Lagrangian dual with zero duality gap that admits decomposition

Diego Cifuentes Santanu S. Dey Jingye Xu

Nov, 2024

1

Section 1

Introduction

(ロ) (回) (E) (E) (E) (O)

We consider a mixed-integer linear optimization:

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \; (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) \in \mathcal{X}^{(1)} \\ & (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}) \in \mathcal{X}^{(2)} \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0, 1\}^n. \end{aligned}$$

X⁽ⁱ⁾ is a mixed integer linear set (linear constraints + some integrality requirement).

We consider a mixed-integer linear optimization:

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \; (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) \in \mathcal{X}^{(1)} \\ & (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}) \in \mathcal{X}^{(2)} \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0, 1\}^n. \end{aligned}$$

- X⁽ⁱ⁾ is a mixed integer linear set (linear constraints + some integrality requirement).
- $\mathbf{x}^{(1)} = \mathbf{x}^{(2)}$ is a coupling constraint.

We consider a mixed-integer linear optimization:

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \; (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) \in \mathcal{X}^{(1)} \\ & (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}) \in \mathcal{X}^{(2)} \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0, 1\}^n. \end{aligned}$$

- X⁽ⁱ⁾ is a mixed integer linear set (linear constraints + some integrality requirement).
- $\mathbf{x}^{(1)} = \mathbf{x}^{(2)}$ is a coupling constraint.
- We assume $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in \{0, 1\}^n$.

We consider a mixed-integer linear optimization:

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \; (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) \in \mathcal{X}^{(1)} \\ & (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}) \in \mathcal{X}^{(2)} \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0, 1\}^{n}. \end{aligned}$$

- X⁽ⁱ⁾ is a mixed integer linear set (linear constraints + some integrality requirement).
- $\mathbf{x}^{(1)} = \mathbf{x}^{(2)}$ is a coupling constraint.
- We assume $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in \{0, 1\}^n$.
- ▶ We focus on the two-block case for simplicity. More general case later.
- Related to N-fold integer programming. [De Loera, Hemmecke, Onn, Weismantel (2008)], [Hemmecke, Onn, Weismantel (2013)] [Cslovjecsek et al. (2021)], [Cslovjecsek et al. (2024)]

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ & \text{s.t.} \; (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) \in \mathcal{X}^{(1)} \\ & (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}) \in \mathcal{X}^{(2)} \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0, 1\}^n. \end{aligned}$$

If we remove x⁽¹⁾ = x⁽²⁾ ∈ {0,1}ⁿ, then the the remaining problem is decomposed into independent optimization tasks over each X⁽ⁱ⁾.

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ & \text{s.t.} \; (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) \in \mathcal{X}^{(1)} \\ & (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}) \in \mathcal{X}^{(2)} \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0, 1\}^n. \end{aligned}$$

- If we remove x⁽¹⁾ = x⁽²⁾ ∈ {0,1}ⁿ, then the the remaining problem is decomposed into independent optimization tasks over each X⁽ⁱ⁾.
- Lagrangian decomposition: "dualizing" the coupling constraints

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ & \text{s.t.} \; (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}) \in \mathcal{X}^{(1)} \\ & (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}) \in \mathcal{X}^{(2)} \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0, 1\}^n. \end{aligned}$$

- If we remove x⁽¹⁾ = x⁽²⁾ ∈ {0,1}ⁿ, then the the remaining problem is decomposed into independent optimization tasks over each X⁽ⁱ⁾.
- Lagrangian decomposition: "dualizing" the coupling constraints

$$\begin{split} L(\lambda) &:= \min_{(\mathbf{x},\mathbf{y})} \left(\sum_{i \in \{1,2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \right) + \left\langle \lambda, \mathbf{x}^{(1)} - \mathbf{x}^{(2)} \right\rangle \\ & \text{s.t.} \ \left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)} \right) \in \mathcal{X}^{(i)}, \forall i \in \{1,2\}, \end{split}$$

and

$$\mathsf{DUAL-OPT} := \max_{\lambda} L(\lambda).$$

$$\begin{split} \mathcal{L}(\lambda) &:= \min_{(\mathbf{x}, \mathbf{y})} \left(\sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \right) + \left\langle \lambda, \mathbf{x}^{(1)} - \mathbf{x}^{(2)} \right\rangle \\ & \text{s.t.} \ (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\}, \end{split}$$

 and

DUAL-OPT :=
$$\max_{\lambda} L(\lambda)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

$$\begin{split} \mathcal{L}(\lambda) &:= \min_{(\mathbf{x}, \mathbf{y})} \left(\sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \right) + \left\langle \lambda, \mathbf{x}^{(1)} - \mathbf{x}^{(2)} \right\rangle \\ & \text{s.t.} \ (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\}, \end{split}$$

 and

$$\mathbf{DUAL}\operatorname{-}\mathbf{OPT} := \max_{\lambda} L(\lambda)$$

• $L(\lambda)$ is a concave function.

・ロト・日下・モー・モー ショー ショー

$$\begin{split} \mathcal{L}(\lambda) &:= \min_{(\mathbf{x}, \mathbf{y})} \left(\sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \right) + \left\langle \lambda, \mathbf{x}^{(1)} - \mathbf{x}^{(2)} \right\rangle \\ & \text{s.t.} \ (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\}, \end{split}$$

and

$$\mathsf{DUAL-OPT} := \max_{\lambda} L(\lambda)$$

• $L(\lambda)$ is a concave function.

For each λ , let $(\mathbf{x}^*, \mathbf{y}^*)$ be the minimizer of $L(\lambda)$, then

 $\mathbf{x}_1^* - \mathbf{x}_2^* \in \partial L(\lambda)$

・ロト・日本・モー・モー シック

$$\begin{split} \mathcal{L}(\lambda) &:= \min_{(\mathbf{x}, \mathbf{y})} \left(\sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \right) + \left\langle \lambda, \mathbf{x}^{(1)} - \mathbf{x}^{(2)} \right\rangle \\ & \text{s.t.} \ (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\}, \end{split}$$

and

$$\mathbf{DUAL}\operatorname{-}\mathbf{OPT} := \max_{\lambda} L(\lambda)$$

• $L(\lambda)$ is a concave function.

