
Modeling and Solving the Large Scale EV

Charger Location Planning Problem

Nicole Redder1*, Santanu Dey1† and Valerie M. Thomas1,2†

1H. Milton Stewart School of Industrial and Systems Engineering,
Georgia Institute of Technology, 775 Ferst Dr. NW, Atlanta, 30332,

Georgia, USA.
2Jimmy and Rosalynn Carter School of Public Policy, Georgia Institute

of Technology, 258 4th St NW, Atlanta, 30332, Georgia, USA.

*Corresponding author(s). E-mail(s): nredder@gatech.edu;
Contributing authors: santanu.dey@isye.gatech.edu; vt34@gatech.edu;

†These authors contributed equally to this work.

Abstract

We develop a model for the Electric Vehicle (EV) charger location planning prob-
lem for cities. Using mixed integer programs with branch-and-bound techniques,
the method provides solutions even for large cities. With a primary focus on vehi-
cles used for daily commuting, EV users are assigned to charging stations that are
within a short distance from their home or work. We systematically collect driver
origin-destination information and solve this facility location problem with dif-
ferent objectives. We explore several model variants: serve all commuters, serve
most commuters, and with added constraints to increase equity of access. Our
model and methodology for data collection can be used for solving EV location
charger placement problem for any city in the USA, and globally if similar data
are available. Although we use data for the city of Atlanta, the solutions given by
our models yield several general insights. When maximizing commuters served
for a limited number of chargers, the optimal solution puts most chargers at work
locations, serving commuters with short commutes and thus low charging needs.
As the number of chargers increases, more are placed at larger distances from
the city center, providing more commuters with charging near home. Assuming
that those with home charging capability will charge at home, equity goals can
be met with only minimal effect on the number of commuters served and the
distribution of chargers.
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1 Introduction

Many countries are transitioning from gasoline vehicles to electric vehicles. Electric
vehicles must be charged. Most charging stations are privately built, although govern-
ments and utility regulators are providing assistance and incentives for the installation
of charging stations. [1] Effective access to charging will be essential for electric vehi-
cle adoption. As discussed in the literature review section below, several approaches
to identifying the number and placement of Electric Vehicle (EV) chargers have
been developed. Most of these approaches depend on heuristic techniques and have
limitations for large city planning.

In this paper, we develop a mixed integer programming (MIP) model for the EV
charger location planning problem for large cities, focusing primarily on the EVs used
for daily commuting. We demonstrate solutions of this facility location problem with
different objectives, including equity of access.

1.1 Literature Survey

Previous research on the problem of EV charger location has taken a number of
methodological approaches. Dong et al. [2] estimate charger demand as a probability
function of population, traffic, and the existence of points of interest and maximize the
number of customers served. Akbari et al. [3] apply a genetic algorithm to the problem
of station placement, with 50 demand points, minimizing the distance between set-
tlements and charging stations. Zhou et al. [4] also use a genetic algorithm. Ahangar
et al. [5] apply a Lagrangian relaxation approach to a model involving a bi-objective.
Chen et al. [6] apply a genetic algorithm to the problem of station placement with
20 potential station locations, minimizing costs. Zhang et al. [7] maximize a multi-
objective function with various components such as charging likelihood—function on
a chosen subset of stations, charging willingness, charging demand served, coverage
and distance between charger and points of interest. They compare several algorithms
over a dataset with roughly 2,000 potential station locations, but do not attempt to
solve exactly.

Previous research has also addressed different EV charger location problems. In
the papers cited above, Dong et al. [2] maximize the number of customers served;
some minimize the distance to charging stations (Akbari et al. [3]); some minimize
costs (Chen et al. [6]). Notably, the paper by Brandstätte et al. [8] considers the
EV vehicle location problem for a car-sharing system. They formulate a two-stage
stochastic mixed integer program and attempt to solve it to optimality across different
sizes of generated problems. Wang et al. [9] solve the problem of EV charger locations
in dense city parking facilities as a MIP, with chance constraints used to mitigate the
uncertainty in the demand for charging over time.

