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Abstract. One of the most complicating factors in decentralized optimization for power systems is

the modeling of power flow equations. Existing formulations for DC power flows either have limited

scalability or are very dense and unstructured, making them unsuitable for large-scale decentralized

studies. In this work, we present a novel DC power flow formulation, based on sparsified injection

shift factors, which has a decomposable block-diagonal structure, scales well for large systems, and can

efficiently handle N-1 security requirements. Benchmarks on Multi-Zonal Security-Constrained Unit

Commitment problems show that the proposed formulation can reliably and efficiently solve instances

with up to 6,515 buses, with no convergence or numerical issues.

Keywords: Power systems optimization, alternating-method of multipliers (ADMM), injection shift

factors, decentralized optimization

1 Introduction

The power industry still predominantly relies on centralized methods for the optimal oper-
ation of the electrical grid. When clearing the day-ahead electricity markets, for example,
Independent System Operators (ISOs) collect, in a central location, information coming from
a variety of market participants, located across a vast geographical region. In recent years,
such centralized approaches have raised a number of concerns. First, due to scalability. As the
size and complexity of power systems expands, so has the computational power required to
optimize their usage. The Midcontinent Independent System Operator (MISO), for example,
reported that a recent expansion of market participation and virtual bidding had a serious
impact on the computational performance of their software [3]. The report also describes
how simply adding more processing cores to current centralized algorithms is very ineffective
at reducing computational times. The second concern is related to data access. While cen-
tralized methods assume that all the necessary data is readily available at one location, the
reality is that resources in different regions may belong to different ISOs and Regional Trans-
mission Organizations (RTOs), which may be reluctant to disclose internal details. There is
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evidence that the lack of computationally efficient methods which can handle data belonging
to multiple parties has led to significant resource under-utilization and higher energy prices.
A study conducted by ISO New England [18], for instance, showed that, during roughly
half of the time in 2009, the power flows in the transmission lines connecting ISO-NE to its
neighbors were flowing in the wrong direction. Decentralized power systems optimization is
an alternative approach where, instead of collecting private data from numerous zones into
one particular location, each zone independently solves a smaller-scale optimization problem.
Some small amount of information is then shared among the zones for coordination, and the
subproblems are repeatedly reoptimized, until a global equilibrium is reached. In contrast to
centralized methods, decentralized optimization can naturally scale via parallel computing
and does not require sharing of private information between zones. Over the past decades,
various decentralized approaches have been proposed for DC-OPF and Economic Dispatch
[17,6,12,14], AC Optimal Power Flow [7,15,5,13,11] and Unit Commitment [8,4,10]. We refer
to [16] for a more complete survey.

One of the most complicating factors of decentralized optimization for power systems is
the modeling of power flow equations. Unlike flows in other domains, electrical power flows
have a very complex behavior, dictated by non-linear physical laws. In this manuscript, we
focus on optimization problems where the DC linearization of the power flow equations is typ-
ically employed, such as Economic Dispatch (ED), Unit Commitment (UC) and Transmission
Expansion Planning (TEP). Even when linearized, power flows are still very challenging for
decentralized methods, since they have a global effect — power injections at any particular
location may affect flows across the entire network.

Two main formulations for DC power flows have been described in the literature. The
phase-angle formulation computes the flow in each transmission line based on the phase an-
gle difference between the two buses that the line connects. Because the flow in each line can
be computed from local information only (the phase angles of its endpoints), this is the for-
mulation employed in the vast majority of decentralized methods proposed in the literature.
Nevertheless, the phase-angle formulation suffers from two serious limitations which makes
it unsuitable for large-scale systems. First, it is unable to exploit the fact that, in realistic
systems, only a small fraction of transmission constraints need to be enforced. Second, and
more importantly, if the problem requires that flows remain within the safety limits even af-
ter the unexpected failure of any individual transmission line — a requirement known as N-1
security, and imposed by the North American Electricity Reliability Corporation (NERC)
— then multiple copies of the phase-angle variables are necessary, making the problem size
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prohibitively large. For this reason, almost the entire literature on decentralized optimization
for power systems has neglected contingencies. One notable exception is [1], which incorpo-
rates internal contingencies only, by combining injection shift factors with the formulation
we present next.