For each λ , let $(\mathbf{x}^*, \mathbf{y}^*)$ be the minimizer of $L(\lambda)$, then

$$\mathbf{x}_1^* - \mathbf{x}_2^* \in \partial L(\lambda)$$

・ロト・日本・モー・モー シック

Sub-gradient algorithm, Bundle methods, etc.

Duality gap

Theorem ([Geoffrion (1974)])

$$\begin{aligned} \mathsf{DUAL-OPT} &= \min_{(\mathbf{x}, \mathbf{y})} \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ & s.t. \; (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \operatorname{conv}\{\mathcal{X}^{(i)}\}, \forall i \in \{1, 2\}, \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)}. \quad (\text{``outside conv''}) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

Duality gap

Theorem ([Geoffrion (1974)])

$$\begin{aligned} \mathbf{DUAL-OPT} &= \min_{(\mathbf{x}, \mathbf{y})} \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ & s.t. \; (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \operatorname{conv}\{\mathcal{X}^{(i)}\}, \forall i \in \{1, 2\}, \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)}. \quad (\text{``outside conv''}) \end{aligned}$$

Recall that

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \ \left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)} \right) \in \mathsf{conv} \left\{ \left(\mathbf{x}, \mathbf{y} \right) \middle| \begin{array}{c} \left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)} \right) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\}, \\ \mathbf{x}^{(1)} &= \mathbf{x}^{(2)} \end{aligned} \right\} \end{aligned}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Duality gap

Theorem ([Geoffrion (1974)])

$$\begin{aligned} \mathbf{DUAL-OPT} &= \min_{(\mathbf{x}, \mathbf{y})} \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ & s.t. \; (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \operatorname{conv}\{\mathcal{X}^{(i)}\}, \forall i \in \{1, 2\}, \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)}. \quad (\text{``outside conv''}) \end{aligned}$$

Recall that

$$\begin{aligned} \mathbf{OPT} &:= \min_{(\mathbf{x}, \mathbf{y})} \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \ (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathsf{conv} \left\{ (\mathbf{x}, \mathbf{y}) \middle| \begin{array}{l} (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\}, \\ \mathbf{x}^{(1)} &= \mathbf{x}^{(2)} \end{aligned} \right\} \end{aligned}$$

• Because of non-convexity of $\mathcal{X}^{(i)}$, it is possible that **DUAL-OPT** < **OPT**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへで

Our goal

▶ If we ignore block structure: no decomposition + zero duality gap

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Our goal

- ▶ If we ignore block structure: no decomposition + zero duality gap
- Lagrangian decomposition: decomposable + non-zero duality gap

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

Our goal

- ▶ If we ignore block structure: no decomposition + zero duality gap
- Lagrangian decomposition: decomposable + non-zero duality gap
- ▶ We want: decomposable + zero duality gap

$$\mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0,1\}^n \implies \alpha^{(1)}(\mathbf{x}^{(1)}) + \alpha^{(2)}(\mathbf{x}^{(2)}) \ge 0.$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0,1\}^n \implies \alpha^{(1)}(\mathbf{x}^{(1)}) + \alpha^{(2)}(\mathbf{x}^{(2)}) \ge 0.$$

$$\mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0,1\}^n \implies \alpha^{(1)}(\mathbf{x}^{(1)}) + \alpha^{(2)}(\mathbf{x}^{(2)}) \ge 0.$$

For example:

$$\mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0,1\}^n \implies (x_1^{(1)} + x_2^{(1)}) - (x_1^{(2)} \cdot x_2^{(2)}) \ge 0.$$

Lets add this constraint into the primal problem

s.t.
$$(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\},$$

 $\mathbf{x}^{(1)} = \mathbf{x}^{(2)},$
 $(x_1^{(1)} + x_2^{(1)}) - (x_1^{(2)} \cdot x_2^{(2)}) \ge 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

$$\mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0,1\}^n \implies \alpha^{(1)}(\mathbf{x}^{(1)}) + \alpha^{(2)}(\mathbf{x}^{(2)}) \ge 0.$$

For example:

$$\mathbf{x}^{(1)} = \mathbf{x}^{(2)} \in \{0,1\}^n \implies (x_1^{(1)} + x_2^{(1)}) - (x_1^{(2)} \cdot x_2^{(2)}) \ge 0.$$

Lets add this constraint into the primal problem

s.t.
$$(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\},$$

 $\mathbf{x}^{(1)} = \mathbf{x}^{(2)},$
 $(\mathbf{x}_1^{(1)} + \mathbf{x}_2^{(1)}) - (\mathbf{x}_1^{(2)} \cdot \mathbf{x}_2^{(2)}) \ge 0.$

• Trivially, we have $\mathbf{OPT}' = \mathbf{OPT}$.

Close gap with more constraints

• $(x_1^{(1)} + x_2^{(1)}) - (x_1^{(2)} \cdot x_2^{(2)}) \ge 0$ is a coupling constraint.

$$\begin{split} \mathcal{L}(\lambda,\mu)^{\mathsf{ex}} &:= \min_{(\mathsf{x},\mathbf{y})} \left(\sum_{i \in \{1,2\}} \left\langle \mathsf{c}^{(i)}, \mathsf{x}^{(i)} \right\rangle + \left\langle \mathsf{d}^{(i)}, \mathsf{y}^{(i)} \right\rangle \right) \\ &+ \left\langle \lambda, \mathsf{x}^{(1)} - \mathsf{x}^{(2)} \right\rangle + \left\langle \mu, (\mathsf{x}_1^{(1)} + \mathsf{x}_2^{(1)}) - (\mathsf{x}_1^{(2)} \cdot \mathsf{x}_2^{(2)}) \right\rangle \\ &\text{s.t.} \ (\mathsf{x}^{(i)}, \mathsf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1,2\}, \end{split}$$

and

$$\mathsf{DUAL-OPT}' := \max_{\lambda,\mu \ge 0} L(\lambda, \mu)$$

・ロト・日本・ヨト・ヨー シック

Close gap with more constraints

• $(x_1^{(1)} + x_2^{(1)}) - (x_1^{(2)} \cdot x_2^{(2)}) \ge 0$ is a coupling constraint.