The model most widely used in the U.S., EVI-Pro Lite, developed by the US
National Renewable Energy Laboratory, is not an optimization model. It serves all
commuters, and lets the model choose whether to emphasize charging near home or
charging near work. The full model, EVI-Pro, is also a simulation model, and cannot
be run independently by users [10]. EVI-Pro also assumes drivers may charge during
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any time in which their vehicle would be stationary (”dwell times”), while we restrict
planned charging to a commuter’s origin or destination.

Equity of access to charging has been assessed based on the locations of charging
stations that have already been built. For New York City, Khan et al. [11] found that
EV charger locations are not correlated with population density, are heavily skewed
away from disadvantaged communities, and skewed towards highway locations. For
California, Hsu and Fingerman [12] found that there are race and income disparities
in EV charger access, and that the access gap is larger at locations with more multi-
unit dwellings. To our knowledge, the electric vehicle charger location models have yet
to incorporate equity as a factor.

There are several works modeling commuter behavior in detail. For example, [13]
predicts charging demand over time by simulating the behavior of six clusters of
drivers. All three weekday clusters resemble a commute – a period of use, followed by
a period of un-use, followed by a period of use – at different times of day. Similarly,
among a set of self-recorded trips of households in the United Kingdom, a majority of
actively-used vehicles record a commuting travel pattern [14].

1.2 Our Contributions

Our work differs from the above literature in four significant ways: (i) Large-scale
optimal solutions: To the best of our knowledge, none of the above models are able
to provide optimal solutions at the scale of a full city, without resorting to greedy
algorithms or other heuristic methods. We solve a detailed mixed integer program
(MIP) model that serves as many commuters as possible, rather than a fixed number of
commuters. Moreover, we solve exactly over a large region with relatively detailed data
on daily commute and availability of home chargers. (ii) Key new modeling features:
While many models consider minimizing distance to EV chargers, they do not directly
address the choice between charging near home versus charging near work. This either-
or nature of the problem of EV charging - either at home or at work - introduces some
interesting features beyond the standard facility location problem where each customer
is represented using one location and distances are measured from this location. (iii)
Equity: We address equity of access to EV charging from the lens of charger location
and who is served. (iv) Use of data on work and home locations and potential for EV
home charging. The EVI-Pro model uses different data, including those derived from
GPS data, to infer home and work locations for commuters. Our use of census data
for home and work locations provides additional analytic capability.

The rest of the paper is organized as follows. In Section 2 we present several mixed
integer programming models that we use in this paper. In Section 3 we describe the
methodology for collection and development of our data. We focus on the city of
Atlanta, however, the methodology can be applied to any location especially in the
USA. In Section 4, we report and analyze the results we obtained from our models.
Finally, in Section 5 we present concluding remarks and discuss avenues of future
research.
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2 Formulation

In this paper, we assume that most commuters would prefer to charge near either their
home or their destination. This would give them somewhere convenient to wait while
charging and reduce concern over running out of charge while driving.

We use census tracts as a means for modeling the commute pattern of the popu-
lation and also for deciding the location of charging stations. A formal definition of
’census tract’ is presented in Section 3. We assume there are N census tracts indexed
as {1, ..., N}.

A commuter type is the set of all commuters who travel from the a given origin
(or home) tract to a given destination (or work) tract and back each weekday. The
set of commuter types is indexed {1, ...,M}. There are Cj commuters of each type j
who could be served by assigning a location to charge back the power used by their
daily commute distance, tj . The charging time a commuter requires at a station is
the equivalent amount of time to recharge their daily travel miles, including their
commute.

Each census tract is considered as a potential location to install an EV charger
station location (henceforth referred to as a station). We assume commuters are willing
to use any station that is within a radius of r miles of either their origin or destination.
The set of charging stations a customer type j is willing to use is denoted by Sj .
Any established station can hold a number of fast chargers able to charge up to the
equivalent of m driven miles per day (discussed in more detail in Section 3).

In the rest of this section, we develop five variants of our MIP model to solve for
the EV charger location problem.

