG(P, R?, r)

Theorem

Given0 < ry < r, < 1 such thatry + r, < 1, the functions (¢", 7°) represent
an extreme inequality for MG(I?,R?, r)

Note: The condition ry + r> < 1 is not very ‘serious’, since given any two rows
of tableau such that ry + r» > 1, multiple both the rows with —1. Then for the
resulting rows, ry + r» < 1.

Steps in Proof:

@ Prove function results in a valid inequality: Show that
oM(u) + oM(v) > oM(u + v)Vu,v € P, i.e., prove oM : P — R, is
subadditive.

@ Prove function is un-dominated:
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Main result: (¢", 70) is extreme inequality for
MG(F?,R?, r)

Theorem

Given0 < ry < r, < 1 such thatry + r, < 1, the functions (¢", 7°) represent
an extreme inequality for MG(I?,R?, r)

Note: The condition ry + r> < 1 is not very ‘serious’, since given any two rows
of tableau such that ry + r» > 1, multiple both the rows with —1. Then for the
resulting rows, ry + r» < 1.

Steps in Proof:

@ Prove function results in a valid inequality: Show that
oM(u) + oM(v) > oM(u + v)Vu,v € P, i.e., prove oM : P — R, is
subadditive.

@ Prove function is un-dominated: Easily verified that,
oM(u) + ¢M(r — u) = 1 Yu € 2. Therefore, by [Johnson’s (1974)] ¢M is an
un-dominated inequality.
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Main result: (¢", 70) is extreme inequality for
MG(F?,R?, r)

Theorem

Given0 < ry < r, < 1 such thatry + r, < 1, the functions (¢", 7°) represent
an extreme inequality for MG(I?,R?, r)

Note: The condition ry + r> < 1 is not very ‘serious’, since given any two rows
of tableau such that ry + r» > 1, multiple both the rows with —1. Then for the
resulting rows, ry + r» < 1.

Steps in Proof:

@ Prove function results in a valid inequality: Show that
oM(u) + oM(v) > oM(u + v)Vu,v € P, i.e., prove oM : P — R, is
subadditive.

@ Prove function is un-dominated: Easily verified that,
oM(u) + ¢M(r — u) = 1 Yu € 2. Therefore, by [Johnson’s (1974)] ¢M is an
un-dominated inequality.

© Prove function is extreme.

25



Proving ¢" is a subadditive function

[D. and Richard (2008)]
Proposition

Let ¢ be a continuous, piecewise linear and nonnegative function on I? such

that p(u) + ¢(r — u) = 1. LetV and E be the set of ‘vertices’ and ‘edges’ of ¢.
Then ¢ is subadditive iff

(V1) + d(v2) > ¢(v4 + W) Yvi, v € V(9)
o(er) + g(e2) > ¢(v3) where
€1 €EQ1,6 €EQ, 61+ 6 =V3,Vv3€V(p)UV'(¢) ,Yqu,qe € E().

To check subadditivity of a piecewise linear function we need to check only
the function at the ‘vertices’ and ‘edges’.

26




Proving ¢M is a subadditive function: Too many cases!

1.5F

0.5r

-0.5r

~ 28 Cases

0.5

151

0.5r

-0.5r

~ 440 Cases

After checking these case we prove that the function »M is'a valid inequality.



A value-function interpretation of ™

In fact, by the subadditivity of ™ we obtain the following result:
Proposition
Ifri + ro < 1, then for the problem:

1 0 140502 1 —1 0 r
(8 ) () xee( T2 P (3 )e () & )= (1)

]

X1,X2 € Ly X3 € Ly, Yo, Y1, Yo € Ry
The following inequality is valid:
(p—r)-r) 1

—n n nn—n
+ — >1
2D 3 D y°+Dy1+ D %
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A value-function interpretation of ™

In fact, by the subadditivity of ™ we obtain the following result:

Proposition
Ifri + ro < 1, then for the problem:

1 0 14050 1 —1 0 r
(8 )xr (3 rer (T2 e () (3 )& )e=(2)

X1,X2 € Ly X3 € Tt, Yo, Y1, Yo € Ry

The following inequality is valid:

(p=—n)(1-r) 1 fe—n

Yo+ 2y + Dy 4 > 1
5D 3 D Yo D.V1 D Yo 2
Then ¢M can be obtained as follows:

M _ . (r=n)(-n) 1-n n rn—n

¢ (a1,8) = min 5D X3+ —p Yot oyt Sy

rn—r
s.t. X1+(1+12 2)xs + Yo — y1 = a
n+r
Xo + 2X3+}’o—}’2=32

X1, X € Z,X3 € Z+, Yo, Y1, Y2 € Ry

Without the terms corresponding to x3 the above reduces to the problem.corresponding to-¢°.
Q.



Proving (oM 7°) is extreme inequality for MG(I?,R?, r)
[D. and Wolsey (2008)]

Theorem
@ Letw:R? — R, be a extreme inequality for MG(0, R2, r).
Q Letu® € P2 and define V = maxnez, 1 { 2| F(uOn + w) = r}. ... Lifting.
@ Define ¢ : P — Ry as ¢(v) = minpez, {nV + =(w)|F(°n+ w) = v}. ... Fill-in.

If (¢, ) is an un-dominated inequality for MG(I2,R?, r), then (¢, ) is an extreme inequality for
MG(P,R2,r).
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@ Define ¢ : P — Ry as ¢(v) = minpez, {nV + =(w)|F(°n+ w) = v}. ... Fill-in.

If (¢, ) is an un-dominated inequality for MG(I2,R?, r), then (¢, ) is an extreme inequality for
MG(P,R2,r).

In our case, u° = (1+752, 172) and

)

rn—r)(1—r 1—7%(w
7(2 )~ e, o (0 (P w) = 1)
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Proving (oM 7°) is extreme inequality for MG(I?,R?, r)
[D. and Wolsey (2008)]

Theorem
@ Letw:R? — R, be a extreme inequality for MG(0, R2, r).

W)

|F(uPn+ w) = r}. ... Lifting.

@ Letu® ¢ P and define V = maxnez+’n>1{
Q@ Define¢: P — Ry as ¢(v) = mmneZ+{nV+7r(w)\]-'(u°n+ w) = v}. ... Fill-in.

If (¢, ) is an un-dominated inequality for MG(I2,R?, r), then (¢, ) is an extreme inequality for
MG(P,R2,r).

In our case, u° = (1+752, 172) and
rn—r)(1-r 1—n(w
(22O e o 0 (0 4 w) = 1)
and
M o (e=n)(1-r) 1- fz —
ay, a) =
¢" (a1, @) min 5D X3 + Yo+ o ,V+ 5 2
n—r
s.t. X1+(1+¥)X3+,Vo—}’1:a1
n+r
o+ Cxt Y-y =a

X1, X2 € Z, X3 € Z+, Y0, Y1, Y2 € Ry
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Discussion

@ We illustrated techniques to use mixing inequalities for general two-rows
of a simplex tableau.
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Discussion

@ We illustrated techniques to use mixing inequalities for general two-rows
of a simplex tableau.

©@ We showed that when applying the mixing inequalities for general
two-rows of a simplex tableau, the inequality can be strengthened.

@ A new class of extreme inequality for two-row mixed integer infinite group
problem.
Challenges:

@ The proof of validity of the stronger inequality is not elegant. More
importantly the proof does not extend to more rows of a mixing
inequalities.
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Thank You.
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