The injection shift factors (ISF) formulation, which is currently the most widespread for-
mulation in the industry, directly calculates the flow in each transmission line as a weighted
sum of the net injections at each node of the network. Since the flow in each line can be com-
puted independently from the remaining ones, if it is known from previous experience that a
certain transmission line is not under risk of exceeding its thermal limits, then the associated
flow variables and constraints can be dropped from the formulation. This observation allows
the formulation to scale to very large systems, and can also be exploited to efficiently model
N-1 security constraints. The main drawback of the ISF formulation, which has prevented
its usage in decentralized optimization, is its high density and lack of structure: in order to
calculate any flows, precise information of the entire network is needed.

In this work, we describe a novel DC power flow formulation for decentralized optimiza-
tion, based on geographical decomposition, which combines the best properties of the two
formulations above. Like the phase-angle formulation, our proposed formulation is well struc-
tured, and computes the power flow in each transmission line using only information located
either within the zone, or at the zone’s boundary. Like the ISF formulation, our proposed
formulation scales very well for large systems, since it allows non-critical variables and con-
straints to be removed. The formulation is based on the fact, which we prove in Section 3,
that the injection shift factors of external zones are a convex combination of the shift factors
at boundary buses. With a small number of linking constraints, we show that it is possible
to drop a large number of coefficients from the ISF matrix, obtaining a much more sparse,
well-structured and decomposable formulation. We also show, in Section 4, how can this for-
mulation be adapted to efficiently handle N-1 security requirements. Unlike [1], which only
considered internal contingencies, our approach can handle unexpected outages that occur
either within or outside the zone. To the best of our knowledge, this is the first work where
this has been done.

To evaluate the computational efficiency of the proposed formulation, we benchmark it
on the Security-Constrained Unit Commitment Problem (SCUC), a challenging NP-hard
problem solved daily to clear the day-ahead electricity markets. In Section 5, we present
computational results on a diverse set of realistic, industrial-sized instances ranging from
1,888 to 6,515 buses, split into two geographical zones. In our experiments, the proposed
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formulation is able to reliably solve all instances in under 60 minutes of wallclock time,
with no convergence or numerical issues, and very small optimality gaps when compared
to centralized solutions. In comparison, the decentralized phase-angle formulation failed to
solve even the smallest test cases, even when allowed very relaxed convergence and feasibility
tolerances. Although we only present computational results for SCUC, we stress that the
formulation is applicable to any problem that uses the DC power flow equations.

2 Preliminaries

2.1 Optimal exchange via ADMM

Alternative-direction method of multipliers (ADMM) is an algorithm for solving optimiza-
tion problems in a distributed computing environment. Since its introduction in the 1970s,
ADMM has been successfully applied in a number of fields [2], including power systems
[7,13,8]. In this manuscript, we use it to solve the canonical optimal exchange problem, given
by

minimize
n∑
i=1

fi(x
i), (1)

