Grigoriy Blekherman¹ Santanu S. Dey¹ Shengding Sun¹

¹Georgia Institute of Technology, Atlanta, USA.

April, 2023

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Outline

Introduction QCQP: Need for convexification Two row relaxation

Hidden hyperplane convexity Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

1 Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1.1 QCQP: Need for convexification

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Quadratically Constrained Quadratic Program

QCQP

Quadratic objective, quadratic constraints:

 $\begin{array}{ll} \max & x^{\top} A_0 x + 2b_0^{\top} x \\ \text{s.t.} & x^{\top} A_i x + 2b_i^{\top} x + c_i \leq 0 \ \forall i \in [m] \end{array}$

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Quadratically Constrained Quadratic Program

QCQP

May be equivalently written as:

 $\begin{array}{ll} \max & z \\ \text{s.t.} & x^\top A_0 x + 2b_0^\top x \geq z \\ & x^\top A_i x + 2b_i^\top x + c_i \leq 0 \; \forall i \in [m] \end{array}$

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Quadratically Constrained Quadratic Program

QCQP

So in general, equivalent to:

n

nax
$$\tilde{b}_0^\top x$$
 (linear function)
s.t. $x^\top A_i x + 2b_i^\top x + c_i \le 0 \forall i \in [m]$ (quadratic constraints)

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Quadratically Constrained Quadratic Program

QCQP So in general, equivalent to:

 $\begin{array}{l} \max \quad \tilde{b}_0^\top x \quad (\text{linear function}) \\ \text{s.t.} \quad x^\top A_i x + 2b_i^\top x + c_i \leq 0 \; \forall i \in [m] \quad (\text{quadratic constraints}) \end{array}$

1. So, we care about finding:

$$\mathsf{conv}\left\{x \ \left| \ x^\top A_i x + 2b_i^\top x + c_i \le 0 \ \forall i \in [m] \right.\right\}\right\}$$

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Quadratically Constrained Quadratic Program

QCQP So in general, equivalent to:

 $\begin{array}{l} \max \quad \tilde{b}_0^\top x \quad (\text{linear function}) \\ \text{s.t.} \quad x^\top A_i x + 2b_i^\top x + c_i \leq 0 \; \forall i \in [m] \quad (\text{quadratic constraints}) \end{array}$

1. So, we care about finding:

$$\mathsf{conv}\left\{x \ \left| \ x^\top A_i x + 2b_i^\top x + c_i \le \mathsf{0} \ \forall i \in [m] \right.\right\}\right\}$$

2. This is challenging to compute! So we can consider convexification of relaxations (similar to integer programming)

э

1.2 Two row relaxation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Two row relaxation

We can select two rows and try and find the convex hull of their intersection:

$$\mathcal{C}\mathbf{2} = \left\{ x \in \mathbb{R}^n \mid x^\top A_i x + 2b_i^\top x + c_i \leq 0 \; \forall i \in [\mathbf{2}] \right\}$$

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

- From HHC to convex hulls
- Is HHC condition necessary?
- Finiteness of aggregations.

The closed case.

Two row relaxation

We can select two rows and try and find the convex hull of their intersection:

$$C2 = \left\{ x \in \mathbb{R}^n \mid x^\top A_i x + 2b_i^\top x + c_i \le 0 \ \forall i \in [2] \right\}$$

(For some technical reasons for now), let us consider the "open version" of the above set:

イロト イポト イヨト イヨト

э

$$\mathcal{O}2 = \left\{ x \in \mathbb{R}^n \mid x^\top A_i x + 2b_i^\top x + c_i < 0 \ \forall i \in [2] \right\}$$

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

- From HHC to convex hulls
- Is HHC condition necessary?
- Finiteness of aggregations.

The closed case.

Two row relaxation

We can select two rows and try and find the convex hull of their intersection:

$$C2 = \left\{ x \in \mathbb{R}^n \mid x^\top A_i x + 2b_i^\top x + c_i \le 0 \ \forall i \in [2] \right\}$$

(For some technical reasons for now), let us consider the "open version" of the above set:

3

$$\mathcal{O}\mathbf{2} = \left\{ x \in \mathbb{R}^n \ \left| \ x^\top A_i x + 2b_i^\top x + c_i < 0 \ \forall i \in [\mathbf{2}] \right. \right\}$$

It turns out convex hull of O2 is well understood!

Blekherman, Dey, Sun

Two row relaxation

Lets first talk about aggregation

mm

.

Given
$$\lambda \in \mathbb{R}^m_+$$
 and

$$S := \left\{ x \mid x^\top A_i x + 2b_i^\top x + c_i \triangleq 0 \ \forall i \in [m] \right\},$$
where $\blacklozenge \in \{\leq, <\}$ (for all constraints).

14

э

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Lets first talk about aggregation

• Given $\lambda \in \mathbb{R}^m_+$ and

$$S := \left\{ x \mid x^{\top} A_i x + 2b_i^{\top} x + c_i \spadesuit 0 \ \forall i \in [m] \right\},\$$

where $\spadesuit \in \{\leq, <\}$ (for all constraints).

