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Section 1

Introduction
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Block-structure MILP with coupling constraint

We consider a mixed-integer linear optimization:

OPT := min
(x,y)

∑
i∈{1,2}

〈
c(i), x(i)

〉
+

〈
d(i), y(i)

〉
s.t. (x(1), y(1)) ∈ X (1)

(x(2), y(2)) ∈ X (2)

x(1) = x(2) ∈ {0, 1}n.

▶ X (i) is a mixed integer linear set (linear constraints + some integrality
requirement).

▶ x(1) = x(2) is a coupling constraint.

▶ We assume x(1), x(2) ∈ {0, 1}n.
▶ We focus on the two-block case for simplicity. More general case later.

▶ Related to N-fold integer programming. [De Loera, Hemmecke, Onn,
Weismantel (2008)], [Hemmecke, Onn, Weismantel (2013)] [Cslovjecsek
et al. (2021)], [Cslovjecsek et al. (2024)]
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Lagrangian decomposition

OPT := min
(x,y)

∑
i∈{1,2}

〈
c(i), x(i)

〉
+

〈
d(i), y(i)

〉
s.t. (x(1), y(1)) ∈ X (1)

(x(2), y(2)) ∈ X (2)

x(1) = x(2) ∈ {0, 1}n.

▶ If we remove x(1) = x(2) ∈ {0, 1}n, then the the remaining problem is
decomposed into independent optimization tasks over each X (i).

▶ Lagrangian decomposition: “dualizing” the coupling constraints

L(λ) := min
(x,y)

 ∑
i∈{1,2}

〈
c(i), x(i)

〉
+

〈
d(i), y(i)

〉+
〈
λ, x(1) − x(2)

〉
s.t. (x(i), y(i)) ∈ X (i),∀i ∈ {1, 2},

and

DUAL-OPT := max
λ

L(λ).
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Duality gap

Theorem ([Geoffrion (1974)])

DUAL-OPT = min
(x,y)

∑
i∈{1,2}

〈
c(i), x(i)

〉
+

〈
d(i), y(i)

〉
s.t. (x(i), y(i)) ∈ conv{X (i)},∀i ∈ {1, 2},

x(1) = x(2). (“outside conv”)

Recall that

OPT := min
(x,y)

∑
i∈{1,2}

〈
c(i), x(i)

〉
+

〈
d(i), y(i)

〉
s.t. (x(i), y(i)) ∈ conv

{
(x, y)

∣∣∣∣ (x(i), y(i)) ∈ X (i),∀i ∈ {1, 2},
x(1) = x(2)

}

▶ Because of non-convexity of X (i), it is possible that DUAL-OPT < OPT
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Our goal

▶ If we ignore block structure: no decomposition + zero duality gap

▶ Lagrangian decomposition: decomposable + non-zero duality gap

▶ We want: decomposable + zero duality gap
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Main idea: add redundant constraints

▶ Suppose

x(1) = x(2) ∈ {0, 1}n =⇒ α(1)(x(1)) + α(2)(x(2)) ≥ 0.

▶ For example:

x(1) = x(2) ∈ {0, 1}n =⇒ (x
(1)
1 + x

(1)
2 )− (x

(2)
1 · x (2)

2 ) ≥ 0.

▶ Lets add this constraint into the primal problem

s.t. (x(i), y(i)) ∈ X (i), ∀i ∈ {1, 2},

x(1) = x(2),

(x
(1)
1 + x

(1)
2 )− (x

(2)
1 · x (2)

2 ) ≥ 0.

▶ Trivially, we have OPT′ = OPT.
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Close gap with more constraints
▶ (x

(1)
1 + x

(1)
2 )− (x

(2)
1 · x (2)

2 ) ≥ 0 is a coupling constraint.

L(λ, µ)ex := min
(x,y)

 ∑
i∈{1,2}

〈
c(i), x(i)

〉
+

〈
d(i), y(i)

〉
+

〈
λ, x(1) − x(2)

〉
+

〈
µ, (x

(1)
1 + x

(1)
2 )− (x

(2)
1 · x (2)

2 )
〉

s.t. (x(i), y(i)) ∈ X (i), ∀i ∈ {1, 2},

and

DUAL-OPT′ := max
λ,µ≥0

L(λ, µ)

▶ Lagrangian relaxation still decomposes into two blocks:

min
〈
c(1) + λ, x(1)

〉
+

〈
d(1), y(1)

〉
+ µ · (x (1)

1 + x
(1)
2 )

s.t. (x(i), y(i)) ∈ X (i)

min
〈
c(2) − λ, x(2)

〉
+

〈
d(2), y(2)

〉
− µ · x (2)

1 x
(2)
2

s.t. (x(i), y(i)) ∈ X (i)
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Section 2

Strong Duality + Decomposability
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On the choice of redundant constraints

We know that

▶ OPT′ = OPT

▶ How about DUAL-OPT′? When we can expected
DUAL-OPT′ > DUAL-OPT?