subject to
n∑
i=1

xi = 0,

where xi ∈ Rk and fi : Rk → R ∪ {+∞}, for i = 1, . . . , n. The problem is composed by n
subsystems, each trying to minimize its own objective function fi, while being restricted by a
global equilibrium constraint. When the evaluation of each fi is computationally expensive,
or when the description of these functions relies on private data, it may not be possible
to run the entire minimization in a central process. ADMM can then be used, which, in
this particular case, reduces to the iterative method described in Algorithm 1. In Step 3 of
the algorithm, each subsystem minimizes its own objective function independently and in
parallel. In Step 4, a collective all-reduce operation is performed, and all subsystems receive a
global average of the private xi variables. If each component of x is interpreted as the amount
of some resource being produced or consumed, then the λ variables indicate the prices of
these resources. In Step 6, the prices are updated, according to the amount being over- or
under-produced. The algorithm stops when a certain convergence tolerance ε is reached. We
note that Algorithm 1 can be implemented without centralized coordination. Asynchronous
versions of the method have also been proposed. For a more details we refer to [2, Subsection
7.3.2]. In contrast to the consensus problem, which has been commonly used for decentralized
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optimization in power systems, the optimal exchange problem better fits the import/export
nature of power exchanges, and, as a consequence, gives more natural and meaningful values
to the λ variables. We conclude this subsection by recalling that ADMM is only guaranteed
to converge when the functions fi are closed, proper and convex. In other situations, the
method can still be used as a heuristic.

Algorithm 1 Optimal Exchange via ADMM
1: Let ρ ∈ R and ε ∈ R be given.
2: Let τ ← 0k, λ← 0k, x̄i ← 0k, for i = 1, . . . , n

3: Let x̄i ← arg minxi
[
fi(x

i) + λTxi + ρ
2
‖xi − x̄i + τ‖22

]
, for i = 1, . . . , n

4: Let τ = 1
n

∑n
i=1 x̄

i

5: If ‖τ‖ < ε then stop.
6: Let λ← λ+ ρτ

7: Go to step 2.

2.2 Centralized phase-angle formulation

Consider a transmission network composed by a set B of buses and a set L of transmission
lines. In this manuscript, we represent this network as a directed graph, where the direction
assigned to each line is arbitrary. For each bus b ∈ B, we have two decision variables: nb, the
net amount of real power (in MW) injected at the bus; and θb, the phase angle (in per-unit)
at the bus. The phase-angle formulation of the DC power flow equations is given by

fuv = βuv (θu − θv) ∀(u, v) ∈ L, (2a)∑
u:(u,b)∈L

fub −
∑

u:(b,u)∈L

fbu + nb = 0 ∀b ∈ B, (2b)

− Fl ≤ fl ≤ Fl ∀l ∈ L, (2c)

where βl is the susceptance of transmission line l and Fl is the transmission thermal limit.
Constraints (2a) computes the flow fuv in transmission line (u, v), based on the phase-angle
difference of its endpoints. Constraints (2b) enforce the preservation of flow across the entire
network.

2.3 Decentralized phase-angle formulation

We now consider transmission networks decomposed into multiple zones. Consider a partition
(L1, L2) of the transmission lines L such that the subnetworks induced by L1 and L2 are
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connected components (that is, they have no islands). We will refer to these subnetworks
as zones 1 and 2. Let B1 and B2 be the sets of buses incident only to transmission lines
in L1 and L2, respectively. Let B∩ be set of buses incident to both. We assume that no
generators or loads are located at buses B∩, and therefore the net injection at these buses
is zero. This assumption is not restrictive, since any generators or loads located at these
buses can be moved to new artificial buses, located either in B1 or B2 and connected to the
original bus by artificial transmission lines with very high capacity. The centralized phase-
angle formulation, presented in the previous subsection, can be rewritten as

fkuv = βuv
(
θku − θkv

)
∀k ∈ {1, 2}, (u, v) ∈ Lk, (3a)∑

u:(b,u)∈Lk

fkub +
∑

u:(b,u)∈Lk

fkbu + nkb = 0 ∀k ∈ {1, 2}, b ∈ Bk, (3b)

∑
u:(b,u)∈Lk

fkub +
∑

u:(b,u)∈Lk

fkbu + wkb = 0 ∀k ∈ {1, 2}, b ∈ B∩ (3c)

− Fl ≤ fkl ≤ Fl ∀k ∈ {1, 2}, l ∈ Lk, (3d)

w1
b + w2

b = 0 ∀b ∈ B∩ (3e)

θ1b − θ2b = 0 ∀b ∈ B∩ (3f)

where wkb indicates the amount of power (in MW) exported from (or imported into) zone k at
bus b. The superscript k in the formulation above indicates which subsystem, in a distributed
computation environment, would own the decision variable. Equations (3a)–(3d) are clearly
local, since all decision variables appearing in these equations belong to the same subsystem.
Only equations (3e)–(3f) affect multiple subsystems. These equations can be easily handled
by the optimal exchange algorithm presented in Subsection 2.1.