Then:

$$S_{\lambda} := \left\{ x \left| x^{\top} \left(\sum_{i=1}^{m} \lambda_i A_i \right) x + \left(\sum_{i=1}^{m} \lambda_i 2b_i \right)^{\top} x + \left(\sum_{i=1}^{m} \lambda_i c_i \right) \blacklozenge 0 \ \forall i \in [m] \right\} \right\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

is a relaxation of S.

Basically, we are multiplying *ith* constraint by λ_i and then adding them together.

Convex hull of $\mathcal{O}2$

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

$$O2 = \left\{ x \in \mathbb{R}^n \mid x^\top A_i x + 2b_i^\top x + c_i < 0 \ \forall i \in [2] \right\}$$

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

$$\mathcal{O}2 = \left\{ x \in \mathbb{R}^n \mid x^\top A_i x + 2b_i^\top x + c_i < 0 \ \forall i \in [2] \right\}$$

Theorem ([Yildiran (2009)])

Convex hull of O2

Given a set $\mathcal{O}2 \neq \emptyset$, such that conv $(\mathcal{O}2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that:

 $\operatorname{conv}\left(\mathcal{O}2\right)=\left(\mathcal{O}2\right)_{\lambda^{1}}\cap\left(\mathcal{O}2\right)_{\lambda^{2}}.$

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

$$\left| \mathcal{O}2 = \left\{ x \in \mathbb{R}^n \mid x^\top A_i x + 2b_i^\top x + c_i < 0 \ \forall i \in [2] \right\} \right.$$

Theorem ([Yildiran (2009)])

Convex hull of O2

Given a set $\mathcal{O}2 \neq \emptyset$, such that conv $(\mathcal{O}2) \neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that:

 $\operatorname{conv}(\mathcal{O}2) = (\mathcal{O}2)_{\lambda^1} \cap (\mathcal{O}2)_{\lambda^2}$.

The paper [Yildiran (2009)] gives algorithm to compute λ¹ and λ².
 The quadratic constraints (O2)_{λⁱ} i ∈ {1,2} has very nice properties:

• $\sum_{j=1}^{2} \lambda_{j}^{i} \begin{bmatrix} A_{j} & b_{j} \\ b_{j}^{\dagger} & c_{j} \end{bmatrix}$ has at most one negative eigenvalue for both $i \in \{1, 2\}$.

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

$\mathcal{O}2 = \left\{ x \in \mathbb{R}^n \mid x^\top A_i x + 2b_i^\top x + c_i < 0 \ \forall i \in [2] \right\}$

Theorem ([Yildiran (2009)])

Convex hull of O2

Given a set $\mathcal{O}2 \neq \emptyset$, such that conv ($\mathcal{O}2$) $\neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that:

 $\operatorname{conv}(\mathcal{O}2) = (\mathcal{O}2)_{\lambda^1} \cap (\mathcal{O}2)_{\lambda^2}$.

► The paper [Yildiran (2009)] gives algorithm to compute λ^1 and λ^2 .

The quadratic constraints (O2)_{λⁱ} i ∈ {1,2} has very nice properties:

► $\sum_{j=1}^{2} \lambda_{j}^{i} \begin{bmatrix} A_{j} & b_{j} \\ b_{j}^{+} & c_{j} \end{bmatrix}$ has at most one negative eigenvalue for both $i \in \{1, 2\}$.

Basically, the sets $(\mathcal{O}2)_{\lambda i} i \in \{1, 2\}$ are either ellipsoid (may be degenarate) or hyperboloid which is union of two convex sets.

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

$$\left| \mathcal{O}2 = \left\{ x \in \mathbb{R}^n \; \middle| \; x^\top A_i x + 2b_i^\top x + c_i < 0 \; \forall i \in [2] \right\} \right.$$

Theorem ([Yildiran (2009)])

Convex hull of O2

Given a set $\mathcal{O}2 \neq \emptyset$, such that conv ($\mathcal{O}2$) $\neq \mathbb{R}^n$, there exists $\lambda^1, \lambda^2 \in \mathbb{R}^2_+$ such that:

 $\operatorname{conv}(\mathcal{O}2) = (\mathcal{O}2)_{\lambda^1} \cap (\mathcal{O}2)_{\lambda^2}$.

• The paper [Yildiran (2009)] gives algorithm to compute λ^1 and λ^2 .

The quadratic constraints (O2)_{λⁱ} i ∈ {1,2} has very nice properties:

► $\sum_{j=1}^{2} \lambda_{j}^{i} \begin{bmatrix} A_{j} & b_{j} \\ b_{j}^{+} & c_{j} \end{bmatrix}$ has at most one negative eigenvalue for both $i \in \{1, 2\}$.

▶ Basically, the sets $(\mathcal{O}2)_{\lambda^i}$ $i \in \{1, 2\}$ are either ellipsoid (may be degenarate) or

hyperboloid which is union of two convex sets.

Henceforth, we call such quadratic constraints (that contain the convex hull) as good constraint.