$$\begin{split} \mathcal{L}(\lambda,\mu)^{\mathsf{ex}} &:= \min_{(\mathbf{x},\mathbf{y})} \left(\sum_{i \in \{1,2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \right) \\ &+ \left\langle \lambda, \mathbf{x}^{(1)} - \mathbf{x}^{(2)} \right\rangle + \left\langle \mu, (\mathbf{x}_1^{(1)} + \mathbf{x}_2^{(1)}) - (\mathbf{x}_1^{(2)} \cdot \mathbf{x}_2^{(2)}) \right\rangle \\ &\text{s.t.} \ (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1,2\}, \end{split}$$

and

$$\mathsf{DUAL-OPT}' := \max_{\lambda,\mu \ge 0} L(\lambda,\mu)$$

Lagrangian relaxation still decomposes into two blocks:

$$\min \left\langle \mathbf{c}^{(1)} + \lambda, \mathbf{x}^{(1)} \right\rangle + \left\langle \mathbf{d}^{(1)}, \mathbf{y}^{(1)} \right\rangle + \mu \cdot (\mathbf{x}_{1}^{(1)} + \mathbf{x}_{2}^{(1)})$$
s.t. $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}$

$$\min \left\langle \mathbf{c}^{(2)} - \lambda, \mathbf{x}^{(2)} \right\rangle + \left\langle \mathbf{d}^{(2)}, \mathbf{y}^{(2)} \right\rangle - \mu \cdot \mathbf{x}_{1}^{(2)} \mathbf{x}_{2}^{(2)}$$
s.t. $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}$

Section 2

Strong Duality + Decomposability

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

On the choice of redundant constraints

We know that

- OPT' = OPT
- How about DUAL-OPT'? When we can expected DUAL-OPT' > DUAL-OPT?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

On the choice of redundant constraints

We know that

• OPT' = OPT

How about DUAL-OPT'? When we can expected DUAL-OPT' > DUAL-OPT?

Proposition If either $\alpha^{(1)}(\cdot)$ or $\alpha^{(2)}(\cdot)$ is an affine function, then DUAL-OPT' = DUAL-OPT.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ○○○

On the choice of redundant constraints

We know that

▶ **OPT**′ = **OPT**

How about DUAL-OPT'? When we can expected DUAL-OPT' > DUAL-OPT?

Proposition If either $\alpha^{(1)}(\cdot)$ or $\alpha^{(2)}(\cdot)$ is an affine function, then **DUAL-OPT**' = **DUAL-OPT**.

- ▶ In example, $\alpha^{(1)}(\mathbf{x}^{(1)}) = x_1^{(1)} + x_2^{(1)}$ is an affine function. So no dual bound improvement.
- Both $\alpha^{(1)}(\cdot)$ and $\alpha^{(2)}(\cdot)$ need to be non-linear to improve **Duality-gap**.
- We can add multiply redundant constraints.

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

One choice of redundant constraints: M-constraints

Let S ⊆ 2^[n] be a collection of subsets of [n], the primal-redundant constraints take form of

$$\prod_{s\in S} x_s^{(1)} = \prod_{s\in S} x_s^{(2)}, \forall S \in \mathcal{S}.$$

For example, when $S = \{1, 2\}$, the constraint looks like

$$x_1^{(1)} \cdot x_2^{(1)} = x_1^{(2)} \cdot x_2^{(2)}.$$

・ロト・日本・ヨト・ヨー シック

One choice of redundant constraints: M-constraints

Let S ⊆ 2^[n] be a collection of subsets of [n], the primal-redundant constraints take form of

$$\prod_{s\in S} x_s^{(1)} = \prod_{s\in S} x_s^{(2)}, \forall S \in \mathcal{S}.$$

For example, when $S = \{1, 2\}$, the constraint looks like

$$x_1^{(1)} \cdot x_2^{(1)} = x_1^{(2)} \cdot x_2^{(2)}.$$

Not the same as RLT. Traditional RLT constraint:

$$(x_1^{(1)} - x_1^{(2)}) \cdot (x_2^{(1)} - x_2^{(2)}) = 0,$$

which is not decomposable after dualizing.

Another (slightly different) choice of redundant constraints: V-constraints

• Let $V \subseteq \{0,1\}^n$, the primal-redundant constraints take form of

$$\prod_{j\in[n]}\sigma_{v_j}(x_j^{(1)})=\prod_{j\in[n]}\sigma_{v_j}(x_j^{(2)}), \text{ for each vertex } \mathbf{v} \text{ in } V,$$

where
$$\sigma_{v_j}(u) := \begin{cases} u & \text{if } v_j = 1 \\ 1 - u & \text{if } v_j = 0 \end{cases}$$

For example, when n = 3 and v = (1, 0, 1) the constraint looks like

$$x_1^{(1)}(1-x_2^{(1)})x_3^{(1)} = x_1^{(2)}(1-x_2^{(2)})x_3^{(2)}$$

Another (slightly different) choice of redundant constraints: V-constraints

• Let $V \subseteq \{0,1\}^n$, the primal-redundant constraints take form of

$$\prod_{j\in[n]}\sigma_{v_j}(x_j^{(1)})=\prod_{j\in[n]}\sigma_{v_j}(x_j^{(2)}), \text{ for each vertex } \mathbf{v} \text{ in } V,$$

where
$$\sigma_{v_j}(u) := \begin{cases} u & \text{if } v_j = 1 \\ 1 - u & \text{if } v_j = 0 \end{cases}$$

For example, when n = 3 and v = (1, 0, 1) the constraint looks like

$$x_1^{(1)}(1-x_2^{(1)})x_3^{(1)} = x_1^{(2)}(1-x_2^{(2)})x_3^{(2)}$$

Eventually leads to a "Column generation-type algorithm"

Strong duality

M-Lagrangian Dual

Theorem If $S = 2^{[n]}$, then **OPT** = **DUAL-OPT**'

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Strong duality

M-Lagrangian Dual

Theorem If $S = 2^{[n]}$, then **OPT** = **DUAL-OPT**'

Exponentially constraints and dual variables are introduced.