2.4 Injection shift factors formulation

The injection shift factors formulation of the DC power flow equations is given by

fl =
∑
b∈B

δlbnb ∀l ∈ L,∑
b∈B

nb = 0,

− Fl ≤ fl ≤ Fl ∀l ∈ L,

where δlb is constant known either as injection shift factor (ISF) or power transfer distribution
factor (PTDF), and represents the amount of power that flows through line l when 1 MW
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is injected at b and withdrawn from the slack bus. Let ∆ ∈ R|L|×|B| be the matrix formed by
the δlb constants. The main drawback of the ISF formulation is that ∆ is typically very dense
and unstructured. To increase the sparsity of ∆, a common practice in the industry is to
discard all δlb entries that have magnitude below a fixed threshold. Although this technique
can effectively reduce computational times, it results in decreased accuracy and does not
improve the structure of ∆.

3 Decentralized injection shift factors formulation

In this section, we modify the ISF formulation presented in Subsection 2.4 to make it more
suitable for distributed optimization. We start in Subsection 3.1 by showing how to compute
injection shift factors in a decentralized way. Then, in Subsection 3.2, we show that a large
number of coefficients can be dropped from the ∆ matrix by introducing a small number of
linking constraints. In Subsection 3.3 we present our proposed formulation.

3.1 Decentralized computation of ISF

The first challenge of using the ISF formulation for decentralized optimization is the com-
putation of the injection shift factors. In a centralized setting, the matrix ∆ is typically
computed through the expression

∆ := DM
(
MTDM

)−1
,

where M ∈ {−1, 0, 1}|L|×(|B|−1) is incidence matrix of the network, with the column corre-
sponding to the slack bus removed, and D ∈ R|L|×|L| is a diagonal matrix containing the
line susceptances. In a decentralized setting, the matrices D and M are not available, and
therefore this expression cannot be used.

For decentralized optimization, we propose to compute∆ by solving |B| Single-Period DC
Power Flow problems, using the decentralized phase-angle formulation presented in Subsec-
tion 2.3. In each subproblem, the net injection at the slack bus is set to −1 MW, and the net
injection of exactly one bus b ∈ B is set to 1 MW. The vector of flows obtained correspond
to one column of the ∆ matrix, by definition. Because these subproblems are single-period
and have an empty objective function, they can be solved very efficiently in practice, even
using the phase-angle formulation. Since the subproblems have no interdependencies, they
can also be solved in parallel, making this task even faster.
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We also clarify that ∆ only needs to be computed once for each transmission network.
Once this matrix is pre-computed through the simplified problem above, it can be repeat-
edly used to formulate much more challenging power systems optimization problems, such
as Multi-Period DC Optimal Power Flow (DC OPF) and Security-Constrained Unit Com-
mitment (SCUC).

3.2 Sparsifying the ISF matrix

Even if the matrix of injection shift factors ∆ is available, it still lacks the block-diagonal
structure that is typically required for decentralized methods to work well. In this subsection
we prove that, when the transmission network can be partitioned into zones that have only a
small number of tie lines between them, then, by adding a small number of linking constraints
to the original ISF formulation, a large number of coefficients in the∆matrix can be dropped,
resulting in a much more sparse and well-structured matrix. For simplicity, we focus on the
2-zone case. Each zone can be further subdivided, if desired, using the same method proposed
in this subsection.