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Example

$$S := \left\{ x, y \mid \begin{array}{cc} -xy & < & -1 \\ x^2 + y^2 & < & 9 \end{array} \right\}$$

Aggregation of quadratic inequalities and hidden hyperplane convexity Blekherman, Dey, Sun

Example - contd 1

conv(S) :=
$$\left\{ x, y \mid \begin{array}{cc} (x-y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\}$$

э

Two row relaxation Hidden hyperpla convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Example - contd 2

$$S := \left\{ x, y \mid \begin{array}{cc} -xy < & -1 \\ x^2 + y^2 & < & 9 \end{array} \right\}$$

conv(S) :=
$$\left\{ x, y \mid \begin{array}{cc} (x-y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\}$$

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Example - contd 2

$$S := \left\{ x, y \mid \begin{array}{cc} -xy < & -1 \\ x^2 + y^2 & < & 9 \end{array} \right\}$$

conv(S) :=
$$\left\{ x, y \mid \begin{array}{cc} (x-y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\}$$

Understanding the blue quadratic: $\lambda^1 = (2, 1)$ $(-xy < -1) \times 2$ $+ (x^2 + y^2 < 9) \times 1$

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Example - contd 2

$$S := \left\{ x, y \mid \begin{array}{cc} -xy < -1 \\ x^2 + y^2 < 9 \end{array} \right\}$$

conv(S) :=
$$\left\{ x, y \mid \begin{array}{cc} (x-y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\}$$

Understanding the blue quadratic: $\lambda^1 = (2, 1)$ $(-xy < -1) \times 2$ $+ (x^2 + y^2 < 9) \times 1$ $x^2 - 2xy + y^2 < 7 \equiv (x - y)^2 < 7$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Blekherman, Dey, Sun

Introduction

QCQP: Need fo convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Example - contd 2

$$S := \left\{ x, y \mid \begin{array}{cc} -xy & < & -1 \\ x^2 + y^2 & < & 9 \end{array} \right\}$$

conv(S) :=
$$\left\{ x, y \mid \begin{array}{cc} (x-y)^2 < 7 \\ x^2 + y^2 < 9 \end{array} \right\}$$

Understanding the blue quadratic:
$$\lambda^{1} = (2, 1)$$

 $(-xy < -1) \times 2$
 $+ (x^{2} + y^{2} < 9) \times 1$
 $x^{2} - 2xy + y^{2} < 7 \equiv (x - y)^{2} < 7$

▶ $\lambda^2 = (0, 1)$, so the second aggregated constraints is $x^2 + y^2 < 9$.

э

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Literature survey (incomplete!)

Related results:

- [Yildiran (2009)]
- [Burer, Kılınc-Karzan (2017)] (second order cone intersection with a nonconvex quadratic)
- [Modaresi, Vielma (2017)] (closed version of results)

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Literature survey (incomplete!)

Related results:

- [Yildiran (2009)]
- [Burer, Kılınc-Karzan (2017)] (second order cone intersection with a nonconvex quadratic)
- [Modaresi, Vielma (2017)] (closed version of results)
- [D., Muñoz, Serrano (2022)] (three quadratic constraints under PDLC condition)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Literature survey (incomplete!)

Related results:

- [Yildiran (2009)]
- [Burer, Kılınc-Karzan (2017)] (second order cone intersection with a nonconvex quadratic)
- [Modaresi, Vielma (2017)] (closed version of results)
- [D., Muñoz, Serrano (2022)] (three quadratic constraints under PDLC condition)

Other related papers:

- [Tawarmalani, Richard, Chung (2010)] (Covering bilinear knapsack)
- [Santana, D. (2020)] (polytope and one quadratic constraint)
- [Ye, Zhang (2003)], [Burer, Anstreicher (2013)], [Beinstock (2014)] [Burer (2015)], [Burer, Yang (2015)], [Anstreicher (2017)] (extended trust-region problem)
- [Burer, Ye (2019)], [Wang, Kılınc-Karzan (2020, 2021)], [Argue, Kılınc-Karzan, Wang (2020)] (general conditions for the SDP relaxation being tight)
- [Gu, D., Richard (2023)] [Bienstock, Chen, Muñoz (2020)], [Muñoz and Serrano (2020)] (Cut for QCQPs)

Blekherman, Dey, Sun

Introduction

QCQP: Need for convexification

Two row relaxation

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Questions we consider...

The main goal of this study: understand when aggregation produces convex hull.

・ロット (雪) (日) (日) (日)

э

2 Hidden hyperplane convexity

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case

Hidden convexity

We call a map φ : ℝⁿ → ℝ^m a quadratic map, if there exist m symmetric matrices Q₁,..., Q_m such that:

$$\varphi(x) = \left(x^{\top} Q_1 x, \dots, x^{\top} Q_m x\right) \text{ for all } x \in \mathbb{R}^n.$$

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Hidden convexity

We call a map φ : ℝⁿ → ℝ^m a quadratic map, if there exist m symmetric matrices Q₁,..., Q_m such that:

$$arphi(x) = \left(x^{ op} Q_1 x, \dots, x^{ op} Q_m x
ight) ext{ for all } x \in \mathbb{R}^n.$$

Definition (Hidden Convexity)

A quadratic map $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ satisfies *hidden convexity* if image $(\varphi) = \{\varphi(x) : x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$ is convex.