2.1 Serve All Commuters

Let zi represent the number of chargers to be opened in block i; and let xi,j represent
the number of commuters of type j to be served by a station in block i.

min

N∑
i=1

zi (1)

s.t.
∑
i∈Sj

xij = Cj ∀j ∈ [M ] (2)

M∑
j=1

tjxij ≤ 2mzi ∀i ∈ [N ] (3)

zi ∈ Z+ ∀i ∈ [N ] (4)

xij ∈ Z+ ∀i ∈ [N ], j ∈ [M ]. (5)

This model, Serve-All, minimizes the total number of chargers required to serve all
commuters and resembles a facility location problem [15]. Here, rather than applying
a cost based on travel distance, assignments are only permitted for facilities in two
small regions for each commuter type.

4



We remind the reader that Sj is the set of potential locations where commuter
type j can potentially charge. Constraint (2) ensures that all the commuters of type j
are assigned to stations. Constraint (3) ensures that the total number of miles worth
of charging required by commuters assigned to a charging station does not exceed the
total capacity of the chargers established in that station. This constraint also ensures
that commuters will not be assigned to charge in a given location if no chargers are
established there.

2.2 Place a Limited Number of Stations

In this variation on Serve-All, which we will name Station-Limit, there are a limited
number of chargers available to place, and we wish to serve as many commuters as
possible. Up to B chargers in total may be placed.

max

M∑
j=1

∑
i∈Sj

xij (6)

s.t.
∑
i∈Sj

xij ≤ Cj ∀j ∈ [M ] (7)

M∑
j=1

tjxij ≤ mzi ∀i ∈ [N ] (8)

N∑
i=1

zi ≤ B (9)

zi ∈ Z+ ∀i ∈ [N ] (10)

xij ∈ Z+ ∀i ∈ [N ], j ∈ [M ]. (11)

The objective is now to maximize the total number of commuters served. Con-
straint (7) is changed to require all customers be served, and the new Constraint (9)
limits the number of stations placed.

2.3 Ensure at Least 40% of Stations Are Placed in
Disadvantaged Areas

max

M∑
j=1

∑
i∈Sj

xij (12)

s.t.
∑
i∈Sj

xij ≤ Cj ∀j ∈ [M ] (13)

M∑
j=1

tjxij ≤ mzi ∀i ∈ [N ] (14)
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N∑
i=1

zi ≤ B (15)

∑
i∈SU

zi ≥
N∑
i=1

zi (16)

zi ∈ Z+ ∀i ∈ [N ] (17)

xij ∈ Z+ ∀i ∈ [N ], j ∈ [M ]. (18)

Here, modifying the Station-Limit model, we additionally require that at least 40%
of the stations that are placed should be located in disadvantaged communities with
Constraint (16), where SU is the set of stations located in disadvantaged communities.

We could likewise add Constraint (16) to Serve-All for a model that minimizes
the number of stations needed in order to serve all commuters while placing at least
40% of the stations in disadvantaged areas. We append ”40” to either model name to
indicate the inclusion of this constraint, as follows: Serve-All-40, Station-Limit-40.

2.4 Ensure at Least 40% of Those Served Are Disadvantaged

We here introduce SU , the set of commuters who live in disadvantaged commu-
nities. Constraint (19) below will ensure that at least 40% of commuters served
should be those who live in disadvantaged communities. We can add it to either
base model, referring to the resulting models as Serve-All-40-Commuters and
Station-Limit-40-Commuters.

∑
j∈SU

∑
i∈Sj

xij ≥ 0.4

M∑
j=1

∑
i∈Sj

xij . (19)

Note that, in instances in which less than 40% of commuters live in disadvantaged
areas, Constraint (19) prevents a feasible solution from serving all commuters. In this
case, the model may be modified as follows by adding an additional binary variable so
that, once all disadvantaged commuters are served, the constraint no longer applies.
Here, CD represents the total number of disadvantaged commuters in the dataset, CM

is the total number of non-disadvantaged commuters, and y is a new binary variable.

∑
j∈SU

∑
i∈Sj

xij + 0.4CMy ≥ 0.4

M∑
j=1

∑
i∈Sj

xij (20)

∑
j∈SU

∑
i∈Sj

xij ≥ CDy (21)

y ∈ {0, 1}. (22)
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2.5 Relaxation

We will also consider a relaxation of each model, in which charger placements are
still integer decisions, but customers may be partially assigned, potentially to multiple
different chargers. This version greatly reduces the number of integer variables under
consideration, and so is easier to solve to optimality than the original. As an example,
the relaxation of Station-Limit is as follows:

max

M∑
j=1

∑
i∈Sj

xij

s.t.
∑
i∈Sj

xij ≤ Cj ∀j ∈ [M ]

M∑
j=1

tjxij ≤ 2mzi ∀i ∈ [N ]

N∑
i=1

zi ≤ B

z ∈ {0, 1}
x ≥ 0.