Let (L1, L2) and (B1, B2, B∩) be a partition of the transmission network as defined as in
Subsection 2.3. In the following, we assume that the rows of ∆ corresponding to lines L1 were
computed with the slack bus located in B1, while the rows corresponding to lines L2 were
computed with a slack bus in B2. Since, in the ISF formulation presented in Subsection 2.4,
each transmission constraint is completely independent from the remaining ones, this usage
of multiple slack buses is allowed, and does not change the values of the fl variables. For
clarity, we partition the ∆ matrix as:

∆ =

[
∆11 ∆1∩ ∆12

∆21 ∆2∩ ∆22

]

In the following, we show that each column of ∆12 and ∆21 is a convex combination of
the columns of ∆1∩ and ∆2∩, respectively. First, we present a numerical example to clarify
this result.

Example 1. Figure 1b shows a simplified representation of a transmission network with eight
buses and two zones. Each bus is represented as a vertex in a graph, and each transmission
line is represented as an edge. Slack buses are represented in black, and, for demonstration
purposes, all transmission lines have the same susceptance, although this is not a required
assumption. In this example, B1 = {1, 2, 3}, B∩ = {4, 5} and B2 = {6, 7, 8}. Figure 1a shows
the partitioned ISF matrix ∆ corresponding to this network. In the following, we prove that
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1 2 3 4 5 6 7 8

(1, 2) 0 -0.65 -0.06 -0.29 -0.12 -0.23 -0.19 -0.21
(1, 3) 0 -0.06 -0.81 -0.12 -0.62 -0.31 -0.44 -0.38
(1, 4) 0 -0.29 -0.12 -0.58 -0.25 -0.46 -0.38 -0.42
(2, 4) 0 0.35 -0.06 -0.29 -0.12 -0.23 -0.19 -0.21
(3, 5) 0 -0.06 0.19 -0.12 -0.62 -0.31 -0.44 -0.38

(4, 6) 0.62 0.69 0.44 0.75 0.25 -0.06 0.06 0
(5, 7) 0.38 0.31 0.56 0.25 0.75 0.06 -0.06 0
(6, 7) 0.08 0.12 -0.04 0.17 -0.17 0.29 -0.29 0
(6, 8) 0.54 0.56 0.48 0.58 0.42 0.65 0.35 0
(7, 8) 0.46 0.44 0.52 0.42 0.58 0.35 0.65 0

(a) Partitioned ISF.

1

2

3

4

5

6

7

8

(b) Simplified network repre-

sentation.

Fig. 1: Numerical example of partitioned Injection Shift Factor (ISF) matrix for a network
with 8 buses.

the upper half of column 7, highlighted in bold, is a convex combination of the upper halves
of columns 4 and 5. More precisely,

0.38



−0.29

−0.12

−0.58

−0.29

−0.12


+ 0.62



−0.12

−0.62

−0.25

−0.12

−0.62


≈



−0.19

−0.44

−0.38

−0.19

−0.44


.

Here, we use approximate equality because all entries of the matrix in Figure 1a have been
rounded to two decimals digits; if the matrix is represented exactly, equality holds. �

Theorem 1 Let k ∈ {1, 2} and c ∈ Bk. There exist constants γkbc ∈ [0, 1], for b ∈ B∩ such
that:

δlc =
∑
b∈B∩

δlbγ
k
bc ∀l ∈ L3−k, (4a)∑

b∈B∩

γkbc = 1 (4b)

Proof. For simplicity, we assume k = 2. Let s ∈ B1 be the slack bus from zone 1. We also
define B̂ = B \ {s} and B̂1 = B1 \ {s}. Let M ∈ {−1, 0, 1}L×B̂ be the (reduced) incidence
matrix of the network, let D ∈ RL×L be the diagonal matrix of line susceptances and let
G = MTDM . Furthermore, let n ∈ RB̂ be a column vector such that, for every b ∈ B̂, we
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have

nb =

1 if b = c,

0 otherwise.

By definition, δ•b is the vector of line flows when the net injection at bus s is −1 MW, and
the net injections of the remaining buses is n. Let θ ∈ RB̂ be the vector of phase angles in
this scenario. That is, let θ ∈ RB̂ be such that

G


θB̂1

θB∩

θB2

 = n. (5)

The next claim shows that, by modifying only the phase angles in B2, it is possible to shift
the 1 MW net injection from bus c ∈ B2 to buses the buses in B∩.

Claim. There exist θ̃ ∈ RB̂ and ñ ∈ RB̂ such that θ̃B̂1
= θB̂1

, θ̃B∩ = θB∩ , ñB̂1
= 0, ñB2 = 0,

and

Gθ̃ = G


θB̂1

θB∩

θ̃B2

 =


0

ñB∩

0

 := ñ. (6)

Proof. Partitioning the rows and columns of G, we may rewrite (6) as
G11 G1∩ G12

G∩1 G∩∩ G∩2

G21 G2∩ G22



θB̂1

θB∩

θ̃B2

 =


0

ñB∩

0

 . (7)

We recall that G is a Laplacian matrix with one column and one row (corresponding to the
slack bus) removed. Since there are no edges between B1 and B2, all entries of G12 and G21

are zero. Therefore,

G11θB̂1
+G1∩θB∩ +G12θ̃B2 = G11θB̂1

+G1∩θB∩ = 0,

where the last equality follows from (5). This shows that the first set of constraints in (7) is
always satisfied. Rewriting the two remaining sets of constraints, we obtain[

G∩2 −I
G22 0

]
︸ ︷︷ ︸

Q

[
θ̃B2

ñB∩

]
= −

[
G∩1 G∩∩

0 G∩2

][
θB̂1

θB∩

]
, (8)

where I is the identify matrix. Since G22 is non-singular, then Q is also non-singular. This
implies that this system of linear equations always has a solution, proving that the desired
θ̃ and ñ always exist. �
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Let θ̃ and ñ be vectors satisfying (6) and let γ2bc = ñb, for every b ∈ B∩. Now we prove that
γ2 satisfies (4a) and (4b). Consider a transmission line l ∈ L1. Recall that δlc is the flow in
l when the phase angles and net injections are θ and n, respectively. Let δ̃lc be the flow in l
when the phase angles and net injections are θ̃ and ñ. Computing δ̃lc through injection shift
factors, we have

δ̃lc =
∑
b∈B̂

δlbñb =
∑
b∈B∩

δlbñb =
∑
b∈B̂

δlbγ
2
bc.

Note, however, that the phase angles at the endpoints of l have not changed, and therefore
δlc = δ̃lc. This proves that γ2 satisfies (4a). Since the slack bus s is located in B1, the flows
in its incident transmission lines have also not changed, and therefore its net injection is still
−1 MW. Flow preservation implies

1 =
∑
b∈B̂

ñb =
∑
b∈B∩

ñb =
∑
b∈B∩

γ2bc,

proving that γ2 also satisfies (4b). ut

3.3 Decentralized ISF formulation

Based on Theorem 1, we can rewrite the transmission constraints in the ISF formulation,
as well as the power balance equation, in a more decomposable way. For every b ∈ B∩, let
w1
b , w

2
b be auxiliary decision variables. As in Subsection 2.3, we replace the decision variables

nb by either n1
b or n2

b , depending on whether b ∈ B1 or b ∈ B2, to indicate which subsystem,
in a distributed computing environment, would own the decision variable. We still make the
assumption that nb = 0 for every b ∈ B∩. Our proposed decentralized injection shift factor
formulation is given by:

w1
b =

∑
c∈B2

γ2bcn
2
c ∀b ∈ B∩, (9a)

w2
b =

∑
c∈B1

γ1bcn
1
c ∀b ∈ B∩, (9b)∑

b∈Bk

nkb +
∑
b∈B∩

wkb = 0 ∀k ∈ {1, 2}, (9c)

fkl =
∑
b∈Bk

δlbn
k
b +

∑
b∈B∩

δlbw
k
b ∀k ∈ {1, 2}, l ∈ Lk (9d)