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Hidden convexity

We call a map φ : ℝⁿ → ℝ^m a quadratic map, if there exist m symmetric matrices Q₁,..., Q_m such that:

$$arphi(x) = \left(x^ op Q_1 x, \dots, x^ op Q_m x
ight) ext{ for all } x \in \mathbb{R}^n.$$

Definition (Hidden Convexity)

A quadratic map $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ satisfies *hidden convexity* if image $(\varphi) = \{\varphi(x) : x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$ is convex.

Theorem (Dines [1941]) Let $Q_i \in \mathbb{S}^n$ for $i \in [2]$, then the image of $\varphi : \mathbb{R}^n \to \mathbb{R}^2$ defined as $\varphi(x) = (x^\top Q_1 x, x^\top Q_2 x)$ is convex.

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Hidden hyperplane convexity (HHC)

Definition (Hidden hyperplane convexity (HHC))

A quadratic map $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ satisfies hidden hyperplane convexity (HHC) if for all linear hyperplanes $H \subseteq \mathbb{R}^n$,

image $(\varphi|_H) = \{\varphi(x) : x \in H\} \subseteq \mathbb{R}^m$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

is a convex set.

2.1 Properties of HHC

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで
Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case

Some properties of HHC: Comparison with hidden convexity

 Hidden hyperplane convexity implies the usual hidden convexity as long as n ≥ 3.

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case

Some properties of HHC: Comparison with hidden convexity

- 1. Hidden hyperplane convexity implies the usual hidden convexity as long as $n \ge 3$.
- 2. Hidden convexity does not imply hidden hyperplane convexity:

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

Some properties of HHC: Comparison with hidden convexity

- 1. Hidden hyperplane convexity implies the usual hidden convexity as long as $n \ge 3$.
- 2. Hidden convexity does not imply hidden hyperplane convexity:

Example

Let $\varphi(x) = (x^{\top} D_1 x, \dots, x^{\top} D_m x)$, where D_1, \dots, D_m are diagonal matrices.

- Any diagonal quadratic map φ is known to satisfy hidden convexity. [Polyak (1998)]
- Let $\varphi : \mathbb{R}^4 \to \mathbb{R}^3$ be defined by the three matrices:

$$Q_{1} := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}, Q_{2} := \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix},$$
$$Q_{3} := \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Let $H := \{x \in \mathbb{R}^4 : x_1 + x_2 - x_3 + x_4 = 0\}$. Note that (1, 0, 1, 0) and (0, 1, 1, 0) $\in H$, $\varphi(1, 0, 1, 0) = (0, -2, 0)$ and $\varphi(0, 1, 1, 0) = (-2, 0, 0)$. Thus $(-1, -1, 0) \in \text{conv}(\text{image}(\varphi|_H))$. However, we observe that $(-1, -1, 0) \notin \text{image}(\varphi|_H)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Operations preserving HHC

Lemma

Suppose that Q_1, \ldots, Q_m satisfy HHC. Then the following matrices also satisfy HHC:

1. $P^{\top}Q_1P, \ldots, P^{\top}Q_mP$ where *P* is any invertible matrix.

2. Q'_1, \ldots, Q'_k where span $(Q'_1, \ldots, Q'_k) \subseteq$ span (Q_1, \ldots, Q_m) . (Equivalently, there exists a $k \times m$ matrix Λ such that $Q'_i = \sum_{j=1}^m \Lambda_{ij}Q_j$ for all $i \in [k]$.)

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case

Example of maps that satisfy HHC

• Let Q_1, Q_2 be symmetric matrices of dimension $n \ge 2$. Then Q_1, Q_2 satisfy HHC. This follows from a result due to [Dines(1941)].

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case

Example of maps that satisfy HHC

• Let Q_1 , Q_2 be symmetric matrices of dimension $n \ge 2$. Then Q_1 , Q_2 satisfy HHC. This follows from a result due to [Dines(1941)].

• Let Q_1, Q_2, Q_3 be symmetric matrices of dimension $n \ge 4$.

• We say Q_1, Q_2, Q_3 positive definite linear combination (PDLC) if Q_1, Q_2, Q_3 satisfy the following condition:

$$\exists \theta \in \mathbb{R}^3, \sum_{i=1}^3 \theta Q_i \succ 0.$$

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Example of maps that satisfy HHC

- Let Q_1, Q_2 be symmetric matrices of dimension $n \ge 2$. Then Q_1, Q_2 satisfy HHC. This follows from a result due to [Dines(1941)].
- Let Q_1, Q_2, Q_3 be symmetric matrices of dimension $n \ge 4$.
 - We say Q_1, Q_2, Q_3 positive definite linear combination (PDLC) if Q_1, Q_2, Q_3 satisfy the following condition:

$$\exists \theta \in \mathbb{R}^3, \sum_{i=1}^3 \theta Q_i \succ 0.$$

In the case of 3 quadratics, PDLC implies hidden convexity [Calabi (1982)].