Strong duality

M-Lagrangian Dual

Theorem If $S = 2^{[n]}$, then **OPT** = **DUAL-OPT**'

- Exponentially constraints and dual variables are introduced.
- What if we only introduce polynomially many constraints?

イロン イロン イヨン イヨン 三日
Strong duality

M-Lagrangian Dual

Theorem If $S = 2^{[n]}$, then **OPT** = **DUAL-OPT**'

- Exponentially constraints and dual variables are introduced.
- What if we only introduce polynomially many constraints?

V-Lagrangian Dual Theorem

If $V = \{0,1\}^n$, then **OPT** = **DUAL-OPT**'

・ロト ・ 回 ト ・ 三 ト ・ 三 ・ つへの

Let

$$\begin{split} f^{(i)}(\mathbf{x}) &:= \min \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ \text{s.t. } \mathbf{x}^{(i)} &= \mathbf{x}, \quad (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)} \end{split}$$

Let

$$\begin{split} f^{(i)}(\mathbf{x}) &:= \min \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ \text{s.t. } \mathbf{x}^{(i)} &= \mathbf{x}, \quad (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)} \end{split}$$

For simplicity, assume the above problem is feasible for all x ∈ {0,1}ⁿ. (Otherwise there is a simple fix)

イロト イロト イヨト イヨト ヨー わへの

Let

$$\begin{split} \mathbf{f}^{(i)}(\mathbf{x}) &:= \min \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ \text{s.t. } \mathbf{x}^{(i)} &= \mathbf{x}, \quad (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)} \end{split}$$

- For simplicity, assume the above problem is feasible for all x ∈ {0,1}ⁿ. (Otherwise there is a simple fix)
- ▶ Then $f^{(i)}: \{0,1\}^n \to \mathbb{R}$ for $i \in \{1,2\}$ are pseudo-Boolean functions, so there exists $\mu_S^* \in \mathbb{R}$ for all $S \subseteq 2^{[n]}$, such that

$$f^{(2)}(\mathbf{x}) = \sum_{S \subseteq 2^{[n]}} \mu_S^* \prod_{j \in S} \mathbf{x}_j$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つへで

$$f^{(2)}(\mathbf{x}) = \sum_{S \subseteq 2^{[n]}} \mu_S^* \prod_{j \in S} \mathbf{x}_j$$

ОРТ

 \geq DUAL-OPT'

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$f^{(2)}(\mathbf{x}) = \sum_{S \subseteq 2^{[n]}} \mu_S^* \prod_{j \in S} \mathbf{x}_j$$

$$OPT \geq DUAL-OPT' = \max_{\mu} \left(\min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left((f^{(1)}(\mathbf{x}^{(1)}) + f^{(2)}(\mathbf{x}^{(2)})) + \sum_{S \subseteq 2^{[n]}} \mu_{S}(\prod_{j \in S} \mathbf{x}_{j}^{(1)} - \prod_{j \in S} \mathbf{x}_{j}^{(2)}) \right) \right)$$

(ロ) (回) (E) (E) (E) (O)

$$f^{(2)}(\mathbf{x}) = \sum_{S \subseteq 2^{[n]}} \mu_S^* \prod_{j \in S} \mathbf{x}_j$$

$$\begin{aligned} & \mathsf{OPT} \\ \geq & \mathsf{DUAL-OPT'} \\ = & \max_{\mu} \left(\min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left((f^{(1)}(\mathbf{x}^{(1)}) + f^{(2)}(\mathbf{x}^{(2)})) + \sum_{S \subseteq 2^{[n]}} \mu_{S}(\prod_{j \in S} \mathbf{x}_{j}^{(1)} - \prod_{j \in S} \mathbf{x}_{j}^{(2)}) \right) \\ \geq & \min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left((f^{(1)}(\mathbf{x}^{(1)}) + f^{(2)}(\mathbf{x}^{(2)})) + \sum_{S \subseteq 2^{[n]}} \mu_{S}^{*}(\prod_{j \in S} \mathbf{x}_{j}^{(1)} - \prod_{j \in S} \mathbf{x}_{j}^{(2)}) \right) \end{aligned}$$

$$f^{(2)}(\mathbf{x}) = \sum_{S \subseteq 2^{[n]}} \mu_S^* \prod_{j \in S} \mathbf{x}_j$$

$$\begin{aligned} & \mathsf{OPT} \\ & \geq \quad \mathsf{DUAL-OPT'} \\ & = \quad \max_{\mu} \left(\min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left(\left(f^{(1)}(\mathbf{x}^{(1)}) + f^{(2)}(\mathbf{x}^{(2)}) \right) + \sum_{S \subseteq 2^{[n]}} \mu_{S}(\prod_{j \in S} \mathbf{x}_{j}^{(1)} - \prod_{j \in S} \mathbf{x}_{j}^{(2)}) \right) \\ & \geq \quad \min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left(\left(f^{(1)}(\mathbf{x}^{(1)}) + f^{(2)}(\mathbf{x}^{(2)}) \right) + \sum_{S \subseteq 2^{[n]}} \mu_{S}^{*}(\prod_{j \in S} \mathbf{x}_{j}^{(1)} - \prod_{j \in S} \mathbf{x}_{j}^{(2)}) \right) \\ & = \quad \min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left(\left(f^{(1)}(\mathbf{x}^{(1)}) + \tilde{f}^{(2)}(\mathbf{x}^{(2)}) \right) + \left(f^{(2)}(\mathbf{x}^{(1)}) - \tilde{f}^{(2)}(\mathbf{x}^{(2)}) \right) \right) \end{aligned}$$