− Fl ≤ fkl ≤ Fl ∀k ∈ {1, 2}, l ∈ Lk, (9e)

By applying Theorem 1, it can be easily verified that this formulation is equivalent to the
original ISF formulation presented in Subsection 2.4. In the proposed formulation, however,
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assuming that B∩ is small, only a small number of constraints, namely (9a) and (9b), are
non-local. Equations (9c)–(9e), which comprise the vast majority of constraints for large-
scale systems, are now completely local. Similarly to the original formulation, note that the
fkl variables are still independent from each other, and therefore can be added lazily to the
formulation, making the proposed formulation scalable to very large systems.

Figure 2 shows a visual comparison between the sparsity structures of the original ISF
formulations versus our proposed decomposed version, for the case1888rte instance, which
corresponds to the French VHV System in 2013. In the diagram, each non-zero constraint
coefficient is represented as a black dot. While the original formulation has no clear structure,
the decomposed formulation presentes a clear block-diagonal structure. A very small number
of (non-local) linking constraints can be seen at the bottom of Figure 2b.

(a) Original ISF formulation. (b) Proposed formulation.

Fig. 2: Comparison between sparsity patterns of different formulations.

4 Enforcement of N-1 security constraints

In many power system optimization problems, the optimal net injections must induce a
feasible network flow not only for the original transmission network, where all transmission
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lines are operational, but also for a number of N-1 contingency scenarios, where exactly one
transmission line has unexpectedly failed. In this section we show how can the formulation
presented in Subsection 3.3 be adapted to enforce such constraints.

Consider a pair of transmission lines m, q ∈ L. We will refer to m as the monitored line,
and q as the outaged line. We would like to enforce the transmission limits on m, whether
q is operational or not. We assume that disconnecting q does not create islands, and that
all net injections remain the same. In Subsection 4.1, we consider the case where m and q
belong to the same zone. Then, in Subsection 4.2, we consider the case where they belong
to different zones.

4.1 Internal outages

Suppose that the monitored line m and the outaged line q belong to the same zone. Let fm
and fq be the flows inm and q when q is operational. Also, let f̃mq be the flow in transmission
line m after q is disconnected. It is well known that there exists a constant φmq, known as
line outage distribution factor, such that

f̃mq = fm + φmqfq.

The constant φmq can be easily computed from the matrix of injection shift factors [9]. To
enforce valid flows under all internal outages, it is sufficient to add the following constraints
to Formulation (9):

f̃kmq = fkm + φmqf
k
q ∀k ∈ {1, 2},m ∈ Lk, q ∈ Lk

− Fm ≤ f̃kmq ≤ Fm ∀k ∈ {1, 2},m ∈ Lk, q ∈ Lk

Similar to the regular transmission constraints, if it is known, from previous experience, that
a certain flow f̃kmq is not under risk of exceeding its limits, this variable and its associated
constraints can be dropped from the formulation.

4.2 External outages

Now consider the case where the monitored transmission line m and the outage transmission
line q belong to different zones. In this situation, the approach outlined in the Subsection 4.1
cannot be used to compute f̃mq, since fm and fq belong to different subproblems. This could
be solved by requiring both zones to share with each other the precise flows in each of their
own transmission lines. This solution, however, does not scale well computationally, since it
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dramatically increases the number of decision variables that need to reach consensus. It may
also not be acceptable for privacy reasons. Because of these difficulties, previous decentralized
formulations such as [1] simply ignore external outages. In this subsection, we present an
alternative solution, with better scalability, which requires significant less sharing.

