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Section 1

Introduction



Block-structure MILP with coupling constraint

We consider a mixed-integer linear optimization:

RENETER

st (<Y, y) e A0
(x?,y@) e ¥
xM =x® e {0,1}".

> X0 is a mixed integer linear set (linear constraints 4+ some integrality
requirement).
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Block-structure MILP with coupling constraint

We consider a mixed-integer linear optimization:

orr gy (€00 (4}

i€{1,2}
st (x,yM) € A
(x?,y?) e x®

xM =x® e {0,1}".

v

XD is a mixed integer linear set (linear constraints 4+ some integrality
requirement).

x = x® s a coupling constraint.
We assume x®M, x® ¢ {0,1}".

We focus on the two-block case for simplicity. More general case later.

vVvyyvyy

Related to N-fold integer programming. [De Loera, Hemmecke, Onn,
Weismantel (2008)], [Hemmecke, Onn, Weismantel (2013)] [Cslovjecsek
et al. (2021)], [Cslovjecsek et al. (2024)]



Lagrangian decomposition

0T iy 5 (004 (90,)
i ie{1,2}

st (M, y0) ¢ 2
(x?,y®) € x@
x =x® e {0,1}".

> If we remove x!) = x® € {0,1}", then the the remaining problem is
decomposed into independent optimization tasks over each x0.



Lagrangian decomposition

0T iy 5 (004 (90,)
i ie{1,2}
st (x(l),y(l)) c x®
(x(2),y(2)) e x®

x =x® e {0,1}".

> If we remove x!) = x® € {0,1}", then the the remaining problem is
decomposed into independent optimization tasks over each x0.

» Lagrangian decomposition: “dualizing” the coupling constraints



Lagrangian decomposition

ort —gy 5 (€120) + (10
i€{1,2}

st (M, y0) ¢ 2
(x?,y®) € x@
x =x® e {0,1}".

> If we remove x!) = x® € {0,1}", then the the remaining problem is
decomposed into independent optimization tasks over each x0.

» Lagrangian decomposition: “dualizing” the coupling constraints

L(\) = min (9, x) + (a®,y0) | + (50— x®)
() (xy) Z y

ie{1,2}
st. (x7,y) e 0 wi e {1,2},
and

DUAL-OPT := max L().

o}



Lagrangian decomposition

LX) = min ( >+ <d(f>7ym>) n <,\7x(1) _x<2)>

vy e 20 vie{1,2},
and

DUAL-OPT := max L(})

10



Lagrangian decomposition

LX) = min ( >+ <d(f>7ym>) n <,\7x(1) _x<2)>

vy e 20 vie{1,2},
and

DUAL-OPT := max L(})

» L(A) is a concave function.

11



Lagrangian decomposition

LX) = min ( >+ <d(f>7ym>> n <,\7x(1) _x<2)>

vy e 20 vie{1,2},
and

DUAL-OPT := max L(})

» L(A) is a concave function.

> For each A, let (x*,y™) be the minimizer of L()), then

X —x3 € OL(X)
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Lagrangian decomposition

LX) = min ( )> + <d(,-)7y(,»)>> n <,\7x(1) _x<2)>

vy e 20 vie{1,2},
and

DUAL-OPT := max L(N)
» L(A) is a concave function.
> For each A, let (x*,y™) be the minimizer of L()), then
X —x3 € OL(X)

» Sub-gradient algorithm, Bundle methods, etc.

