
Strengthening Dual Bounds for Multicommodity Capacitated Network
Design with Unsplittable Flow Constraints

Lacy M. Greeninga,∗, Santanu S. Deyb, Alan L. Ererab

aSchool of Computing and Augmented Intelligence, Arizona State University, Tempe, Arizona, United States
bH. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of

Technology, Atlanta, Georgia, United States

Abstract

Multicommodity capacitated network design (MCND) models can be used to optimize the

consolidation of shipments within e-commerce fulfillment networks. In practice, fulfillment networks

require that shipments with the same origin and destination follow the same transfer path. This

unsplittable flow requirement complicates the MCND problem, requiring integer programming (IP)

formulations with binary variables replacing continuous flow variables. To enhance the solvability of

instances of this variant of the MCND problem for large-scale logistics networks, this work focuses on

strengthening dual bounds. We investigate the polyhedra of arc-set relaxations, and we introduce

two new classes of valid inequalities that can be implemented within solution approaches. We

develop one approach that dynamically adds valid inequalities to the root node of a reformulation

of the MCND IP with additional valid metric inequalities. We demonstrate the effectiveness of our

ideas with a comprehensive computational study using path-based fulfillment instances, constructed

from data provided by a large U.S.-based e-commerce company, and the well-known arc-based

Canad instances. Experiments show that our best solution approach for a practical path-based

model reduces the IP gap by an average of 26.5% and 22.5% for the two largest instance groups,

compared to solving the reformulation alone, demonstrating its effectiveness in improving the dual

bound. In addition, experiments using only the arc-based relaxation of the model highlight the

strength of our new valid inequalities when compared only to the linear programming relaxation

(LPR), resulting in an average 90% reduction in the IP gap.

Keywords: Network design, fulfillment logistics, valid inequalities, dual bounds

1. Introduction

The rapid growth of e-commerce has led companies to seek improved fulfillment logistics sys-

tems to reduce the costs of shipping customer orders and meeting on-time delivery promises.

Optimization approaches for the design of such networks have subsequently received attention

[36, 25, 18, 31, 29, 7, 34]. A core optimization modeling approach used in this application is the

∗Corresponding author: lacy.greening@asu.edu

multicommodity capacitated network design (MCND) problem, which seeks to optimize the trans-

portation of shipments through a minimum-cost transshipment network [2, 27, 3]. Shipments are

grouped into commodities, defined as origin-destination pairs with specific demand volumes, and

the design model prescribes one or more paths for the flow of each commodity. The selected paths

and assigned shipment flows then require integer multiples of a capacity unit (e.g., truck trailers)

to be installed on directed arcs, incurring a fixed cost for each installed unit and possibly a variable

cost based on demand volume transported. Costs are shared among commodities that use the same

arc, and this modeling approach identifies the best ways to consolidate shipments and improve the

fill rate of dispatched trailers. Recent studies show that these approaches can reduce fulfillment

network costs by over 30%. However, achieving these results for the practical networks operated

by industry relies on solving large-scale mixed-integer programming models involving thousands of

binary and integer variables, as well as tens of thousands of constraints [30].

In real-world fulfillment networks, there are additional dispatch and network design constraints

specific to each organization beyond those typically found in the standard MCND model. A key

distinction between practical applications and the standard MCND model is that in practice all

shipments of the same commodity must follow the same path of arcs from origin to destination

within the network. That is, MCND models for fulfillment networks have unsplittable (or non-

bifurcated) flow constraints [2, 33, 29, 32, 13]. This requirement simplifies the logistics process

and reduces errors, since outbound loading destinations remain consistent for shipments of the

same commodity. However, it can make realistically-sized instances even more challenging to solve

to optimality because it requires replacing continuous flow variables with binaries. Numerous

works focus on developing effective metaheuristic approaches to identify strong primal solutions

for these so-called single-path MCND problems [18, 4]; however, assessing the quality of solutions

is typically difficult for realistically-sized instances due to weak dual bounds, a common issue in

network design problems caused by their weak linear programming (LP) relaxations. In this paper,

we aim to enhance the solvability of this specific integer programming (IP) variant of the MCND

problem by strengthening the dual bounds.

Of the works studying the unsplittable flow MCND variant, several aim to improve the solvabil-

ity of this hard class of problems by focusing on the polyhedra of arc-set relaxations to identify valid

inequalities and related separation algorithms [2, 13, 12, 35, 6]. The authors of [12] introduce the

c-strong inequalities and characterize their necessary and sufficient conditions to be facet-defining.

The authors of [2] extend this work by showing that the separation problem of c-strong inequalities

is NP-hard and that it is sufficient to consider only the subspace of fractional variables. The

authors also introduce the k-split c-strong and lifted knapsack cover inequalities, both of which

include c-strong inequalities as a special case with k-split c-strong inequalities often resulting in

greater improvements. More recently, the authors of [13] develop a generalized exact separation

algorithm for the unsplittable flow arc-set polyhedron, allowing for an arbitrary number of facil-

ities and capacities (i.e., installing multiple unit types with varying capacities, instead of integer

2

multiples of one type). Motivated by these studies, we will also study the arc-set polyhedra to

identify two new classes of valid inequalities, in addition to identifying an implementation of metric

inequalities [3, 8, 17] which improve weak dual bounds.

Thus, to improve the solvability of practical instances, this work seeks approaches that strengthen

dual bounds for logistics and transportation network design problems. Specifically, we:

• reformulate the MCND model to utilize a multiple-choice binary variable scheme to select

arc capacities, as opposed to integer capacity variables, and verify this reformulation enables

solvers to find stronger lower bounds;

• strengthen the LP relaxation of this reformulation by introducing two new classes of valid

inequalities for the unsplittable MCND problem (applicable to both arc- and path-based

formulations);

• identify an implementation of metric inequalities, valid for both the IP and LP MCNDmodels,

that improves the bounding procedures of commercial solvers by helping them select better

cutting planes implied by the integer hull of these metric inequalities; and

• conduct an extensive computational study on two sets of instances – one for path-based

formulations and the other for arc-based formulations – to demonstrate the value of our

proposed reformulation, valid inequalities, and solver-aiding constraints.

The remainder of this paper is organized as follows. In Section 2, we define and model the

MCND problem using two path-based formulations, one which utilizes integer variables to model

arc capacities (INT) and another which utilizes a multiple-choice selection of binary variables to

model arc capacities (BIN). In Section 3, we study a structured relaxation of the BIN formulation

and introduce two new classes of valid inequalities. In Section 4, we describe a set of metric

inequalities which aid solvers in generating and selecting better cutting planes. Finally, in Section

5, we report the results of computational experiments performed on instances constructed from e-

commerce fulfillment network and demand data, as well as on a well-known set of MCND instances

for arc-based formulations.

2. Formulations

Let G = (N ,A) define a transshipment network, whereN represents a set of locations (nodes) in

the network and A represents a set of directed arcs connecting pairs of locations. Shipment demand

is modeled using a set K of commodities, where each commodity k ∈ K has an origin o(k) ∈ N ,

destination d(k) ∈ N , and demand volume dk that must be shipped from origin to destination

along a single path (or sequence of adjoined arcs) through the network. As the number of paths

between pairs of locations can be exponential, we define a set of paths Pk that each commodity

k ∈ K can use. Let fa be the fixed cost of installing one unit of capacity on arc a ∈ A, cp be the

variable cost per unit of demand when using path p ∈ ∪k∈KPk, and qa denote the unit capacity

of arc a ∈ A. The MCND problem is to determine a minimum-cost allocation of transportation

capacity on network arcs to ensure that commodity demand requirements are satisfied.

3

2.1. Integer Capacity Variables

Let binary variables xp indicate if commodity k ∈ K uses path p ∈ Pk or not. Let integer vari-

ables τa represent the number of capacity units installed on arc a ∈ A. The path-based unsplittable

MCND problem with integer capacity variables (referred to as INT) is formulated as follows:

min
x,τ

∑
k∈K

∑
p∈Pk

cpdkxp +
∑
a∈A

faτa (1a)

s.t.
∑
p∈Pk

xp = 1, ∀ k ∈ K, (1b)

∑
k∈K

∑
{p∈Pk|p∋a}

dkxp ≤ qaτa, ∀ a ∈ A, (1c)

xp ∈ {0, 1}, ∀ p ∈ Pk, ∀ k ∈ K, (1d)

τa ∈ Z≥0, ∀ a ∈ A. (1e)

The objective is to minimize the sum of fixed and variable costs. Constraints (1b) ensure that

one path is selected for each commodity. Constraints (1c) ensure that the required number of

capacity units are installed to transport the flow volume assigned to each arc as defined by selected

paths.

2.1.1. Binary Capacity Variables

Previous studies [27, 21, 22, 10] have shown that by reformulating flow and/or capacity variables

to use the so-called multiple-choice selection, where an expanded set of binary selector variables

replace either an integer capacity and/or binary flow variable, one can define potentially stronger

linking constraints and other valid inequalities to produce higher-quality LP relaxations. We also

elect to use a multiple-choice reformulation of INT (1), and later use this reformulation to define a

new class of valid inequalities in Section 3.

In our multiple-choice reformulation, we replace integer capacity variables τa for arcs a ∈ A with

a set of binary variables yat that select an integer capacity t from a set Ta containing allowable non-

zero capacity values. We define Ta = {1, . . . , Tmax
a } for each arc a ∈ A, where Tmax

a is the maximum

number of capacity units that may be necessary on arc a ∈ A and is defined as Tmax
a =

⌈∑
k∈K δkadk

qa

⌉
with δka = 1 if the path set Pk for commodity k ∈ K contains a path that includes arc a ∈ A (i.e.,

|{p ∈ Pk|p ∋ a}| ≥ 1) and δka = 0 otherwise. Thus, we reformulate the integer capacity variables

by making the following replacement:

τa =
∑
t∈Ta

tyat, ∀ a ∈ A. (2)

The path-based unsplittable MCND problem with multiple-choice binary capacity variables (re-

4

ferred to as BIN) is formulated as follows:

min
x,y

∑
k∈K

∑
p∈Pk

cpdkxp +
∑
a∈A

fa
∑
t∈Ta

tyat (3a)

s.t.
∑
p∈Pk

xp = 1, ∀ k ∈ K, (3b)

∑
k∈K

∑
{p∈Pk|p∋a}

dkxp ≤ qa
∑
t∈Ta

tyat, ∀ a ∈ A, (3c)

∑
t∈Ta

yat ≤ 1, ∀ a ∈ A, (3d)

xp ∈ {0, 1}, ∀ p ∈ P, (3e)

yat ∈ {0, 1}, ∀ t ∈ Ta, ∀ a ∈ A. (3f)

The objective (3a) and constraints (3b) and (3c) function the same as the objective (1a) and

constraints (1b) and (1c), respectively. Constraints (3d) ensure the model selects at most one

integer capacity to install on arc a ∈ A.
While reformulation (3) is larger (with

∑
a∈A(|Ta|−1) more variables and |A| more constraints)

than (1), we will show in Section 5.2 that a commercial optimization solver is able to produce

stronger lower bounds when solving (3). However, it will also be shown that even small instances of

these problems cannot be solved within the provided runtime and larger instances continue to have

weak lower bounds despite the reformulation. Thus, in the next section, we will study a structured

relaxation of the MCND problem to identify a new class of valid inequalities which can produce

strong LP relaxations, and ultimately help solvers identify stronger lower bounds.

3. Valid Inequalities

It is well known that MCND formulations may produce weak LP relaxations (referred to as

LP(INT) and LP(BIN) for models (1) and (3), respectively) for many practical instances due to

the variable upper bound capacity constraints (1c) and (3c). We provide an illustration of a root

cause of this phenomenon in Figure 1 by plotting the cost faτa of an arc a in INT and LP(INT) given

the volume assigned to flow on that arc,
∑

k∈K
∑

{p∈Pk|p∋a} dkxp. We see that the cost function

for INT is a step function, whereas LP(INT) has a linear cost function with a slope of fa
qa

(due to

continuous τa variables causing constraints (1c) of LP(INT) to hold at equality). Thus, LP(INT)

minimizes cost by sending commodities along arcs (similarly, paths composed of a sequence of arcs)

with the cheapest marginal cost per unit of demand sent. When the volume sent along an arc

constitutes a small proportion of the integer capacity, LP(INT) is a weak approximation of INT.

