Mixing Inequalities and Maximal Lattice-Free Triangles

Santanu S. Dey Laurence A. Wolsey

Georgia Institute of Technology; Center for Operations Research and Econometrics, UCL, Belgium.

2010

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わんで

Outline

3 Result: Strengthening Mixing Inequalities For Use In Simplex Tableau

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Mixing Inequalities.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The mixing set

[Günlük and Pochet (2001)]

$$y_0 \in \mathbb{R}_+$$

$$x_i \in \mathbb{Z} \qquad \forall 1 \le i \le n$$

The mixing set

[Günlük and Pochet (2001)]

 $y_0 \in \mathbb{R}_+$ $x_i \in \mathbb{Z} \qquad \forall 1 \le i \le n$

Mixing Inequality is facet-defining for the Mixing Set:

$$\mathbf{y}_0 \geq \sum_{i=1}^n (\tilde{b}_i - \tilde{b}_{i-1})(\lceil b_i \rceil - \mathbf{x}_i)$$
(1)

▲□▶▲□▶▲□▶▲□▶ □ のQで

where $\tilde{b}_i = b_i - \lceil b_i \rceil + 1$, $\tilde{b}_i \ge \tilde{b}_{i-1}$ and $\tilde{b}_0 = 0$.

The mixing set appears as a 'substructure' in many problems

The mixing inequality can be used to derive facets for:

- Production Planning (Constant capacity lot-sizing)
- Ocapacitated Facility Location
- Ocapacitated Network Design

The mixing set appears as a 'substructure' in many problems

The mixing inequality can be used to derive facets for:

- Production Planning (Constant capacity lot-sizing)
- Ocapacitated Facility Location
- Ocapacitated Network Design

Can we use mixing inequalities for general problems?

(日)

Rearranging the mixing set for simplicity

$$\begin{pmatrix} 1\\0 \end{pmatrix} x_1 + \begin{pmatrix} 0\\1 \end{pmatrix} x_2 + \begin{pmatrix} 1\\1 \end{pmatrix} y_0 \ge \begin{pmatrix} b_1\\b_2 \end{pmatrix}$$
$$x_1, x_2 \in \mathbb{Z}, y_0 \in \mathbb{R}_+$$

Let $r_i = b_i \pmod{1}$. We assume $0 < r_1 < r_2 < 1$.

Mixing Inequality: $y_0 \ge (r_2 - r_1)(\lceil b_2 \rceil - x_2) + r_1(\lceil b_1 \rceil - x_1)$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Rearranging the mixing set for simplicity

$$\begin{pmatrix} 1\\0 \end{pmatrix} x_1 + \begin{pmatrix} 0\\1 \end{pmatrix} x_2 + \begin{pmatrix} 1\\1 \end{pmatrix} y_0 \ge \begin{pmatrix} b_1\\b_2 \end{pmatrix}$$
$$x_1, x_2 \in \mathbb{Z}, y_0 \in \mathbb{R}_+$$

Let $r_i = b_i \pmod{1}$. We assume $0 < r_1 < r_2 < 1$.

Mixing Inequality:
$$y_0 \ge (r_2 - r_1)(\lceil b_2 \rceil - x_2) + r_1(\lceil b_1 \rceil - x_1)$$

Introduce non-negative slack variables:

$$\begin{pmatrix} 1\\0 \end{pmatrix} x_1 + \begin{pmatrix} 0\\1 \end{pmatrix} x_2 + \begin{pmatrix} 1\\1 \end{pmatrix} y_0 + \begin{pmatrix} -1\\0 \end{pmatrix} y_1 + \begin{pmatrix} 0\\-1 \end{pmatrix} y_2 = \begin{pmatrix} b_1\\b_2 \end{pmatrix}$$
$$x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+$$

Mixing Inequality:
$$\frac{1 - r_2}{D} y_0 + \frac{r_1}{D} y_1 + \frac{r_2 - r_1}{D} y_2 \ge 1$$

where $D = (r_2 - r_1)(1 - r_2) + r_1(1 - r_1)$.

$$\left.\begin{array}{l}x_1 + y_0 - y_1 = 1.4\\x_2 + y_0 - y_2 = 0.6\\x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1$$

7

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Idea: Rewrite/Relax rows of simplex tableau to 'look' like the Mixing Set

$$u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4$$

$$0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6$$

$$u \in \mathbb{Z}_+^4$$

$$\left.\begin{array}{l}x_1 + y_0 - y_1 = 1.4\\x_2 + y_0 - y_2 = 0.6\\x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1$$

Idea: Rewrite/Relax rows of simplex tableau to 'look' like the Mixing Set

$$\begin{array}{c} u_{1} + 0u_{2} + 0.5u_{3} + 0.9u_{4} = 1.4 \\ 0u_{1} + 1u_{2} + 0.1u_{3} + 0.5u_{4} = 0.6 \\ u \in \mathbb{Z}_{+}^{4} \\ \uparrow \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} u_{1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_{2} + \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} u_{3} + \begin{pmatrix} 0.9 \\ 0.9 \end{pmatrix} u_{4} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{3} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{4} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix} u_{4} \\ \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\left.\begin{array}{l}x_1 + y_0 - y_1 = 1.4\\x_2 + y_0 - y_2 = 0.6\\x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1$$