$$f^{(2)}(\mathbf{x}) = \sum_{S \subseteq 2^{[n]}} \mu_S^* \prod_{j \in S} \mathbf{x}_j$$

$$\begin{array}{l} \mathsf{OPT} \\ \geq & \mathsf{DUAL}\text{-}\mathsf{OPT}' \\ = & \max_{\mu} \left(\min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left((f^{(1)}(\mathbf{x}^{(1)}) + f^{(2)}(\mathbf{x}^{(2)})) + \sum_{S \subseteq 2^{[n]}} \mu_{S}(\prod_{j \in S} \mathbf{x}_{j}^{(1)} - \prod_{j \in S} \mathbf{x}_{j}^{(2)}) \right) \\ \geq & \min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left((f^{(1)}(\mathbf{x}^{(1)}) + f^{(2)}(\mathbf{x}^{(2)})) + \sum_{S \subseteq 2^{[n]}} \mu_{S}^{*}(\prod_{j \in S} \mathbf{x}_{j}^{(1)} - \prod_{j \in S} \mathbf{x}_{j}^{(2)}) \right) \\ = & \min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left((f^{(1)}(\mathbf{x}^{(1)}) + \overline{f^{(2)}(\mathbf{x}^{(2)})}) + (f^{(2)}(\mathbf{x}^{(1)}) - \overline{f^{(2)}(\mathbf{x}^{(2)})}) \right) \\ = & \min_{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}} \left(f^{(1)}(\mathbf{x}^{(1)}) + f^{(2)}(\mathbf{x}^{(1)}) \right) \\ = & \mathsf{OPT}. \end{array}$$

Section 3

Bounds as a function of degree of monomial

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

Bounds for packing and covering sets.

Packing:

- ▶ We use "min" as our objective, so objective is non-positive.
- Assumption: $\text{proj}_{\mathbf{x}^{(1)}}(\mathcal{X}^{(1)}) = \text{proj}_{\mathbf{x}^{(2)}}(\mathcal{X}^{(2)})$. (Easy to achieve)

Bounds for packing and covering sets.

Packing:

We use "min" as our objective, so objective is non-positive.

Assumption: $\text{proj}_{x^{(1)}}(\mathcal{X}^{(1)}) = \text{proj}_{x^{(2)}}(\mathcal{X}^{(2)})$. (Easy to achieve)

Theorem

Fix some number $k \ge 1$, let $t = \frac{k}{n}$ and $S = {[n] \choose \le k}$. (i.e, all monomials of degree up to k)

For packing instance, $(2 + \frac{1}{t-2}) \cdot \mathsf{OPT} \leq \mathsf{DUAL} \cdot \mathsf{OPT}' \leq \mathsf{OPT}$

For covering instance,
$$\frac{1}{2-t} \cdot \mathbf{OPT} \leq \mathbf{DUAL} \cdot \mathbf{OPT}' \leq \mathbf{OPT}$$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つへの

k = 1 case for packing

$$\begin{aligned} \mathsf{DUAL-OPT} &= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \; (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \operatorname{conv} \{\mathcal{X}^{(i)}\}, \forall i \in \{1, 2\}, \\ &\mathbf{x}^{(1)} = \mathbf{x}^{(2)}. \quad (\text{``outside conv''}) \end{aligned}$$

Suppose $(\bar{x}, \bar{y}_1, \bar{x}, \bar{y}_2)$ is opt. solution of above.

k = 1 case for packing

$$\begin{aligned} \mathsf{DUAL-OPT} &= \min_{(\mathbf{x}, \mathbf{y})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \; \left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)} \right) \in \operatorname{conv} \{ \mathcal{X}^{(i)} \}, \forall i \in \{1, 2\}, \\ & \mathbf{x}^{(1)} = \mathbf{x}^{(2)}. \quad (\text{``outside conv''}) \end{aligned}$$

► Suppose
$$(\bar{x}, \bar{y}_1, \bar{x}, \bar{y}_2)$$
 is opt. solution of above.
► So $(\bar{x}, \bar{y}_1, \bar{x}, \bar{y}_2) = \sum_{j=1}^r \lambda_j \left(\underbrace{(x^{(1)})^j, (y^{(1)})^j}_{\in \mathcal{X}^{(1)}}, \underbrace{(x^{(2)})^j, (y^{(2)})^j}_{\in \mathcal{X}^{(2)}} \right), \lambda \in \Delta^r.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

k = 1 case for packing

$$\begin{aligned} \mathbf{DUAL}\text{-}\mathbf{OPT} &= \min_{(\mathbf{x}, \mathbf{y})} \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \ \left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)} \right) \in \operatorname{conv} \{ \mathcal{X}^{(i)} \}, \forall i \in \{1, 2\}, \\ &\mathbf{x}^{(1)} = \mathbf{x}^{(2)}. \quad (\text{``outside conv''}) \end{aligned}$$

► Suppose
$$(\bar{x}, \bar{y}_1, \bar{x}, \bar{y}_2)$$
 is opt. solution of above.
► So $(\bar{x}, \bar{y}_1, \bar{x}, \bar{y}_2) = \sum_{j=1}^r \lambda_j \left(\underbrace{(x^{(1)})^j, (y^{(1)})^j}_{\in \mathcal{X}^{(1)}}, \underbrace{(x^{(2)})^j, (y^{(2)})^j}_{\in \mathcal{X}^{(2)}} \right), \lambda \in \Delta^r$.
► By packing and assumption, we have
 $(\bar{x}, \bar{y}_1, \bar{x}, 0) = \sum_{j=1}^r \lambda_j \left(\underbrace{(x^{(1)})^j, (y^{(1)})^j}_{\in \mathcal{X}^{(1)}}, \underbrace{(x^{(1)})^j, 0}_{\in \mathcal{X}^{(2)}} \right) \in \text{convex hull of IP.}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

1. Similarly, $(\bar{x}, \bar{y}_1, \bar{x}, 0), (\bar{x}, 0, \bar{x}, \bar{y}_2), (0, \bar{y}_1, 0, \bar{y}_2) \in \text{convex hull of IP.}$

- 1. Similarly, $(\bar{x}, \bar{y}_1, \bar{x}, 0), (\bar{x}, 0, \bar{x}, \bar{y}_2), (0, \bar{y}_1, 0, \bar{y}_2) \in \text{convex hull of IP.}$
- 2. So obj-val $(\bar{x}, \bar{y}_1, \bar{x}, 0) \ge OPT$, obj-val $(\bar{x}, 0, \bar{x}, \bar{y}_2) \ge OPT$, obj-val $(0, \bar{y}_1, 0, \bar{y}_2) \ge OPT$.