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Example of maps that satisfy HHC

• Let Q_1, Q_2 be symmetric matrices of dimension $n \ge 2$. Then Q_1, Q_2 satisfy HHC. This follows from a result due to [Dines(1941)].

• Let Q_1, Q_2, Q_3 be symmetric matrices of dimension $n \ge 4$.

• We say Q_1, Q_2, Q_3 positive definite linear combination (PDLC) if Q_1, Q_2, Q_3 satisfy the following condition:

$$\exists \theta \in \mathbb{R}^3, \sum_{i=1}^3 \theta Q_i \succ 0.$$

- In the case of 3 quadratics, PDLC implies hidden convexity [Calabi (1982)].
- It follows that for 3 quadratics, PDLC implies HHC.

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

A more non-trivial example of HHC

Theorem (Non-trivial example of HHC with more constraints) *Fix integers* n > m + 1, $m \ge 2$. Let $\varphi = (f_0, \ldots, f_m)$ where $f_0, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are quadratic forms on \mathbb{R}^n such that:

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations.

The closed case.

A more non-trivial example of HHC

Theorem (Non-trivial example of HHC with more constraints) *Fix integers* $n > m + 1, m \ge 2$. Let $\varphi = (f_0, \ldots, f_m)$ where $f_0, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are quadratic forms on \mathbb{R}^n such that:

f₀ is positive definite,

▶ There exists linear form $\ell : \mathbb{R}^n \to \mathbb{R}$ and $\ell_i : \mathbb{R}^n \to \mathbb{R}$ for all $1 \le i \le m$, such that $f_i(x) = \ell(x)\ell_i(x)$ for some linear form $\ell_i : \mathbb{R}^n \to \mathbb{R}$.

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

Properties of HHC

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

A more non-trivial example of HHC

Theorem (Non-trivial example of HHC with more constraints) Fix integers n > m + 1, $m \ge 2$. Let $\varphi = (f_0, \ldots, f_m)$ where $f_0, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ are quadratic forms on \mathbb{R}^n such that: • f_0 is positive definite, • There exists linear form $\ell : \mathbb{R}^n \to \mathbb{R}$ and $\ell_i : \mathbb{R}^n \to \mathbb{R}$ for all $1 \le i \le m$, such that $f_i(x) = \ell(x)\ell_i(x)$ for some linear form

Then $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ satisfies HHC.

 $\ell_i: \mathbb{R}^n \to \mathbb{R}.$

3 From HHC to convex hulls

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations

The closed case

Main result

► It 'makes sense' to consider good aggregations λ (which have at most one negative eigenvalue for $\sum_i \lambda_i \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix}$), so that the set defined by the aggregated constraint has at most two connected components that are both convex.

・ロット (雪) (日) (日) (日)

э

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations

The closed case

Main result

- ► It 'makes sense' to consider good aggregations λ (which have at most one negative eigenvalue for $\sum_i \lambda_i \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix}$), so that the set defined by the aggregated constraint has at most two connected components that are both convex.
- Furthermore S_λ clearly should contain the convex hull in one of its connected components.

э

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Main result

- It 'makes sense' to consider good aggregations λ (which have at most one negative eigenvalue for $\sum_i \lambda_i \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix}$), so that the set defined by the aggregated constraint has at most two connected components that are both convex.
- Furthermore S_λ clearly should contain the convex hull in one of its connected components.
- $\Omega = \{\lambda \in \mathbb{R}^m_+ \setminus \{0\} : \operatorname{conv}(S) \subseteq S_\lambda \text{ and } Q_\lambda \text{ has at most one negative eigenvalue.} \}$

・ロット (雪) (日) (日) (日)

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Main result

- ► It 'makes sense' to consider good aggregations λ (which have at most one negative eigenvalue for $\sum_i \lambda_i \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix}$), so that the set defined by the aggregated constraint has at most two connected components that are both convex.
- Furthermore S_λ clearly should contain the convex hull in one of its connected components.
- $\Omega = \{\lambda \in \mathbb{R}^m_+ \setminus \{0\} : \operatorname{conv}(S) \subseteq S_\lambda \text{ and } Q_\lambda \text{ has at most one negative eigenvalue.} \}$

Theorem

Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = x^\top A_i x + 2b_i^\top x + c_i, i \in [m]$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. Suppose that the associated homogeneous quadratic map satisfies the hidden hyperplane convexity. If $S \neq \emptyset$ and $\operatorname{conv}(S) \neq \mathbb{R}^n$, then

・ロット (雪) (き) (き)

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations

The closed case.