Idea: Rewrite/Relax rows of simplex tableau to 'look' like the Mixing Set

$$u_{1} + 0u_{2} + 0.5u_{3} + 0.9u_{4} = 1.4$$

$$0u_{1} + 1u_{2} + 0.1u_{3} + 0.5u_{4} = 0.6$$

$$u \in \mathbb{Z}_{+}^{4}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} u_{1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_{2} + \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} u_{3} + \begin{pmatrix} 0.9 \\ 0.9 \\ 0.9 \end{pmatrix} u_{4} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{3} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{4} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \underbrace{u_{1}}_{x_{1}} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \underbrace{u_{2}}_{x_{2}} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \underbrace{(0.5u_{3} + 0.9u_{4})}_{y_{0}} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \underbrace{(0.4u_{3} + 0.4u_{4})}_{y_{2}} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\left.\begin{array}{l}x_1 + y_0 - y_1 = 1.4\\x_2 + y_0 - y_2 = 0.6\\x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1$$

Idea: Rewrite/Relax rows of simplex tableau to 'look' like the Mixing Set

$$u_{1} + 0u_{2} + 0.5u_{3} + 0.9u_{4} = 1.4$$

$$0u_{1} + 1u_{2} + 0.1u_{3} + 0.5u_{4} = 0.6$$

$$u \in \mathbb{Z}_{+}^{4}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} u_{1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_{2} + \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} u_{3} + \begin{pmatrix} 0.9 \\ 0.9 \\ 0.9 \end{pmatrix} u_{4} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{3} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{4} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \underbrace{u_{1}}_{x_{1}} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \underbrace{u_{2}}_{x_{2}} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \underbrace{(0.5u_{3} + 0.9u_{4})}_{y_{0}} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \underbrace{(0.4u_{3} + 0.4u_{4})}_{y_{2}} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\stackrel{10}{\#} (0.5u_{3} + 0.9u_{4}) + \frac{10}{8} (0) + \frac{5}{8} (0.4u_{3} + 0.3u_{4}) \ge 1$$

$$u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4$$

$$0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6$$

$$u \in \mathbb{Z}_+^4$$

$$u_{1} + 0u_{2} + 0.5u_{3} + 0.9u_{4} = 1.4$$

$$0u_{1} + 1u_{2} + 0.1u_{3} + 0.5u_{4} = 0.6$$

$$u \in \mathbb{Z}_{+}^{4}$$

$$(1) u_{1} + (0) u_{2} + (1.1) u_{3} + (0.9) u_{4} + (-.6) u_{3} + (0) u_{4} = (1.4) u_{4} = (1.4) u_{4}$$

$$u_{1} + 0u_{2} + 0.5u_{3} + 0.9u_{4} = 1.4$$

$$0u_{1} + 1u_{2} + 0.1u_{3} + 0.5u_{4} = 0.6$$

$$u \in \mathbb{Z}_{+}^{4}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} u_{1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_{2} + \begin{pmatrix} 1.1 \\ 0.1 \end{pmatrix} u_{3} + \begin{pmatrix} 0.9 \\ 0.9 \end{pmatrix} u_{4} + \begin{pmatrix} -.6 \\ 0 \end{pmatrix} u_{3} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{4} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \underbrace{(u_{1} + u_{3})}_{x_{1}} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \underbrace{u_{2}}_{x_{2}} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \underbrace{(0.1u_{3} + 0.9u_{4})}_{y_{0}} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} \underbrace{0.6u_{3}}_{y_{1}} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \underbrace{0.4u_{4}}_{y_{2}} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

(ロ) (部) (E) (E) (E)

$$u_{1} + 0u_{2} + 0.5u_{3} + 0.9u_{4} = 1.4$$

$$0u_{1} + 1u_{2} + 0.1u_{3} + 0.5u_{4} = 0.6$$

$$u \in \mathbb{Z}_{+}^{4}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} u_{1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_{2} + \begin{pmatrix} 1.1 \\ 0.1 \end{pmatrix} u_{3} + \begin{pmatrix} 0.9 \\ 0.9 \end{pmatrix} u_{4} + \begin{pmatrix} -.6 \\ 0 \end{pmatrix} u_{3} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{4} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \underbrace{(u_{1} + u_{3})}_{x_{1}} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \underbrace{u_{2}}_{x_{2}} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \underbrace{(0.1u_{3} + 0.9u_{4})}_{y_{0}} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} \underbrace{0.6u_{3}}_{y_{1}} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \underbrace{0.4u_{4}}_{y_{2}} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\downarrow$$

$$\frac{10}{8}(0.1u_{3} + 0.9u_{4}) + \frac{10}{8}(0.6u_{3}) + \frac{5}{8}(0.3u_{4}) \ge 1$$

$$u_{1} + 0u_{2} + 0.5u_{3} + 0.9u_{4} = 1.4$$

$$0u_{1} + 1u_{2} + 0.1u_{3} + 0.5u_{4} = 0.6$$

$$u \in \mathbb{Z}_{+}^{4}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} u_{1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_{2} + \begin{pmatrix} 1.1 \\ 0.1 \end{pmatrix} u_{3} + \begin{pmatrix} 0.9 \\ 0.9 \end{pmatrix} u_{4} + \begin{pmatrix} -.6 \\ 0 \end{pmatrix} u_{3} + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_{4} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \underbrace{(u_{1} + 1u_{3})}_{x_{1}} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \underbrace{u_{2}}_{x_{2}} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \underbrace{(0.1u_{3} + 0.9u_{4})}_{y_{0}} + \begin{pmatrix} -1 \\ 0 \end{pmatrix} \underbrace{0.6u_{3}}_{y_{1}} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \underbrace{0.4u_{4}}_{y_{2}} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}$$

$$\downarrow$$

$$\frac{10}{8} (0.1u_{3} + 0.9u_{4}) + \frac{10}{8} (0.6u_{3}) + \frac{5}{8} (0.3u_{4}) \ge 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

$$\left.\begin{array}{l}x_1 + y_0 - y_1 = 1.4\\x_2 + y_0 - y_2 = 0.6\\x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1$$