Note the same holds for BIN and LP(BIN).

A common way to strengthen the MCND LP relaxation is to add the following disaggregated

5

fa

2fa

3fa

4fa

qa 2qa 3qa 4qa

Volume on Arc a
C
o
st

o
f
A
rc
a

LP(INT)

INT

Figure 1: Comparing the cost of volume flowing arc a for INT and LP(INT).

capacity linking constraints to LP(INT) and LP(BIN), respectively:

tmin
ak

∑
{p∈Pk|p∋a}

xp ≤ τa, ∀ a ∈ A, ∀ k ∈ K, (4)

∑
{p∈Pk|p∋a}

xp ≤
Tmax
a∑

t=tmin
ak

yat, ∀ a ∈ A, ∀ k ∈ K, (5)

where tmin
ak is the minimum number of capacity units required to transport commodity k ∈ K

on arc a ∈ A and is defined as tmin
ak =

⌈
dk
qa

⌉
. If tmin

ak = 1 for all a ∈ A and k ∈ K (i.e., no

individual commodity demand exceeds an arc’s single-unit capacity), the solutions of LP(INT) and

LP(BIN) with the addition of disaggregated capacity linking constraints (4) and (5), respectively,

are equivalent. However, if this is not true and tmin
a′k′ > 1 for some a′ ∈ A and k′ ∈ K, then LP(BIN)

with constraints (5) can produce a marginally stronger relaxation solution than LP(INT) with

constraints (4). See Appendix A for an example.

Potentially stronger valid inequalities can be generated from simple structured relaxations over

more complicated sets, like those focused on the unsplittable flow arc-set polyhedron (i.e., the

convex hull of solutions to capacity constraints of the form (1c) or (3c)) [2, 3, 13, 8, 12, 35]. Thus,

in the following section, we investigate a simple structured relaxation of BIN (3) in which we also

focus on the capacity-related constraints, including the single-capacity selection constraints (3d).

We will show through examples, and later demonstrate through a computational study, that the

two new classes of valid inequalities developed can produce stronger LP relaxations as compared

to when adding constraints (5) to LP(BIN).

3.1. Valid Inequalities from Relaxation

For a given arc a ∈ A, we consider the following set:

S :=

(x, y) ∈ {0, 1}|Pa| × {0, 1}|Ta| |
∑
p∈Pa

dpxp ≤ qa
∑
t∈Ta

tyt;
∑
t∈Ta

yt ≤ 1

 , (6)

6

where Pa = {p ∈ ∪k∈KPk|p ∋ a}, dp ∈ Z+ for p ∈ Pa and qa ∈ Z+. Note that a path p ∈ Pk is

unique for commodity k; thus, to simplify notation, we use dp in place of dk for p ∈ Pk.
We first analyze the convex hull solutions of (6), from which we deduce the general form of the

constraints defining the set.

Proposition 1. There exists non-negative matrices G,H such that

conv(S) =

{
(x, y) ∈ [0, 1]|Pa| × [0, 1]|Ta|

∣∣∣∣∣Gx ≤ Hy; ∑
t∈Ta

yt ≤ 1

}
.

Proof. Observe that if yt = 0 for all t ∈ Ta, then x = 0. Otherwise for t ∈ Ta, let:

St :=

x ∈ {0, 1}|Pa|

∣∣∣∣∣∣
∑
p∈Pa

dpxp ≤ qat

 ,

and let

conv(St) =
{
u ≥ 0

∣∣ stau ≤ rt} .
Then it is clear that,

S = (0,0) ∪
⋃
t∈Ta

(St, et).

Therefore, we obtain that

conv(S) = projx,y(T), where

T =

{
(x, y, x1, x2, . . . , xT

max
a)

∣∣∣∣∣xt ≥ 0, stax
t − rtyt ≤ 0, t ∈ Ta;x−

∑
t∈Ta

xt = 0;
∑
t∈Ta

yt ≤ 1

}
.

We may apply Fourier-Motzkin elimination to T to project out the variables x1, . . . , xT
max
a . Since

these variables only appear in the constraints xt ≥ 0, stax
t−rtyt ≤ 0, t ∈ Ta;x−

∑
t∈Ta x

t = 0, where

the right-hand-side is 0 for all the constraints, we arrive at the fact that (after Fourier-Motzkin

elimination)

conv(S) =

{
(x, y) ∈ [0, 1]|Pa| × [0, 1]|Ta|

∣∣∣∣∣ G̃x ≤ H̃y; ∑
t∈Ta

yt ≤ 1

}
.

It remains to prove that G̃ and H̃ are non-negative.

We will first consider G̃. Suppose that G̃v,w < 0 for some (v, w). We claim that if we replace

G̃v,w with 0, the resulting inequality: ∑
p∈Pa\{w}

G̃v,pxp ≤ H̃vy (7)

is still valid for S. This will prove the result, since replacing G̃v,w by 0 results in a stronger inequality

that dominates the original inequality (since xw ≥ 0). Suppose (x̂, ŷ) ∈ S and this point does not

7

satisfy (7). First note that x̂w = 1, since if x̂w = 0, then
∑

p∈Pa\{w} G̃v,px̂p =
∑

p∈Pa
G̃v,px̂p.

However, now observe that (x̃, ŷ) ∈ S, where:

x̃j =

{
x̂p p ̸= w

0 p = w
.

Therefore, H̃vŷ ≥
∑

p∈Pa
G̃v,px̃p =

∑
p∈Pa\{w} G̃v,px̃p =

∑
p∈Pa\{w} G̃v,px̂p. Thus, (x̂, ŷ) satisfies

(7), a contradiction.

We now verify that H̃ is non-negative. Note that (0, ep) ∈ S for all p ∈ Pa. Therefore, if

Hv,k < 0, we have that the point (0, ek) will not satisfy the inequality
∑

p∈Pa
G̃v,pxp ≤ H̃vy. This

concludes the proof.

It is important to note that the general form of the constraints lacks a constant term inGx ≤ Hy,
unlike the inequality introduced in [13]. The reasons for this are twofold: (i) arcs do not have pre-

existing capacities, which would introduce a constant term to the right-hand side of (3c), and (ii)

our reformulation imposes that each arc has a uniquely defined capacity value such that only one

yt > 0 for all t ∈ Ta. If either condition were not true, a constant term would be required. In the

following sections, we describe new valid inequalities for S that are motivated by Proposition 1.

3.1.1. Single-Arc Commodity Packing Constraints

Since G is a non-negative matrix, we first explore a subset of constraints which involve only

{0, 1} coefficients for the path variables x. In this case, since both x and y are binary variables,

each element in H is bounded above by |Pa|, as the left-hand side cannot exceed this value and at

most one y variable on the right-hand side can be nonzero.

Observe that for a given a left-hand-side binary vector g corresponding to the x vector, we can

explicitly determine ht, the coefficient for yt, by counting the maximum number of commodities with

at least one path selected in g (i.e., x variable with a coefficient of 1 in g) that can be transported

using (or packed into) t capacity units. Note we emphasize the number of commodities and not the

number of paths, as commodities can have more than one path in Pa but should not be counted

more than once. We state this result formally next.

Proposition 2. Consider a non-zero binary vector g. The inequality∑
p∈Pa

gpxp ≤
∑
t∈Ta

αtyt, (8)

is a valid inequality for S if

αt = max

∑
p∈Z

xp

∣∣∣∣∣∣
∑
p∈Z

dpxp ≤ tqa, xp ∈ {0, 1}

 , (9)

where Z = {p ∈ Pa | gp = 1}.

8

Proof. Clearly (8) is satisfied by (0, 0). Now consider any non-zero solution (x̂, ŷ) ∈ S with ŷt = 1

for t = t̂ and ŷt = 0 for t ̸= t̂. Then, by the definition of S, we have that
∑

p∈Pa
x̂pdp ≤ t̂qa.

Therefore, we obtain that
∑

p∈Z x̂pdp ≤
∑

p∈Pa
x̂pdp ≤ t̂qa. Now by the definition of αt in (9), we

have that αt̂ ≥
∑

p∈Z x̂p. In other words, we obtain that∑
p∈Pa

gpx̂p =
∑
p∈Z

x̂p ≤ αt̂ =
∑
t∈Ta

αtŷt,

that is (8) is satisfied by (x̂, ŷ).

Using Proposition 2, we can define the following single-arc commodity packing (SAC-Pack)

constraints: ∑
p∈Z

xp ≤
∑
t∈Ta

αtyt, ∀ a ∈ A, (10)

where αt is an integer coefficient equal to the maximum number of selected commodities (those with

at least one path p ∈ Z) that can be transported by t ∈ Ta capacity units. In a sense, constraints

(10) are a “smart re-aggregation” of linking constraints (5) for a set of commodities with at least

one path p ∈ Z, and can at times even dominate them.

Example 1. Consider the following example where we demonstrate how SAC-Pack constraints (10)

can dominate disaggregated linking constraints (5).

Assume Pa = Z = {1, 2}. Let the solution of LP(BIN) be x1 = 0.5 and x2 = 0.4 and let

d1 = 60 and d2 = 70 with qa = 100. We will also assume that Tmax
a = 2 for clarity of exposition.

Constraints (3c) set the capacity of arc a as ya1 = 0.58 units (similarly, ya1 + 2ya2 = 0.58). To

strengthen LP(BIN), we add the following constraints (10):

x1 + x2 ≤ ya1 + 2ya2.

This increases the installed capacity to 0.9, whereas if we only add the following constraints (5):

x1 ≤ ya1 + ya2,

x2 ≤ ya1 + ya2,

ya1 = 0.58 satisfies both constraints, and the solution of LP(BIN) does not change.

We note that the process of determining the coefficients given by (9) can be done efficiently by

sorting the selected commodities in order of non-decreasing demand values, adding demands until

the capacity is exceeded, and setting the coefficient to the number of demands added minus one (as

the last demand cannot be transported). We next formally define a separation routine to identify

violated constraints (10).

9

Separation. Given the set S described in (6) and a point (x∗, y∗), there exists a SAC-Pack constraint

(10) violated by (x∗, y∗) if and only if there exists a set Z ⊆ Pa such that
∑

p∈Z x
∗
p−

∑
t∈Ta αty

∗
at > 0.

Because we can determine the α values in closed form (see Proposition 2), we can explicitly check

for such a violation by formulating the problem as an IP with the objective maxZ⊆Pa{
∑

p∈Pa
zpx

∗
p−∑

t∈Ta αty
∗
at}, where zp is a binary variable indicating whether path p is selected to be in Z, and

αt is an integer variable representing the number of selected commodities that can be transported

by t ∈ Ta capacity units. If the objective value is greater than 0, we add the violated constraint to

the model.

Table 1: SAC-Pack separation problem variable definitions.

Variable Description

zp ∈ {0, 1} Indicate whether path p ∈ Pa is selected for set Z ⊆ Pa.

αt ∈ Z≥0 Coefficient of yt representing the number of selected commodities that can be

transported by t ∈ Ta capacity units.

skt ∈ {0, 1} Indicate commodity k ∈ Ka is in the maximum subset that can be transported

by t ∈ Ta capacity units.

ut ∈ {0, 1} Indicate if all selected commodities can be transported by t ∈ Ta capacity

units (deactivates constraints).

vt ∈ {0, 1} Indicate if not all selected commodities can be transported by t ∈ Ta capacity

units (activates constraints).

wkt ∈ {0, 1} Indicate if a selected commodity k ∈ Ka has at least one path selected but

not in the subset of commodities that can be transported by t ∈ Ta capacity

units.