Proposition
If either α(1)(·) or α(2)(·) is an affine function, then
DUAL-OPT′ = DUAL-OPT.

▶ In example, α(1)(x(1)) = x
(1)
1 + x

(1)
2 is an affine function. So no dual

bound improvement.

▶ Both α(1)(·) and α(2)(·) need to be non-linear to improve Duality-gap.

▶ We can add multiply redundant constraints.
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One choice of redundant constraints: M-constraints

▶ Let S ⊆ 2[n] be a collection of subsets of [n], the primal-redundant
constraints take form of∏

s∈S

x (1)
s =

∏
s∈S

x (2)
s , ∀S ∈ S.

For example, when S = {1, 2}, the constraint looks like

x
(1)
1 · x (1)

2 = x
(2)
1 · x (2)

2 .

▶ Not the same as RLT. Traditional RLT constraint:

(x
(1)
1 − x

(2)
1 ) · (x (1)

2 − x
(2)
2 ) = 0,

which is not decomposable after dualizing.
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Another (slightly different) choice of redundant
constraints: V-constraints

▶ Let V ⊆ {0, 1}n, the primal-redundant constraints take form of∏
j∈[n]

σvj (x
(1)
j ) =

∏
j∈[n]

σvj (x
(2)
j ), for each vertex v in V ,

where σvj (u) :=

{
u if vj = 1

1− u if vj = 0
.

For example, when n = 3 and v = (1, 0, 1) the constraint looks like

x
(1)
1 (1− x

(1)
2 )x

(1)
3 = x

(2)
1 (1− x

(2)
2 )x

(2)
3 .

▶ Eventually leads to a ”Column generation-type algorithm”
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Strong duality

M-Lagrangian Dual

Theorem
If S = 2[n], then OPT = DUAL-OPT′

▶ Exponentially constraints and dual variables are introduced.

▶ What if we only introduce polynomially many constraints?

V-Lagrangian Dual

Theorem
If V = {0, 1}n, then OPT = DUAL-OPT′
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Proof of strong duality (M-Lagrangian dual)

▶ Let

f (i)(x) :=min
〈
c(i), x(i)

〉
+
〈
d(i), y(i)

〉
s.t. x(i) = x, (x(i), y(i)) ∈ X (i)

▶ For simplicity, assume the above problem is feasible for all
x ∈ {0, 1}n. (Otherwise there is a simple fix)

▶ Then f (i) : {0, 1}n → R for i ∈ {1, 2} are pseudo-Boolean functions,
so there exists µ∗

S ∈ R for all S ⊆ 2[n], such that

f (2)(x) =
∑
S⊆2[n]

µ∗
S

∏
j∈S

xj
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Proof of strong duality (M-Lagrangian dual)

f (2)(x) =
∑
S⊆2[n]

µ∗
S

∏
j∈S

xj

OPT

≥ DUAL-OPT′

= maxµ

minx(1),x(2)

(f (1)(x(1)) + f (2)(x(2))) +
∑
S⊆2[n]

µS(
∏
j∈S

x
(1)
j −

∏
j∈S

x
(2)
j )


≥ minx(1),x(2)

(f (1)(x(1)) + f (2)(x(2))) +
∑
S⊆2[n]

µ∗
S(
∏
j∈S

x
(1)
j −

∏
j∈S

x
(2)
j )


= minx(1),x(2)

(
(f (1)(x(1)) +

XXXXXf (2)(x(2))) +
(
f (2)(x(1))−XXXXXf (2)(x(2))

))
= minx(1),x(2)

(
f (1)(x(1)) + f (2)(x(1))

)
= OPT.
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Section 3

Bounds as a function of degree of monomial
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Bounds for packing and covering sets.

▶ Packing:

▶ We use “min” as our objective, so objective is non-positive.
▶ Assumption: projx(1)(X (1)) = projx(2)(X (2)). (Easy to achieve)
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Bounds for packing and covering sets.