For the simplex tableau:

$$\sum_{i=1}^{n} \begin{pmatrix} a_{1}^{i} \\ a_{2}^{i} \end{pmatrix} u_{i} + \sum_{j=1}^{m} \begin{pmatrix} c_{1}^{j} \\ c_{2}^{j} \end{pmatrix} v_{j} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}.$$
$$u_{i} \in \mathbb{Z}_{+}, v_{j} \in \mathbb{R}_{+}$$

(2)

$$\left.\begin{array}{l}x_1 + y_0 - y_1 = 1.4\\x_2 + y_0 - y_2 = 0.6\\x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1$$

For the simplex tableau:

$$\sum_{i=1}^{n} \left(egin{array}{c} a_{1}^{i} \ a_{2}^{j} \end{array}
ight) u_{i} + \sum_{j=1}^{m} \left(egin{array}{c} c_{1}^{j} \ c_{2}^{j} \end{array}
ight) v_{j} = \left(egin{array}{c} 1.4 \ 0.6 \end{array}
ight). \ u_{i} \in \mathbb{Z}_{+}, v_{j} \in \mathbb{R}_{+}$$

The 'best' cut by relaxation of the simplex tableau is

$$\sum_{i=1}^{n} \phi^{0}(a_{1}^{i}, a_{2}^{i})u_{i} + \sum_{j=1}^{m} \pi^{0}(c_{1}^{j}, c_{2}^{j})v_{j} \geq 1$$
(3)

(2)

where,

$$\left.\begin{array}{l}x_1 + y_0 - y_1 = 1.4\\x_2 + y_0 - y_2 = 0.6\\x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1$$

For the simplex tableau:

$$\sum_{i=1}^{n} \left(egin{array}{c} a_{1}^{i} \ a_{2}^{j} \end{array}
ight) u_{i} + \sum_{j=1}^{m} \left(egin{array}{c} c_{1}^{j} \ c_{2}^{j} \end{array}
ight) v_{j} = \left(egin{array}{c} 1.4 \ 0.6 \end{array}
ight). \ u_{i} \in \mathbb{Z}_{+}, v_{j} \in \mathbb{R}_{+}$$

The 'best' cut by relaxation of the simplex tableau is

$$\sum_{i=1}^{n} \phi^{0}(a_{1}^{i}, a_{2}^{i})u_{i} + \sum_{j=1}^{m} \pi^{0}(c_{1}^{j}, c_{2}^{j})v_{j} \geq 1$$
(3)

(2)

where,

$$\begin{split} \phi^{0}(a_{1},a_{2}) &= \min \quad \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} \\ \text{s.t.} \quad x_{1} + y_{0} - y_{1} &= a_{1} \\ x_{2} + y_{0} - y_{2} &= a_{2} \\ x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+} \end{split}$$

$$\left.\begin{array}{l} x_1 + y_0 - y_1 = 1.4 \\ x_2 + y_0 - y_2 = 0.6 \\ x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+ \end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1$$

For the simplex tableau:

$$\sum_{i=1}^{n} \begin{pmatrix} a_{1}^{i} \\ a_{2}^{i} \end{pmatrix} u_{i} + \sum_{j=1}^{m} \begin{pmatrix} c_{1}^{j} \\ c_{2}^{j} \end{pmatrix} v_{j} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}.$$
$$u_{i} \in \mathbb{Z}_{+}, v_{j} \in \mathbb{R}_{+}$$
(2)

The 'best' cut by relaxation of the simplex tableau is

$$\sum_{i=1}^{n} \phi^{0}(a_{1}^{i}, a_{2}^{i})u_{i} + \sum_{j=1}^{m} \pi^{0}(c_{1}^{j}, c_{2}^{j})v_{j} \geq 1$$
(3)

where,

$$\phi^{0}(a_{1}, a_{2}) = \min_{\substack{10 \\ 8} y_{0} + \frac{10}{8} y_{1} + \frac{5}{8} y_{2}} \qquad \pi^{0}(c_{1}, c_{2}) = \min_{\substack{10 \\ 8} y_{0} + \frac{10}{8} y_{1} + \frac{5}{8} y_{2}}$$
s.t. $x_{1} + y_{0} - y_{1} = a_{1}$
 $x_{2} + y_{0} - y_{2} = a_{2}$
 $x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

$$y_{0} - y_{2} = c_{2}$$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

Closed form for ϕ^0 and π^0 Let $\mathcal{F}(a_1, a_2) = (a_1 \pmod{1}, a_2 \pmod{1}).$

Closed form for ϕ^0 and π^0 Let $\mathcal{F}(a_1, a_2) = (a_1 \pmod{1}, a_2 \pmod{1}).$