If we wish to find a feasible solution to Station-Limit, after solving the relaxation
we can take the floor of xi,j for each i and j so that commuters are not assigned
fractionally.

We can likewise consider a relaxation and build a feasible solution to the other
models by relaxing their integrality constraint for x.

3 Data

In the table below, we describe some of the basic data. Note that the the values with
a (*) are averages.

Parameter Definition Value
N the number of potential charger locations; we will index stations using N 1,518
m the charging capacity of a single charger, in terms of equivalent miles traveled 250×6
M the total number of commuter types; we will index commuters by M 326,579
Cj the number of commuters of type j 4*
tj the daily round-trip miles commuter type j travels 40*

3.1 Commuter Data

Our data is organized by census blocks, which partition census tracts. Census tracts
usually contain a population of around 4,000 people; for a sense of scale, the state of
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Georgia has roughly 2,000 census tracts and 300,000 census blocks. Census blocks are
based on geographical features and vary more in population [16].

We use information from Longitudinal Employer-Household Dynamics (LEHD)
from the U.S. Census Bureau, which releases yearly LEHD Origin-Destination Employ-
ment Statistics (LODES) [17]. Included in this data is the estimated number of
commuters who travel from any census block to any other census block, based on their
combination of census replies and Bureau of Labor Statistics employment data. We
make the assumption that all commuters commute each day of the regular work week.
This assumption overestimates in the cases of workers who may commute only some
weekdays, and underestimates in the cases of workers who may drive more frequently
(working more than five days a week, making additional trips during the workday, or
making additional trips outside of work hours).

We treat origin or destination points within a census block as if they were placed at
the geographic centroid of the block. We calculate distances by the spherical approx-
imation from their latitude-longitude coordinates as a straight line. Commuters who
travel farther are better represented with Euclidean distance. Since commuters who do
not leave a city with a block structure likely are not traveling as far as those who travel
outside of a major city, we choose to use Euclidean distance. Commuter travel dis-
tance is modeled as two times the number of miles the commuter travels between their
origin and destination plus 23, the average number of non-commute miles traveled by
Americans in 2022 [18].

Fig. 1 The estimated number of commuters to and from Atlanta who live in each tract after aggre-
gation and before filtering.

When we consider large geographic areas, we aggregate the block-level census data
into tracts by summing commuter numbers and averaging latitude and longitude coor-
dinates. As we will consider mainly commuters in the Atlanta area in this paper, we
also focus on commuters who either travel to Atlanta, or from Atlanta. Specifically,
we include all commuters who have an origin or a destination inside of the rectangular
box containing the I-285 interstate, bounded by latitude-longitude pairs (33.923198,
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-84.505798) and (33.613440, -84.227909) – about 1,000,000 commuters. We limit per-
missible stations to those within 50 miles of Atlanta, treated as the distance from
latitude-longitude coordinate (33.769849, -84.389923), a point roughly in the center of
Atlanta.

Figure 1 shows commuter distribution after the aggregation process. While most
commuters who report commuting either to or from Atlanta do so within the neigh-
boring areas, a few outliers who report commuting to or from Atlanta travel much
farther–the maximum round-trip travel distance calculated is 563 miles. At a consis-
tent speed of 60 miles per hour, that would equate to nearly a 9-hour round trip for a
daily commute. Therefore, we remove such outlier commuters from our dataset. Table
1 includes summary statistics for aggregated data after removing either all commuters
with a travel distance 2 standard deviations or 3 standard deviations away from the
original data.

Table 1 Summary statistics for the Atlanta-area commuters.