13



Duality gap
Theorem ([Geoffrion (1974)])

DUAL-OPT =min 3~ (,x") + (40, y0)
) Ty
s.t. (x,y?) € conv{xM},vi € {1,2},

x =x@_ (“outside conv")
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Duality gap
Theorem ([Geoffrion (1974)])

DUAL-OPT =min > <c("),x("’> + <d"),y(')>

Y Sy
s.t. (x,y?) € conv{xM},vi € {1,2},
x =x@_ (“outside conv")
Recall that
OPT := min Z <c(i),x(i)> + <d(i), y(i)>
(xy)
i€{1,2}
N (M) (@ () v
i i X7, ex ,VI S 1,2 )
st (<y0) e come {(xy) | 7)) w2
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Duality gap
Theorem ([Geoffrion (1974)])

DUAL-OPT = min  3_ <c("),x("’> + <d("),y(">>
Y 0y

s.t. (x,y?) € conv{xM},vi € {1,2},

X =x ("outside conv")
Recall that
OPT := min Z <c(i),x(i)> + <d(i), y(i)>
(xy) .
i€{1,2}

. . (i) () () v

T, x\ e XV Vie {1,2},
st (x0,y") e conv{(X,Y) )(((1) :yx(g) 1.2} }

> Because of non-convexity of X, it is possible that DUAL-OPT < OPT
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Our goal

» If we ignore block structure: no decomposition + zero duality gap
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Our goal

» If we ignore block structure: no decomposition + zero duality gap
» Lagrangian decomposition: decomposable 4+ non-zero duality gap

» We want: decomposable + zero duality gap

10



Main idea: add redundant constraints

» Suppose

xU = x@ ¢ {0,1}" = a(l)(x(l)) + O[(2)()((2)) > 0.
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Main idea: add redundant constraints

» Suppose

xU = x@ ¢ {0,1}" = a(l)(x(l)) + O[(2)()((2)) > 0.

» For example:
X = x® € (0,1} = (<) 1 xM) = (x5 > 0.
» Lets add this constraint into the primal problem
st. (xX,yD) e X0 vie {1,2},
(4 + ") = (7 57) 2 0

» Trivially, we have OPT' = OPT.
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Close gap with more constraints
> (Xfl) + Xél)) — (xfz) -x2(2)) > 0 is a coupling constraint.

ie{1,2}
O =Y 1 (1, (4 20) = (202
st. (x7,yD) e xD vi e {1,2},
and

! Pp—
DUAL-OPT = max, L(X, )
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Close gap with more constraints
> (Xfl) + Xél)) — (xfz) -x2(2)) > 0 is a coupling constraint.

L(A, 1)® := min Z <c(f),x(f)> + <d(i)7y(i)>

(x,y) {12}
(0 = x®) 4 (D ) = (2 )
st. (x7,yD) e xD vi e {1,2},
and

! Pp—
DUAL-OPT = max, L(X, )

» Lagrangian relaxation still decomposes into two blocks:
min <c(1) + A, x(1)> + <d(1)7y(1)> +p- (xl(l) + X2(1))

st. (x9,y?) ¢ 20

min <c(z> Y X(z)> n <d(2)’y(2)> EPRNCNC
st (x,y) € X0
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Section 2

Strong Duality + Decomposability

26



On the choice of redundant constraints

We know that
» OPT = OPT

» How about DUAL-OPT’? When we can expected
DUAL-OPT’ > DUAL-OPT?
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On the choice of redundant constraints

We know that
» OPT = OPT

» How about DUAL-OPT’? When we can expected
DUAL-OPT’ > DUAL-OPT?

Proposition
If either oM (-) or o?(-) is an affine function, then
DUAL-OPT’' = DUAL-OPT.

> In example, oV (xM) = Xfl) + xz(l) is an affine function. So no dual
bound improvement.
> Both o/V() and a!?(-) need to be non-linear to improve Duality-gap.

» We can add multiply redundant constraints.
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One choice of redundant constraints: M-constraints

> Let S C 2" be a collection of subsets of [n], the primal-redundant
constraints take form of

Hxs(l) = HXS(Q),VS eS.

seS seS

For example, when S = {1, 2}, the constraint looks like
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One choice of redundant constraints: M-constraints

> Let S C 2" be a collection of subsets of [n], the primal-redundant
constraints take form of

Hxs(l) = Hxs(2),V5 eS.

seS seS

For example, when S = {1, 2}, the constraint looks like

> Not the same as RLT. Traditional RLT constraint:
()~ x) - (0 ) =0,

which is not decomposable after dualizing.