- 1. Similarly, $(\bar{x}, \bar{y}_1, \bar{x}, 0), (\bar{x}, 0, \bar{x}, \bar{y}_2), (0, \bar{y}_1, 0, \bar{y}_2) \in \text{convex hull of IP.}$
- 2. So obj-val $(\bar{x}, \bar{y}_1, \bar{x}, 0) \ge OPT$, obj-val $(\bar{x}, 0, \bar{x}, \bar{y}_2) \ge OPT$, obj-val $(0, \bar{y}_1, 0, \bar{y}_2) \ge OPT$.
- 3. On the other hand obj-val $((\bar{x}, \bar{y}_1, \bar{x}, 0) + (\bar{x}, 0, \bar{x}, \bar{y}_2) + (0, \bar{y}_1, 0, \bar{y}_2)) =$ obj-val $(2 \cdot (\bar{x}, \bar{y}_1, \bar{x}, \bar{y}_2)) = 2 \cdot \text{DUAL-OPT}.$

- 1. Similarly, $(\bar{x}, \bar{y}_1, \bar{x}, 0), (\bar{x}, 0, \bar{x}, \bar{y}_2), (0, \bar{y}_1, 0, \bar{y}_2) \in \text{convex hull of IP.}$
- 2. So obj-val $(\bar{x}, \bar{y}_1, \bar{x}, 0) \ge OPT$, obj-val $(\bar{x}, 0, \bar{x}, \bar{y}_2) \ge OPT$, obj-val $(0, \bar{y}_1, 0, \bar{y}_2) \ge OPT$.
- 3. On the other hand obj-val $((\bar{x}, \bar{y}_1, \bar{x}, 0) + (\bar{x}, 0, \bar{x}, \bar{y}_2) + (0, \bar{y}_1, 0, \bar{y}_2)) =$ obj-val $(2 \cdot (\bar{x}, \bar{y}_1, \bar{x}, \bar{y}_2)) = 2 \cdot \text{DUAL-OPT}.$
- 4. So by (2.) and (3.), we have $\frac{3}{2} \cdot OPT \leq DUAL-OPT$.

イロト イポト イヨト イヨト ヨー わへの

Main proof ingredient for $k \ge 1$

Let S be a down-closed collection of subsets of $2^{[n]}$. Then:

$$\begin{aligned} \mathsf{DUAL-OPT}' &= \min_{(\mathbf{x}, \mathbf{y}, \mathbf{w})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \; (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \mathbf{w}^{(i)}) \in \operatorname{conv} \{\mathcal{X}_{M}^{(i)}(\mathcal{S})\}, \forall i \in \{1, 2\}, \\ &\mathbf{w}_{S}^{(1)} = \mathbf{w}_{S}^{(2)}, \forall S \in \mathcal{S}. \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

Main proof ingredient for $k \ge 1$

Let S be a down-closed collection of subsets of $2^{[n]}$. Then:

$$\begin{aligned} \mathbf{DUAL}\text{-}\mathbf{OPT}' &= \min_{(\mathbf{x}, \mathbf{y}, \mathbf{w})} \; \sum_{i \in \{1, 2\}} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle + \left\langle \mathbf{d}^{(i)}, \mathbf{y}^{(i)} \right\rangle \\ &\text{s.t.} \; \left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \mathbf{w}^{(i)} \right) \in \operatorname{conv} \{ \mathcal{X}_{M}^{(i)}(\mathcal{S}) \}, \forall i \in \{1, 2\}, \\ & \mathbf{w}_{S}^{(1)} = \mathbf{w}_{S}^{(2)}, \forall S \in \mathcal{S}. \end{aligned}$$

(proj) of feasible region of the above problem:

$$\mathcal{A}(\mathcal{S}) := \left\{ (\mathbf{x}, \mathbf{y}) \middle| \begin{array}{l} \exists \mathbf{w}, (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}, \mathbf{w}^{(i)}) \in \mathsf{conv}\{\mathcal{X}_M^{(i)}(\mathcal{S})\}, \forall i \in \{1, 2\}, \\ \mathbf{w}_S^{(1)} = \mathbf{w}_S^{(2)}, \forall S \in \mathcal{S} \end{array} \right\}$$

$$\mathcal{B}(\mathcal{S}) := \bigcap_{\mathcal{U} \in \mathcal{S}} \mathsf{conv} \left\{ (\mathbf{x}, \mathbf{y}) \middle| \begin{array}{l} (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{X}^{(i)}, \forall i \in \{1, 2\}, \\ x_j^{(1)} = x_j^{(2)}, \forall j \in \mathcal{U} \quad \text{``inside conv'' for some vars.} \end{array} \right\}$$

・ロト ・回 ト ・ ヨト ・ ヨト ・ ヨ

Theorem

If S is down-closed, then we have $\mathcal{A}(S) \subseteq \mathcal{B}(S)$.

Section 4

General Setting

General Setting

$$\min\{\mathbf{c}^{\top}\mathbf{x} : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \text{ is mixed-binary}\}.$$
 (1)

Definition

The intersection graph of (2) is a simple undirected graph that has a vertex for each variable in (2) and two vertices are adjacent if and only if their associated variables appear in any common constraint of $Ax \leq b$.

イロン 不良 とくほどう

Э

General Setting

$$\min\{\mathbf{c}^{\top}\mathbf{x} : A\mathbf{x} \le \mathbf{b}, \mathbf{x} \text{ is mixed-binary}\}.$$
 (2)

イロト イポト イヨト イヨト ヨー わへの

Definition

The intersection graph of (2) is a simple undirected graph that has a vertex for each variable in (2) and two vertices are adjacent if and only if their associated variables appear in any common constraint of $Ax \leq b$.