Average Standard Deviation Minimum Maximum
Commuters of
Each Type

Original 3.41 6.43 1 371

Within 2 Standard
Deviations

3.63 6.73 1 371

Within 3 Standard
Deviations

3.55 6.62 1 371

Travel Dis-
tance (miles)

Original 67.93 54.61 23 581

Within 2 Standard
Deviations

58.06 26.58 26 187

Within 3 Standard
Deviations

60.28 32.13 23 245

For the rest of the paper, we work with commuters whose travel distances fall
within 2 standard deviations of the average. Figure 2 shows the distribution of these
commuters.

3.2 Charger Information

For a fast charger, we estimate that a full charge takes an hour [19] and allows a range
of 250 miles [20]; and a partial charge provides a range scaled linearly to charging time.
We assume that a charger is actively charging for 12 hours each day, a conservative
estimate to compensate for not modeling the queuing process. We assume a commuter
will be willing to use a charger if it is within a radius of 1 mile of either their origin
or their destination.

3.3 Home Charging

Approximately 52% of electric vehicle owners in the United States have access to home
charging [21]. The Low-Income Energy Affordability (LEAD) tool from the US Depart-
ment of Energy [22] gives an estimated number of units of different types of housing
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Fig. 2 The estimated number of commuters who live and work in each tract after filtering, in
thousands. Note the difference in scale between the two figures.

(for example, single-unit detached homes, single-unit attached homes, apartment-style
housing) in each census tract; and Axsen and Kurani [21] estimate the percentage of
EV owners who have access to Level 1 charging (basic home charging) by the type of
housing they live in.

For each census tract, we combine the two to get a weighted percentage of com-
muters originating in that tract who do not have access to home charging. Table
2 gives summary statistics for commuters after filtering to 2 standard deviations of
travel distance (as in the previous section) and removing the estimated commuters
who are able to charge at home, leaving only 304,907 commuters who are expected to
require public charging in order to use an EV. There are a few tracts in Georgia that
the LEAD data does not cover; for those tracts, the average estimated percentage of
commuters in our dataset without access to Level 1 charging (roughly 28%) was used.

Table 2 Summary statistics for the Atlanta-area commuters who do not have
access to Level 1 charging.

Average Standard Deviation Minimum Maximum
Commuters in
Tract

1.03 2.21 0.0004 148.56

Travel Dis-
tance (miles)

55.89 20.48 23 187

Not all EV owners who are able to charge at home will choose to do so at all times.
Assigning charger placement while assuming no EV owners will charge at home gives
an upper bound on the number of chargers needed to allow those who might choose
to charge at a fast charger to do so. Assuming that anyone with the opportunity to
charge at home will do so, we will instead assign public charger placement only to
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Fig. 3 The estimated number and percentage of commuters living in each tract who do not have
access to Level 1 charging at home.

those commuters who cannot feasibly commute without access to a public charger and
gives a lower bound on the number and placement of chargers needed.

3.4 Disadvantaged Communities

Disadvantaged communities and equity goals can be identified with a range of differ-
ent criteria. Here we consider the implications of requiring at least 40% of charging
access should go to disadvantaged communities [23]. Communities are determined to
be disadvantaged based on factors including income, minority status, and neighboring
disadvantaged communities. We use the set of communities determined to be disad-
vantaged by the Climate and Economic Justice Screening Tool (CEJST) [24] for this
purpose.

As we use commuter data from 2020 for our experiments and the CEJST is based
on census tracts in 2010, we calculate an estimated binary data point estimate of the
disadvantaged status for each modified tract [25]. A 0/1 binary value for each 2010
tract’s disadvantaged status is assigned by the CEJST, representing not disadvantaged
and disadvantaged, respectively. The estimated disadvantaged status for each 2020
tract is the average disadvantaged value of its contributing 2010 tracts weighted by
the land area overlap between each, rounded to the nearest of 0 or 1. For most tracts,
the resulting disadvantaged status is unchanged by this process, as most tracts do not
change much between 2010 and 2020.

4 Experiments

Each of the following experiments is performed on the tract-aggregated version of
the Atlanta area data with commuters whose calculated travel distance is within 2
standard deviations of the mean, using Python with Gurobi as a MIP solver, and
solving to a 1% optimality gap. The relaxation discussed in Section 2.5 is solved,
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and the number of customers assigned to any given charger is rounded down. All
computations are done on a computer with a i7-12700KF CPU and a rtx-4090 GPU,
with 64 GB RAM.