21



Another (slightly different) choice of redundant
constraints: V-constraints

» Let V C {0,1}", the primal-redundant constraints take form of

H ay( ) = H ay( ) for each vertex v in V|

JEln] J€ln]

u if vy =1
1—u ifyy=0
For example, when n =3 and v = (1,0, 1) the constraint looks like

where o, (u) :=

1 1 1 2 2
V(1= x)xD = xP (1 - ).

k¥l



Another (slightly different) choice of redundant
constraints: V-constraints

» Let V C {0,1}", the primal-redundant constraints take form of

H ay( ) = H ay( ) for each vertex v in V|

JEln] J€ln]

u if vy =1
1—u ifyy=0
For example, when n =3 and v = (1,0, 1) the constraint looks like

where oy, (u) :=

1 1 1 2 2
V(1= x)xD = xP (1 - ).

» Eventually leads to a " Column generation-type algorithm”
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Strong duality

M-Lagrangian Dual

Theorem
If S = 2"l then OPT = DUAL-OPT’
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Strong duality

M-Lagrangian Dual

Theorem
If S = 2"l then OPT = DUAL-OPT’

» Exponentially constraints and dual variables are introduced.

» What if we only introduce polynomially many constraints?

V-Lagrangian Dual

Theorem
IfV = {O, 1}”, then OPT = DUAL-OPT’
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Proof of strong duality (M-Lagrangian dual)
> Let

£ (x) = min <c(’),x(i)> + <d(i)’y(i)>

st x(D =x,  (xD,yDy e x0)

28



Proof of strong duality (M-Lagrangian dual)
> Let
() (x) := min <c(">, x(f)> + <d(i)7 y<f)>

st x(D =x,  (xD,yDy e x0)

» For simplicity, assume the above problem is feasible for all
x € {0,1}". (Otherwise there is a simple fix)
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Proof of strong duality (M-Lagrangian dual)

> Let

F)(x) :=min <c(i),x(i)> + <d(i)7y(i)>
st x() = x,  (x,y0) ¢ 0

» For simplicity, assume the above problem is feasible for all
x € {0,1}". (Otherwise there is a simple fix)

» Then () : {0,1}" — R for i € {1,2} are pseudo-Boolean functions,
so there exists ug € R for all S C 2[”], such that

x) Z Hs HXJ

sColl  jes

40



Proof of strong duality (M-Lagrangian dual)
A0 = 3 ]I

Scall JjES

OPT
> DUAL-OPT'
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Proof of strong duality (M-Lagrangian dual)

SICEDIH | £

Scall JjES

OPT
> DUAL-OPT'

= max, (minx(l)’x(z) ((f(l)(x(l)) + @ (x@)) +

492

+ 3 ([

SCaln Jjes

\
-1Ix™

Jes

/



Proof of strong duality (M-Lagrangian dual)

SICEDIH | £

sColl  jes
OPT
> DUAL-OPT'
\
= max, [ min, e (FO(xM) + F@(x2))) + Z s Hx ij(.z))
SCaln Jj€ES JjES y
2

Minyq) ) ((f(l)(x(l)) + FA(x?))) + Z ME(H XJ(-l) — H xj(-2)))

scoll  jes jes
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Proof of strong duality (M-Lagrangian dual)

SICEDIH | £

sColl  jes
OPT
> DUAL-OPT'
\
= max, [ min, e (FO(xM) + F@(x2))) + Z s Hx ij(.z))
SCaln Jj€ES JjES y
2

Minyq) ) ((f(l)(x(l)) + FA(x?))) + Z ME(H XJ(-l) — H xj(-2)))

scoll  jes jes

= min, ( (FO(xW) + TR + ( M))
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Proof of strong duality (M-Lagrangian dual)
A0 = 3 ]I

sColl  jes
OPT
> DUAL-OPT'
\
= max, [ min, e (FO(xM) + F@(x2))) + Z s Hx ij(.z))
SCaln Jj€ES JjES y
2

Minyq) ) ((f(l)(x(l)) + FA(x?))) + Z ME(H XJ(-l) — H x}z)))

scoll  jes jes

= min, ( (FO(xW) + TR + ( M))

= min 4@ (f(l)(x(l)) + f(2)(x(1)))
— OPT.
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Section 3

Bounds as a function of degree of monomial
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Bounds for packing and covering sets.