Definition

Let G be a simple undirected graph. A tree decomposition of G is a pair of $(\mathcal{T}, \mathcal{Q})$ where T is a tree and $\mathcal{Q} = \{\mathcal{Q}_t : t \in V(\mathcal{T})\}$ is a collection of vertices of V(G) such that the following holds:

- 1. For each $v \in V(G)$, the set $\{t \in V(\mathcal{T}) : v \in \mathcal{Q}_t\}$ forms a subtree of \mathcal{T} ,
- 2. If $(u, v) \in E(G)$, then there exists $t \in V(\mathcal{T})$ such that $u, v \in \mathcal{Q}_t$,
- 3. $\bigcup_{t\in V(\mathcal{T})} \mathcal{Q}_t = V(G).$

General case -contd.

 $(\mathcal{T}, \mathcal{Q})$ is a tree decomposition:

$$\begin{array}{l} \min \; \sum_{i \in V(\mathcal{T})} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle \\ \text{s.t. } \mathbf{x}^{(i)} \in \mathcal{X}^{(i)}, \forall i \in V(\mathcal{T}), \quad (\text{Local copy of each variable for every bag)} \;\; (3) \\ x_v^{(i)} = x_v^{(j)}, \forall (i,j) \in E(\mathcal{T}) \; \text{and} \; v \in \mathcal{Q}_i \cap \mathcal{Q}_j, \\ (\text{Matching local copy of variable on edge of tree}) \end{array}$$

General case -contd.

 $(\mathcal{T}, \mathcal{Q})$ is a tree decomposition:

$$\begin{array}{l} \min \; \sum_{i \in V(\mathcal{T})} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle \\ \text{s.t. } \mathbf{x}^{(i)} \in \mathcal{X}^{(i)}, \forall i \in V(\mathcal{T}), \quad \text{(Local copy of each variable for every bag)} \quad \textbf{(3)} \\ x_v^{(i)} = x_v^{(j)}, \forall (i,j) \in E(\mathcal{T}) \text{ and } v \in \mathcal{Q}_i \cap \mathcal{Q}_j, \\ \text{(Matching local copy of variable on edge of tree)} \end{array}$$

Adding redundant constraints corresponding to a collection of monomial per edge S_{ij} :

$$\min \sum_{i \in V(\mathcal{T})} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle$$
s.t. $(\mathbf{x}^{(i)}, \mathbf{w}^{(i)}) \in \mathcal{X}_{M}^{(i)}, \forall i \in V(\mathcal{T}),$

$$\mathbf{w}_{S}^{(i)} = \mathbf{w}_{S}^{(j)}, \forall (i, j) \in E(\mathcal{T}), S \in \mathcal{S}_{ij}.$$

$$(4)$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

General case -contd.

 $(\mathcal{T}, \mathcal{Q})$ is a tree decomposition:

$$\begin{array}{l} \min \; \sum_{i \in V(\mathcal{T})} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle \\ \text{s.t. } \mathbf{x}^{(i)} \in \mathcal{X}^{(i)}, \forall i \in V(\mathcal{T}), \quad (\text{Local copy of each variable for every bag)} \;\; (3) \\ x_v^{(i)} = x_v^{(j)}, \forall (i,j) \in E(\mathcal{T}) \; \text{and} \; v \in \mathcal{Q}_i \cap \mathcal{Q}_j, \\ (\text{Matching local copy of variable on edge of tree}) \end{array}$$

Adding redundant constraints corresponding to a collection of monomial per edge S_{ij} :

$$\min \sum_{i \in V(\mathcal{T})} \left\langle \mathbf{c}^{(i)}, \mathbf{x}^{(i)} \right\rangle$$
s.t. $(\mathbf{x}^{(i)}, \mathbf{w}^{(i)}) \in \mathcal{X}_{M}^{(i)}, \forall i \in V(\mathcal{T}),$

$$\mathbf{w}_{S}^{(i)} = \mathbf{w}_{S}^{(j)}, \forall (i, j) \in E(\mathcal{T}), S \in \mathcal{S}_{ij}.$$

$$(4)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Theorem If $S_{ij} = 2^{Q_i \cap Q_j}$, then zero-duality gap.

Packing and covering bounds

Definition (Good and k-good)

Given a subset W of variables \mathbf{x} in (2), let $\mathcal{V} := \{i \in V(\mathcal{T}) : \mathcal{Q}_i \cap \mathcal{W} \neq \emptyset\}$. Consider the sub-graph $\mathcal{T}(\mathcal{W})$ of \mathcal{T} induced by \mathcal{V} . We say \mathcal{W} is good if every connected component \mathcal{C} of $\mathcal{T}(\mathcal{W})$ satisfies either

- 1. For any $(i, j) \in E(\mathcal{C}), |\mathcal{Q}_i \cap \mathcal{Q}_j \cap \mathcal{W}| \leq k$.
- 2. There exists $i \in V(\mathcal{C})$ such that $(\mathcal{Q}_j \cap \mathcal{W}) \subseteq (\mathcal{Q}_i \cap \mathcal{W}), \forall j \in V(\mathcal{C}).$

イロト イヨト イヨト イヨト 三日

Packing and covering bounds

Definition (Good and k-good)

Given a subset W of variables x in (2), let $\mathcal{V} := \{i \in V(\mathcal{T}) : \mathcal{Q}_i \cap \mathcal{W} \neq \emptyset\}$. Consider the sub-graph $\mathcal{T}(\mathcal{W})$ of \mathcal{T} induced by \mathcal{V} . We say \mathcal{W} is *good* if every connected component \mathcal{C} of $\mathcal{T}(\mathcal{W})$ satisfies either