Proposition

Consider two rows of a simplex tableau: $\sum_{i=1}^{n} a_i x_i + \sum_{j=1}^{m} c_i y_i = b$, $x_i \in \mathbb{Z}_+$, $y_i \in \mathbb{R}_+$. Then the inequality $\sum_{i=1}^{n} \phi^0(\mathcal{F}(a_i))x_i + \sum_{i=1}^{m} \pi^0(c_i)y_i \ge 1$ is valid inequality where,

$$\phi^{0}(w_{1}, w_{2}) = \begin{cases} \sigma_{1}(1 - w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in R^{1} \\ \sigma_{3}(w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in R^{2} \\ \sigma_{1}(1 - w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in R^{3} \\ \sigma_{1}(1 - w_{1}) + \sigma_{4}(w_{2}) & (w_{1}, w_{2}) \in R^{4} \\ \sigma_{3}(w_{1}) + \sigma_{2}(-w_{2}) & (w_{1}, w_{2}) \in R^{5} \\ \sigma_{1}(-w_{1}) + \sigma_{4}(w_{2}) & (w_{1}, w_{2}) \in R^{6} \end{cases}$$

(4)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where
$$(r_1, r_2) = \mathcal{F}(c)$$
 and $\sigma_1 = \frac{r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}$, $\sigma_2 = \frac{r_2 - r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}$,
 $\sigma_3 = \frac{1 - r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}$, $\sigma_4 = \frac{1 - r_2 + r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}$ and
 $\pi^0(c) = \lim_{h \downarrow 0} \frac{\phi(ch)}{h}$
(5)

Closed form for ϕ^0 and π^0 Let $\mathcal{F}(a_1, a_2) = (a_1 \pmod{1}, a_2 \pmod{1}).$

Proposition

Consider two rows of a simplex tableau: $\sum_{i=1}^{n} a_i x_i + \sum_{j=1}^{m} c_j y_i = b$, $x_i \in \mathbb{Z}_+$, $y_i \in \mathbb{R}_+$. Then the inequality $\sum_{i=1}^{n} \phi^0(\mathcal{F}(a_i))x_i + \sum_{i=1}^{m} \pi^0(c_i)y_i \ge 1$ is valid inequality where,

$$\phi^{0}(w_{1}, w_{2}) = \begin{cases} \sigma_{1}(1 - w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in R^{1} \\ \sigma_{3}(w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in R^{2} \\ \sigma_{1}(1 - w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in R^{3} \\ \sigma_{1}(1 - w_{1}) + \sigma_{4}(w_{2}) & (w_{1}, w_{2}) \in R^{4} \\ \sigma_{3}(w_{1}) + \sigma_{2}(-w_{2}) & (w_{1}, w_{2}) \in R^{5} \\ \sigma_{1}(-w_{1}) + \sigma_{4}(w_{2}) & (w_{1}, w_{2}) \in R^{6} \end{cases}$$

(4)

where
$$(r_1, r_2) = \mathcal{F}(c)$$
 and $\sigma_1 = \frac{r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}, \sigma_2 = \frac{r_2 - r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}, \sigma_3 = \frac{1 - r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}, \sigma_4 = \frac{1 - r_2 + r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}$ and
 $\pi^0(c) = \lim_{h \downarrow 0} \frac{\phi(ch)}{h}$
(5)

Observation: The closed form of ϕ^0 depends only on the fractional part of columns of integer variables.

Closed form for ϕ^0 contd.

э

Yes!

More precisely:

Yes!

More precisely:

 (φ⁰, π⁰) represents a valid inequality for the *infinite group relaxation* of mixed integer programs.

Yes!

More precisely:

- (ϕ^0, π^0) represents a valid inequality for the *infinite group relaxation* of mixed integer programs.
- We show that there exist functions (ϕ^M, π^0) that strictly dominate (ϕ^0, π^0) and are extreme for the infinite group relaxation of mixed integer programs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Yes!

More precisely:

- (ϕ^0, π^0) represents a valid inequality for the *infinite group relaxation* of mixed integer programs.
- We show that there exist functions (ϕ^M, π^0) that strictly dominate (ϕ^0, π^0) and are extreme for the infinite group relaxation of mixed integer programs.
- Upshot: Better cut coefficients can be obtained using the function (ϕ^M, π^0) that improve upon the coefficients obtained by (ϕ^0, π^0) .

We proceed step-by-step in the following slides.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The Framework: Infinite Group Relaxation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Infinite relaxation of two-rows of simplex tableau

The mixed integer relaxation: $MG(I^2, \mathbb{R}^2, f)$:

$$\sum_{a \in l^2} ax(a) + \sum_{w \in \mathbb{R}^2} wy(w) + f = \begin{pmatrix} 1 \\ 0 \end{pmatrix} x_{B_1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_{B_2}$$
$$x_{B_1}, x_{B_2} \in \mathbb{Z}, x(a) \in \mathbb{Z}_+, y(w) \in \mathbb{R}_+$$
$$x, y \text{ have finite support }, \tag{6}$$

where $l^2 = \{(a_1, a_2) \in \mathbb{R}^2 \mid 0 \le a_1, a_2 \le 1\}$, i.e. set of all columns of two fractions.