Main result

- ► It 'makes sense' to consider good aggregations λ (which have at most one negative eigenvalue for $\sum_i \lambda_i \begin{bmatrix} A_i & b_i \\ b_i^\top & c_i \end{bmatrix}$), so that the set defined by the aggregated constraint has at most two connected components that are both convex.
- Furthermore S_λ clearly should contain the convex hull in one of its connected components.
- $\Omega = \{\lambda \in \mathbb{R}^m_+ \setminus \{0\} : \operatorname{conv}(S) \subseteq S_\lambda \text{ and } Q_\lambda \text{ has at most one negative eigenvalue.} \}$

Theorem

Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = x^\top A_i x + 2b_i^\top x + c_i, i \in [m]$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. Suppose that the associated homogeneous quadratic map satisfies the hidden hyperplane convexity. If $S \neq \emptyset$ and $\operatorname{conv}(S) \neq \mathbb{R}^n$, then

$$\operatorname{conv}(S) = \bigcap_{\lambda \in \Omega} S_{\lambda}.$$

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Previous results

Theorem

Suppose that Q_1, \ldots, Q_m satisfy the following:

- There exists two indices i₁, i₂ ∈ [m] such that Q₁,..., Qm belong to the span of Qi₁, Qi₂, (generalizes [Yildiran (2009)]) or,
- There exists three indices i₁, i₂, i₃ ∈ [m] such that Q₁,..., Qm belong to the span of Qi₁, Qi₂, Qi₃ and Qi₁, Qi₂, Qi₃ satisfy PDLC (generalizes [D., Muñoz, Serrano (2022)]).

Let
$$S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$$
 where $f_i(x) = [x^\top 1]Q_i \begin{vmatrix} x \\ 1 \end{vmatrix}$. If

 $\emptyset \subsetneq \operatorname{conv}(S) \subsetneq \mathbb{R}^n$, then $\operatorname{conv}(S)$ is given by aggregations, i.e.,

$$\operatorname{conv}(S) = \bigcap_{\lambda \in \Omega_1} S_{\lambda}.$$

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case

Example

$S := \left\{ (x, y, z) \middle| \begin{array}{ccc} x^2 + y^2 &< 2 & \heartsuit \\ -x^2 - y^2 &< -1 & \clubsuit \\ -x^2 + y^2 + z^2 + 6x &< 0 & \clubsuit \end{array} \right\}$

▶ PDLC condition holds, $conv(S) \neq \mathbb{R}^3$

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations

The closed case

Example

$S := \left\{ (x, y, z) \middle| \begin{array}{ccc} x^2 + y^2 & < & 2 & \heartsuit \\ -x^2 - y^2 & < & -1 & \clubsuit \\ -x^2 + y^2 + z^2 + 6x & < & 0 & \clubsuit \end{array} \right\}$

▶ PDLC condition holds, $conv(S) \neq \mathbb{R}^3$

$$\operatorname{conv}(S) := \left\{ (x, y, z) \middle| \begin{array}{ccc} x^2 + y^2 &< 2 & \heartsuit \\ -2x^2 + z^2 + 6x &< -1 & \spadesuit + \clubsuit \\ -x^2 + y^2 + z^2 + 6x &< 0 & \clubsuit \end{array} \right\}$$

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Example -contd 1

Figure: Plots of sets S (left) and conv(S) (right).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

э

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

A new result: linear and sphere constraints

Theorem (Linear and sphere constraints) Let $f_i(x) = x^{\top} A_i x + 2b_i^{\top} x + c_i, 1 \le i \le m$ be quadratic functions on \mathbb{R}^n , where A_i is either I_n (inside sphere), $-I_n$ (outside sphere) or 0 (linear).

イロト イポト イヨト イヨト 二日

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations

The closed case.

A new result: linear and sphere constraints

Theorem (Linear and sphere constraints) Let $f_i(x) = x^{\top} A_i x + 2b_i^{\top} x + c_i, 1 \le i \le m$ be quadratic functions on \mathbb{R}^n , where A_i is either I_n (inside sphere), $-I_n$ (outside sphere) or 0 (linear). Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. If $\emptyset \subseteq \operatorname{conv}(S) \subseteq \mathbb{R}^n$, and either $m \le n - 1$ or $m \le n$ and PDLC condition holds, then $\operatorname{conv}(S)$ is defined by good aggregations.

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Example

$S := \left\{ (x, y, z) \left| egin{array}{ccc} x^2 + y^2 + z^2 &< 3 & \clubsuit \ x^2 + y^2 + z^2 - 2x + y &< 3 & \clubsuit \ -x^2 - y^2 - z^2 - 3x - 2y &< 1 & \heartsuit \end{array} ight\}$

▶ PDLC condition holds, $conv(S) \neq \mathbb{R}^3$

$$\operatorname{conv}(S) := \begin{cases} x^2 + y^2 + z^2 < 3 & \bigstar \\ x^2 + y^2 + z^2 - 2x + y < 3 & \bigstar \\ -3x - 2y - 4 & < 0 & \bigstar + \heartsuit \\ -5x - y - 4 & < 0 & \bigstar + \heartsuit \end{cases}$$

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case

Example -contd 1

Figure: Plots of sets S (left) and conv(S) (right).