- 1. For any $(i, j) \in E(\mathcal{C}), |\mathcal{Q}_i \cap \mathcal{Q}_j \cap \mathcal{W}| \leq k$.
- 2. There exists $i \in V(\mathcal{C})$ such that $(\mathcal{Q}_i \cap \mathcal{W}) \subseteq (\mathcal{Q}_i \cap \mathcal{W}), \forall j \in V(\mathcal{C}).$

$$\eta_{k} := \left\{ \min \sum_{\mathcal{W} \text{ is good}} \alpha_{\mathcal{W}} : \sum_{\mathcal{W} \text{ is good}} \alpha_{\mathcal{W}} \chi_{\mathcal{W}} \ge 1 \text{ and } \alpha_{\mathcal{W}} \ge 0. \right\}$$
(5)

$$\theta_{k} := \left\{ \min \sum_{\mathcal{W} \text{ is } k \text{-good}} \alpha_{\mathcal{W}} : \sum_{\mathcal{W} \text{ is } k \text{-good}} \alpha_{\mathcal{W}} \chi_{\mathcal{W}} \ge 1 \text{ and } \alpha_{\mathcal{W}} \ge 0. \right\}$$
(6)

イロト イヨト イヨト イヨト 三日

Packing and covering bounds

Definition (Good and k-good)

Given a subset W of variables x in (2), let $\mathcal{V} := \{i \in V(\mathcal{T}) : \mathcal{Q}_i \cap \mathcal{W} \neq \emptyset\}$. Consider the sub-graph $\mathcal{T}(\mathcal{W})$ of \mathcal{T} induced by \mathcal{V} . We say \mathcal{W} is *good* if every connected component \mathcal{C} of $\mathcal{T}(\mathcal{W})$ satisfies either

- 1. For any $(i, j) \in E(\mathcal{C}), |\mathcal{Q}_i \cap \mathcal{Q}_j \cap \mathcal{W}| \leq k$.
- 2. There exists $i \in V(\mathcal{C})$ such that $(\mathcal{Q}_j \cap \mathcal{W}) \subseteq (\mathcal{Q}_i \cap \mathcal{W}), \forall j \in V(\mathcal{C}).$

$$\eta_{k} := \left\{ \min \sum_{\mathcal{W} \text{ is good}} \alpha_{\mathcal{W}} : \sum_{\mathcal{W} \text{ is good}} \alpha_{\mathcal{W}} \chi_{\mathcal{W}} \ge 1 \text{ and } \alpha_{\mathcal{W}} \ge 0. \right\}$$
(5)

$$\theta_{k} := \left\{ \min \sum_{\mathcal{W} \text{ is } k \text{-good}} \alpha_{\mathcal{W}} : \sum_{\mathcal{W} \text{ is } k \text{-good}} \alpha_{\mathcal{W}} \chi_{\mathcal{W}} \ge 1 \text{ and } \alpha_{\mathcal{W}} \ge 0. \right\}$$
(6)

Theorem

For any packing instance, we have that $\eta_k \cdot \mathbf{OPT} \leq \mathbf{DUAL} \cdot \mathbf{OPT}' \leq \mathbf{OPT}$.

Theorem

For any covering instance, let $\tau := \max_{v \in V(\mathcal{G})} |\{i \in V(\mathcal{T}) : v \in \mathcal{Q}_i\}|.$ Then we have that $\frac{\theta_k}{1 - \tau + \tau \cdot \theta_k} \cdot \mathsf{OPT} \leq \mathsf{DUAL-OPT}' \leq \mathsf{OPT}.$

Section 5

Preliminary computational study

Preliminary computational study

- 10 blocks, each block is a some stable set problem on a random graph of 100 nodes. Number of variables shared between blocks is 33.
- We consider two block-structures.

イロン 不同 とくほど 不良 とうほ

Preliminary computational study

- 10 blocks, each block is a some stable set problem on a random graph of 100 nodes. Number of variables shared between blocks is 33.
- We consider two block-structures.

- We consider four methods:
 - (L): classical Lagrangian ; (QL) Lagrangian with all quadratic terms; (VL) Vertex Lagrangian; Gurobi

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → つへで

Lagrangian dual solved using bundle method. Sub-problems solved sequentially!

Results

Table: STAR-STAB

Methods	Primal-dual gap	Time(s)	Iterations
Gurobi	10.0%	1200	-
L	6.0%	1200	127
QL	4.4%	1200	96
VL	3.9%	1200	103

Table: PATH-STAB

Methods	Primal-dual gap	Time(s)	Iterations
Gurobi	10.8% 3.5%	1200	- 360
QL	1.2%	1200	254

Comments

Lagrangian duals which achieve the twin goal of zero duality gap and maintaining decomposability of the sub-problems:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の��

Comments

Lagrangian duals which achieve the twin goal of zero duality gap and maintaining decomposability of the sub-problems:

At high cost of solving more challenging sub-problems with non-linear objective functions
Comments

Lagrangian duals which achieve the twin goal of zero duality gap and maintaining decomposability of the sub-problems:

- At high cost of solving more challenging sub-problems with non-linear objective functions
- Can we achieve Lagrangian duals with decomposability and zero duality gap while solving an "easier" subproblem in each iteration?
- Better bounds (we do not know if our bounds are tight)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Comments

Lagrangian duals which achieve the twin goal of zero duality gap and maintaining decomposability of the sub-problems:

- At high cost of solving more challenging sub-problems with non-linear objective functions
- Can we achieve Lagrangian duals with decomposability and zero duality gap while solving an "easier" subproblem in each iteration?
- Better bounds (we do not know if our bounds are tight)
- Preliminary computational results are encouraging.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Comments

Lagrangian duals which achieve the twin goal of zero duality gap and maintaining decomposability of the sub-problems:

- At high cost of solving more challenging sub-problems with non-linear objective functions
- Can we achieve Lagrangian duals with decomposability and zero duality gap while solving an "easier" subproblem in each iteration?
- Better bounds (we do not know if our bounds are tight)
- Preliminary computational results are encouraging.
 - Significant more engineering in the implementation of our methods can be done.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Thank you!

(ロ) (回) (E) (E) (E) (O)