Infinite relaxation of two-rows of simplex tableau

The mixed integer relaxation: $MG(l^2, \mathbb{R}^2, f)$:

$$\sum_{a \in l^2} ax(a) + \sum_{w \in \mathbb{R}^2} wy(w) + f = \begin{pmatrix} 1 \\ 0 \end{pmatrix} x_{B_1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_{B_2}$$
$$x_{B_1}, x_{B_2} \in \mathbb{Z}, x(a) \in \mathbb{Z}_+, y(w) \in \mathbb{R}_+$$
$$x, y \text{ have finite support }, \tag{6}$$

(7)

▲□▶▲□▶▲□▶▲□▶ □ のQで

where $l^2 = \{(a_1, a_2) \in \mathbb{R}^2 \mid 0 \le a_1, a_2 \le 1\}$, i.e. set of all columns of two fractions.

Assuming all the nonbasic variables are continuous: $MG(\emptyset, \mathbb{R}^2, f)$:

$$\sum_{w \in \mathbb{R}^2} wy(w) + f = \begin{pmatrix} 1 \\ 0 \end{pmatrix} x_{B_1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_{B_2}$$
$$x_{B_1}, x_{B_2} \in \mathbb{Z}, y(w) \in \mathbb{R}_+$$
$$y \text{ has a finite support }.$$

Problem statement precisely

Now that we have defined the infinite relaxation, we proceed to ask the following precise questions...

Problem statement precisely

Now that we have defined the infinite relaxation, we proceed to ask the following precise questions...

The function (ϕ^0, π^0) represents a valid inequality for $MG(l^2, \mathbb{R}^2, f)$ as: If (\bar{x}, \bar{y}) satisfies:

$$\sum_{a\in I^2} ax(a) + \sum_{w\in\mathbb{R}^2} wy(w) + f = \begin{pmatrix} 1\\0 \end{pmatrix} x_{B_1} + \begin{pmatrix} 0\\1 \end{pmatrix} x_{B_2}$$
$$x_{B_1}, x_{B_2} \in \mathbb{Z}, x(a) \in \mathbb{Z}_+, y(w) \in \mathbb{R}_+,$$

then (\bar{x}, \bar{y}) satisfies:

$$\sum_{a \in I^2} \phi^0(a) x(a) + \sum_{w \in \mathbb{R}^2} \pi^0(w) y(w) \ge 1$$
(8)

Question: Do there exist functions (ϕ', π') , $\phi' : I^2 \to \mathbb{R}_+$ and $\pi' : \mathbb{R}^2 \to \mathbb{R}_+$ such that: $\phi' \leq \phi^0$ and $\pi' \leq \pi^0$ and

$$\sum_{a \in l^2} \phi'(a) x(a) + \sum_{w \in \mathbb{R}^2} \pi'(w) \ge 1$$
(9)

▲□▶▲□▶▲□▶▲□▶ □ のQで

is a valid inequality?

Analysis of π^0 : The Strength of Continuous Coefficients.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Maximal lattice-free convex sets

[Lovász(1989)]

Definition

A set S is called a maximal lattice-free convex set in \mathbb{R}^2 if it is convex and

1 interior(
$$S$$
) $\cap \mathbb{Z}^2 = \emptyset$,

2 There exists no convex set S' satisfying (1), such that $S \subsetneq S'$.

[Borozan and Cornuéjols (2007), Andersen, Louveaux, Weismantel, and Wolsey (2007)]

Theorem

For the system $MG(\emptyset, \mathbb{R}^2, f)$, an inequality of the form $\sum_{w \in \mathbb{R}^2} \pi(w)y(w) \ge 1$ is un-dominated, if the set

$$P(\pi) = \{ w \in \mathbb{R}^2 | \pi(w - f) \le 1 \}$$
(10)

(日)

is a maximal lattice-free convex set.

Strength of continuous coefficients, i.e., π^0

$$\pi^{0}(w_{1}, w_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}$$

s.t. $y_{0} - y_{1} = w_{1}$
 $y_{0} - y_{2} = w_{2}$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

Strength of continuous coefficients, i.e., π^0

$$\pi^{0}(w_{1}, w_{2}) = \min \quad \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}$$

s.t. $y_{0} - y_{1} = w_{1}$
 $y_{0} - y_{2} = w_{2}$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

We construct $P(\pi^0)$: { $w \in \mathbb{R}^2 | \pi(w - f) \leq 1$ }:

Strength of continuous coefficients, i.e., π^0

$$\pi^{0}(w_{1}, w_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}$$

s.t. $y_{0} - y_{1} = w_{1}$
 $y_{0} - y_{2} = w_{2}$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

We construct $P(\pi^0)$: { $w \in \mathbb{R}^2 | \pi(w - f) \leq 1$ }:

For all r, $P(\pi^0)$ is a maximal lattice-free triangle.

 $\therefore \pi^0$ is undominated by any inequality:

i.e. $\nexists \pi' : \mathbb{R}^2 \to \mathbb{R}_+$ such that $\pi' \leq \pi^0, \pi'(w) < \pi^0(w)$ for some $w \in \mathbb{R}^2$ where π' is valid inequality for $_MG(\emptyset, \mathbb{R}^2, r)$, is the set of \mathcal{O}

π^0 is an extreme inequality for $MG(\emptyset, \mathbb{R}^2, r)$

[Cornuéjols and Margot(2008)]

Theorem

If $P(\pi)$ is a maximal lattice-free triangle, then π represents an extreme inequality for $MG(\emptyset, \mathbb{R}^2, f)$, i.e, $\nexists \pi_1, \pi_2 : \mathbb{R}^2 \to \mathbb{R}_+$ such that π_1 and π_2 represent valid inequalities, $\pi_1 \neq \pi_2$, and $\pi = \frac{1}{2}\pi_1 + \frac{1}{2}\pi_2$.