4.1 Station Placement for All Commuters

The Serve-All model is run on tract-level data for all commuters in the Atlanta area.
The solution places 41,423 chargers and serves 1,076,376 commuters. As shown in the
left-hand side of Figure 4, without an upper bound, the maximum is 655 chargers in
a tract, although 87% of tracts are allocated 50 or fewer chargers. This may not be a
desirable outcome.

Fig. 4 Chargers placed in each tract by Serve-All without an upper bound and with an upper bound
of 100 stations per tract.

Serve-All is run again, with an upper bound of 100 chargers per tract. The right-
hand side of Figure 4 shows the resulting placement of chargers, placing 41,020 chargers
to serve all commuters, similar to the unbounded result. On average, 27 chargers are
placed in tracts that are assigned chargers. All following experiments will include the
100-charger upper bound.

4.2 Varying Available Chargers

Here we solve Station-Limit with different values of B (the number of chargers that
can be placed), serving any of the full set of commuters both with and without home
charging access.

Figure 5 shows the locations of chargers placed when 5,000, 20,000, and 25,000
chargers are available alongside the solution to Serve-All. No explicit constraint was
placed to encourage charger placement inside of the city, but at smaller values of B,
chargers are placed mostly inside the city – serving first commuters who commute
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Table 3 Station-Limit results.

Stations Placed Commuters Served Commuters/Stations Ratio Percentage at Work
5,000 238,559 47.7 53.2
10,000 415,461 41.5 56.8
15,000 567,026 37.8 57.7
20,000 697,906 34.9 54.3
25,000 813,307 32.5 32.8
30,000 914,306 30.5 48.6
35,000 999,119 28.5 46.2
41,020 1,068,414 26.0 39.6

within the city and therefore don’t travel as far or need as much charging capacity,
and expanding outside of the city once those commuters are served.

When fewer stations are permitted, maximizing the number of commuters who are
able to charge encourages the model to serve commuters who have a shorter commute
(and therefore require a shorter estimated charging time). Most stations are placed
near the city, and near workplaces, until more than 25,000 stations are permitted – at
this point, our model shows many more stations placed outside the city, suggesting a
point exists where establishing stations outside the city becomes more valuable than
before. After this point, we see a drop in the percentage of commuters who are assigned
to charge at work, because they are instead charging at home, outside of the city. We
can see that some intermediate solutions before this point, as with 12,500 permitted
chargers, place many chargers very close to Atlanta that do not continue to be placed
in the same area in solutions with more chargers; but after this point, the placement
of chargers seems to grow more smoothly, without removing and replacing as many
”previous” chargers.

4.3 Station Placement with Home Charging

Here we incorporate home charging into our model by assigning only commuters who
cannot charge at home to fast charging stations.

As many of the commuter types (origin-destination pairs) contain very few com-
muters and a few commuter types contain many commuters, rounding to get an integer
percentage in the type’s home tract would bias our analysis, as tract pairs with a
single commuter. To solve over the dataset of commuters who do not have access to
home charging, we let xij (the number of commuters of a given type assigned to a
given charger) be linear rather than integer, and we do not round down as before to
find a feasible integer solution. Instead, consider fractional customer numbers as an
abstraction of existing commuters–e.g., if 1 commuter traveled a given route and 60%
of commuters in their home tract have access to home charging, our scaled data would
have Cj = 0.6, representing that with 60% probability, there is a commuter who trav-
els this route who cannot charge at home. The change to fractional variable values
does mean that it is possible in this model to assign commuters partially to multiple
different chargers; in other words, that we might assign a single commuter to charge
partially at home and partially at work, or that we might only partially charge a given
commuter. These results should therefore be viewed as a relaxation of the previous
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Fig. 5 Charger placement with 5,000, 20,000, and 25,000 chargers available, with Serve-All place-
ment repeated here for comparison.

model. Remember that naturally there are fewer commuters to serve when removing
those with access to home charging.

As those living in apartments have a lower probability of having access to home
charging (9.1%) than those living in detached houses (78.3%) [21], and apartments
are much more common within the city than outside of it, more charging demand lies
inside of Atlanta. This model consequently places most chargers inside of the city and
close to the city compared to when serving all commuters.