Let the set Ka ⊆ K be defined as the set of commodities with at least one path containing arc

a (or {k ∈ K||{p ∈ Pk|p ∋ a}| ≥ 1}) in order of non-decreasing demands. We define the decision

variables for the separation problem in Table 1. We can now formulate the separation problem as:

max
∑
p∈Pa

zpx
∗
p −

∑
t∈Ta

αty
∗
at (11a)

s.t. αt ≥
∑
k∈Ka

skt − 1 + ut, ∀ t ∈ Ta, (11b)

skt ≤
∑

{p∈Pk|p∋a}

zp, ∀ t ∈ Ta, ∀ k ∈ Ka, (11c)

t(1− ut) + ϵ ≤
∑
k∈Ka

dk
qa
skt, ∀ t ∈ Ta, (11d)

zp − skt ≤ wkt, ∀ t ∈ Ta, ∀ k ∈ Ka, ∀ p ∈ {Pa ∩ Pk}, (11e)∑
k∈Ka

wkt ≤ |Ka|vt, ∀ t ∈ Ta, (11f)

ut ≤ 1− vt, ∀ t ∈ Ta, (11g)

|Ka \ {k ≤ k1}| (sk1t + 1− wk1t) ≥
∑

{k2∈Ka|k2>k1}

sk2t, ∀ t ∈ Ta, ∀ k1 ∈ Ka, (11h)

zp ∈ {0, 1}, ∀ p ∈ Pa, (11i)

ut ∈ {0, 1}, vt ∈ {0, 1}, αt ∈ Z≥0, ∀ t ∈ Ta, (11j)

skt ∈ {0, 1}, wkt ∈ {0, 1}, ∀ k1 ∈ Ka, ∀ t ∈ Ta. (11k)

10

Constraints (11b) capture the value of each αt coefficient by summing the commodities selected

for the subset. The 1 is subtracted because the skt variables are collected until the total demand

exceeds t capacity units; thus, the last commodity added should be removed to make it feasible.

However, if the total volume of the commodities is less than t capacity units, all commodities should

be counted; thus, we add the binary variable ut which is equal to 1 when this is the case. In the

case where all commodities have skt = 1 but the total volume exceeds t, ut can and still will equal

0 because the objective minimizes the αt coefficients. Constraints (11c) enforce that commodities

cannot be selected for the maximum subset that fits in t capacity units if none of its paths were

selected. Constraints (11d) determine the number of commodities plus 1 that can be transported

by t capacity units. The constraints are turned off if the total commodity volume is less than t

capacity units. The ϵ parameter ensures that the right-hand side does not equal t, as we later

subtract 1, assuming that the volume is exceeded. Thus, we note that for any ϵ > 0, the generated

inequality is valid, with larger values of ϵ possibly making the resulting inequality weaker. In our

computational study, we set ϵ = 0.001, which is sufficiently small to avoid weakening the constraints

because ϵ < mink∈Ka{dk/qa}. Constraints (11e) determine if at least one path for commodity k

was selected but is not included in the subset of commodities that can be transported by t capacity

units. Note that here we use {Pa ∩ Pk} to represent the set of paths for commodity k ∈ Ka that

contain arc a. Constraints (11f) set vt = 1 if any wkt = 1 as set by constraints (11e). Constraints

(11g) ensure that ut = 0 if the size of the subset of commodities that can be transported by t

capacity units, plus 1, is less than the total number of commodities whose paths were selected.

Finally, constraints (11h) are precedence constraints for each capacity t that ensure commodities

are selected in order of non-decreasing demands, if selected at all.

To reduce the size of the separation problem, one can consider only the paths and capacity

variables with non-zero values in (x∗, y∗). The coefficients for variables y∗t = 0 can be calculated

once the paths are selected for the constraint as previously described. Another way to reduce the

problem size is to aggregate paths for the same commodity. That is, let zk be a binary variable

that indicates if all non-zero paths in Pa for commodity k ∈ Ka are selected for the set Z. The

objective changes to
∑

k∈Ka
zk

∑
p∈{Pa∩Pk} x

∗
p−

∑
t∈Ta αty

∗
at, the number of variables is reduced by

|Pa| − |Ka|, and the number of constraints is reduced by |{Pa ∩ Pk}| − 1 for each k ∈ Ka.

3.1.2. Generalized Single-Arc Commodity Packing Constraints

We now investigate the case in which the elements of G (or coefficients of the x variables) are in

the list {0, 1, . . . , B}. To motivate the use of such more general inequalities, consider the following

example.

Example 2. In this example, we demonstrate how constraints (10) can be strengthened to cut off

solutions in some directions if we allow x variables to have coefficients in the list {0, 1, . . . , B}.
Let qa = 100 and Z = {1, 2, 3, 4} with d1 = 30, d2 = 30, d3 = 30, and d4 = 60, where each

11

p ∈ Z is for a unique commodity. Assuming Tmax
a = 2, constraints (10) would be:

x1 + x2 + x3 + x4 ≤ 3ya1 + 4ya2,

as the three smaller commodities can be transported by one unit of capacity, but all four would

require two units. If x variables had coefficients in the list {0, 1, . . . , B}, we could strengthen the

previous inequality for the single-unit capacity case (i.e., when ya1 > 0) by increasing the coefficient

for commodity 4, as follows:

x1 + x2 + x3 + 2x4 ≤ 3ya1 + 5ya2,

as it can only be transported with one other commodity if only one unit of capacity is installed.

Notice that we also increased the coefficient for ya2 by 1; thus, when two units of capacity are used,

the constraints are equivalent in that they allow for all four demands to be transported with two

units of capacity.

To demonstrate how some solutions may be cut off, let the solution of LP(BIN) be x1 = x2 =

x3 = x4 = 0.5, setting ya1 = 0.75. This solution remains feasible with constraints (10), as the

left-hand side is 2 and the right-hand side is 2.25. However, if you increase the coefficient of x4

to 2, this solution is no longer feasible, as the left-hand side is now 2.5. Thus, ya1 is increased to

0.83.

We define the generalized single-arc commodity packing (Gen-SAC-Pack) constraints as follows:∑
p∈Z

θpxp ≤
∑
t∈Ta

αtyt, ∀ a ∈ A, (12)

where θp are non-negative integer coefficients for paths p ∈ Z bounded above by B.

Post-processing SAC-Pack constraints. Motivated by the previous example, a simple method to

obtain constraints of the form (12) is to post-process the SAC-Pack constraints found using (11).

The idea is to identify paths (or commodities) which cannot be transported with αt − 1 other

commodities for t = min{t ∈ Ta | yt > 0}. Recall the example above, the largest commodity

demand (represented by x4) could not be transported with two other commodities using only one

unit of capacity; thus, its coefficient was increased by one. This idea can also be extended to more

than one path with an increased coefficient. We will demonstrate in Section 5 that this simple

approach is able to further strengthen LP(BIN) with constraints (10) with a marginal increase in

runtime.

Separation. To obtain potentially stronger cuts, we use the following separation approach to define

new Gen-Sack-Pack constraints of the form (12).

We are given the set S described in (6) and a point (x∗, y∗) that we want to separate from the

convex hull of S. We obtain separating inequalities using the following row-generation approach

[11].

12

1. Let {xj , yj}rj=1 be a subset of points in S.

2. Solve:

SEPVAL := maxθ,α θ⊤x∗ − α⊤y∗

s.t. θ⊤xj − α⊤yj ≤ 0, ∀ j ∈ [r],

αt ≤ αt+1, ∀ t ∈ Ta \ {Tmax
a },

θp ≤ B, ∀ p ∈ Pa,
θ ∈ Z≥0, α ∈ Z≥0.

(13)

If SEPVAL ≤ 0, then STOP as there is no separating inequality. Else, let (θ∗, α∗) be an

optimal solution of (13).

3. Solve:

FEASVAL := maxx,y θ∗⊤x− α∗⊤y

s.t. (x, y) ∈ S.
(14)

If FEASVAL = 01, then STOP as θ∗⊤x ≤ α∗⊤y is a separating inequality. Else, let (x̂, ŷ) be

an optimal solution of (14). Let r ← r+1, let (xr, yr)← (x̂, ŷ) and return to STEP 2 above.

Note that parameter B in (13) above is an artificial upper bound. We will demonstrate in Section

5 that using B ≤ 3 gives high-quality cuts in comparison to larger upper bounds. See Appendix B

for the dynamic programming approach we use in our computational experiments to decrease the

runtime of solving (14). Additionally, as in the separation problem defined in Section 3.1.1, paths

for the same commodity can be aggregated into a single variable to help further reduce required

compute time. While the previously-defined row-generation approach with B = 1 can also be used

to identify SAC-Pack constraints (10), it requires more compute time as compared to solving model

(11). Thus, we only employ this separation method when B > 1.

We also note that while we focus on the path-based, unsplittable MCND problem in this work,

the previous valid inequalities (10) and (12) and their separation routines can also be applied to arc-

based, unsplittable MCND problems. In this case, the set Z would consist of the commodity-specific

binary arc-flow variables. We demonstrate this later in Section 5 by generating valid inequalities

(10) and (12) for arc-based, unsplittable MCND models using the Canad instances [26].

4. Helper Metric Inequalities

In this section, we outline an approach to generate a set of helper metric inequalities. We use the

term ‘helper’ because even though the metric inequalities we generate are redundant when added

back to the IP formulation, they can help commercial solvers generate and select better cutting

planes, producing better bounds, as we will demonstrate in Section 5 with the Gurobi solver2.

1Note FEASVAL ≥ 0 since (0, 0) ∈ S
2To show that the benefits are not specific to one commercial solver, we also provide limited results for two other

commercial solvers in Appendix C

13

Metric inequalities are valid inequalities for the multicommodity network flow polytope [3, 8,

17]. While metric inequalities can be used to generate user cutting planes, we observed through

computational testing that also adding valid metric inequalities (identified from an LP-feasible

capacity vector) directly to the BIN IP led to greater bound improvements when using commercial

solvers. This is because commercial solvers are able to generate strong cutting planes implied by the

integer hull of these metric inequalities. Metric inequalities are thus “good candidate” aggregations

of the original constraints of the problem [9].

To generate metric inequalities, we use a feasible capacity vector q̄ defined by the optimal

solution (x̄, ȳ) to LP(BIN) (or q̄a = qa
∑

t∈Ta tȳat, ∀ a ∈ A). We then use the standard linear

programming dual representation of the multicommodity flow polytope, later described in detail in

(15), to generate individual metric inequalities. Bounding any extreme ray of the dual creates an

associated inequality. Note that this dual is formulated using the arc-based relaxation of the original

multicommodity flow problem (i.e., use commodity-specific arc-flow variables as opposed to path-

flow variables). Since the arc-based formulation is a relaxation, the identified metric inequalities

remain valid for the path-based formulation. Importantly, the capacity vector q̄ used to generate

the metric inequalities is feasible for the more restricted path-based formulation by definition.

Moreover, the resulting metric inequalities are directly applicable to the path-based formulation,

as the arc-flow variables are projected out given q̄ and the inequalities are defined using only

arc-capacity variables and commodity demands transiting those arcs.

We further reduce the problem size by redefining the origin-destination-based commodity set to

be either origin based, where all commodities with the same origin node are redefined to be a single

commodity, or destination based, where all commodities with the same destination are redefined

to be a single commodity. Note these are feasible aggregations because the demand flow in the LP

is splittable.

We now outline the steps to generate a single helper metric inequality and integral metric

inequality (i.e., user cut) when commodities are origin-based.