» Packing:

> We use "min” as our objective, so objective is non-positive.
> Assumption: proj,m (X)) = projm (X@). (Easy to achieve)
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Bounds for packing and covering sets.

» Packing:

> We use “min” as our objective, so objective is non-positive.
> Assumption: proj,m (X)) = projm (X®). (Easy to achieve)

Theorem .
Fix some number k > 1, let t = - and S = (). (i.e, all monomials of degree
up to k)

» For packing instance, (2 + t712) -OPT < DUAL-OPT' < OPT

» For covering instance, -OPT < DUAL-OPT’ < OPT

2—t

A48



= 1 case for packing

DUAL-OPT =min 3~ (,x") + (40, y0)
ey STy

st. (x,y?) € conv{xV},vi € {1,2},

M _ @

X7 =x ("outside conv")

» Suppose (X, y1, X, y») is opt. solution of above.

40



= 1 case for packing

DUAL-OPT =min > <c<"),x("’> + <d"), y“’>

(x,y)

ie{1,2}
st. (x,y?) € conv{xV},vi € {1,2},
xP =x@_ (“outside conv")

» Suppose (X, y1, X, y») is opt. solution of above.

> So (%, 71, %, 72) = Xy A | KUY Y, B (Y | ae A
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= 1 case for packing

DUAL-OPT = min  5_ <c("),x("’> n <d("), y<’>>
Y STy
st. (x,y?) € conv{xV},vi € {1,2},

M _ @

X7 =x ("outside conv")

» Suppose (X, y1, X, y») is opt. solution of above.

> So (%, 71, %, 72) = Xy A | KUY Y, B (Y | ae A
ex(®) ex(?)
» By packing and assumption, we have

(%, 71,%,0) =320 N DY (Y (xMY 0 | € convex hull of IP.
—— N —

cx(@ ex(?)

51



k = 1 case for packing -contd.

1. Similarly, (X, 1, X,0), (x,0, X, ¥2), (0, ¥1,0, 2) € convex hull of IP.
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= 1 case for packing -contd.

1. Similarly, (X, 1, X,0), (x,0, X, ¥2), (0, ¥1,0, 2) € convex hull of IP.

2. So obj-val(x, y1,%,0) > OPT, obj-val(x, 0, X, y») > OPT,
obj-val(0, 71,0, 7») > OPT.
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= 1 case for packing -contd.

1. Similarly, (X, 1, X,0), (x,0, X, ¥2), (0, ¥1,0, 2) € convex hull of IP.

2. So obj-val(x, y1,%,0) > OPT, obj-val(x, 0, X, y») > OPT,
obj-val(0, 71,0, 7») > OPT.

3. On the other hand obj-val((x, 1, X,0) + (X,0, %, 2) + (0, ¥1,0, ) =
obj-val(2 - (%, 71, %, 7)) = 2 - DUAL-OPT.
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= 1 case for packing -contd.

1. Similarly, (X, 1, X,0), (x,0, X, ¥2), (0, ¥1,0, 2) € convex hull of IP.

2. So obj-val(x, y1,%,0) > OPT, obj-val(x, 0, X, y») > OPT,
obj-val(0, 71,0, 7») > OPT.

3. On the other hand obj-val((x, 1, X,0) + (X,0, %, 2) + (0, ¥1,0, ) =
obj-val(2 - (%, 71, %, 7)) = 2 - DUAL-OPT.

4. So by (2.) and (3.), we have 3 - OPT < DUAL-OPT.

149



Main proof ingredient for k > 1

Let S be a down-closed collection of subsets of 21", Then:

DUAL-OPT' = min 3 <c("),x(")>+<d“),y(")>

X w
(x,y, (12}

sit. (xX,yD w) € conv{ X (S)},vi € {1,2},
w(sl) = W(SQ),VS €S.
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Main proof ingredient for k > 1

Let S be a down-closed collection of subsets of 21", Then:

DUAL-OPT' = min 3 <c("),x(")>+<d“),y(")>

X w
(x,y, (12}

sit. (xX,yD w) € conv{ X (S)},vi € {1,2},
w(sl) = W(SQ),VS €S.

» (proj) of feasible region of the above problem:

Jw, (x, yD wl) e conv{X(f)(S)} vie {1,2}
A S = X, ) ) k] M I ’ ) .
(S) {( y) W(Sl) :w(52),V5€S
>
_ (x,y") e ¥ vi e {1,2},
B(S) = m conv {(x7 y) xP =x® vieu “inside conv’ for some vars. [’
ues J j
Theorem

If S is down-closed, then we have A(S) C B(S).

R7



Section 4

General Setting
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General Setting

min{c x : Ax < b, x is mixed-binary}. (1)
Definition
The intersection graph of (2) is a simple undirected graph that has a vertex for

each variable in (2) and two vertices are adjacent if and only if their associated
variables appear in any common constraint of Ax < b.

7777777777777777777777777777777

V6 Vs
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General Setting

min{c' x : Ax < b, x is mixed-binary}. (2)

Definition

The intersection graph of (2) is a simple undirected graph that has a vertex for
each variable in (2) and two vertices are adjacent if and only if their associated
variables appear in any common constraint of Ax < b.

Definition

Let G be a simple undirected graph. A tree decomposition of G is a pair of
(T,Q) where T is atree and Q = {Q; : t € V(T)} is a collection of vertices
of V(G) such that the following holds:

1. For each v € V(G), the set {t € V(T) : v € Q;} forms a subtree of T,
2. If (u,v) € E(G), then there exists t € V(7)) such that u,v € Q;,

3. Uev(n Q= V(G).

60



General case -contd.

(T, Q) is a tree decomposition:

min Z <c(i),x(i)>

iev(T)

st. xX e X vi e V(T), (Local copy of each variable for every bag) (3)
X0 = XY V(i,j) € E(T) and v € QiN Q;,
(Matching local copy of variable on edge of tree)

61



General case -contd.

(T, Q) is a tree decomposition:

min Z <c(i),x(i)>

iev(T)
st. xX e X vi e V(T), (Local copy of each variable for every bag) (3)
X0 = XY V(i,j) € E(T) and v € QiN Q;,

(Matching local copy of variable on edge of tree)

Adding redundant constraints corresponding to a collection of monomial per
edge Sjj:

st. (xX0,wy e &) vie v(T), ®

w! =w? v(i,j) € E(T),S € S;.
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General case -contd.

(7, Q) is a tree decomposition:

min Z <c(i),x(i)>

iev(T)
st. xX e X vi e V(T), (Local copy of each variable for every bag) (3)
X = XY v(i,j) € E(T) and v € QiN Q),

(Matching local copy of variable on edge of tree)

Adding redundant constraints corresponding to a collection of monomial per

edge Sy
min 3 (c0x0)
ieVv(T)
s.t. (x(i),w(i)) € X&),Vi e V(T), “
wl) =w? V(i j) € E(T),S € S;.
Theorem

If S = 22790, then zero-duality gap.