4.4 Equity Considerations

Figure 7 plots the percentage of the commuters in each tract who do not have access
to Level 1 charging as a function of the average income of the tract. Tracts with
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Table 4 Results from Station-Limit and Serve-All when placing stations for only commuters
without home charging access.

Stations Placed Commuters Served Commuters/Stations Ratio Percentage at Work
2,000 87,637 43.8 43.3
4,000 152,715 38.2 56.7
6,000 205,357 34.3 36.0
8,000 248,516 31.1 33.5
10,349 284,877 27.5 55.2

incomplete home charging data were excluded from this figure. The figure shows that
commuters in higher income tracts tend to have more access to EV charging at home.

Table 5 Commuters served by Station-Limit-40 and
Station-Limit-40-Commuters, serving only commuters who do not
have home charging access.

Stations Placed Station-Limit-40 Station-Limit-40-Commuters
2,000 88,717 88,371
4,000 152,742 152,151
6,000 210,247 202,311
8,000 247,634 214,055
10,000 278,784 216,126

In Table 5, we show the commuters served by the results of the Station-Limit-40
and Station-Limit-40-Commuters models on the set of commuters who do not have
home charging access, the same set used for Table 4. For Station-Limit-40-Commuters
we include the optional binary constraint discussed in that section–after all disad-
vantaged commuters are served, the requirement that 40% of served commuters be
disadvantaged is no longer enforced. When fewer than 4,000 chargers are placed, both
versions of equity requirement don’t significantly affect the number of commuters who
can be served; recall that each solve is done within a 1% optimality gap.

Station-Limit-40, in the instances where fewer stations are allowed, returns a
slightly better solution than does Station-Limit, despite introducing a new constraint.
While (naturally) not outside of the 1% optimality gap permitted, the difference is
fairly consistent. As more disadvantaged commuters live inside of the city, requir-
ing station placement near disadvantaged communities seems to encourage station
placement inside the I-285 perimeter of Atlanta.

4.5 Notes on Model Solutions in Atlanta Communities

Figures 8 and 9 display the number of stations placed in each tract of central Atlanta
when the model is run as in Table 3 and when we add the equity constraint 16 to
the same data, respectively. Here, as we zoom in to the center of Atlanta, we are able
to show tract boundaries (colored to represent the number of stations placed in the
district, with the same color scale as in Figure 6).

The optimization model does not enforce any continuity in station placements
between differing numbers of available stations. Indeed, as we saw in Subsection 4.2
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Fig. 6 Placement of chargers for only those commuters who do not have home charging access with
2,000, 4,000, and 6,000 chargers available alongside the placement by Serve-All.

and here in greater detail in Figure 8, increasing the number of chargers placed may
result in solutions that remove great numbers of chargers from tracts where they were
placed when we permitted fewer chargers. For example, in Figure 8, when we place
15,000 chargers we can see that several tracts in the city have more than 80 chargers
assigned to them which are no longer assigned so many chargers when we place 25,000
chargers. This is an understandable but undesirable result of independent solves of
the model.

However, when applying Constraint 16, we can see in 9 a more natural growth in
charger placement. It could be more efficient to implement these solutions over time
as demand for chargers grow.

Most tracts show a steady and organic growth in charger placement in Figure 9,
as opposed to a much more variable pattern in Figure 8. Overall, with the equity
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Fig. 7 Average percent of commuters in a tract without home charging access by average yearly
income within the tract.

Fig. 8 Station-Limit placements in Atlanta, with varying numbers of stations placed. Left to right:
5,000, 15,000, 25,000, and 35,000 stations placed.

constraint applied, the model places stations in a way that grows monotonically in
this case and in metro Atlanta. This is an interesting possible beneficial side effect of
the 16 constraint.

5 Conclusion and Future Work

We introduce our MIP models and associated relaxations for the EV charger location
planning problem, and two types of constraint to improve equity of solutions. Our
model can easily be applied to any area in the US, as the census data and Level 1
charging estimates are available for the entire US. The model can also be applied
outside the US if similar input data are available We share the related code and data
via GitHub [26].
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Fig. 9 Station-Limit-40 placements in Atlanta, with varying numbers of stations placed. Left to
right: 5,000, 15,000, 25,000, and 35,000 stations placed.