▶ Packing:

▶ We use “min” as our objective, so objective is non-positive.
▶ Assumption: projx(1)(X (1)) = projx(2)(X (2)). (Easy to achieve)

Theorem
Fix some number k ≥ 1, let t =

k

n
and S =

(
[n]
≤k

)
. (i.e, all monomials of degree

up to k)

▶ For packing instance, (2 +
1

t − 2
) ·OPT ≤ DUAL-OPT′ ≤ OPT

▶ For covering instance,
1

2− t
·OPT ≤ DUAL-OPT′ ≤ OPT
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k = 1 case for packing

DUAL-OPT = min
(x,y)

∑
i∈{1,2}

〈
c(i), x(i)

〉
+

〈
d(i), y(i)

〉
s.t. (x(i), y(i)) ∈ conv{X (i)},∀i ∈ {1, 2},

x(1) = x(2). (“outside conv”)

▶ Suppose (x̄ , ȳ1, x̄ , ȳ2) is opt. solution of above.

▶ So (x̄ , ȳ1, x̄ , ȳ2) =
∑r

j=1 λj

(x (1))j , (y (1))j︸ ︷︷ ︸
∈X (1)

, (x (2))j , (y (2))j︸ ︷︷ ︸
∈X (2)

, λ ∈ ∆r .

▶ By packing and assumption, we have

(x̄ , ȳ1, x̄ , 0) =
∑r

j=1 λj

(x (1))j , (y (1))j︸ ︷︷ ︸
∈X (1)

, (x (1))j , 0︸ ︷︷ ︸
∈X (2)

 ∈ convex hull of IP.
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k = 1 case for packing -contd.

1. Similarly, (x̄ , ȳ1, x̄ , 0), (x̄ , 0, x̄ , ȳ2), (0, ȳ1, 0, ȳ2) ∈ convex hull of IP.

2. So obj-val(x̄ , ȳ1, x̄ , 0) ≥ OPT, obj-val(x̄ , 0, x̄ , ȳ2) ≥ OPT,
obj-val(0, ȳ1, 0, ȳ2) ≥ OPT.

3. On the other hand obj-val((x̄ , ȳ1, x̄ , 0) + (x̄ , 0, x̄ , ȳ2) + (0, ȳ1, 0, ȳ2)) =
obj-val(2 · (x̄ , ȳ1, x̄ , ȳ2)) = 2 ·DUAL-OPT.

4. So by (2.) and (3.), we have 3
2
·OPT ≤ DUAL-OPT.
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4. So by (2.) and (3.), we have 3
2
·OPT ≤ DUAL-OPT.

54



k = 1 case for packing -contd.
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4. So by (2.) and (3.), we have 3
2
·OPT ≤ DUAL-OPT.

55



Main proof ingredient for k ≥ 1
Let S be a down-closed collection of subsets of 2[n]. Then:

DUAL-OPT′ = min
(x,y,w)

∑
i∈{1,2}

〈
c(i), x(i)

〉
+

〈
d(i), y(i)

〉
s.t. (x(i), y(i),w(i)) ∈ conv{X (i)

M (S)},∀i ∈ {1, 2},

w(1)
S = w(2)

S ,∀S ∈ S.

▶ (proj) of feasible region of the above problem:

A(S) :=

{
(x, y)

∣∣∣∣∣ ∃w, (x(i), y(i),w(i)) ∈ conv{X (i)
M (S)},∀i ∈ {1, 2},

w(1)
S = w(2)

S , ∀S ∈ S

}
.

▶

B(S) :=
⋂
U∈S

conv

{
(x, y)

∣∣∣∣∣ (x(i), y(i)) ∈ X (i), ∀i ∈ {1, 2},
x
(1)
j = x

(2)
j , ∀j ∈ U “inside conv” for some vars.

}
.

Theorem
If S is down-closed, then we have A(S) ⊆ B(S).
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Section 4

General Setting
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General Setting

min{c⊤x : Ax ≤ b, x is mixed-binary}. (1)

Definition
The intersection graph of (2) is a simple undirected graph that has a vertex for
each variable in (2) and two vertices are adjacent if and only if their associated
variables appear in any common constraint of Ax ≤ b.
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General Setting

min{c⊤x : Ax ≤ b, x is mixed-binary}. (2)

Definition
The intersection graph of (2) is a simple undirected graph that has a vertex for
each variable in (2) and two vertices are adjacent if and only if their associated
variables appear in any common constraint of Ax ≤ b.