Origin-based commodity approach. Let all commodities originating from the same origin o(k) = o

be consolidated into one commodity o ∈ O, where the set O represents the redefined commodity

set. We define the path set for commodity o ∈ O as Po = {∪{k∈K|o(k)=o}Pk}. Commodity demand

dk for k ∈ K is relabeled as ψo
d when originating at o(k) = o and destined for d(k) = d, and

included in the total demand emanating from o(k) = o, or ψo
o =

∑
{k∈K|o(k)=o}−dk. Note ψo

i = 0

when i ̸= o(k), d(k), for all {k ∈ K|o(k) = o}.
Given the optimal solution (x̄, ȳ) to the (path-based) LP(BIN), set capacities to the values

q̄a = qa
∑

t∈Ta tȳat for each a ∈ A. To formulate the dual of the LP relaxation of the arc-based

MCND problem, let dual variables u and v be associated to the arc flow conservation constraints3.

and variable upper bound capacity constraints (i.e., arc-based versions of (3c)), respectively. Also

3See Appendix D

14

note that because one flow conservation constraint for each commodity o ∈ O is redundant, we can

assume uoo = 0 for each o ∈ O. We now formulate the dual as follows:

max
∑
i∈N

∑
o∈Oi

ψo
i u

o
i −

∑
a∈A

q̄ava (15a)

s.t. uoj − uoi ≤ vij , ∀ o ∈ Oij , ∀ i, j ∈ A, (15b)

uoo = 0, ∀ o ∈ O, (15c)

va ∈ R≥0, ∀ a ∈ A, (15d)

uoi ∈ R, ∀ o ∈ Oi, ∀ i ∈ N . (15e)

The set Oij represents the subset of commodities that have one or more paths that use arc (i, j) ∈ A
(i.e., Oij = {o ∈ O|(i, j) ∈ Po}) and, similarly, the set Oi represents the subset of commodities

that have one or more paths that include node i ∈ N (i.e., Oi = {o ∈ O|i ∈ Po}). As previously

mentioned, this is a relaxed version of the original path-based model; this is because path set

Po = {∪{k∈K|o(k)=o}Pk} is used to define set Oij , meaning that commodity k with o(k) = o may

transit any arc in Po, including arcs not in their original path set Pk.
In an iterative fashion, we optimize (15) with va = 1 for each arc transporting commodity

demands (i.e., the set of arcs {a ∈ A|
∑

t∈Ta ȳat > 0}). In each iteration, if the optimal objective

value is 0, let (v̄, ū) be an optimal solution to (15) and collect the following helper metric inequality:∑
a∈A

v̄aqa
∑
t∈Ta

tyat ≥
∑
i∈N

∑
o∈Oi

ψo
i ū

o
i (16)

and integral metric inequality generated from constraints (16):∑
a∈A

v̄a

⌈
qa
qa′

⌉ ∑
t∈Ta

tyat ≥
∑
i∈N

∑
o∈Oi

⌈
ψo
i

qa′

⌉
ūoi , (17)

where qa′ = min{a∈A|v̄a=1}{qa}. Identical metric inequalities may be generated for two different

arcs; thus, only unique inequalities are collected.

While constraints (16) are always valid for and thus do not strengthen LP(BIN), one method

to find potentially better aggregations of the original constraints is to generate metric inequalities

using a point (x̄, ȳ) from a strengthened version of LP(BIN) (e.g., LP(BIN) with constraints (10)).

We will use this approach later in Section 5.

4.1. Lagrangian Selection

As discussed in the previous section, the metric inequalities generated correspond to solutions

of LP(BIN). In this section, we discuss a method that searches for solutions to use when generating

the metric inequalities. We adapt a method from [24, 5], which was designed to select good Gomory

mixed integer cuts. The key idea is the following: Instead of adding multiple rounds of cuts which

can have numerical issues [16, 23], moving the cuts to the objective function, so that we can re-

solve the linear programming relaxation with an updated objective function, leads to finding a new

15

feasible point of the linear programming relaxation, allowing us to generate more metric inequalities

iteratively.

When collecting helper metric inequalities (16) to add directly to BIN, we add the integral

metric inequalities (17) to LP(BIN) using a Lagrangian relaxation approach. That is, we move

these constraints to the objective of LP(BIN) with their Lagrange multiplier before generating

another set of helper metric inequalities. See Algorithm 1 for pseudocode to generate and collect a

set of helper and integral metric inequalities.

Algorithm 1: Lagrangian relaxation for metric inequality generation

Input: LP and solution to LP (x̄, ȳ), commodity demands ψ

Result: Helper constraint setMH , updated LP (and solution)

1 q̄a ← qa
∑

t∈Ta
tȳat ∀ a ∈ A;

2 MH ← ∅;
3 MI ← ∅;
4 for {a ∈ A|

∑
t∈Ta

ȳat > 0} do
5 Solve (15) with q̄ and va = 1;

6 if optimal objective in STEP 5 = 0 then

7 (v̄, ū)← optimal solution of STEP 5;

8 if ((16) with (v̄, ū)) /∈MH then

9 MH ←MH ∪ {(16) with (v̄, ū)};
10 MI ←MI ∪ {(17) with (v̄, ū)};
11 end

12 LP′ ← Add constraint setMI to constraint set of LP;

13 (x∗, y∗)← optimal solution of LP′;

14 DI ← dual values for constraintsMI in optimal solution of LP′;

15 LP′′ ← Add constraint setMI to objective of LP with dual multipliers DI ;

16 returnMH , LP′′ (and (x∗, y∗))

5. Computational Study

Computational experiments are performed on two sets of instances to assess the impact of the

previously discussed results on path- and arc-based models. We generate fulfillment instances using

the demand data and network topology of an e-commerce company to evaluate path-based problems

and use the publicly-available Canad instances [26] to evaluate arc-based problems. The objectives

of our computational study are to (i) assess the value of reformulating INT using the multiple-choice

binary capacity variables (2), (ii) measure the improvement to LP(BIN) (and the arc-based version)

when applying the SAC-Pack constraints (10) and the Gen-SAC-Pack constraints (12), and (iii)

identify a bound-improving strategy (e.g., helper metric inequalities, SAC-Pack constraints, etc.)

for BIN that leads to a significant improvement to the lower bound found by a commercial solver

within the provided runtime.

16

The optimization models and separation routines are coded in Python 3.10 and solved using

Gurobi 11.0 with default settings for the IP solver, unless noted otherwise. We use a Linux com-

puting cluster, consisting of nodes using 24-core dual Intel Xeon Gold 6226 CPUs @ 2.7 GHz with

192GB of RAM each, to run all experiments. Reported times are in hours, unless otherwise noted.

5.1. Instance Generation

We use two sets of instances for this study: e-commerce fulfillment instances and the Canad

instances [26]. We utilize the e-commerce fulfillment instances to assess all previously described

path-based methodologies and results, as well as a newly defined bound-improving strategy. In

contrast, the Canad instances are only used to evaluate the effectiveness of the SAC-Pack and

Gen-SAC-Pack constraints in strengthening the LP relaxations for arc-based models. Thus, all

experiments are conducted on the e-commerce fulfillment instances, unless otherwise noted.

E-commerce fulfillment instances. We generate synthetic instances constructed from historical or-

der fulfillment and middle-mile network data provided by an e-commerce company. We create three

instance groups, as defined by the number of vendors Nv ⊂ N , fulfillment centers (FCs) Nf ⊂ N ,

and destinations Nd ⊂ N . In each instance, the set of vendors Nv represents externally-owned lo-

cations from which the company fulfills orders, the set of FCs Nf represents the internal locations

within the fulfillment network from which the e-commerce company stores products and fulfills or-

ders, and the set of destinations Nd represents last-mile distribution center locations that complete

the last-mile of the delivery process to the final customer. Fulfillment centers act as both commod-

ity origins and transfer centers; they can be used for intermediate shipment transfer along a path,

whereas locations in Nv and Nd cannot. Thus, the total number of commodity origins for a given

instance is |Nv|+ |Nf | and total number of arcs is at most (|Nv|+ |Nf |)|Nd|+ |Nf |(|Nv|+ |Nf |−1).

For each group, we generate 5 randomized instances. Locations Nv, Nf , and Nd are sampled

from larger sets of vendor, FC, and destination locations, respectively, for each instance. A set of

potential commodities is initialized with all vendor-destination pairs. We then randomly remove a

subset of commodities to better reflect the sparsity of real-world fulfillment networks, resulting in an

average of 60% of vendor-destination pairs in the commodity set. A set of commodities originating

at FC locations is also created. To do so, we create 5 commodities for each destination in Nd by

assuming that the 5 nearest FCs send orders to d. For context, this construction is designed to

mimic the practice of using multiple FCs to stock the same items and then to sometimes require

shipment of items from further FCs due to inventory stock availabilty. Thus, the number of FC-

originating commodities is always 5|Nd| for each instance. Commodity demands are sampled from

empirical demand distributions again generated from company shipment volume data.

We generate a set of arcs A, consisting of both direct arcs Ad and consolidation arcs Ac.

Consolidation arcs connect all vendors to FCs, FCs to other FCs, and FCs to destinations, while

direct arcs connect each vendor to destination if a commodity for that pair exists. To generate

a path set Pk for commodity k ∈ K, we start by including the direct path (equivalent to an arc)

17

connecting o(k) to d(k), with a length denoted as la. We then add the following four paths: (1)

the shortest distance two-arc path using a single transfer FC, (2) the two-arc path transferring at

the FC closest to the origin, (3) the two-arc path transferring at the FC closest to the destination,

and (4) a three-arc path transferring at the FCs in (2) and (3), if they are not the same. We then

include all network paths with a total length
∑

a′∈p la′ of 1.1la or less and containing a maximum

of three arcs. Duplicate paths in each set Pk are removed.

Consolidation arcs transport commodity flow using a truckload freight mode with a single ca-

pacity qa = 12000 and cost dependent on the arc length la, whereas direct arcs can ship commodities

using both truckload and less-than-truckload (LTL) freight modes. We utilize the same capacity

and cost structure as [29] for direct arcs, as shown in Table 2, where we use la to denote the length

of arc a ∈ Ad as measured in miles and va to denote the volume flowing on arc a ∈ Ad. We pre-

process all direct arc costs and incorporate them into the variable path cost cp. This pre-processing

step enables us to reduce the problem size by eliminating direct arcs from the set of arcs in the

MCND models.

Table 2: Freight mode costs per shipment on direct arc a ∈ Ad.

Freight Mode Volume (lbs) Cost

Truckload 0 < va ≤ 12, 000 750 + 1.27la

LTL1 0 < va ≤ 2, 000 0.05(750 + 1.27la) + va(0.234 + 0.0004la)

LTL2 2, 000 < va ≤ 2, 700 0.05(750 + 1.27la) + 2000(0.234 + 0.0004la)

LTL3 2, 700 < va ≤ 4, 000 0.8va(0.234 + 0.0004la)

In Table 3, we provide the following instance characteristics: group number, number of ven-

dors, FCs, and destinations, instance number, number of commodities, total volume across all

commodities, and number of arcs and paths.

Canad instances. To assess the strength of our new valid inequalities when using an arc-based for-

mulation, we use a set of multicommodity network flow Canad instances [26] used in several papers

[33, 20, 19, 28, 14, 15, 1]. In the previously mentioned papers, the instances are used to benchmark

solution approaches for the MCND problem with splittable demand; however, they remain feasible

with unsplittable demands. Thus, following [32], we use the set identified as “C” to study the

unsplittable MCND problem. This set consists of 31 instances with the naming scheme #nodes-

#arcs-#commodities-cost attribute-capacity attribute. There are two cost attributes denoted as F

for a high fixed-to-variable cost ratio and V otherwise. There are two capacity attributes denoted as

T for tightly-capacitated and L for loosely-capacitated arcs relative to total demand. The instances

range in size from 20-30 nodes, 230-700 arcs, and 40-400 commodities.

Unlike the e-commerce fulfillment instances, all nodes can act as transfer nodes, and a single

node can be an origin for one commodity and a destination for another; thus, there is no notion of

node sets like Nv, Nf , or Nd. Furthermore, the Canad instances were developed for the case where

arc-capacity binary variables indicate whether an arc, with its predefined capacity qa, is turned on,

18

Table 3: Instance characteristics.

Group Vend FC Dest Inst Comm
Total Vol

(lbs)

Arcs Paths

|A| |Ac| |P|

1 20 5 15

1 252 641,443 365 188 972

2 264 782,451 382 193 996

3 263 741,524 380 192 989

4 262 747,582 380 193 1,093

5 254 606,122 368 189 1,012

2 90 9 55

1 3,040 2,177,671 4,113 1,348 18,639

2 3,577 2,461,797 4,677 1,375 20,006

3 3,071 2,167,907 4,166 1,370 20,082

4 2,841 1,995,813 3,930 1,364 17,570

5 2,958 2,075,331 4,048 1,365 16,931

3 105 10 65

1 4,233 2,313,167 5,698 1,790 29,727

2 3,812 2,133,729 5,264 1,777 28,295

3 4,402 2,432,839 5,856 1,779 28,966

4 4,375 2,427,937 5,837 1,787 30,009

5 4,325 2,475,692 5,787 1,787 30,441

as opposed to installing integer multiples of qa. Thus, for our arc-based experiments, we use the

same formulation as the authors of [32] to allow for a direct comparison (see Appendix E for the

arc-based, fixed-capacity formulation).