ヘロト ヘヨト ヘヨト ヘヨト

4 Is HHC condition necessary?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Is HHC condition necessary: No

Theorem (Separable quadratic maps)

Let $n \ge 2$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = x^\top D_i x + c_i, i \in [m]$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. Assume D_1, \ldots, D_m are diagonal.

イロン 不得 とくほ とくほう 二日

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case

Is HHC condition necessary: No

Theorem (Separable quadratic maps)

Let $n \ge 2$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = x^\top D_i x + c_i$, $i \in [m]$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. Assume D_1, \ldots, D_m are diagonal. If $\emptyset \subsetneq \operatorname{conv}(S) \subsetneq \mathbb{R}^n$, then $\operatorname{conv}(S)$ is described by finitely many aggregations.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

5 Finiteness of aggregations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations.

The closed case.

PDLC implies finiteness.

Theorem

Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = [x^\top 1]Q_i \begin{bmatrix} x \\ 1 \end{bmatrix}$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. Assume:

- (Standard, HHC) S ≠ Ø and conv(S) ≠ ℝⁿ and HHC holds for the associated homogeneous quadratic map f^h.
- (PDLC for every subset of cardinality 3) Assume for all distinct $i, j, k \in [m]$ there exist scalars $p_{ijk}, q_{ijk}, r_{ijk} \in \mathbb{R}$ such that $p_{ijk}Q_i + q_{ijk}Q_j + r_{ijk}Q_k \succ 0$.

・ロット (雪) (き) (き)

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations.

The closed case.

PDLC implies finiteness.

Theorem

Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = [x^\top 1]Q_i \begin{bmatrix} x \\ 1 \end{bmatrix}$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. Assume:

- (Standard, HHC) S ≠ Ø and conv(S) ≠ ℝⁿ and HHC holds for the associated homogeneous quadratic map f^h.
- (PDLC for every subset of cardinality 3) Assume for all distinct $i, j, k \in [m]$ there exist scalars $p_{ijk}, q_{ijk}, r_{ijk} \in \mathbb{R}$ such that $p_{ijk}Q_i + q_{ijk}Q_j + r_{ijk}Q_k \succ 0$.

Then there exist $\lambda^{(1)}, \ldots, \lambda^{(r)} \in \Omega_2$ such that

 $\operatorname{conv}(S) = \bigcap_{i=1}^{r} S_{\lambda^{(i)}},$

where $\Omega_2 = \{\lambda \in \Omega_1 : |\{i : \lambda_i > 0\}| \le 2\}$ and $r \le m^2 - m$.

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations.

The closed case.

PDLC implies finiteness.

Theorem

Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = [x^\top 1]Q_i \begin{bmatrix} x \\ 1 \end{bmatrix}$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. Assume:

(Standard, HHC) S ≠ Ø and conv(S) ≠ ℝⁿ and HHC holds for the associated homogeneous quadratic map f^h.

• (PDLC - for every subset of cardinality 3) Assume for all distinct $i, j, k \in [m]$ there exist scalars $p_{ijk}, q_{ijk}, r_{ijk} \in \mathbb{R}$ such that $p_{ijk}Q_i + q_{ijk}Q_j + r_{ijk}Q_k \succ 0$.

Then there exist $\lambda^{(1)}, \ldots, \lambda^{(r)} \in \Omega_2$ such that

 $\operatorname{conv}(S) = \bigcap_{i=1}^{r} S_{\lambda^{(i)}},$

where $\Omega_2 = \{\lambda \in \Omega_1 : |\{i : \lambda_i > 0\}| \le 2\}$ and $r \le m^2 - m$. Moreover:

- Given any $u, v \in [m]$, $u \neq v$, there are at most two $\lambda^{(i)}s$ with support u, v.
- These λ⁽ⁱ⁾s can be written as α'e_u + (1 − α')e_v, α''e_u + (1 − α'')e_v, where α', α'' are roots of det(αQ_u + (1 − α)Q_v) = 0.

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations.

The closed case.

Second order cone representable

Corollary

Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = [x^\top 1]Q_i \begin{bmatrix} x \\ 1 \end{bmatrix}$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$. Assume:

- (Standard, HHC) S ≠ Ø and conv(S) ≠ ℝⁿ and HHC holds for the associated homogeneous quadratic map f^h.
- (PDLC for every subset of cardinality 3) Assume for all distinct $i, j, k \in [m]$ there exist scalars $p_{ijk}, q_{ijk}, r_{ijk} \in \mathbb{R}$ such that $p_{ijk}Q_i + q_{ijk}Q_j + r_{ijk}Q_k \succ 0$.

Then conv(S) is interior of an SOCP-representable set.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

5 The closed case.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わへで

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations

The closed case.

Example of "differences" with open case.

$$S := \left\{ (x, y, z) \middle| \begin{array}{cc} -x^2 + x & < & 0 \\ x^2 + y^2 & < & 1 \end{array} \right\} = \operatorname{conv}(S)$$

(ロ) (四) (E) (E) (E) (E)

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations

The closed case.