Corollary

The function representing coefficient of continuous variable obtained using mixing inequalities, i.e., π^0 , is extreme for $MG(\emptyset, \mathbb{R}^2, r)$.

We cannot improve the coefficient of continuous variables in the mixing cut.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Analysis of ϕ^0 : The Strength of Integer Coefficients.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

It is possible to strengthen ϕ^0

$$\phi^{0}(a_{1}, a_{2}) = \min \begin{array}{ccc} \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} & \pi^{0}(c_{1}, c_{2}) = \min \begin{array}{ccc} \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} \\ \text{s.t.} & \textbf{X}_{1} + y_{0} - y_{1} = a_{1} & \text{s.t.} & y_{0} - y_{1} = c_{1} \\ \textbf{X}_{2} + y_{0} - y_{2} = a_{2} & y_{0} - y_{2} = c_{2} \\ \textbf{X}_{1}, \textbf{X}_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+} & y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+} \end{array}$$

It is possible to strengthen ϕ^0

$$\phi^{0}(a_{1}, a_{2}) = \min_{\substack{10 \\ 8}} \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} \qquad \pi^{0}(c_{1}, c_{2}) = \min_{\substack{10 \\ 8}} \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} \\ \text{s.t.} \qquad X_{1} + y_{0} - y_{1} = a_{1} \qquad \text{s.t.} \qquad y_{0} - y_{1} = c_{1} \\ x_{2} + y_{0} - y_{2} = a_{2} \qquad y_{0} - y_{2} = c_{2} \\ x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+} \qquad y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$$

We can rewrite:

$$\phi^{0}(a_{1}, a_{2}) = \min_{x_{1}, x_{2} \in \mathbb{Z}} (\pi^{0}(a_{1} - x_{1}, a_{2} - x_{2})).$$
(11)

It is possible to strengthen ϕ^0

$$\phi^{0}(a_{1}, a_{2}) = \min_{\substack{10 \\ 8} y_{0} + \frac{10}{8} y_{1} + \frac{5}{8} y_{2}} \qquad \pi^{0}(c_{1}, c_{2}) = \min_{\substack{10 \\ 8} y_{0} + \frac{10}{8} y_{1} + \frac{5}{8} y_{2}} \\ \text{s.t.} \qquad \begin{array}{c} x_{1} + y_{0} - y_{1} = a_{1} \\ x_{2} + y_{0} - y_{2} = a_{2} \\ x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+} \end{array}$$

We can rewrite:

$$\phi^{0}(a_{1}, a_{2}) = \min_{x_{1}, x_{2} \in \mathbb{Z}} (\pi^{0}(a_{1} - x_{1}, a_{2} - x_{2})).$$
(11)

(11) is the fill-in function [Gomory and Johnson (1972)].

[D. and Wolsey (2008)]

Theorem

If $P(\pi)$ is a lattice-free triangle with non-integral vertices and exactly one integer point in the interior on each side, then $\phi^0 : l^2 \to \mathbb{R}_+$ defined as in (11) is not an undominated inequality.

 \exists a function $\phi': l^2 \to \mathbb{R}_+$ such that ϕ' represents a valid inequality and $\phi' < \phi^0$.

A stronger inequality $\phi^{\rm M}$

Comparing ϕ^{M} with ϕ^{0}

Theorem

Given $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \le 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(l^2, \mathbb{R}^2, r)$

<u>Note</u>: The condition $r_1 + r_2 \le 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1. Then for the resulting rows, $r_1 + r_2 \le 1$.

Steps in Proof:

Prove function results in a valid inequality:

・ コット (雪) ・ (目) ・ ヨ)

Theorem

Given $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \le 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(l^2, \mathbb{R}^2, r)$

<u>Note</u>: The condition $r_1 + r_2 \le 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1. Then for the resulting rows, $r_1 + r_2 \le 1$.

Steps in Proof:

• Prove function results in a valid inequality: Show that $\phi^{M}(u) + \phi^{M}(v) \ge \phi^{M}(u+v) \forall u, v \in I^{2}$, i.e., prove $\phi^{M} : I^{2} \to \mathbb{R}_{+}$ is subadditive.

Theorem

Given $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \le 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(l^2, \mathbb{R}^2, r)$

<u>Note</u>: The condition $r_1 + r_2 \le 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1. Then for the resulting rows, $r_1 + r_2 \le 1$.

Steps in Proof:

- Prove function results in a valid inequality: Show that $\phi^{M}(u) + \phi^{M}(v) \ge \phi^{M}(u+v) \forall u, v \in I^{2}$, i.e., prove $\phi^{M} : I^{2} \to \mathbb{R}_{+}$ is subadditive.
- Prove function is un-dominated:

Theorem

Given $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \le 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(l^2, \mathbb{R}^2, r)$

<u>Note</u>: The condition $r_1 + r_2 \le 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1. Then for the resulting rows, $r_1 + r_2 \le 1$.

Steps in Proof:

- Prove function results in a valid inequality: Show that $\phi^{M}(u) + \phi^{M}(v) \ge \phi^{M}(u+v) \forall u, v \in l^{2}$, i.e., prove $\phi^{M} : l^{2} \to \mathbb{R}_{+}$ is subadditive.
- Prove function is un-dominated: Easily verified that, φ^M(u) + φ^M(r − u) = 1 ∀u ∈ l². Therefore, by [Johnson's (1974)] φ^M is an un-dominated inequality.

(日)

Theorem

Given $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \le 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(l^2, \mathbb{R}^2, r)$

<u>Note</u>: The condition $r_1 + r_2 \le 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1. Then for the resulting rows, $r_1 + r_2 \le 1$.

Steps in Proof:

- Prove function results in a valid inequality: Show that $\phi^{M}(u) + \phi^{M}(v) \ge \phi^{M}(u+v) \forall u, v \in l^{2}$, i.e., prove $\phi^{M} : l^{2} \to \mathbb{R}_{+}$ is subadditive.
- Prove function is un-dominated: Easily verified that, φ^M(u) + φ^M(r − u) = 1 ∀u ∈ l². Therefore, by [Johnson's (1974)] φ^M is an un-dominated inequality.
- Prove function is extreme.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Proving ϕ^M is a subadditive function

[D. and Richard (2008)]

Proposition

Let ϕ be a continuous, piecewise linear and nonnegative function on l^2 such that $\phi(u) + \phi(r - u) = 1$. Let \mathbb{V} and \mathbb{E} be the set of 'vertices' and 'edges' of ϕ . Then ϕ is subadditive iff

$$\begin{split} \phi(\mathbf{v}_1) + \phi(\mathbf{v}_2) &\geq \phi(\mathbf{v}_1 + \mathbf{v}_2) \qquad \forall \mathbf{v}_1, \mathbf{v}_2 \in \mathbb{V}(\phi) \\ \phi(\mathbf{e}_1) + \phi(\mathbf{e}_2) &\geq \phi(\mathbf{v}_3) \text{ where} \\ \mathbf{e}_1 \in \mathbf{q}_1, \mathbf{e}_2 \in \mathbf{q}_2, \mathbf{e}_1 + \mathbf{e}_2 &= \mathbf{v}_3, \forall \mathbf{v}_3 \in \mathbb{V}(\phi) \cup \mathbb{V}'(\phi) \quad , \forall \mathbf{q}_1, \mathbf{q}_2 \in \mathbb{E}(\phi). \end{split}$$

To check subadditivity of a piecewise linear function we need to check only the function at the 'vertices' and 'edges'.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Proving ϕ^{M} is a subadditive function: Too many cases!

After checking these case we prove that the function ϕ^M is a valid inequality.

A value-function interpretation of ϕ^M In fact, by the subadditivity of ϕ^M we obtain the following result:

Proposition

If $r_1 + r_2 < 1$, then for the problem:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} x_1 + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_1 + \begin{pmatrix} 1 + \frac{r_1 - r_2}{2} \\ \frac{r_1 + r_2}{2} \end{pmatrix} x_3 + \begin{pmatrix} 1 \\ 1 \end{pmatrix} y_0 + \begin{pmatrix} -1 \\ 0 \end{pmatrix} y_1 + \begin{pmatrix} 0 \\ -1 \end{pmatrix} y_2 = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$
$$x_1, x_2 \in \mathbb{Z}, x_3 \in \mathbb{Z}_+, y_0, y_1, y_2 \in \mathbb{R}_+$$

The following inequality is valid:

$$\frac{(r_2 - r_1)(1 - r_2)}{2D}x_3 + \frac{1 - r_2}{D}y_0 + \frac{r_1}{D}y_1 + \frac{r_2 - r_1}{D}y_2 \ge 1$$

・ロット (雪) (日) (日)

э

A value-function interpretation of ϕ^M In fact, by the subadditivity of ϕ^M we obtain the following result:

Proposition

If $r_1 + r_2 < 1$, then for the problem:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} x_1 + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_1 + \begin{pmatrix} 1 + \frac{r_1 - r_2}{2} \\ \frac{r_1 + r_2}{2} \end{pmatrix} x_3 + \begin{pmatrix} 1 \\ 1 \end{pmatrix} y_0 + \begin{pmatrix} -1 \\ 0 \end{pmatrix} y_1 + \begin{pmatrix} 0 \\ -1 \end{pmatrix} y_2 = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$
$$x_1, x_2 \in \mathbb{Z}, x_3 \in \mathbb{Z}_+, y_0, y_1, y_2 \in \mathbb{R}_+$$

The following inequality is valid:

$$\frac{(r_2 - r_1)(1 - r_2)}{2D}x_3 + \frac{1 - r_2}{D}y_0 + \frac{r_1}{D}y_1 + \frac{r_2 - r_1}{D}y_2 \ge 1$$

Then ϕ^M can be obtained as follows:

$$\phi^{M}(a_{1}, a_{2}) = \min \quad \frac{(r_{2} - r_{1})(1 - r_{2})}{2D} x_{3} + \frac{1 - r_{2}}{D} y_{0} + \frac{r_{1}}{D} y_{1} + \frac{r_{2} - r_{1}}{D} y_{2}$$

s.t. $x_{1} + (1 + \frac{r_{1} - r_{2}}{2}) x_{3} + y_{0} - y_{1} = a_{1}$
 $x_{2} + \frac{r_{1} + r_{2}}{2} x_{3} + y_{0} - y_{2} = a_{2}$
 $x_{1}, x_{2} \in \mathbb{Z}, x_{3} \in \mathbb{Z}_{+}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

Without the terms corresponding to x_3 the above reduces to the problem corresponding to ϕ^0 .

Theorem

- Let $\pi : \mathbb{R}^2 \to \mathbb{R}_+$ be a extreme inequality for $MG(\emptyset, \mathbb{R}^2, r)$.
- 2 Let $u^0 \in l^2$ and define $V = \max_{n \in \mathbb{Z}_+, n \geq 1} \{ \frac{1-\pi(w)}{n} | \mathcal{F}(u^0 n + w) = r \}$ Lifting.

3 Define $\phi: l^2 \to \mathbb{R}_+$ as $\phi(v) = \min_{n \in \mathbb{Z}_+} \{ nV + \pi(w) | \mathcal{F}(u^0 n + w) = v \}$ Fill-in.

If (ϕ, π) is an un-dominated inequality for MG(l^2, \mathbb{R}^2, r), then (ϕ, π) is an extreme inequality for MG(l^2, \mathbb{R}^2, r).

Theorem

- Let $\pi : \mathbb{R}^2 \to \mathbb{R}_+$ be a extreme inequality for $MG(\emptyset, \mathbb{R}^2, r)$.
- 2 Let $u^0 \in l^2$ and define $V = \max_{n \in \mathbb{Z}_+, n \geq 1} \{ \frac{1-\pi(w)}{n} | \mathcal{F}(u^0 n + w) = r \}$ Lifting.
- 3 Define $\phi: l^2 \to \mathbb{R}_+$ as $\phi(v) = \min_{n \in \mathbb{Z}_+} \{ nV + \pi(w) | \mathcal{F}(u^0 n + w) = v \}$ Fill-in.

If (ϕ, π) is an un-dominated inequality for MG(l^2, \mathbb{R}^2, r), then (ϕ, π) is an extreme inequality for MG(l^2, \mathbb{R}^2, r).

In our case, $u^0 = (1 + \frac{r_1 - r_2}{2}, \frac{r_1 + r_2}{2})$ and

$$\frac{(r_2 - r_1)(1 - r_2)}{2D} = \max_{n \in \mathbb{Z}_+, n \ge 1} \{ \frac{1 - \pi^0(w)}{n} | \mathcal{F}(u^0 n + w) = r \}$$

▲日▶▲母▶▲日▶▲日▶ ヨークタペ

Theorem

- Let $\pi : \mathbb{R}^2 \to \mathbb{R}_+$ be a extreme inequality for $MG(\emptyset, \mathbb{R}^2, r)$.
- 2 Let $u^0 \in l^2$ and define $V = \max_{n \in \mathbb{Z}_+, n \ge 1} \{ \frac{1 \pi(w)}{n} | \mathcal{F}(u^0 n + w) = r \}$ Lifting.
- 3 Define $\phi: l^2 \to \mathbb{R}_+$ as $\phi(v) = \min_{n \in \mathbb{Z}_+} \{ nV + \pi(w) | \mathcal{F}(u^0 n + w) = v \}$ Fill-in.

If (ϕ, π) is an un-dominated inequality for MG(l^2, \mathbb{R}^2, r), then (ϕ, π) is an extreme inequality for MG(l^2, \mathbb{R}^2, r).

In our case, $u^0 = (1 + \frac{r_1 - r_2}{2}, \frac{r_1 + r_2}{2})$ and

$$\frac{(r_2 - r_1)(1 - r_2)}{2D} = \max_{n \in \mathbb{Z}_+, n \ge 1} \{ \frac{1 - \pi^0(w)}{n} | \mathcal{F}(u^0 n + w) = r \}$$

and

$$\phi^{M}(a_{1}, a_{2}) = \min \quad \frac{(r_{2} - r_{1})(1 - r_{2})}{2D} x_{3} + \frac{1 - r_{2}}{D} y_{0} + \frac{r_{1}}{D} y_{1} + \frac{r_{2} - r_{1}}{D} y_{2}$$

s.t. $x_{1} + (1 + \frac{r_{1} - r_{2}}{2}) x_{3} + y_{0} - y_{1} = a_{1}$
 $x_{2} + \frac{r_{1} + r_{2}}{2} x_{3} + y_{0} - y_{2} = a_{2}$
 $x_{1}, x_{2} \in \mathbb{Z}, x_{3} \in \mathbb{Z}_{+}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

We illustrated techniques to use mixing inequalities for general two-rows of a simplex tableau.

- We illustrated techniques to use mixing inequalities for general two-rows of a simplex tableau.
- We showed that when applying the mixing inequalities for general two-rows of a simplex tableau, the inequality can be strengthened.

(日)

- We illustrated techniques to use mixing inequalities for general two-rows of a simplex tableau.
- We showed that when applying the mixing inequalities for general two-rows of a simplex tableau, the inequality can be strengthened.
- A new class of extreme inequality for two-row mixed integer infinite group problem.

(日)

- We illustrated techniques to use mixing inequalities for general two-rows of a simplex tableau.
- We showed that when applying the mixing inequalities for general two-rows of a simplex tableau, the inequality can be strengthened.
- A new class of extreme inequality for two-row mixed integer infinite group problem.

Challenges:

The proof of validity of the stronger inequality is *not elegant*. More importantly the proof does not extend to more rows of a mixing inequalities.

Thank You.