63



Packing and covering bounds

Definition (Good and k-good)

Given a subset W of variables x in (2), let V := {i € V(T): Q; N W # 0}. Consider the sub-graph 7T (W) of
T induced by V. We say W is good if every connected component C of T (W) satisfies either

1. Forany (i,j) € E(C), |QiN QN W| < k.
2. There exists i € V/(C) such that (Q; N W) C (Q; N W), Vj € V(C).
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Packing and covering bounds

Definition (Good and k-good)

Given a subset W of variables x in (2), let V := {i € V(T): Q; N W # 0}. Consider the sub-graph 7T (W) of
T induced by V. We say W is good if every connected component C of T (W) satisfies either

1. Forany (i,j) € E(C), |QiN QN W| < k.
2. There exists i € V/(C) such that (Q; N W) C (Q; N W), Vj € V(C).

nK = {min Z aypy : Z aywxy > 1land aypy > 0.} (5)

W 'is good W'is good

Oy = {min Z aw : Z aywxw > 1land ayy > 0.} (6)

W is k-good W is k-good
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Packing and covering bounds

Definition (Good and k-good)

Given a subset W of variables x in (2), let V := {i € V(T): Q; N W # 0}. Consider the sub-graph 7T (W) of
T induced by V. We say W is good if every connected component C of T (W) satisfies either

1. Forany (i,j) € E(C), |QiN QN W| < k.
2. There exists i € V/(C) such that (Q; N W) C (Q; N W), Vj € V(C).

Nk = 4 min Z aypy : Z ayxy > 1land ayy > 0. (5)
W 'is good W is good
0y = < min Z aw : Z awxw > 1land ayy > 0. (6)
W is k-good W is k-good

Theorem

For any packing instance, we have that
N« - OPT < DUAL-OPT' < OPT.

Theorem

For any covering instance, let T := max,cy(g) [{i € V(T): v € Qi}|.

Then we have that O -OPT < DUAL-OPT’ < OPT.
1—747-0k
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Section 5

Preliminary computational study
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Preliminary computational study

» 10 blocks, each block is a some stable set problem on a random graph of
100 nodes. Number of variables shared between blocks is 33.
> \We consider two block-structures.

Path

88 g
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Preliminary computational study

» 10 blocks, each block is a some stable set problem on a random graph of
100 nodes. Number of variables shared between blocks is 33.

> \We consider two block-structures.

Path

» We consider four methods:

» (L): classical Lagrangian ; (QL) Lagrangian with all quadratic
terms; (VL) Vertex Lagrangian; Gurobi

» Lagrangian dual solved using bundle method. Sub-problems solved
sequentially!
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Results

Table: STAR-STAB

Methods Primal-dual gap Time(s) lterations

Gurobi 10.0% 1200 -
L 6.0% 1200 127
QL 4.4% 1200 96
VL 3.9% 1200 103

Table: PATH-STAB

Methods Primal-dual gap Time(s) lterations

Gurobi 10.8% 1200 -
L 3.5% 1200 369

QL 1.2% 1200 254
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Comments

» Lagrangian duals which achieve the twin goal of zero duality gap and
maintaining decomposability of the sub-problems:
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Comments

» Lagrangian duals which achieve the twin goal of zero duality gap and
maintaining decomposability of the sub-problems:

» At high cost of solving more challenging sub-problems with
non-linear objective functions
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Comments

» Lagrangian duals which achieve the twin goal of zero duality gap and
maintaining decomposability of the sub-problems:

» At high cost of solving more challenging sub-problems with
non-linear objective functions

» Can we achieve Lagrangian duals with decomposability and
zero duality gap while solving an "easier” subproblem in each
iteration?

» Better bounds (we do not know if our bounds are tight)
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Comments

» Lagrangian duals which achieve the twin goal of zero duality gap and
maintaining decomposability of the sub-problems:

» At high cost of solving more challenging sub-problems with
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» Lagrangian duals which achieve the twin goal of zero duality gap and
maintaining decomposability of the sub-problems:

» At high cost of solving more challenging sub-problems with
non-linear objective functions

» Can we achieve Lagrangian duals with decomposability and
zero duality gap while solving an "easier” subproblem in each
iteration?

» Better bounds (we do not know if our bounds are tight)

» Preliminary computational results are encouraging.

» Significant more engineering in the implementation of our
methods can be done.
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Thank you!
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