Lastly, while the e-commerce fulfillment Group 1 instances are comparable in size to the Canad

instances, Groups 2 and 3 are significantly larger than those commonly used to evaluate MCND

methodologies. We chose these larger instances to better evaluate the potential of embedding

our developed methodology into more sophisticated solution approaches for addressing real-world

e-commerce fulfillment network problems.

5.2. Comparison of Formulations

We begin our computational experiments by demonstrating how reformulating INT (1) with

binary multiple-choice capacity variables (2) can improve the lower bound solution found by a

commercial solver. To accomplish this, we optimize both models, INT (1) and BIN (3), for 3 hours

using the best bound focus setting. In Table 4, we report the number of capacity variables, capacity

constraints, IP lower bounds, IP gaps to the best objective found, and the improvements to the

IP gaps. All values are the average across the 5 instances of each group. The best objective used

to calculate the IP gap for each instance is obtained by optimizing both models for 12 hours with

default settings and selecting the minimum objective value of the two. We measure the improvement

(Impr) by calculating the percent decrease of the IP gaps.

We first observe that even with an increase in model size (
∑

a∈Ac
(Tmax

a − 1) more variables

and |A| more constraints), the commercial solver finds stronger lower bounds, on average, for

19

Table 4: Comparing INT (1) and BIN (3) MCND formulations.

Group Model Type Cap Vars Cap Constrs IP LB IP Gap Impr

1
INT 191.0 191.0 189,577 0.9% -

BIN 394.8 382.0 190,268 0.6% 38.5%

2
INT 1,364.4 1,364.4 658,504 6.2% -

BIN 2,182.8 2,728.8 663,859 5.4% 12.4%

3
INT 1,784.0 1,784.0 747,035 8.3% -

BIN 2,788.8 3,568.0 748,815 8.1% 2.6%

BIN compared to INT. When analyzing the detailed results, we observe that BIN consistently

outperforms in terms of best bound across every instance in each group.

We next observe that the largest improvement occurs for Group 1 instances, which can be

attributed to their higher proportion of arcs with Tmax
a > 1, as evidenced by the increase in

capacity variables. This confirms that the BIN model is especially effective in networks with a

significant proportion of arcs potentially requiring more than one truckload.

Lastly, among the 5 instances in Group 1, a state-of-the-art commercial solver is only able to

achieve optimality within 3 hours for the first instance, confirming the difficulty of these problems.

5.3. Improvements to LP Relaxation

In this section, we evaluate the strength of the valid inequalities introduced in Section 3, com-

paring them to existing methods.

E-commerce Fulfillment Instances. We begin by assessing the performance of the SAC-Pack and

Gen-SAC-Pack constraints in strengthening the LP relaxation (LPR) solutions for e-commerce

fulfillment instances using the Group 1 instances. Specifically, we compare the objective values of

LP(BIN) strengthened by disaggregated linking constraints (5), integral metric inequalities (17),

k-split c-strong inequalities with k set to a maximum value of 10 (applied using the same method

described in the computational study of [2]), and our new valid inequalities (10) and (12). In each

case, we continue generating additional cuts until no further improvement of the LP relaxation is

observed. In Table 6, we present the results for a set of configurations (Conf) defined in Table 5.

Specifically, Table 6 reports the number of cuts added and the improvement over LP(BIN) without

valid inequalities (denoted as configuration (a)) for each instance in Group 1. It also includes

the average number of cuts added, the average improvement, and the average IP gap across all

instances. We list the configurations in decreasing order of average IP gap, where IP gap is defined

as:
(best IP objective− LPR)

best IP objective
. (18)

We define the improvement (Impr) of the strengthened LP relaxation solution (LPR) over the base

LP relaxation solution (LP(BIN), configuration (a)), which is also equivalent to the improvement

20

of the IP gap, as:
(LPR− LP(BIN))

(best IP objective− LP(BIN))
. (19)

Table 5: Definitions of the valid inequality configurations reported. Configurations (b) through (k) add the listed

inequalities to (a).

Conf Definition

(a) LP(BIN)

(b) Integral metric inequalities (17)

(c) Disaggregated linking constraints (5)

(d) k-split c-strong inequalities for k ≤ 10

(e) (b), (c), and (d)

(f) SAC-Pack constraints (10)

(g) (f) plus post-processing

(h) (g) plus Gen-SAC-Pack constraints (12) with B ≤ 3

(i) (g) plus Gen-SAC-Pack constraints (12) with B ≤ 10

(j) (b) plus (h)

(k) (b) plus (i)

In Table 6, we first observe that the addition of integral metric inequalities alone (denoted as

(b)) does not substantially improve the IP gap, and notably results in a worse IP gap than by

simply adding the disaggregate linking constraints (5) (denoted as (c)). However, when combined

with SAC-Pack, post-processed SAC-Pack, and Gen-SAC-Pack constraints, the inclusion of the

integral metric inequalities can further strengthen the LP relaxation (see configurations (j) and (k));

whereas, we found in our initial experiments that combining the disaggregated linking constraints

(c) with either (h) or (i) did not. We next observe that the k-split c-strong inequalities produce

stronger relaxations than (c), as expected, but alone are significantly outperformed by the SAC-Pack

constraints (e), which also add fewer cuts on average. We next combine integral metric inequalities,

disaggregated linking constraints, and k-split c-strong inequalities (denoted as (e)), and find that

this combination is also outperformed by SAC-Pack constraints and generates almost double the

number of cuts, on average. As we continue down the table, we see that with each addition of cut

type or looser upper bound (i.e., B increased from 3 to 10), the LP relaxation continues to improve

and we ultimately achieve an IP gap of 4.9%, decreasing the IP Gap of LP(BIN) by 85.1%. We note

also that the configuration that takes the longest to generate all cuts is (k) with an average time

of 187s, whereas the next longest is (j) requiring only 93s on average. We will use these findings in

Section 5.4 when designing a strategy to find stronger lower bounds for BIN.

Canad Instances. As previously noted, the two new classes of valid inequalities, SAC-Pack and

Gen-SAC-Pack, can also be generated for arc-based formulations. To assess their effectiveness in

strengthening the LP relaxation of such formulations, we compare the strengthened LP relaxation

solutions for the arc-based Canad instances after adding disaggregated capacity linking constraints,

k-split c-strong inequalities with k set to a maximum value of 10, and/or our new valid inequalities

21

Table 6: Valid inequalities (defined in Table 5) applied to the Group 1 instances.

Conf
1 2 3 4 5 Average

Cuts Impr Cuts Impr Cuts Impr Cuts Impr Cuts Impr Cuts IP Gap Impr

(a) 0 0% 0 0% 0 0% 0 0% 0 0% 0 24.8% 0%

(b) 817 17.3% 554 15.5% 474 17.0% 875 14.4% 636 21.2% 671 20.6% 17.1%

(c) 1,319 70.8% 1,350 65.2% 1,327 60.7% 1,470 62.5% 1,366 67.4% 1,366 8.6% 65.3%

(d) 2,056 69.8% 2,321 70.2% 2,382 65.1% 2,155 64.9% 1,985 66.0% 2,180 8.2% 67.2%

(e) 3,853 76.5% 4,079 75.9% 3,978 71.3% 4,415 74.1% 3,940 74.6% 4,053 6.3% 74.4%

(f) 1,793 79.5% 1,852 79.9% 2,020 73.9% 2,333 75.0% 2,456 77.0% 2,091 5.7% 77.1%

(g) 2,611 79.6% 2,707 80.5% 2,739 74.3% 3,068 75.3% 3,378 77.4% 2,901 5.6% 77.4%

(h) 2,940 81.0% 2,673 81.9% 3,092 75.9% 3,323 76.7% 3,332 78.9% 3,072 5.2% 78.9%

(i) 3,796 82.1% 3,181 82.8% 3,429 77.0% 4,551 77.5% 3,410 79.5% 3,673 5.0% 79.8%

(j) 3,709 81.8% 3,231 83.1% 3,658 77.4% 4,244 78.8% 3,816 79.6% 3,732 4.9% 80.2%

(k) 3,844 82.9% 3,841 84.3% 4,312 78.7% 4,693 79.5% 4,003 80.2% 4,139 4.7% 81.1%

(10) and (12). We use the same nomenclature as defined in Table 5. In Table 7, we provide a

summary of results for the Canad instances. Specifically, for each configuration we test, we provide

the average values across all 31 instances for the LP relaxation solution (LPR), number of cuts

added, cut generation time in seconds, IP gap, and the improvement of the IP gap. We also include

the number of instances where the optimal objective is achieved after adding the cuts (# Opt).

We use Gurobi with default settings and set the solve time limit to 2 hours to obtain the best IP

objective for each instance, which we then use to calculate the IP gap defined by (18). Of the 31

instances, Gurobi finds the optimal objective for 17 instances. Although Gurobi cannot solve all

instances to optimality within 2 hours, the average IP gap is only 0.96% with an average objective

of 194, 527. For the LP relaxation solutions and IP gaps for individual instances, see Appendix F.

Table 7: Summarized results for the Canad instances.

Conf LPR Cuts
Cut

Time (s)

IP

Gap
Impr # Opt

(a) 163,189 0 0 16.1% 0.0% 0

(c) 185,747 93,245 18 4.5% 72.0% 0

(d) 188,162 1,705 161 3.3% 79.7% 2

(f) 191,107 3,467 125 1.8% 89.1% 2

(i) 191,211 11,710 1,019 1.7% 89.4% 2

(f),(d) 191,507 4,091 246 1.6% 90.4% 3

The results in Table 7 confirm that our new valid inequalities also significantly strengthen arc-

based formulations. Our first observation is that adding only the disaggregated capacity linking

constraints (c) leads to an improvement of over 70% for the base LP, but this improvement comes

at the cost of adding an average of over 90,000 extra constraints. We next observe that while

the k-split c-strong inequalities (d) achieve an 80% improvement with only a fraction of the cuts

compared to (c), the SAC-Pack constraints (f) achieve an even greater improvement of nearly

90%, reducing the IP gap of (d) by almost half. Notably, although the total number of SAC-Pack

constraints generated is twice that of the k-split c-strong inequalities, the SAC-Pack constraints,

22

on average, require less time to generate.

We next observe that adding Gen-SAC-Pack constraints to SAC-Pack constraints (denoted as

(i)) does not appear necessary for these instances and problem definition (i.e., without integer

multiples of capacities on arcs). This conclusion is based on the marginal improvement achieved

compared to the additional cuts and, more critically, the time required. We next test the configura-

tion where we first generate all SAC-Pack constraints and then generate k-split c-strong inequalities

(denoted as (f),(d)). This configuration leads to a marginally improved IP gap but significantly

decreases the cut generation time, as compared to (i). However, in general, it seems that the SAC-

Pack constraints (f) achieve the right balance of cuts added and time required for the improvements

gained.

We additionally compare configurations (f) and (f),(d) to the final bound found in [32] (reported

in their Table 8). This final bound is found by dynamically adding disaggregated capacity link-

ing constraints and cover inequalities to their extended LP formulation (through user cuts) at the

root node and then executing their branch-and-price procedure for 30 minutes. When comparing

the bounds achieved by configurations (f) and (f),(d), we find they outperform the final bounds

in [32] for 21 and 29 instances (out of 31), respectively (see Table F.11 in Appendix F for the

detailed instance results). While this is a bit of an unfair comparison (due to the advances in

modern day commercial solvers, which help in the separation routines of SAC-Pack inequalities,

compared to those available at the time [32] was written), we report this finding purely to demon-

strate the potential improvements our new valid inequalities could lead to in such branch-and-price

procedures.

5.4. Evaluation of Bound-Improving Strategy

Using the findings of the two previous sections regarding BIN and LP(BIN), we devise and

report a strategy which results in improved lower bounds found by a commercial solver for the

path-based MCND problem. We name this strategy, simply, ‘xh-Better’, where x represents the

runtime limit in hours to generate all constraints and optimize the model with a commercial solver.

We similarly call the base (default) model BIN (3) ‘xh-BIN’. In this section, all models are solved

with a best bound focus.

Better strategy and implementation. The strategy we will test against xh-BIN incorporates helper

metric inequalities with Lagrangian selection, SAC-Pack constraints, post-processed SAC-Pack

constraints, and Gen-SAC-Pack constraints with an upper bound of B ≤ 3. We select this strategy

because we find that it achieves the right balance between the improvements gained and the time

it takes to generate constraints, allowing sufficient solve time. We use the following two-phase

implementation:

1. Generate helper metric inequalities (16) to add to the BIN formulation prior to optimization

(via solver) using the following procedure:

23

(a) Generate and collect helper metric inequalities using the optimal solution of LP(BIN),

as defined in Algorithm 1. The returned LP is referred to as LP(BIN)MI.

(b) Using the optimal solution of LP(BIN)MI, generate and collect SAC-Pack constraints

(10) found using the separation IP (11) and Gen-SAC-Pack constraints (12) found by

post-processing the generated SAC-Pack constraints for each arc with assigned volume.

Add these valid inequalities to LP(BIN)MI. We refer to this LP as LP(BIN)MI+VI

(c) Generate and collect helper metric inequalities using the optimal solution of LP(BIN)MI+VI,

as defined in Algorithm 1.

(d) Add helper metric inequalities generated and collected in STEPS (a) and (c) to BIN.

2. Add the following user cuts within the solver via callback routine, only at the root node: (i)

SAC-Pack constraints (10), (ii) Gen-SAC-Pack constraints (12) generated by post-processing

the SAC-Pack constraints generated in (i), and (iii) Gen-SAC-Pack constraints (12) with B ≤
3 generated using the separation routine outlined in Section 3.1.2 (with dynamic programming

approach outlined in Appendix B).

In Table 8, we compare the results of 3h-BIN and 3h-Better for Group 1. Impressively, we

observe that with 3h-Better, we can now solve 4 out of 5 instances, with an average IP gap of 0.1%,

whereas with 3h-BIN, we can only solve the first instance, resulting in an average IP gap of 0.6%.

Furthermore, the total runtime (sum of constraint generation and solve time) is an hour or less for

each of the four instances solved using 3h-Better, with a substantial improvement (a 94% decrease)

for instance 1 compared to 3h-BIN. Although we are still unable to solve instance 4 within 3 hours,

we decrease the IP gap by 74% to 0.4%. We note that an average of 175 helper metric inequalities

are added to the 3h-Better models and an average of 30 user cuts are employed by the solver in its

bounding procedure.

Table 8: Group 1 results for 3h-BIN and 3h-Better.

Inst
3h-BIN 3h-Better IP Gap

Impr

Time

ImprIP Gap Runtime IP Gap Runtime

1 0.0% 2.1 0.0% 0.1 0% 94%

2 0.4% 3.0 0.0% 0.5 100% 82%

3 0.5% 3.0 0.0% 0.6 100% 79%

4 1.6% 3.0 0.4% 3.0 74% 0%

5 0.4% 3.0 0.0% 1.0 100% 67%

For Groups 2 and 3, we report the results for 3h-BIN, 12h-BIN, and 3h-Better in Table 9. For

3h-Better, the difference between 3 hours and the solve time is the time it takes to generate all

constraints prior to optimization. The most significant observation is that 3h-Better (with limited

solve time) produces stronger bounds than those found when solving BIN for 12 hours, with an

average IP gap improvement of 26.5% and 22.5% for Groups 2 and 3, respectively. Thus, we find

that, even for larger instances, utilizing the Better strategy results in significantly stronger lower

bounds than those found by solving BIN for extended solve times.

24

Table 9: Groups 2 and 3 results for 12h-Base and 3h-Better.

Group Inst
3h-BIN

IP Gap

12h-BIN

IP Gap

3hr-Better 3h-BIN

Impr

12h-BIN

ImprSolve Time IP Gap

2

1 5.2% 5.1% 2.5 3.9% 25.3% 24.3%

2 5.2% 5.1% 2.3 4.2% 19.5% 18.2%

3 5.6% 5.5% 2.2 3.6% 35.3% 33.8%

4 5.9% 5.7% 2.4 3.9% 33.4% 32.1%

5 5.3% 5.1% 2.5 3.9% 25.9% 24.2%

3

1 8.1% 7.1% 1.5 5.5% 32.9% 22.7%

2 7.2% 6.8% 1.5 4.9% 32.3% 28.8%

3 7.7% 6.7% 1.5 5.1% 33.0% 23.2%

4 9.7% 8.7% 1.6 7.1% 26.6% 18.4%

5 7.5% 6.8% 1.0 5.5% 27.1% 19.2%

6. Conclusions

In this paper, we presented a reformulation of the multicommodity capacitated network design

(MCND) problem which redefines the integer capacity variables as a multiple-choice selection of

binary variables. We studied a structured relaxation of this formulation and showed that the

convex hull solutions can be described using inequalities of a certain form. Using this result,

we defined two new classes of valid inequalities, namely single-arc commodity packing (SAC-Pack)

and generalized single-arc commodity packing (Gen-SAC-Pack) constraints, for the MCND problem

with unsplittable flow and developed separation routines for each. We described metric inequalities,

as well as a Lagrangian relaxation implementation approach to collect these inequalities, and later

demonstrated how they help solvers identify stronger cutting planes to improve bounds. Finally,

we presented computational results conducted on path-based instances derived from the historical

demand data and network topology of a large e-commerce company, as well as on the arc-based

Canad instances. We found that solvers can find better lower bounds for the reformulation using

multiple-choice binary capacity variables (BIN) compared to when solving the integer capacity

formulation (INT). Our computational study also showed the strength of the newly defined SAC-

Pack and Gen-SAC-Pack constraints in comparison to existing methods for both path- and arc-

based models. Our findings ultimately indicated that employing a strategy to solve BIN models,

which combines the use of the new valid inequalities and aforementioned helper metric inequalities

in a smart way, can substantially improve the bounds found by commercial solvers. Although we

have defined and tested a strategy which results in stronger bounds compared to the base model,

the components (e.g., SAC-Pack constraints) can be included in alternative, custom bounding

procedures (e.g., branch-and-price algorithms) dependent on the problem.

25

Appendix A. Disaggregated Capacity Constraints Example

Consider the following example where the solution of LP(BIN) with constraints (5) produces a

stronger solution compared to LP(INT) with constraints (5).

Assume we have 2 commodities k = 1 and k = 2 that can both traverse arc a using paths p = 1

and p = 2, respectively. Let demand d1 = 5, demand d2 = 105, and qa = 100. Thus, tmin
a1 = 1,

whereas tmin
a2 = 2. Let the LP relaxation solution be x1 = 0.75 and x2 = 0.5. The aggregrated

linking constraints (1c) (and, similarly, (3c) using (2)) state:

5x1 + 105x2 ≤ 100τa.

Thus, the installed capacity on arc a is 0.5625 units for LP(INT) and LP(BIN).

To strengthen LP(INT), we can add the following constraints (4):

x1 ≤ τa,

2x2 ≤ τa.

Because x2 = 0.5, the installed capacity increases to 1 unit (or τa = 1).

To strengthen LP(BIN), we can add the following constraints (5):

x1 ≤ ya1 + ya2,

x2 ≤ ya2.

This would set y1 = 0.25 and y2 = 0.5 (because y1 has a lower penalty cost), which is a total

installed capacity of 1.25 units.

Thus, linking constraints (5) added to LP(BIN) can produce a stronger relaxation solution

compared to LP(INT) with linking constraints (4) if there exists a subset of commodities with

demands that exceed an arc’s single-unit capacity.

Appendix B. Separation Using Dynamic Programming.

We would like to improve the runtime of solving (14).

Observation 1 (Decomposition). Let

St :=

x | ∑
p∈Pa

apxp ≤ qat

 ∀ t ∈ Ta,

then we can solve:

FEASVALt := maxx,y θ∗⊤x− α∗
t

s.t. (x, y) ∈ St.
(B.1)

Note that:

• FEASVAL = max{maxt{FEASVALt}, 0}

• If FEASVAL ̸= 0, then t̂ ∈ argmaxt{FEASVALt} and xt̂ ∈ argmaxxS
t̂, then (xt̂, et̂) is an

optimal solution of (14). If FEASVAL = 0, then (0, 0) is an optimal solution of (14).

26

Appendix B.1. Improving DP running time.

Observe now that (B.1) is a knapsack problem. Moreover, we know that ∥θ∥∞ ≤ B, as we

artificially constrained this in (13). We can exploit this feature in the following fashion.

Let us consider a general knapsack of the following form:

OPT := max
∑n

j=1 θjxj

s.t.
∑n

j=1 ajxj ≤ qa,
x ∈ {0, 1}n.

(B.2)

We “guess” an optimal value of (B.2) is γ. Consider the following min-knapsack:

VAL(γ) := min
∑n

j=1 ajxj

s.t.
∑n

j=1 θjxj ≥ γ,
x ∈ {0, 1}n.

(B.3)

DP running-time. The key fact is that since θ’s are small, any guessed value of γ is not too large;

in particular γ ≤ n · ∥θ∥∞. So the DP to solve (B.3) takes O(n · n∥θ∥∞) = O(n2B) time, which

could be significantly smaller time than solving (B.2) which takes O(n · qa) time since qa can be

super large and B is quite small.

To solve (B.2) using (B.3), we begin with an observation.

Observation 2. Observe that:

• If we guessed too low, i.e, γ ≤ OPT, then VAL(γ) ≤ qa.

• If we guessed too high, i.e, γ > OPT, then VAL(γ) > qa.

We can use Observation (2) to design a bisection search as follows:

1. (Pre-process) Let LB = 0 and UB =
∑n

j=1 θj . Solve (B.2) with γ = UB. If VAL(UB) ≤ qa,

STOP, as we have solved the problem and the optimal solution of (B.3) is an optimal solution

of (B.2). Else:

2. Let γ =
⌈
1
2 · (LB + UB)

⌉
. Solve (B.2).

3. If VAL(γ) > qa, then set UB ← γ. If VAL(γ) ≤ qa, then set LB ← γ. If LB = UB, STOP

(and the optimal solution of (B.3) is an optimal solution of (B.2)), else GOTO STEP 2.

Overall running time. The number of iterations of bisection search is known to beO
(
log(

∑n
j=1 θj)

)
.

Combining everything (accounting for the running-time of solving (B.3)), we get a running-time of

O(n2B · log(nB)) which can be much better than O(n · qa).

27

Appendix C. Solver Performances with Helper Metric Inequalities

To assess whether the benefits of helper metric inequalities are specific to Gurobi, we also

utilize CPLEX and SCIP to solve Group 6 instances of (3) (3h-BIN) and (3) plus two rounds of

helper metric inequalities added (3h-MI2; as described in Section 4 and Algorithm 1). We provide

a runtime of 3 hours and solve the models using default settings for all solvers. In Table C.10,

we report the solvers and versions tested, the resulting average IP Gaps calculated using the best

found objective, and the average improvement to the IP gap for each solver after adding the helper

metric inequalities to BIN. Also note that while the runtime for each setup was 3 hours, the time

to generate the helper metric inequalities took an average of 1.5 hours, meaning the 3h-MI2 models

had an average solve time limit of 1.5 hours.

Table C.10: Comparison of solver performance using Group 6 instances.

Solver Version
IP Gap IP Gap

Impr3h-BIN 3h-MI2

Gurobi 11.0.0 8.3% 6.0% 27.1%

CPLEX 22.1.1.0 9.3% 5.9% 36.4%

SCIP 9.0.0 8.7% 7.6% 12.9%

Consistent with the results in Section 5.4, the addition of helper metric inequalities results in

all three solvers finding stronger lower bounds through improved cutting-plane generation, with

CPLEX seemingly benefiting the most.

Appendix D. Arc-based Flow Conservation Constraints

Let xoij ∈ {0, 1} equal 1 if commodity o ∈ O is transported via arc (i, j) ∈ A, and 0 otherwise.