Example of "differences" with open case.

$$S := \left\{ (x, y, z) \middle| \begin{array}{c} -x^2 + x < 0 \\ x^2 + y^2 < 1 \end{array} \right\} = \operatorname{conv}(S)$$
$$T := \left\{ (x, y, z) \middle| \begin{array}{c} -x^2 + x \\ x^2 + y^2 & \leq \end{array} \right\} \neq \operatorname{conv}(T)$$
Blekherman, Dey, Sun

Introduction

Hidden hyperplar convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Closed sets

Theorem Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = [x^\top 1]Q_i \begin{bmatrix} x \\ 1 \end{bmatrix}$ for $i \in [m]$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$ and let $T = \{x : f_i(x) \le 0, i \in [m]\}$ and G = int(conv(T)).

Blekherman, Dey, Sun

The closed case.

Closed sets

Theorem

Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = [x^\top 1]Q_i \begin{vmatrix} x \\ 1 \end{vmatrix}$ for $i \in [m]$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$ and let $T = \{x : f_i(x) \leq 0, i \in [m]\}$ and $G = int(\overline{conv(T)})$. Assume Q_1, \ldots, Q_m satisfy:

- hidden hyperplane convexity
- ▶ $\emptyset \subset G \subset \mathbb{R}^n$, and furthermore,
- $Q_{\lambda} \neq 0$ for all nonzero $\lambda > 0$.

Blekherman, Dey, Sun

Introduction

Hidden hyperplar convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Closed sets

Theorem

Let $n \ge 3$ and $f_i : \mathbb{R}^n \to \mathbb{R}$ be the functions $f_i(x) = [x^\top 1]Q_i \begin{bmatrix} x \\ 1 \end{bmatrix}$ for $i \in [m]$. Let $S = \{x \in \mathbb{R}^n : f_i(x) < 0, i \in [m]\}$ and let $T = \{x : f_i(x) \le 0, i \in [m]\}$ and $G = \operatorname{int}(\operatorname{conv}(T))$. Assume Q_1, \ldots, Q_m satisfy:

- hidden hyperplane convexity
- $\emptyset \subsetneq G \subsetneq \mathbb{R}^n$, and furthermore,
- $Q_{\lambda} \neq 0$ for all nonzero $\lambda \geq 0$.

Then

$$\hat{G} = \bigcap_{\lambda \in \Omega_T} S_{\lambda},$$

where $S_{\lambda} = \{x : \sum_{i=1}^{m} \lambda_i f_i(x) < 0\}$ and $\Omega_T \subseteq \mathbb{R}^m_+ \setminus \{0\}$ is the set of λ where $Q_{\lambda} = \sum_{i=1}^{m} \lambda_i Q_i$ has at most one negative eigenvalue and $G \subseteq S_{\lambda}$.

Blekherman, Dey, Sun

Introduction

Hidden hyperplane convexity

From HHC to convex hulls

Is HHC condition necessary?

Finiteness of aggregations

The closed case.

Example continued.

Figure: Plots of sets S (left) and conv(G) (right).

$$S := \left\{ (x, y, z) \middle| \begin{array}{cc} -x^2 + x & < & 0 \\ x^2 + y^2 & < & 1 \end{array} \right\} = \operatorname{conv}(S)$$

▶ HHC holds, $\emptyset \subsetneq G \subsetneq \mathbb{R}^n$, $Q_\lambda \neq 0$ for all nonzero $\lambda \ge 0$

$$\operatorname{conv}(G) := \left\{ (x, y, z) \middle| \begin{array}{ccc} x^2 + y^2 & < & 1 & \clubsuit \\ -x^2 + y^2 + 2x & < & 1 & 2 \cdot \clubsuit + \clubsuit \end{array} \right\}$$

・ロト (日下・モート・モー・ショー・ショー)

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations

The closed case.

Discussion

Classify: conv.hull of QCQP substructure is SOCr?

Is SOCP representable:

- 1. One quadratic constraint ∩ polytope [Santana, D. (2020)]
- 2. Two quadratic inequalities (Bienstock, Michalka[2014], Burer, Klinc-Karzan [2017], Modaresi, Vielma [2017])
- HHC satisfying quadratic inequalities under PDLC condition (including the special case of three quadratic constraints satisfying PDLC)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Blekherman, Dey, Sun

Introduction

Hidden hyperplan convexity

From HHC to convex hulls

Is HHC conditio necessary?

Finiteness of aggregations.

The closed case.

Discussion

Classify: conv.hull of QCQP substructure is SOCr?

Is SOCP representable:

- 1. One quadratic constraint \cap polytope [Santana, D. (2020)]
- 2. Two quadratic inequalities (Bienstock, Michalka[2014], Burer, Klinc-Karzan [2017], Modaresi, Vielma [2017])
- HHC satisfying quadratic inequalities under PDLC condition (including the special case of three quadratic constraints satisfying PDLC)

Is not SOCP representable:

1. Already in 10 variables, 5 quadratic equalities, 4 quadratic inequalities, 3 linear inequalities (Fawzi [2018])

Thank You

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで