Mixing Inequalities and Maximal Lattice-Free **Triangles**

Santanu S. Dey Laurence A. Wolsey

Georgia Institute of Technology; Center for Operations Research and Econometrics, UCL, Belgium.

2010

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 90 Q

Outline

[Result: Strengthening Mixing Inequalities For Use In Simplex Tableau](#page-46-0)

Mixing Inequalities.

K ロ ▶ K 레 ▶ K 회 ▶ K 회 ▶ (1) 회 ▶ ◇ 회 ◆ ◇ ◇ ◇

The mixing set

[Günlük and Pochet (2001)]

$$
y_0 \in \mathbb{R}_+
$$

$$
x_i \in \mathbb{Z} \qquad \forall 1 \leq i \leq n
$$

メロメメ 御き メ 君 メメ 君 メー

 299

重

The mixing set

[Günlük and Pochet (2001)]

$$
y_0 + x_1 \n y_0 + x_2 + x_3 \geq b_1 \n y_0 + x_3 \geq b_2 \n + x_n \geq b_n \n \vdots \n y_0 + x_n \geq b_n
$$

 $y_0 \in \mathbb{R}_+$ $x_i \in \mathbb{Z}$ $\forall 1 \leq i \leq n$

Mixing Inequality is facet-defining for the Mixing Set:

$$
y_0 \geq \sum_{i=1}^n (\tilde{b}_i - \tilde{b}_{i-1})(\lceil b_i \rceil - x_i)
$$
 (1)

KO KKO K S A B K S B K V S A V K S B K S B K S A V S B K S B K S B K S B K S B K S B K S B K S B K S B K S B K

where $\tilde{b}_i=b_i-\lceil b_i \rceil+1,$ $\tilde{b}_i\geq \tilde{b}_{i-1}$ and $\tilde{b}_0=0.$

The mixing set appears as a 'substructure' in many problems

The mixing inequality can be used to derive facets for:

- **1** Production Planning (Constant capacity lot-sizing)
- ² Capacitated Facility Location
- ³ Capacitated Network Design

KORKARYKERKE PORCH

The mixing set appears as a 'substructure' in many problems

The mixing inequality can be used to derive facets for:

- **1** Production Planning (Constant capacity lot-sizing)
- ² Capacitated Facility Location
- ³ Capacitated Network Design

Can we use mixing inequalities for general problems?

Rearranging the mixing set for simplicity

$$
\left(\begin{array}{c}1\\0\end{array}\right) x_1 + \left(\begin{array}{c}0\\1\end{array}\right) x_2 + \left(\begin{array}{c}1\\1\end{array}\right) y_0 \ge \left(\begin{array}{c}b_1\\b_2\end{array}\right)
$$

$$
x_1, x_2 \in \mathbb{Z}, y_0 \in \mathbb{R}_+
$$

Let $r_i = b_i \pmod{1}$. We assume $0 < r_1 < r_2 < 1$.

Mixing Inequality: $y_0 \ge (r_2 - r_1)(\lceil b_2 \rceil - x_2) + r_1(\lceil b_1 \rceil - x_1)$

KO K (FRACT) YOU ARE YOU ARE

Rearranging the mixing set for simplicity

$$
\left(\begin{array}{c}1\\0\end{array}\right)x_1+\left(\begin{array}{c}0\\1\end{array}\right)x_2+\left(\begin{array}{c}1\\1\end{array}\right)y_0 \ge \left(\begin{array}{c}b_1\\b_2\end{array}\right)
$$

$$
x_1, x_2 \in \mathbb{Z}, y_0 \in \mathbb{R}_+
$$

Let $r_i = b_i \, (mod\, 1)$. We assume $0 < r_1 < r_2 < 1$.

Mixing Inequality: $v_0 > (r_2 - r_1)(b_2 - x_2) + r_1((b_1 - x_1))$

Introduce non-negative slack variables:

$$
\left(\begin{array}{c}1\\0\end{array}\right)x_1+\left(\begin{array}{c}0\\1\end{array}\right)x_2+\left(\begin{array}{c}1\\1\end{array}\right)y_0+\left(\begin{array}{c}-1\\0\end{array}\right)y_1+\left(\begin{array}{c}0\\-1\end{array}\right)y_2\hspace{0.5cm}=\hspace{0.5cm}\left(\begin{array}{c}b_1\\b_2\end{array}\right)
$$

$$
x_1,x_2\in\mathbb{Z},y_0,y_1,y_2\in\mathbb{R}_+
$$

Mixing Inequality:
$$
\frac{1 - r_2}{D}y_0 + \frac{r_1}{D}y_1 + \frac{r_2 - r_1}{D}y_2 \ge 1
$$

where $D = (r_2 - r_1)(1 - r_2) + r_1(1 - r_1)$.

$$
\left.\begin{array}{l} x_1 + y_0 - y_1 = 1.4 \\ x_2 + y_0 - y_2 = 0.6 \\ x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+ \end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \geq 1
$$

Idea: Rewrite/Relax rows of simplex tableau to 'look' like the Mixing Set

$$
u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4
$$

$$
0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6
$$

$$
u \in \mathbb{Z}_+^4
$$

$$
\left.\begin{array}{l}\nx_1 + y_0 - y_1 = 1.4 \\
x_2 + y_0 - y_2 = 0.6 \\
x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\n\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1
$$

Idea: Rewrite/Relax rows of simplex tableau to 'look' like the Mixing Set

$$
u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4
$$

\n
$$
0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6
$$

\n
$$
u \in \mathbb{Z}_+^4
$$

\n
$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} u_1 + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_2 + \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} u_3 + \begin{pmatrix} 0.9 \\ 0.9 \end{pmatrix} u_4 + \begin{pmatrix} 0 \\ -0.4 \end{pmatrix} u_3 + \begin{pmatrix} 0 \\ -0.4 \end{pmatrix} u_4 = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}
$$

$$
\left.\begin{array}{l}\nx_1 + y_0 - y_1 = 1.4 \\
x_2 + y_0 - y_2 = 0.6 \\
x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\n\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1
$$

Idea: Rewrite/Relax rows of simplex tableau to 'look' like the Mixing Set

$$
u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4
$$

\n
$$
0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6
$$

\n
$$
u \in \mathbb{Z}_+^4
$$

\n
$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} u_1 + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_2 + \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} u_3 + \begin{pmatrix} 0.9 \\ 0.9 \end{pmatrix} u_4 + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_3 + \begin{pmatrix} 0 \\ -.4 \end{pmatrix} u_4 = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} \underbrace{u_1}_{x_1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \underbrace{u_2}_{x_2} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \underbrace{(0.5u_3 + 0.9u_4)}_{y_0} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \underbrace{(0.4u_3 + 0.4u_4)}_{y_2} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}
$$

$$
\left.\begin{array}{l}\nx_1 + y_0 - y_1 = 1.4 \\
x_2 + y_0 - y_2 = 0.6 \\
x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\n\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1
$$

Idea: Rewrite/Relax rows of simplex tableau to 'look' like the Mixing Set

$$
u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4
$$

\n
$$
0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6
$$

\n
$$
u \in \mathbb{Z}_+^4
$$

\n
$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} u_1 + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u_2 + \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix} u_3 + \begin{pmatrix} 0.9 \\ 0.9 \end{pmatrix} u_4 + \begin{pmatrix} 0 \\ -0.4 \end{pmatrix} u_3 + \begin{pmatrix} 0 \\ -0.4 \end{pmatrix} u_4 = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}
$$

\n
$$
\begin{pmatrix} 1 \\ 0 \end{pmatrix} \underbrace{u_1}_{x_1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \underbrace{u_2}_{x_2} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \underbrace{(0.5u_3 + 0.9u_4)}_{y_0} + \begin{pmatrix} 0 \\ -1 \end{pmatrix} \underbrace{(0.4u_3 + 0.4u_4)}_{y_2} = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}
$$

\n
$$
\frac{10}{8} (0.5u_3 + 0.9u_4) + \frac{10}{8} (0) + \frac{5}{8} (0.4u_3 + 0.3u_4) \ge 1
$$

$$
u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4
$$

\n
$$
0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6
$$

\n
$$
u \in \mathbb{Z}_+^4
$$

$$
u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4
$$

\n
$$
0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6
$$

\n
$$
u \in \mathbb{Z}_+^4
$$

\n
$$
\updownarrow
$$

\n
$$
\downarrow
$$

\n
$$
\down
$$

イロトメタトメミドメミド (ミ) の女々

$$
u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4
$$

\n
$$
0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6
$$

\n
$$
u \in \mathbb{Z}_+^4
$$

\n
$$
\downarrow
$$

\n
$$
\left(\begin{array}{c} 1 \\ 0 \end{array}\right) u_1 + \left(\begin{array}{c} 0 \\ 1 \end{array}\right) u_2 + \left(\begin{array}{c} 1.1 \\ 0.1 \end{array}\right) u_3 + \left(\begin{array}{c} 0.9 \\ 0.9 \end{array}\right) u_4 + \left(\begin{array}{c} -.6 \\ 0 \end{array}\right) u_3 + \left(\begin{array}{c} 0 \\ -.4 \end{array}\right) u_4 = \left(\begin{array}{c} 1.4 \\ 0.6 \end{array}\right)
$$

\n
$$
\downarrow
$$

\n
$$
\downarrow
$$

\n
$$
\left(\begin{array}{c} 1 \\ 0 \end{array}\right) \underbrace{(u_1 + u_3)}_{x_1} + \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \underbrace{u_2}_{x_2} + \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \underbrace{(0.1u_3 + 0.9u_4)}_{y_0} + \left(\begin{array}{c} -1 \\ 0 \end{array}\right) \underbrace{0.6u_3}_{y_1} + \left(\begin{array}{c} 0 \\ -1 \end{array}\right) \underbrace{0.4u_4}_{y_2} = \left(\begin{array}{c} 1.4 \\ 0.6 \end{array}\right)
$$

 2990

イロメイ部 メイ君メイ君メー 君

$$
u_1 + 0u_2 + 0.5u_3 + 0.9u_4 = 1.4
$$

\n
$$
0u_1 + 1u_2 + 0.1u_3 + 0.5u_4 = 0.6
$$

\n
$$
u \in \mathbb{Z}_+^4
$$

\n
$$
\downarrow
$$

\n
$$
\left(\begin{array}{c} 1 \\ 0 \end{array}\right) u_1 + \left(\begin{array}{c} 0 \\ 1 \end{array}\right) u_2 + \left(\begin{array}{c} 1.1 \\ 0.1 \end{array}\right) u_3 + \left(\begin{array}{c} 0.9 \\ 0.9 \end{array}\right) u_4 + \left(\begin{array}{c} -.6 \\ 0 \end{array}\right) u_3 + \left(\begin{array}{c} 0 \\ -.4 \end{array}\right) u_4 = \left(\begin{array}{c} 1.4 \\ 0.6 \end{array}\right)
$$

\n
$$
\downarrow
$$

\n
$$
\left(\begin{array}{c} 1 \\ 0 \end{array}\right) \underbrace{(u_1 + u_3)}_{x_1} + \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \underbrace{u_2}_{x_2} + \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \underbrace{(0.1u_3 + 0.9u_4)}_{y_0} + \left(\begin{array}{c} -1 \\ 0 \end{array}\right) \underbrace{0.6u_3}_{y_1} + \left(\begin{array}{c} 0 \\ -1 \end{array}\right) \underbrace{0.4u_4}_{y_2} = \left(\begin{array}{c} 1.4 \\ 0.6 \end{array}\right)
$$

\n
$$
\downarrow
$$

\n
$$
\frac{10}{8} (0.1u_3 + 0.9u_4) + \frac{10}{8} (0.6u_3) + \frac{5}{8} (0.3u_4) \ge 1
$$

KID KAR KERKER E 1990

$$
u_{1} + 0u_{2} + 0.5u_{3} + 0.9u_{4} = 1.4
$$
\n
$$
0u_{1} + 1u_{2} + 0.1u_{3} + 0.5u_{4} = 0.6
$$
\n
$$
u \in \mathbb{Z}_{+}^{4}
$$
\n
$$
\updownarrow
$$
\n
$$
\left(\begin{array}{c} 1 \\ 0 \end{array}\right) u_{1} + \left(\begin{array}{c} 0 \\ 1 \end{array}\right) u_{2} + \left(\begin{array}{c} 1.1 \\ 0.1 \end{array}\right) u_{3} + \left(\begin{array}{c} 0.9 \\ 0.9 \end{array}\right) u_{4} + \left(\begin{array}{c} -.6 \\ 0 \end{array}\right) u_{3} + \left(\begin{array}{c} 0 \\ -.4 \end{array}\right) u_{4} = \left(\begin{array}{c} 1.4 \\ 0.6 \end{array}\right)
$$
\n
$$
\updownarrow
$$
\n
$$
\downarrow
$$
\n
$$
\left(\begin{array}{c} 1 \\ 0 \end{array}\right) \underbrace{(u_{1} + 1u_{3})}_{x_{1}} + \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \underbrace{u_{2}}_{x_{2}} + \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \underbrace{(0.1u_{3} + 0.9u_{4})}_{y_{0}} + \left(\begin{array}{c} -1 \\ 0 \end{array}\right) \underbrace{0.6u_{3}}_{y_{1}} + \left(\begin{array}{c} 0 \\ -1 \end{array}\right) \underbrace{0.4u_{4}}_{y_{2}} = \left(\begin{array}{c} 1.4 \\ 0.6 \end{array}\right) \underbrace{u_{3} + \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \underbrace{u_{4} + \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \underbrace{u_{5} + \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \underbrace{0.6u_{3}}_{y_{1}} + \left(\begin{array}{c} 0 \\ -1 \end{array}\right) \underbrace{0.4u_{4}}_{y_{2}} = \left(\begin{array}{c} 1.4 \\ 0.6 \end{array}\right) \underbrace{0.4u_{5} + \left(\begin
$$

イロメイ部 メイ君メイ君メー 君 2990

$$
\left.\begin{array}{l} x_1 + y_0 - y_1 = 1.4 \\ x_2 + y_0 - y_2 = 0.6 \\ x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+ \end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1
$$

For the simplex tableau:

$$
\sum_{i=1}^{n} \begin{pmatrix} a_1^i \\ a_2^i \end{pmatrix} u_i + \sum_{j=1}^{m} \begin{pmatrix} c_1^j \\ c_2^j \end{pmatrix} v_j = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}.
$$

$$
u_i \in \mathbb{Z}_+, v_j \in \mathbb{R}_+
$$
 (2)

KOKK@KKEKKEK E 1990

$$
\left.\begin{array}{l}\nx_1 + y_0 - y_1 = 1.4 \\
x_2 + y_0 - y_2 = 0.6 \\
x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\n\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1
$$

For the simplex tableau:

$$
\sum_{i=1}^{n} \begin{pmatrix} a_1' \\ a_2' \end{pmatrix} u_i + \sum_{j=1}^{m} \begin{pmatrix} c_1^j \\ c_2^j \end{pmatrix} v_j = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}.
$$

$$
u_i \in \mathbb{Z}_+, v_j \in \mathbb{R}_+
$$
 (2)

The 'best' cut by relaxation of the simplex tableau is

$$
\sum_{i=1}^n \phi^0(a_1^i, a_2^i)u_i + \sum_{j=1}^m \pi^0(c_1^j, c_2^j)v_j \ge 1
$$
 (3)

K ロ K K B K K B K X B X X A K Y Q Q Q Y

where,

$$
\left.\begin{array}{l}\nx_1 + y_0 - y_1 = 1.4 \\
x_2 + y_0 - y_2 = 0.6 \\
x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\n\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1
$$

For the simplex tableau:

$$
\sum_{i=1}^{n} \begin{pmatrix} a_1^{i} \\ a_2^{i} \end{pmatrix} u_i + \sum_{j=1}^{m} \begin{pmatrix} c_1^{j} \\ c_2^{j} \end{pmatrix} v_j = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}.
$$

$$
u_i \in \mathbb{Z}_+, v_j \in \mathbb{R}_+
$$
 (2)

The 'best' cut by relaxation of the simplex tableau is

$$
\sum_{i=1}^n \phi^0(a_1^i, a_2^i)u_i + \sum_{j=1}^m \pi^0(c_1^j, c_2^j)v_j \ge 1
$$
 (3)

K ロ K K B K K B K X B X X A K Y Q Q Q Y

where,

$$
\phi^{0}(a_{1}, a_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}
$$
\ns.t. $x_{1} + y_{0} - y_{1} = a_{1}$
\n $x_{2} + y_{0} - y_{2} = a_{2}$
\n $x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

$$
\left.\begin{array}{l}\nx_1 + y_0 - y_1 = 1.4 \\
x_2 + y_0 - y_2 = 0.6 \\
x_1, x_2 \in \mathbb{Z}, y_0, y_1, y_2 \in \mathbb{R}_+\n\end{array}\right\} \Rightarrow \frac{10}{8}y_0 + \frac{10}{8}y_1 + \frac{5}{8}y_2 \ge 1
$$

For the simplex tableau:

$$
\sum_{i=1}^{n} \begin{pmatrix} a_1^i \\ a_2^i \end{pmatrix} u_i + \sum_{j=1}^{m} \begin{pmatrix} c_1^j \\ c_2^j \end{pmatrix} v_j = \begin{pmatrix} 1.4 \\ 0.6 \end{pmatrix}.
$$

 $u_i \in \mathbb{Z}_+, v_j \in \mathbb{R}_+$ (2)

The 'best' cut by relaxation of the simplex tableau is

$$
\sum_{i=1}^n \phi^0(a_1^i, a_2^i)u_i + \sum_{j=1}^m \pi^0(c_1^j, c_2^j)v_j \ge 1
$$
 (3)

where,

$$
\phi^{0}(a_{1}, a_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} \qquad \pi^{0}(c_{1}, c_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} \ns.t. \quad x_{1} + y_{0} - y_{1} = a_{1} \nx_{2} + y_{0} - y_{2} = a_{2} \nx_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}
$$
\n
$$
\phi^{0}(c_{1}, c_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} \ns.t. \quad y_{0} - y_{1} = c_{1} \ny_{0} - y_{2} = c_{2} \ny_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}
$$

Closed form for ϕ^0 and π^0 Let $\mathcal{F}(a_1, a_2) = (a_1 \pmod{1}, a_2 \pmod{1}).$

Closed form for ϕ^0 and π^0 Let $\mathcal{F}(a_1, a_2) = (a_1 \pmod{1}, a_2 \pmod{1}).$

Proposition

Consider two rows of a simplex tableau: $\sum_{i=1}^{n} a_i x_i + \sum_{j=1}^{m} c_i y_i = b$, $x_i \in \mathbb{Z}_+$, $y_i \in \mathbb{R}_+$. *Then the inequality* $\sum_{i=1}^{n} \phi^{0}(\mathcal{F}(a_{i}))x_{i} + \sum_{i=1}^{m} \pi^{0}(c_{i})y_{i} \geq 1$ *is valid inequality where,*

$$
\phi^{0}(w_{1}, w_{2}) = \begin{cases}\n\sigma_{1}(1 - w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in \mathbb{R}^{1} \\
\sigma_{3}(w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in \mathbb{R}^{2} \\
\sigma_{1}(1 - w_{1}) + \sigma_{2}(1 - w_{2}) & (w_{1}, w_{2}) \in \mathbb{R}^{3} \\
\sigma_{1}(1 - w_{1}) + \sigma_{4}(w_{2}) & (w_{1}, w_{2}) \in \mathbb{R}^{4} \\
\sigma_{3}(w_{1}) + \sigma_{2}(-w_{2}) & (w_{1}, w_{2}) \in \mathbb{R}^{5} \\
\sigma_{1}(-w_{1}) + \sigma_{4}(w_{2}) & (w_{1}, w_{2}) \in \mathbb{R}^{6}\n\end{cases}
$$

(4)

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

where
$$
(r_1, r_2) = \mathcal{F}(c)
$$
 and $\sigma_1 = \frac{r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}, \sigma_2 = \frac{r_2 - r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)},$
\n $\sigma_3 = \frac{1 - r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}, \sigma_4 = \frac{1 - r_2 + r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)} \text{ and}$
\n $\pi^0(c) = \lim_{h \downarrow 0} \frac{\phi(ch)}{h}$ (5)

Closed form for ϕ^0 and π^0 Let $\mathcal{F}(a_1, a_2) = (a_1 \pmod{1}, a_2 \pmod{1}).$

Proposition

Consider two rows of a simplex tableau: $\sum_{i=1}^{n} a_i x_i + \sum_{j=1}^{m} c_i y_i = b$, $x_i \in \mathbb{Z}_+$, $y_i \in \mathbb{R}_+$. *Then the inequality* $\sum_{i=1}^{n} \phi^{0}(\mathcal{F}(a_{i}))x_{i} + \sum_{i=1}^{m} \pi^{0}(c_{i})y_{i} \geq 1$ *is valid inequality where,*

$$
\phi^0(w_1, w_2) = \left\{\begin{array}{ll} \sigma_1(1 - w_1) + \sigma_2(1 - w_2) & (w_1, w_2) \in R^1 \\ \sigma_3(w_1) + \sigma_2(1 - w_2) & (w_1, w_2) \in R^2 \\ \sigma_1(1 - w_1) + \sigma_2(1 - w_2) & (w_1, w_2) \in R^3 \\ \sigma_1(1 - w_1) + \sigma_4(w_2) & (w_1, w_2) \in R^4 \\ \sigma_3(w_1) + \sigma_2(-w_2) & (w_1, w_2) \in R^5 \\ \sigma_1(-w_1) + \sigma_4(w_2) & (w_1, w_2) \in R^6 \end{array}\right.
$$

(4)

where
$$
(r_1, r_2) = \mathcal{F}(c)
$$
 and $\sigma_1 = \frac{r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}, \sigma_2 = \frac{r_2 - r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)},$
\n $\sigma_3 = \frac{1 - r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)}, \sigma_4 = \frac{1 - r_2 + r_1}{r_2 - (r_1)^2 - r_2(r_2 - r_1)} \text{ and}$
\n $\pi^0(c) = \lim_{h \downarrow 0} \frac{\phi(ch)}{h}$ (5)

Observation: The closed form of ϕ^0 depends only on the fractional part of columns of integer variables. **KORKARYKERKE PORCH**

Closed form for ϕ^0 contd.

メロトメ 御 トメ 差 トメ 差 ト

 299

Þ

YO A GET YER YER YOUR

Yes!

More precisely:

KO K (FRACT) YOU ARE YOU ARE

Yes!

More precisely:

 (ϕ^0, π^0) represents a valid inequality for the *infinite group relaxation* of mixed integer programs.

Yes!

More precisely:

- (ϕ^0, π^0) represents a valid inequality for the *infinite group relaxation* of mixed integer programs.
- We show that there exist functions $(\phi^{\sf M},\pi^{\sf 0})$ that strictly dominate $(\phi^{\sf 0},\pi^{\sf 0})$ and are extreme for the infinite group relaxation of mixed integer programs.

YO A REPART AND YOUR

Yes!

More precisely:

- (ϕ^0, π^0) represents a valid inequality for the *infinite group relaxation* of mixed integer programs.
- We show that there exist functions $(\phi^{\sf M},\pi^{\sf 0})$ that strictly dominate $(\phi^{\sf 0},\pi^{\sf 0})$ and are extreme for the infinite group relaxation of mixed integer programs.
- Upshot: Better cut coefficients can be obtained using the function (ϕ^M, π^0) that improve upon the coefficients obtained by (ϕ^0, π^0) .

We proceed step-by-step in the following slides.

The Framework: Infinite Group Relaxation.

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 │ ⊙ Q Q ④

Infinite relaxation of two-rows of simplex tableau

The mixed integer relaxation: $MG(P,\mathbb{R}^2,f)$:

$$
\sum_{a \in P} ax(a) + \sum_{w \in \mathbb{R}^2} wy(w) + f = \begin{pmatrix} 1 \\ 0 \end{pmatrix} x_{B_1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_{B_2}
$$

$$
x_{B_1}, x_{B_2} \in \mathbb{Z}, x(a) \in \mathbb{Z}_+, y(w) \in \mathbb{R}_+
$$

 $x, y \text{ have finite support},$ (6)

where $\mathit{l}^{2}=\{(a_{1},a_{2})\in\mathbb{R}^{2}\,|\,0\leq a_{1},a_{2}\leq1\},$ i.e. set of all columns of two fractions.

KORK EXTERNE MORE

Infinite relaxation of two-rows of simplex tableau

The mixed integer relaxation: $MG(P,\mathbb{R}^2,f)$:

$$
\sum_{a \in \mathcal{P}} ax(a) + \sum_{w \in \mathbb{R}^2} wy(w) + f = \begin{pmatrix} 1 \\ 0 \end{pmatrix} x_{B_1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_{B_2}
$$

$$
x_{B_1}, x_{B_2} \in \mathbb{Z}, x(a) \in \mathbb{Z}_+, y(w) \in \mathbb{R}_+
$$

$$
x, y \text{ have finite support}, \qquad (6)
$$

where $\mathit{l}^{2}=\{(a_{1},a_{2})\in\mathbb{R}^{2}\,|\,0\leq a_{1},a_{2}\leq1\},$ i.e. set of all columns of two fractions.

Assuming all the nonbasic variables are continuous: $MG(\emptyset, \mathbb{R}^2, f)$:

$$
\sum_{w \in \mathbb{R}^2} wy(w) + f = \begin{pmatrix} 1 \\ 0 \end{pmatrix} x_{B_1} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} x_{B_2}
$$

$$
x_{B_1}, x_{B_2} \in \mathbb{Z}, y(w) \in \mathbb{R}_+
$$

y has a finite support. (7)

 2990

Problem statement precisely

Now that we have defined the infinite relaxation, we proceed to ask the following precise questions...

Kロトメタトメミトメミト ミニのQC

Problem statement precisely

Now that we have defined the infinite relaxation, we proceed to ask the following precise questions...

The function (ϕ^0, π^0) represents a valid inequality for $\mathit{MG}(I^2,\mathbb{R}^2,f)$ as: If (\bar{x}, \bar{y}) satisfies:

$$
\sum_{a\in\mathcal{P}} ax(a) + \sum_{w\in\mathbb{R}^2} wy(w) + f = \left(\begin{array}{c}1\\0\end{array}\right)x_{B_1} + \left(\begin{array}{c}0\\1\end{array}\right)x_{B_2}
$$

$$
x_{B_1}, x_{B_2}\in\mathbb{Z}, x(a)\in\mathbb{Z}_+, y(w)\in\mathbb{R}_+,
$$

then (\bar{x}, \bar{y}) satisfies:

$$
\sum_{a\in P}\phi^0(a)x(a)+\sum_{w\in\mathbb{R}^2}\pi^0(w)y(w)\geq 1\tag{8}
$$

Question: Do there exist functions $(\phi', \pi'), \, \phi' : \mathsf{I}^2 \to \mathbb{R}_+$ and $\pi' : \mathbb{R}^2 \to \mathbb{R}_+$ such that: $\phi' \leq \phi^{\mathsf{0}}$ and $\pi' \leq \pi^{\mathsf{0}}$ and

$$
\sum_{a\in\mathcal{P}}\phi'(a)x(a)+\sum_{w\in\mathbb{R}^2}\pi'(w)\geq 1\tag{9}
$$

KORK EXTERNE MORE

is a valid inequality?

Analysis of π^0 : The Strength of Continuous Coefficients.

K ロ ▶ K 레 ▶ K 회 ▶ K 회 ▶ │ 회 │ ⊙ Q ⊙

Maximal lattice-free convex sets

[Lovász(1989)]

Definition

A set S is called a maximal lattice-free convex set in \mathbb{R}^2 if it is convex and

$$
ext{interior}(S) \cap \mathbb{Z}^2 = \emptyset,
$$

2 There exists no convex set S' satisfying [\(1\)](#page-37-0), such that $S \subsetneq S'$. — Первый профессиональный профессиональный софийский профессиональный софийский софийский софийский софийски
В 1990 году в 1990 году в

[Borozan and Cornuéjols (2007), Andersen, Louveaux, Weismantel, and Wolsey (2007)]

Theorem

For the system MG($\emptyset, \mathbb{R}^2, f$), an inequality of the form $\sum_{w\in \mathbb{R}^2} \pi(w) y(w) \geq 1$ is *un-dominated, if the set*

$$
P(\pi)=\{w\in\mathbb{R}^2|\pi(w-f)\leq 1\}\qquad \qquad (10)
$$

CONVIRTING A BY A BY

 QQ

is a maximal lattice-free convex set.

Strength of continuous coefficients, i.e., π^0

$$
\pi^{0}(w_{1}, w_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}
$$
\ns.t. $y_{0} - y_{1} = w_{1}$
\n $y_{0} - y_{2} = w_{2}$
\n $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

K ロ > K @ > K 할 > K 할 > [할 > 0 Q Q ·

Strength of continuous coefficients, i.e., π^0

$$
\pi^{0}(w_{1}, w_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}
$$

s.t. $y_{0} - y_{1} = w_{1}$
 $y_{0} - y_{2} = w_{2}$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

 $\mathsf{We} \text{ construct } P(\pi^0): \{ \pmb{\mathrm{w}} \in \mathbb{R}^2 | \pi(\pmb{\mathrm{w}}-f) \leq 1 \}.$

Strength of continuous coefficients, i.e., π^0

$$
\pi^{0}(w_{1}, w_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}
$$
\ns.t. $y_{0} - y_{1} = w_{1}$
\n $y_{0} - y_{2} = w_{2}$
\n $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

 $\mathsf{We} \text{ construct } P(\pi^0): \{ \pmb{\mathrm{w}} \in \mathbb{R}^2 | \pi(\pmb{\mathrm{w}}-f) \leq 1 \}.$

For all *r*, $P(\pi^0)$ is a maximal lattice-free triangle.

 $\therefore \pi^0$ is undominated by any inequality:

i.e. $\nexists \pi' : \mathbb{R}^2 \to \mathbb{R}_+$ such that $\pi' \, \leq \, \pi^0, \ \pi'(w) \, < \, \pi^0(w)$ for some $w \in \mathbb{R}^2$ where π' is valid inequality for $MG(\emptyset, \mathbb{R}^2, r)$ $MG(\emptyset, \mathbb{R}^2, r)$ [.](#page-40-0)

π^0 is an extreme inequality for $MG(\emptyset,\mathbb{R}^2,r)$

[Cornuéjols and Margot(2008)]

Theorem

If P(π) *is a maximal lattice-free triangle, then* π *represents an extreme inequality for* $MG(\emptyset, \mathbb{R}^2, f)$, i.e, $\nexists \pi_1, \pi_2 : \mathbb{R}^2 \to \mathbb{R}_+$ such that π_1 and π_2 represent valid inequalities, $\pi_1 \neq \pi_2$, and $\pi = \frac{1}{2}\pi_1 + \frac{1}{2}\pi_2$.

Corollary

The function representing coefficient of continuous variable obtained using mixing inequalities, i.e., π^0 , is extreme for $MG(\emptyset, \mathbb{R}^2, r)$.

We cannot improve the coefficient of continuous variables in the mixing cut.

Analysis of ϕ^0 : The Strength of Integer Coefficients.

It is possible to strengthen ϕ^0

$$
\phi^{0}(a_{1}, a_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2} \qquad \pi^{0}(c_{1}, c_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}
$$

s.t. $x_{1} + y_{0} - y_{1} = a_{1}$
 $x_{2} + y_{0} - y_{2} = a_{2}$
 $x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

K □ ▶ K @ ▶ K 할 X X 할 X 할 X 10 Q Q Q

It is possible to strengthen ϕ^0

$$
\phi^{0}(a_{1}, a_{2}) = \min \frac{10}{8} y_{0} + \frac{10}{8} y_{1} + \frac{5}{8} y_{2} \qquad \pi^{0}(c_{1}, c_{2}) = \min \frac{10}{8} y_{0} + \frac{10}{8} y_{1} + \frac{5}{8} y_{2}
$$

s.t. $x_{1} + y_{0} - y_{1} = a_{1}$
 $x_{2} + y_{0} - y_{2} = a_{2}$
 $x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$
 $y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}$

We can rewrite:

$$
\phi^{0}(a_{1}, a_{2}) = \min_{x_{1}, x_{2} \in \mathbb{Z}} (\pi^{0}(a_{1} - x_{1}, a_{2} - x_{2})).
$$
\n(11)

It is possible to strengthen ϕ^0

$$
\phi^{0}(a_{1}, a_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}
$$
\n
$$
\phi^{0}(a_{1}, a_{2}) = \min \frac{10}{8}y_{0} + \frac{10}{8}y_{1} + \frac{5}{8}y_{2}
$$
\n
$$
\text{s.t.} \quad x_{1} + y_{0} - y_{1} = a_{1}
$$
\n
$$
x_{2} + y_{0} - y_{2} = a_{2}
$$
\n
$$
x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}
$$
\n
$$
x_{1}, x_{2} \in \mathbb{Z}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}
$$
\n
$$
x_{2}, y_{0}, y_{1}, y_{2} \in \mathbb{R}_{+}
$$

We can rewrite:

$$
\phi^{0}(a_{1}, a_{2}) = \min_{x_{1}, x_{2} \in \mathbb{Z}} (\pi^{0}(a_{1} - x_{1}, a_{2} - x_{2})). \tag{11}
$$

[\(11\)](#page-43-1) is the fill-in function [Gomory and Johnson (1972)].

[D. and Wolsey (2008)]

Theorem

If P(π) *is a lattice-free triangle with non-integral vertices and exactly one integer point in the interior on each side, then* ϕ^0 : $\mathsf{I}^2 \to \mathbb{R}_+$ *defined as in [\(11\)](#page-43-1) is not an undominated inequality.*

 \exists [a](#page-46-0) fu[n](#page-30-0)ction $\phi':\hat I^2\to\mathbb R_+$ such that ϕ' represents a valid [ine](#page-44-0)[qu](#page-46-0)[al](#page-42-0)[it](#page-43-0)[y](#page-45-0) an[d](#page-31-0) $\phi'<\phi^0.$ $\phi'<\phi^0.$ $\phi'<\phi^0.$ $\phi'<\phi^0.$

A stronger inequality $\phi^{\sf M}$

Comparing ϕ^M with ϕ^0

Theorem

 G iven $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \leq 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(P, \mathbb{R}^2, r)$

Note: The condition $r_1 + r_2 < 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1 . Then for the resulting rows, $r_1 + r_2 < 1$.

Steps in Proof:

1 Prove function results in a valid inequality:

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

Theorem

 G iven $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \leq 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(P, \mathbb{R}^2, r)$

Note: The condition $r_1 + r_2 < 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1 . Then for the resulting rows, $r_1 + r_2 < 1$.

Steps in Proof:

1 Prove function results in a valid inequality: Show that $\phi^{\textsf{M}}(u) + \phi^{\textsf{M}}(v) \geq \phi^{\textsf{M}}(u+v)$ ∀ $u,v \in \mathit{l}^2,$ i.e., prove $\phi^{\textsf{M}}: \mathit{l}^2 \rightarrow \mathbb{R}_+$ is subadditive.

KORK ERKERK EI VAN

Theorem

 G iven $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \leq 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(P, \mathbb{R}^2, r)$

Note: The condition $r_1 + r_2 < 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1 . Then for the resulting rows, $r_1 + r_2 < 1$.

Steps in Proof:

- **1** Prove function results in a valid inequality: Show that $\phi^{\textsf{M}}(u) + \phi^{\textsf{M}}(v) \geq \phi^{\textsf{M}}(u+v)$ ∀ $u,v \in \mathit{l}^2,$ i.e., prove $\phi^{\textsf{M}}: \mathit{l}^2 \rightarrow \mathbb{R}_+$ is subadditive.
- 2 Prove function is un-dominated:

KORK ERKERK EI VAN

Theorem

 G iven $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \leq 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(P, \mathbb{R}^2, r)$

Note: The condition $r_1 + r_2 < 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1 . Then for the resulting rows, $r_1 + r_2 < 1$.

Steps in Proof:

- **1** Prove function results in a valid inequality: Show that $\phi^{\textsf{M}}(u) + \phi^{\textsf{M}}(v) \geq \phi^{\textsf{M}}(u+v)$ ∀ $u,v \in \mathit{l}^2,$ i.e., prove $\phi^{\textsf{M}}: \mathit{l}^2 \rightarrow \mathbb{R}_+$ is subadditive.
- 2 Prove function is un-dominated: Easily verified that, φ *^M* (*u*) + φ *^M* (*r* − *u*) = 1 ∀*u* ∈ *I* 2 . Therefore, by [Johnson's (1974)] φ *^M* is an un-dominated inequality.

KORK ERKERK EI VAN

Theorem

 G iven $0 < r_1 < r_2 < 1$ such that $r_1 + r_2 \leq 1$, the functions (ϕ^M, π^0) represent an extreme inequality for $MG(P, \mathbb{R}^2, r)$

Note: The condition $r_1 + r_2 < 1$ is not very 'serious', since given any two rows of tableau such that $r_1 + r_2 > 1$, multiple both the rows with -1 . Then for the resulting rows, $r_1 + r_2 < 1$.

Steps in Proof:

- **1** Prove function results in a valid inequality: Show that $\phi^{\textsf{M}}(u) + \phi^{\textsf{M}}(v) \geq \phi^{\textsf{M}}(u+v)$ ∀ $u,v \in \mathit{l}^2,$ i.e., prove $\phi^{\textsf{M}}: \mathit{l}^2 \rightarrow \mathbb{R}_+$ is subadditive.
- 2 Prove function is un-dominated: Easily verified that, φ *^M* (*u*) + φ *^M* (*r* − *u*) = 1 ∀*u* ∈ *I* 2 . Therefore, by [Johnson's (1974)] φ *^M* is an un-dominated inequality.
- Prove function is extreme.

KO K G K 4 B K 4 B K B A 9 A C A

Proving ϕ^M is a subadditive function

[D. and Richard (2008)]

Proposition

Let φ *be a continuous, piecewise linear and nonnegative function on I*² *such that* $\phi(u) + \phi(r - u) = 1$. Let V and E be the set of 'vertices' and 'edges' of ϕ . *Then* ϕ *is subadditive iff*

$$
\phi(\mathsf{v}_1) + \phi(\mathsf{v}_2) \ge \phi(\mathsf{v}_1 + \mathsf{v}_2) \qquad \forall \mathsf{v}_1, \mathsf{v}_2 \in \mathbb{V}(\phi)
$$

$$
\phi(\mathsf{e}_1) + \phi(\mathsf{e}_2) \ge \phi(\mathsf{v}_3) \text{ where}
$$

$$
\mathsf{e}_1 \in \mathsf{q}_1, \mathsf{e}_2 \in \mathsf{q}_2, \mathsf{e}_1 + \mathsf{e}_2 = \mathsf{v}_3, \forall \mathsf{v}_3 \in \mathbb{V}(\phi) \cup \mathbb{V}'(\phi) \quad , \forall \mathsf{q}_1, \mathsf{q}_2 \in \mathbb{E}(\phi).
$$

To check subadditivity of a piecewise linear function we need to check only the function at the 'vertices' and 'edges'.

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

Proving ϕ^M is a subadditive function: Too many cases!

After checking these case we prove that the functi[on](#page-53-0) $\phi^{\sf M}$ $\phi^{\sf M}$ $\phi^{\sf M}$ [i](#page-53-0)[s](#page-54-0) [a](#page-46-0) [v](#page-45-0)a[lid](#page-64-0) [i](#page-45-0)[n](#page-46-0)[eq](#page-64-0)[ua](#page-0-0)[lity](#page-64-0).

A value-function interpretation of $\phi^{\sf M}$

In fact, by the subadditivity of $\phi^{\sf M}$ we obtain the following result:

Proposition

If $r_1 + r_2 < 1$, then for the problem:

$$
\left(\begin{array}{c}1\\0\end{array}\right)x_1+\left(\begin{array}{c}0\\1\end{array}\right)x_1+\left(\begin{array}{c}\tfrac{1+f_1-f_2}{2}\\ \tfrac{f_1+\frac{f_2}{2}\end{array}\right)x_3+\left(\begin{array}{c}1\\1\end{array}\right)y_0+\left(\begin{array}{c}-1\\0\end{array}\right)y_1+\left(\begin{array}{c}0\\-1\end{array}\right)y_2=\left(\begin{array}{c}r_1\\r_2\end{array}\right)\\ x_1,x_2\in\mathbb{Z},x_3\in\mathbb{Z}_+,y_0,y_1,y_2\in\mathbb{R}_+
$$

The following inequality is valid:

$$
\frac{(r_2-r_1)(1-r_2)}{2D}x_3+\frac{1-r_2}{D}y_0+\frac{r_1}{D}y_1+\frac{r_2-r_1}{D}y_2\geq 1
$$

 2990

B

A value-function interpretation of $\phi^{\sf M}$

In fact, by the subadditivity of $\phi^{\sf M}$ we obtain the following result:

Proposition

If $r_1 + r_2 < 1$, then for the problem:

$$
\left(\begin{array}{c}1\\0\end{array}\right)x_1+\left(\begin{array}{c}0\\1\end{array}\right)x_1+\left(\begin{array}{c}1+\frac{r_1-r_2}{2}\\ \frac{r_1+\frac{r_2}{2}\end{array}\right)x_3+\left(\begin{array}{c}1\\1\end{array}\right)y_0+\left(\begin{array}{c}-1\\0\end{array}\right)y_1+\left(\begin{array}{c}0\\-1\end{array}\right)y_2=\left(\begin{array}{c}r_1\\r_2\end{array}\right)
$$

$$
x_1,x_2\in\mathbb{Z},x_3\in\mathbb{Z}_+,y_0,y_1,y_2\in\mathbb{R}_+
$$

The following inequality is valid:

$$
\frac{(r_2-r_1)(1-r_2)}{2D}x_3+\frac{1-r_2}{D}y_0+\frac{r_1}{D}y_1+\frac{r_2-r_1}{D}y_2\geq 1
$$

Then $\phi^\textsf{M}$ can be obtained as follows:

$$
\phi^M(a_1, a_2) = \min \frac{(r_2 - r_1)(1 - r_2)}{2D}x_3 + \frac{1 - r_2}{D}y_0 + \frac{r_1}{D}y_1 + \frac{r_2 - r_1}{D}y_2
$$

s.t. $x_1 + (1 + \frac{r_1 - r_2}{2})x_3 + y_0 - y_1 = a_1$
 $x_2 + \frac{r_1 + r_2}{2}x_3 + y_0 - y_2 = a_2$
 $x_1, x_2 \in \mathbb{Z}, x_3 \in \mathbb{Z}_+, y_0, y_1, y_2 \in \mathbb{R}_+$

Without th[e](#page-46-0) ter[m](#page-55-0)s [c](#page-56-0)[o](#page-57-0)[rr](#page-45-0)e[spo](#page-64-0)[n](#page-45-0)[di](#page-46-0)[ng](#page-64-0) [to](#page-0-0) x_3 the above reduces to the [pr](#page-55-0)o[bl](#page-57-0)em corresponding to $\mathcal{P}^0.$

Proving (ϕ^M, π^0) is extreme inequality for $MG(P, \mathbb{R}^2, r)$ [D. and Wolsey (2008)]

Theorem

- **1** Let $\pi : \mathbb{R}^2 \to \mathbb{R}_+$ be a extreme inequality for $MG(\emptyset, \mathbb{R}^2, r)$.
- 2 *Let* $u^0 \in l^2$ and define $V = max_{n \in \mathbb{Z}_+,\,n \geq 1} \left\{ \frac{1-\pi(w)}{n} | \mathcal{F}(u^0 n + w) = r \right\}$ Lifting.
- 3 *Define* $\phi: \mathsf{P} \to \mathbb{R}_+$ as $\phi(\mathsf{v}) = \min_{n \in \mathbb{Z}_+} \{n\mathsf{V} + \pi(\mathsf{w}) | \mathcal{F}(\mathsf{u}^0 n + \mathsf{w}) = \mathsf{v} \}$... Fill-in.

If (ϕ, π) *is an un-dominated inequality for MG*(ℓ^2 , \mathbb{R}^2 , r), then (ϕ, π) *is an extreme inequality for MG*(l^2, \mathbb{R}^2, r).

 $\mathbf{E} = \mathbf{A} \in \mathbf{E} \times \mathbf{A} \in \mathbf{B} \times \mathbf{A} \oplus \mathbf{B} \times \mathbf{A} \oplus \mathbf{A}$

 2990

Proving (ϕ^M, π^0) is extreme inequality for $MG(P, \mathbb{R}^2, r)$ [D. and Wolsey (2008)]

Theorem

- **1** Let $\pi : \mathbb{R}^2 \to \mathbb{R}_+$ be a extreme inequality for $MG(\emptyset, \mathbb{R}^2, r)$.
- 2 *Let* $u^0 \in l^2$ and define $V = max_{n \in \mathbb{Z}_+,\,n \geq 1} \left\{ \frac{1-\pi(w)}{n} | \mathcal{F}(u^0 n + w) = r \right\}$ Lifting.
- 3 *Define* $\phi: \mathsf{P} \to \mathbb{R}_+$ as $\phi(\mathsf{v}) = \min_{n \in \mathbb{Z}_+} \{n\mathsf{V} + \pi(\mathsf{w}) | \mathcal{F}(\mathsf{u}^0 n + \mathsf{w}) = \mathsf{v} \}$... Fill-in.

If (ϕ, π) *is an un-dominated inequality for MG*(ℓ^2 , \mathbb{R}^2 , r), then (ϕ, π) *is an extreme inequality for MG*(l^2, \mathbb{R}^2, r).

In our case, $u^0 = (1 + \frac{r_1 - r_2}{2}, \frac{r_1 + r_2}{2})$ and

$$
\frac{(r_2-r_1)(1-r_2)}{2D} = \max_{n \in \mathbb{Z}_+, n \ge 1} \left\{ \frac{1-\pi^0(w)}{n} \middle| \mathcal{F}(u^0 n + w) = r \right\}
$$

YO A REPART AND YOUR

Proving (ϕ^M, π^0) is extreme inequality for $MG(P, \mathbb{R}^2, r)$ [D. and Wolsey (2008)]

Theorem

Let
$$
\pi : \mathbb{R}^2 \to \mathbb{R}_+
$$
 be a extreme inequality for $MG(\emptyset, \mathbb{R}^2, r)$.

2 *Let* $u^0 \in l^2$ and define $V = max_{n \in \mathbb{Z}_+,\,n \geq 1} \left\{ \frac{1-\pi(w)}{n} | \mathcal{F}(u^0 n + w) = r \right\}$ Lifting.

3 *Define* $\phi: \mathsf{P} \to \mathbb{R}_+$ as $\phi(\mathsf{v}) = \min_{n \in \mathbb{Z}_+} \{n\mathsf{V} + \pi(\mathsf{w}) | \mathcal{F}(\mathsf{u}^0 n + \mathsf{w}) = \mathsf{v} \}$... Fill-in.

If (ϕ, π) *is an un-dominated inequality for MG*(ℓ^2 , \mathbb{R}^2 , r), then (ϕ, π) *is an extreme inequality for MG*(l^2, \mathbb{R}^2, r).

In our case, $u^0 = (1 + \frac{r_1 - r_2}{2}, \frac{r_1 + r_2}{2})$ and

$$
\frac{(r_2-r_1)(1-r_2)}{2D} = \max_{n \in \mathbb{Z}_+, n \ge 1} \left\{ \frac{1-\pi^0(w)}{n} \middle| \mathcal{F}(u^0 n + w) = r \right\}
$$

and

$$
\phi^M(a_1, a_2) = \min \frac{(r_2 - r_1)(1 - r_2)}{2D}x_3 + \frac{1 - r_2}{D}y_0 + \frac{r_1}{D}y_1 + \frac{r_2 - r_1}{D}y_2
$$
\ns.t. $x_1 + (1 + \frac{r_1 - r_2}{2})x_3 + y_0 - y_1 = a_1$
\n $x_2 + \frac{r_1 + r_2}{2}x_3 + y_0 - y_2 = a_2$
\n $x_1, x_2 \in \mathbb{Z}, x_3 \in \mathbb{Z}_+, y_0, y_1, y_2 \in \mathbb{R}_+$

¹ We illustrated techniques to use mixing inequalities for general two-rows of a simplex tableau.

KID X 個 X K ミ X K ミ X ミ X の Q Q →

- ¹ We illustrated techniques to use mixing inequalities for general two-rows of a simplex tableau.
- ² We showed that when applying the mixing inequalities for general two-rows of a simplex tableau, the inequality can be strengthened.

KORK E KERKERKERKER

- ¹ We illustrated techniques to use mixing inequalities for general two-rows of a simplex tableau.
- ² We showed that when applying the mixing inequalities for general two-rows of a simplex tableau, the inequality can be strengthened.
- ³ A new class of extreme inequality for two-row mixed integer infinite group problem.

KORK E KERKERKERKER

- ¹ We illustrated techniques to use mixing inequalities for general two-rows of a simplex tableau.
- ² We showed that when applying the mixing inequalities for general two-rows of a simplex tableau, the inequality can be strengthened.
- ³ A new class of extreme inequality for two-row mixed integer infinite group problem.

Challenges:

¹ The proof of validity of the stronger inequality is *not elegant*: More importantly the proof does not extend to more rows of a mixing inequalities.

KORK E KERKERKERKER

Thank You.

KOXK@XKEXKEX E DAQ