Cities and urban regions can benefit from considering both types of model: the EVI
Pro-Lite simulation and the optimization model proposed here. EVI-Pro-Lite provides
a result that serves all commuters and allows the modeler to decide the extent to which
commuters will be served near home or mear work; our model provides a lowest cost
solution, and also allows planners to determine how to place chargers if the budget is
insufficient to serve all.

Future work could improve this modeling approach. The EVI Pro model, while a
simulation model rather than an optimization model, includes a number of features
that we have not included, including the charging demand at different times of day,
the resulting load on the electric grid, and the interest in Level 2 version fast charging.
Plans for EV charging infrastructure would benefit from similar model enhancements
and comparisons.

Home charging is more available outside of areas of dense population, and therefore
serving only commuters who do not have home charging access tends to place stations
mostly inside the city, especially around multi-unit housing.

This model has assumed that all commuters travel by car. Walking, biking, and
public transit have been ignored. Future work could consider the effects of walking,
biking, and public transportation on the need for and placement of EV chargers.
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Appendix

As more stations are placed, the locations of stations with higher proportions of com-
muters assigned to charge at their work locations (shown in purple in Figure 10) align
with major highways. This makes sense if we consider that more workplaces could
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Fig. 10 Fraction of assigned commuters at a placed charger who are charging at their workplace
rather than their home with 2,500, 12,500, 15,000, and 20,862 chargers available.

be close to highways, and housing areas often branch out away from them. It also
means that, even though the model did not consider road geography, it places a solid
percentage of chargers near major highways, which is a desirable quality.

Fig. 11 Average travel distance (miles) assigned to each placed charger in the solution from Model
2 with upper bound.

In Figure 11, we see that the average travel distance of customers assigned to
chargers increases with distance from Atlanta. Since we include both commuters who
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Table 6 Bounding box used for each additional city.

City W Longitude E Longitude N Latitude S Latitude
Seattle, WA -122.434624 -122.243736 47.734521 47.493823
Boston, MA -71.190850 -70.986709 42.397731 42.226543
Chicago, IL -87.753866 -87.521962 42.002429 41.644020
Denver, CO -105.140602 -104.769395 39.906613 39.587375
Phoenix, AZ -112.323980 -111.927099 33.919566 33.288199
Houston, TX -95.557577 -95.191757 29.934059 29.604466

Table 7 Commuter distance statistics and Serve-All results for each additional city.

City Commuters Average Distance Standard Deviation Stations Placed
Seattle, WA 705,750 37.87 62.43 22,198
Boston, MA 749,783 25.78 28.49 25,274
Chicago, IL 1,043,975 36.15 58.23 47,887
Denver, CO 1,125,725 36.90 52.67 33,846
Phoenix, AZ 1,447,273 44.74 61.44 49,804
Houston, TX 1,524,600 74.40 132.09 67,114

travel into Atlanta and who travel from Atlanta to elsewhere, the larger travel distance
assigned inside Atlanta is explained partially by commuters who travel from Atlanta
to farther cities or suburbs. Additionally, only stations within 50 miles of Atlanta are
considered, so commuters who travel from a home farther than 50 miles from Atlanta
must be assigned to charger at their work location in Atlanta.

As demonstration of the application of the model to any US state, we run Serve-All
on a set of additional US cities. As in our Atlanta data, the data set for each city
here is all commuters who commute into or out of the city boundaries, inclusive. We
allow station placement in any tract within 30 miles of the center of the bounding box
drawn, and filter out any commuter with a travel distance greater than one standard
deviation above the average for their city’s data set. Note that this is slightly stricter
than the filtering applied to the Atlanta dataset. We add 23 miles to each commuter’s
daily travel distance as we did with Atlanta. Table 6 gives the bounding boxes used,
chosen to roughly align with each city’s geographic borders while including minimal
excess area. All are solved under the same conditions as in Section 4.

Our results, shown in Table 7, show a correlation between commuter population
and number of stations needed, as one would expect. Houston, Texas is an interesting
case, as the estimated commute length and standard deviation are much larger than
our other considered cities, and extra stations are placed there to cover the additional
charging needed.
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