The arc-based flow conservation constraints are formulated as follows:

∑
(i,j)∈δ+(i)

xoij −
∑

(j,i)∈δ−(i)

xoji =


ψo
o, i = o,

0, i ̸= o, d,

ψo
d, i = d,

∀ i ∈ N o, ∀ o ∈ O, (D.1)

where δ+(i) and δ−(i) refer to the sets of arcs emanating from and ending at node i, respectively,

and set N o represents the nodes contained in path set Po for commodity o ∈ O.

Appendix E. Arc-Based Formulation When Solving Canad Instances

Similar to the problem definition in Section 2, let cij represent the variable cost of transporting

one unit of demand on arc (i, j) ∈ A, fij represent the fixed cost of activating (i.e., installing

one unit of capacity) on arc (i, j) ∈ A, let qij represent the capacity of arc (i, j) ∈ A, and let dk
represent the demand of commodity k ∈ K with origin o(k) and destination d(k). Let xkij ∈ {0, 1}
be a binary variable indicating if commodity k ∈ K is transported via arc (i, j) ∈ A or not. Let

28

yij ∈ {0, 1} be a binary variable indicating if arc (i, j) ∈ A is activated to transport commodity

demands or not. The arc-based unsplittable MCND problem is:

min
x,y

∑
k∈K

∑
(i,j)∈A

cijdkx
k
ij +

∑
(i,j)∈A

fijyij (E.1a)

s.t.
∑

(i,j)∈δ+(i)

xkij −
∑

(j,i)∈δ−(i)

xkji =


1, i = o(k),

0, i ̸= o(k), d(k),

−1, i = d(k),

∀ i ∈ N , ∀ k ∈ K, (E.1b)

∑
k∈K

dkx
k
ij ≤ qijyij , ∀ (i, j) ∈ A, (E.1c)

xkij ∈ {0, 1}, ∀ (i, j) ∈ A, ∀ k ∈ K, (E.1d)

yij ∈ {0, 1}, ∀ (i, j) ∈ A, (E.1e)

where δ+(i) and δ−(i) refer to the sets of arcs emanating from and ending at node i ∈ N ,

respectively. Constraints (E.1b) ensure flow balance. Constraints (E.1c) activate arc (i, j) ∈ A and

ensure its capacity is not exceeded.

When noted, we use the following disaggregated capacity linking constraints strengthen the LP

relaxation:

xkij ≤ yij , ∀ k ∈ K, ∀ (i, j) ∈ A.

Appendix F. Detailed Canad Instance Results

In Table F.11, we provide the individual Canad instance results that were summarized in Table

7. Results in bold indicate the optimal objective was achieved for that configuration.

References

[1] Akhavan Kazemzadeh, M. R., Bektaş, T., Crainic, T. G., Frangioni, A., Gendron, B., and

Gorgone, E. (2022). Node-based lagrangian relaxations for multicommodity capacitated fixed-

charge network design. Discrete Applied Mathematics, 308:255–275. Combinatorial Optimization

ISCO 2018.

[2] Atamtürk, A. and Rajan, D. (2002). On splittable and unsplittable flow capacitated network

design arc–set polyhedra. Mathematical Programming, 92:315–333.

[3] Atamturk, A. and Gunluk, O. (2021). Multicommodity multifacility network design. In Crainic,

T. G., Gendreau, M., and Gendron, B., editors, Network Design with Applications to Transporta-

tion and Logistics, chapter 5, pages 141–166. Springer.

[4] Bakir, I., Erera, A. L., and Savelsbergh, M. W. P. (2021). Motor carrier service network design.

In Crainic, T. G., Gendreau, M., and Gendron, B., editors, Network Design with Applications to

Transportation and Logistics, chapter 14, pages 427–467. Springer.

29

Table F.11: Arc-based results for the Canad instances. Objectives for (f) and (f),(d) are marked with an asterisk if

the LPR objective was greater than the final bound found in [32].

In
st
a
n
c
e

O
b
j

(a
)

(c
)

(d
)

(f
)

(i
)

(f
),
(d

)

L
P
R

IP
G
a
p

L
P
R

IP
G
a
p

L
P
R

IP
G
a
p

L
P
R

IP
G
a
p

L
P
R

IP
G
a
p

L
P
R

IP
G
a
p

2
0
-2

3
0
-4

0
-V

-L
4
2
3
,9
3
3

3
7
8
,6
2
3

1
0
.6
9
%

4
2
2
,8
5
3

0
.2

5
%

4
2
3
,9

3
3

0
.0

0
%

4
2
3
,9

3
3
*

0
.0

0
%

4
2
3
,9

3
3

0
.0

0
%

4
2
3
,9

3
3
*

0
.0

0
%

2
0
-2

3
0
-4

0
-V

-T
3
9
8
,8
7
0

3
5
9
,1
7
5

9
.9
5
%

3
6
8
,4
9
4

7
.6
2
%

3
7
8
,5
7
3

5
.0
9
%

3
9
7
,6
0
6
*

0
.3
2
%

3
9
7
,6
5
3

0
.3
1
%

3
9
7
,8
2
6
*

0
.2
6
%

2
0
-2

3
0
-4

0
-F

-T
6
6
8
,6
9
9

5
8
4
,3
0
6

1
2
.6
2
%

6
3
3
,4
6
6

5
.2
7
%

6
4
2
,1
5
7

3
.9
7
%

6
6
7
,9
7
2
*

0
.1

1
%

6
6
7
,9
7
2

0
.1
1
%

6
6
8
,6

9
9
*

0
.0

0
%

2
0
-2

3
0
-2

0
0
-V

-L
9
3
,8
9
3

6
8
,8
0
5

2
6
.7
2
%

9
0
,9
3
4

3
.1
5
%

9
0
,9
3
4

3
.1
5
%

9
0
,5
1
7

3
.6
0
%

9
0
,6
2
2

3
.4
8
%

9
0
,9
4
5

3
.1
4
%

2
0
-2

3
0
-2

0
0
-F

-L
1
3
8
,0
8
4

9
8
,3
4
3

2
8
.7
8
%

1
3
1
,9
5
1

4
.4
4
%

1
3
1
,9
5
1

4
.4
4
%

1
3
0
,9
8
1

5
.1
4
%

1
3
0
,9
2
0

5
.1
9
%

1
3
1
,9
6
5
*

4
.4
3
%

2
0
-2

3
0
-2

0
0
-V

-T
9
8
,6
1
0

7
3
,9
7
6

2
4
.9
8
%

9
5
,4
6
1

3
.1
9
%

9
5
,5
2
1

3
.1
3
%

9
4
,7
4
2
*

3
.9
2
%

9
4
,7
1
8

3
.9
5
%

9
5
,5
5
3
*

3
.1
0
%

2
0
-2

3
0
-2

0
0
-F

-T
1
3
7
,7
3
1

1
0
0
,7
2
8

2
6
.8
7
%

1
3
1
,4
9
9

4
.5
3
%

1
3
1
,5
1
3

4
.5
1
%

1
3
1
,0
1
1
*

4
.8
8
%

1
3
1
,4
6
7

4
.5
5
%

1
3
1
,5
5
9
*

4
.4
8
%

2
0
-3

0
0
-4

0
-V

-L
4
2
9
,3
3
5

3
8
6
,4
6
2

9
.9
9
%

4
2
7
,0
2
9

0
.5

4
%

4
2
9
,3

3
5

0
.0

0
%

4
2
9
,3

3
5
*

0
.0

0
%

4
2
9
,3

3
5

0
.0

0
%

4
2
9
,3

3
5
*

0
.0

0
%

2
0
-3

0
0
-4

0
-F

-L
5
9
7
,0
5
9

4
9
2
,6
9
0

1
7
.4
8
%

5
7
5
,2
5
5

3
.6
5
%

5
8
4
,9
7
5

2
.0
2
%

5
8
9
,4
5
1
*

1
.2
7
%

5
8
9
,4
5
1

1
.2
7
%

5
8
9
,5
3
7
*

1
.2
6
%

2
0
-3

0
0
-4

0
-V

-T
5
0
1
,7
6
6

4
4
8
,1
7
0

1
0
.6
8
%

4
6
0
,9
3
0

8
.1
4
%

4
7
9
,8
9
0

4
.3
6
%

5
0
0
,0
4
7
*

0
.3
4
%

5
0
0
,0
4
7

0
.3
4
%

5
0
0
,3
0
1
*

0
.2
9
%

2
0
-3

0
0
-4

0
-F

-T
6
4
3
,3
9
5

5
4
6
,6
6
6

1
5
.0
3
%

5
9
6
,6
6
7

7
.2
6
%

6
1
4
,6
5
6

4
.4
7
%

6
4
2
,0
4
3
*

0
.2
1
%

6
4
2
,0
4
3

0
.2
1
%

6
4
2
,0
4
3
*

0
.2
1
%

2
0
-3

0
0
-2

0
0
-V

-L
7
5
,7
6
3

5
8
,9
3
4

2
2
.2
1
%

7
3
,1
0
7

3
.5
1
%

7
3
,1
3
6

3
.4
7
%

7
2
,8
1
7

3
.8
9
%

7
3
,0
3
0

3
.6
1
%

7
3
,2
2
6
*

3
.3
5
%

2
0
-3

0
0
-2

0
0
-F

-L
1
1
7
,9
8
3

8
7
,7
4
3

2
5
.6
3
%

1
1
0
,7
9
5

6
.0
9
%

1
1
0
,8
3
4

6
.0
6
%

1
0
9
,9
8
7

6
.7
8
%

1
1
0
,0
0
5

6
.7
6
%

1
1
0
,8
6
0
*

6
.0
4
%

2
0
-3

0
0
-2

0
0
-V

-T
7
6
,5
0
8

6
1
,4
8
2

1
9
.6
4
%

7
3
,9
5
6

3
.3
4
%

7
4
,0
5
1

3
.2
1
%

7
3
,9
5
9
*

3
.3
3
%

7
4
,0
5
6

3
.2
0
%

7
4
,1
1
1
*

3
.1
3
%

2
0
-3

0
0
-2

0
0
-F

-T
1
0
9
,6
3
2

8
4
,7
3
3

2
2
.7
1
%

1
0
3
,5
6
8

5
.5
3
%

1
0
3
,6
1
8

5
.4
9
%

1
0
3
,1
7
7
*

5
.8
9
%

1
0
3
,4
1
4

5
.6
7
%

1
0
3
,7
4
8
*

5
.3
7
%

3
0
-5

2
0
-1

0
0
-V

-L
5
4
,3
8
7

4
4
,1
1
8

1
8
.8
8
%

5
3
,0
2
3

2
.5
1
%

5
3
,2
4
6

2
.1
0
%

5
3
,2
7
9
*

2
.0
4
%

5
3
,3
5
0

1
.9
1
%

5
3
,4
1
5
*

1
.7
9
%

3
0
-5

2
0
-1

0
0
-F

-L
9
6
,2
7
7

6
7
,5
6
0

2
9
.8
3
%

9
0
,1
7
4

6
.3
4
%

9
0
,5
4
1

5
.9
6
%

9
0
,4
0
1
*

6
.1
0
%

9
0
,5
5
0

5
.9
5
%

9
0
,8
3
9
*

5
.6
5
%

3
0
-5

2
0
-1

0
0
-V

-T
5
3
,8
1
2

4
6
,5
5
1

1
3
.4
9
%

5
1
,2
3
9

4
.7
8
%

5
1
,8
4
0

3
.6
7
%

5
3
,0
3
4
*

1
.4
5
%

5
3
,0
3
1

1
.4
5
%

5
3
,0
9
1
*

1
.3
4
%

3
0
-5

2
0
-1

0
0
-F

-T
9
9
,1
9
5

7
6
,7
1
0

2
2
.6
7
%

9
3
,9
9
9

5
.2
4
%

9
4
,8
4
7

4
.3
8
%

9
5
,2
3
2
*

3
.9
9
%

9
5
,3
3
0

3
.9
0
%

9
5
,7
4
4
*

3
.4
8
%

3
0
-5

2
0
-4

0
0
-V

-L
1
1
4
,4
8
4

9
6
,6
1
5

1
5
.6
1
%

1
1
1
,5
1
2

2
.6
0
%

1
1
1
,5
7
6

2
.5
4
%

1
1
1
,1
6
5

2
.9
0
%

1
1
1
,2
8
7

2
.7
9
%

1
1
1
,6
1
3
*

2
.5
1
%

3
0
-5

2
0
-4

0
0
-F

-L
1
5
0
,6
1
8

1
2
2
,6
8
0

1
8
.5
5
%

1
4
6
,4
7
1

2
.7
5
%

1
4
6
,6
9
9

2
.6
0
%

1
4
6
,0
3
9
*

3
.0
4
%

1
4
6
,3
3
3

2
.8
4
%

1
4
6
,8
2
8
*

2
.5
2
%

3
0
-5

2
0
-4

0
0
-V

-T
1
1
6
,3
3
2

1
0
0
,6
4
9

1
3
.4
8
%

1
1
3
,9
7
3

2
.0
3
%

1
1
4
,1
6
3

1
.8
6
%

1
1
3
,8
0
4

2
.1
7
%

1
1
4
,0
2
7

1
.9
8
%

1
1
4
,2
1
3

1
.8
2
%

3
0
-5

2
0
-4

0
0
-F

-T
1
5
5
,9
8
2

1
2
6
,3
5
7

1
8
.9
9
%

1
4
9
,7
2
5

4
.0
1
%

1
4
9
,9
2
8

3
.8
8
%

1
4
9
,4
7
9
*

4
.1
7
%

1
4
9
,7
3
2

4
.0
1
%

1
4
9
,9
9
6
*

3
.8
4
%

3
0
-7

0
0
-1

0
0
-V

-L
4
7
,8
8
3

3
9
,0
5
5

1
8
.4
4
%

4
7
,2
9
2

1
.2
3
%

4
7
,4
7
8

0
.8
5
%

4
7
,4
4
1
*

0
.9
2
%

4
7
,4
4
1

0
.9
2
%

4
7
,5
2
8
*

0
.7
4
%

3
0
-7

0
0
-1

0
0
-F

-L
6
0
,3
8
4

4
5
,7
0
9

2
4
.3
0
%

5
8
,1
5
5

3
.6
9
%

5
8
,3
4
2

3
.3
8
%

5
8
,3
0
8

3
.4
4
%

5
8
,3
1
3

3
.4
3
%

5
8
,5
6
8
*

3
.0
1
%

3
0
-7

0
0
-1

0
0
-V

-T
4
7
,6
7
0

4
0
,9
9
2

1
4
.0
1
%

4
5
,0
7
8

5
.4
4
%

4
5
,8
2
2

3
.8
8
%

4
6
,6
2
9
*

2
.1
8
%

4
6
,7
6
4

1
.9
0
%

4
6
,8
9
4
*

1
.6
3
%

3
0
-7

0
0
-1

0
0
-F

-T
5
6
,6
8
6

4
4
,8
1
0

2
0
.9
5
%

5
3
,6
6
0

5
.3
4
%

5
4
,4
8
5

3
.8
8
%

5
5
,0
5
9
*

2
.8
7
%

5
5
,2
7
0

2
.5
0
%

5
5
,1
5
7
*

2
.7
0
%

3
0
-7

0
0
-4

0
0
-V

-L
9
8
,6
3
5

7
9
,0
5
6

1
9
.8
5
%

9
6
,5
4
5

2
.1
2
%

9
6
,5
6
5

2
.1
0
%

9
6
,0
3
8

2
.6
3
%

9
6
,2
4
6

2
.4
2
%

9
6
,5
7
8
*

2
.0
9
%

3
0
-7

0
0
-4

0
0
-F

-L
1
3
6
,7
8
3

1
0
6
,5
6
4

2
2
.0
9
%

1
2
9
,8
0
7

5
.1
0
%

1
3
0
,7
0
7

4
.4
4
%

1
3
0
,1
0
1

4
.8
9
%

1
3
0
,1
6
7

4
.8
4
%

1
3
0
,7
8
2
*

4
.3
9
%

3
0
-7

0
0
-4

0
0
-V

-T
9
6
,7
5
6

8
1
,2
1
7

1
6
.0
6
%

9
4
,0
0
6

2
.8
4
%

9
4
,1
0
5

2
.7
4
%

9
3
,6
7
0

3
.1
9
%

9
3
,7
8
6

3
.0
7
%

9
4
,1
6
4
*

2
.6
8
%

3
0
-7

0
0
-4

0
0
-F

-T
1
3
2
,6
1
7

1
0
9
,3
6
4

1
7
.5
3
%

1
2
7
,5
4
5

3
.8
2
%

1
2
7
,6
1
1

3
.7
7
%

1
2
7
,0
7
5
*

4
.1
8
%

1
2
7
,2
4
3

4
.0
5
%

1
2
7
,6
7
0
*

3
.7
3
%

A
v
e
ra

g
e

1
9
4
,5
0
8

1
6
3
,1
8
9

0
.0
%

1
8
5
,7
4
7

0
.0
%

1
8
8
,1
6
2

0
.0
%

1
9
1
,1
0
7

0
.0
%

1
9
1
,2
1
1

0
.0
%

1
9
1
,5
0
7

0
.0
%

30

[5] Becu, B., Dey, S. S., Qiu, F., and Xavier, A. S. (2024). Approximating the Gomory mixed-

integer cut closure using historical data. arXiv preprint arXiv:2411.15090.

[6] Benhamiche, A., Mahjoub, A. R., Perrot, N., and Uchoa, E. (2016). Unsplittable non-additive

capacitated network design using set functions polyhedra. Computers & Operations Research,

66:105–115.

[7] Benidis, K., Paschos, G., Gross, M., and Iosifidis, G. (2023). Middle-mile optimization for

next-day delivery. arXiv preprint arXiv:2310.18388.

[8] Bienstock, D., Chopra, S., Günlük, O., and Tsai, C.-Y. (1998). Minimum cost capacity instal-

lation for multicommodity network flows. Mathematical programming, 81:177–199.

[9] Bodur, M., Del Pia, A., Dey, S. S., Molinaro, M., and Pokutta, S. (2018). Aggregation-based

cutting-planes for packing and covering integer programs. Mathematical Programming, 171:331–

359.

[10] Bonami, P. and Margot, F. (2014). Cut generation through binarization. In Integer Pro-

gramming and Combinatorial Optimization: 17th International Conference, IPCO 2014, Bonn,

Germany, June 23-25, 2014. Proceedings 17, pages 174–185. Springer.

[11] Boyd, E. A. (1994). Fenchel cutting planes for integer programs. Operations Research,

42(1):53–64.

[12] Brockmüller, B., Günlück, O., and Wolsey, L. A. (1996). Designing private line networks-

polyhedral analysis and computation. Technical report, Université catholique de Louvain, Center

for Operations Research and

[13] Chen, L., Chen, W.-K., Yang, M.-M., and Dai, Y.-H. (2021). An exact separation algorithm for

unsplittable flow capacitated network design arc-set polyhedron. Journal of Global Optimization,

81:659–689.

[14] Chouman, M. and Crainic, T. G. (2015). Cutting-plane matheuristic for service network design

with design-balanced requirements. Transportation Science, 49(1):99–113.

[15] Chouman, M., Crainic, T. G., and Gendron, B. (2017). Commodity representations and

cut-set-based inequalities for multicommodity capacitated fixed-charge network design. Trans-

portation Science, 51(2):650–667.

[16] Cornuéjols, G., Margot, F., and Nannicini, G. (2013). On the safety of gomory cut generators.

Mathematical Programming Computation, 5:345–395.

[17] Costa, A. M., Cordeau, J.-F., and Gendron, B. (2009). Benders, metric and cutset inequalities

for multicommodity capacitated network design. Computational Optimization and Applications,

42:371–392.

31

[18] Crainic, T. and Gendreau, M. (2021). Heuristics and metaheuristics for fixed-charge net-

work design. In Crainic, T. G., Gendreau, M., and Gendron, B., editors, Network Design with

Applications to Transportation and Logistics, chapter 14, pages 427–467. Springer.

[19] Crainic, T. G., Frangioni, A., and Gendron, B. (2001). Bundle-based relaxation methods

for multicommodity capacitated fixed charge network design. Discrete Applied Mathematics,

112(1-3):73–99.

[20] Crainic, T. G., Gendreau, M., and Farvolden, J. M. (2000). A simplex-based tabu search

method for capacitated network design. INFORMS journal on Computing, 12(3):223–236.

[21] Croxton, K. L., Gendron, B., and Magnanti, T. L. (2003). Models and methods for merge-in-

transit operations. Transportation science, 37(1):1–22.

[22] Croxton, K. L., Gendron, B., and Magnanti, T. L. (2007). Variable disaggregation in network

flow problems with piecewise linear costs. Operations research, 55(1):146–157.

[23] Dey, S. S. and Molinaro, M. (2018). Theoretical challenges towards cutting-plane selection.

Mathematical Programming, 170:237–266.

[24] Fischetti, M. and Salvagnin, D. (2011). A relax-and-cut framework for gomory mixed-integer

cuts. Mathematical Programming Computation, 3:79–102.

[25] Fontaine, P., Crainic, T. G., Jabali, O., and Rei, W. (2021). Scheduled service network design

with resource management for two-tier multimodal city logistics. European Journal of Operational

Research, 294(2):558–570.

[26] Frangioni, A. (2012). Multicommodity flow problems. Retrieved April 2024, from https:

//commalab.di.unipi.it/datasets/mmcf/#Canad.

[27] Frangioni, A. and Gendron, B. (2009). 0–1 reformulations of the multicommodity capacitated

network design problem. Discrete Applied Mathematics, 157(6):1229–1241.

[28] Ghamlouche, I., Crainic, T. G., and Gendreau, M. (2003). Cycle-based neighbourhoods for

fixed-charge capacitated multicommodity network design. Operations research, 51(4):655–667.

[29] Greening, L. M., Dahan, M., and Erera, A. L. (2023). Lead-time-constrained middle-mile

consolidation network design with fixed origins and destinations. Transportation Research Part

B: Methodological, 174:102782.

[30] Greening, L. M., Park, J., Dahan, M., Erera, A. L., and Montreuil, B. (2024). Integrat-

ing order-to-delivery time sensitivity in e-commerce middle-mile consolidation network design.

optimization-online preprint.

32

https://commalab.di.unipi.it/datasets/mmcf/#Canad
https://commalab.di.unipi.it/datasets/mmcf/#Canad

[31] Hewitt, M. (2022). The flexible scheduled service network design problem. Transportation

Science, 56(4):1000–1021.

[32] Hewitt, M., Nemhauser, G., and Savelsbergh, M. W. (2013). Branch-and-price guided search

for integer programs with an application to the multicommodity fixed-charge network flow prob-

lem. INFORMS Journal on Computing, 25(2):302–316.

[33] Hewitt, M., Nemhauser, G. L., and Savelsbergh, M. (2010). Combining exact and heuris-

tic approaches for the capacitated fixed-charge network flow problem. INFORMS journal on

computing, 22(2):314–325.

[34] Satici, O. and Dayarian, I. (2024). Tactical and operational planning of express intra-city

package services. Omega, 122:102940.

[35] van Hoesel, S. P., Koster, A. M., van de Leensel, R. L., and Savelsbergh, M. W. (2002).

Polyhedral results for the edge capacity polytope. Mathematical Programming, 92:335–358.

[36] Wang, Z., Qi, M., Cheng, C., and Zhang, C. (2019). A hybrid algorithm for large-scale service

network design considering a heterogeneous fleet. European Journal of Operational Research,

276(2):483–494.

33

	Introduction
	Formulations
	Integer Capacity Variables
	Binary Capacity Variables

	Valid Inequalities
	Valid Inequalities from Relaxation
	Single-Arc Commodity Packing Constraints
	Generalized Single-Arc Commodity Packing Constraints

	Helper Metric Inequalities
	Lagrangian Selection

	Computational Study
	Instance Generation
	Comparison of Formulations
	Improvements to LP Relaxation
	Evaluation of Bound-Improving Strategy

	Conclusions
	Disaggregated Capacity Constraints Example
	Separation Using Dynamic Programming.
	Improving DP running time.

	Solver Performances with Helper Metric Inequalities
	Arc-based Flow Conservation Constraints
	Arc-Based Formulation When Solving Canad Instances
	Detailed Canad Instance Results