Definition
Let G be a simple undirected graph. A tree decomposition of G is a pair of
(T ,Q) where T is a tree and Q = {Qt : t ∈ V (T )} is a collection of vertices
of V (G) such that the following holds:

1. For each v ∈ V (G), the set {t ∈ V (T ) : v ∈ Qt} forms a subtree of T ,

2. If (u, v) ∈ E(G), then there exists t ∈ V (T ) such that u, v ∈ Qt ,

3.
⋃

t∈V (T ) Qt = V (G).

60



General case -contd.

(T ,Q) is a tree decomposition:

min
∑

i∈V (T )

〈
c(i), x(i)

〉
s.t. x(i) ∈ X (i), ∀i ∈ V (T ), (Local copy of each variable for every bag)

x (i)
v = x (j)

v ,∀(i , j) ∈ E(T ) and v ∈ Qi ∩Qj ,

(Matching local copy of variable on edge of tree)

(3)

Adding redundant constraints corresponding to a collection of monomial per
edge Sij :

min
∑

i∈V (T )

〈
c(i), x(i)

〉
s.t. (x(i),w(i)) ∈ X (i)

M ,∀i ∈ V (T ),

w(i)
S = w(j)

S , ∀(i , j) ∈ E(T ), S ∈ Sij .

(4)

Theorem
If Sij = 2Qi∩Qj ,, then zero-duality gap.
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Packing and covering bounds

Definition (Good and k-good)
Given a subset W of variables x in (2), let V := {i ∈ V (T ) : Qi ∩ W ≠ ∅}. Consider the sub-graph T (W) of
T induced by V. We say W is good if every connected component C of T (W) satisfies either

1. For any (i, j) ∈ E(C), |Qi ∩ Qj ∩ W| ≤ k.

2. There exists i ∈ V (C) such that (Qj ∩ W) ⊆ (Qi ∩ W), ∀j ∈ V (C).

ηk :=

min
∑

W is good

αW :
∑

W is good

αWχW ≥ 1 and αW ≥ 0.

 (5)

θk :=

min
∑

W is k-good

αW :
∑

W is k-good

αWχW ≥ 1 and αW ≥ 0.

 (6)

Theorem
For any packing instance, we have that
ηk ·OPT ≤ DUAL-OPT′ ≤ OPT.

Theorem
For any covering instance, let τ := maxv∈V (G) |{i ∈ V (T ) : v ∈ Qi}|.

Then we have that
θk

1− τ + τ · θk
·OPT ≤ DUAL-OPT′ ≤ OPT.
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ηk :=

min
∑

W is good

αW :
∑

W is good

αWχW ≥ 1 and αW ≥ 0.

 (5)

θk :=

min
∑

W is k-good

αW :
∑

W is k-good

αWχW ≥ 1 and αW ≥ 0.

 (6)

Theorem
For any packing instance, we have that
ηk ·OPT ≤ DUAL-OPT′ ≤ OPT.

Theorem
For any covering instance, let τ := maxv∈V (G) |{i ∈ V (T ) : v ∈ Qi}|.

Then we have that
θk

1− τ + τ · θk
·OPT ≤ DUAL-OPT′ ≤ OPT.
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Section 5

Preliminary computational study
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Preliminary computational study

▶ 10 blocks, each block is a some stable set problem on a random graph of
100 nodes. Number of variables shared between blocks is 33.

▶ We consider two block-structures.

▶ We consider four methods:

▶ (L): classical Lagrangian ; (QL) Lagrangian with all quadratic
terms; (VL) Vertex Lagrangian; Gurobi

▶ Lagrangian dual solved using bundle method. Sub-problems solved
sequentially!
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Results

Table: STAR-STAB

Methods Primal-dual gap Time(s) Iterations

Gurobi 10.0% 1200 -
L 6.0% 1200 127
QL 4.4% 1200 96
VL 3.9% 1200 103

Table: PATH-STAB

Methods Primal-dual gap Time(s) Iterations

Gurobi 10.8% 1200 -
L 3.5% 1200 369
QL 1.2% 1200 254
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Comments

▶ Lagrangian duals which achieve the twin goal of zero duality gap and

maintaining decomposability of the sub-problems:

▶ At high cost of solving more challenging sub-problems with
non-linear objective functions

▶ Can we achieve Lagrangian duals with decomposability and
zero duality gap while solving an ”easier” subproblem in each
iteration?

▶ Better bounds (we do not know if our bounds are tight)

▶ Preliminary computational results are encouraging.

▶ Significant more engineering in the implementation of our
methods can be done.
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Thank you!
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