Let T denote the set of alternative network topologies in which the transmission limits
need to be enforced. More precisely, each τ ∈ T corresponds to an alternative transmission
network containing the same set of buses B, but having exactly one transmission line q ∈ L
removed. For each τ ∈ T , let flτ be the flow in transmission line l under topology τ . Let δlbτ
be the injection shift factors in topology τ , and let γbcτ be the constants from Theorem 1
when applied to δlbt. To enforce transmission limits in all topologies T , one possible solution
would be to add the following constraints to Formulation (9):

w1
bτ =

∑
c∈B2

γ2bcτn
2
c ∀b ∈ B∩, τ ∈ T (10a)

w2
bτ =

∑
c∈B1

γ1bcτn
1
c ∀b ∈ B∩, τ ∈ T, (10b)∑

b∈Bk

nkb +
∑
b∈B∩

wkbτ = 0 ∀k ∈ {1, 2}, τ ∈ T (10c)

fklτ =
∑
b∈Bk

δlbτn
k
b +

∑
b∈B∩

δlbτw
k
bτ ∀k ∈ {1, 2}, l ∈ Lk, τ ∈ T (10d)

− Fl ≤ fklτ ≤ Fl ∀k ∈ {1, 2}, l ∈ Lk, τ ∈ T. (10e)

Although it is possible, in theory, to solve this formulation using the ADMM procedure from
Subsection 2.1, we expect very poor computational performance, due to the large number
of consensus variables wkbτ . In the following, we propose an alternative solution method to
enforce these constraints, which does not require any additional consensus variables. We start
by showing that Equations (10c) are redundant, and therefore can be omitted.

Proposition 2 Let (w, n, f) be a solution to Equations (9), (10a) and (10b). Then∑
b∈B∩

wkb =
∑
b∈B∩

wkbτ ,

for every k ∈ {1, 2}, τ ∈ T .

Proof. Let τ ∈ T . Without loss of generality, we assume k = 1. By Theorem 1,∑
b∈B∩

γ2bc = 1 =
∑
b∈B∩

γ2bcτ .
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Then we have

∑
b∈B∩

w1
b =

∑
b∈B∩

∑
c∈B2

γ2bcn
2
c =

∑
c∈B2

[
n2
c

∑
b∈B∩

γ2bc

]
=
∑
c∈B2

[
n2
c

∑
b∈B∩

γ2bcτ

]
=
∑
b∈B∩

w1
bτ .

ut

Next, we focus on simplifying Equations (10d) and (10e). For every b ∈ B∩ and τ ∈ T , let
e1bτ be a new decision variable representing the difference between w1

bτ and w1
b . That is,

e1bτ := w1
bτ − w1

b =
∑
b∈B2

(
γ2bcτ − γ2bc

)
n2
c .

Let e2lτ be similarly defined. Additionally, for every k ∈ {1, 2}, l ∈ Lk and τ ∈ T , let gklτ be a
new decision variable representing the difference between fklτ and fkl . That is,

gklτ := fklτ − fkl =
∑
b∈Bk

(δlbτ − δlb)nkb +
∑
b∈B∩

(
δlbτw

k
bτ − δlbwkb

)
=
∑
b∈Bk

(δlbτ − δlb)nkb +
∑
b∈B∩

[
δlbτ
(
ekbτ + wkb

)
− δlbwkb

]
=
∑
b∈Bk

(δlbτ − δlb)nkb +
∑
b∈B∩

[
(δlbτ − δlb)wkb + δlbτe

k
bτ

]
With these auxiliary variables, it can be easily verified that Equations (10a), (10b), (10d)
and (10e) can be replaced by

− Fl ≤ fkl + gklτ ≤ Fl ∀k ∈ {1, 2}, l ∈ Lk, τ ∈ T. (11)

What we propose next is to replace, in the definitions of eklτ and gklτ , the decision variables
nkb and wkb by constants ñkb and w̃kb , corresponding to the the optimal values of nkb and wkb in
the previous ADMM iteration. During the first ADMM iteration, ñkb and w̃kb are set to zero.
With this modification, the variables eklτ and gklτ become constants, which we denote by ẽkkτ
and g̃klτ . For clarity, these constants are defined as

ẽ1bτ :=
∑
c∈B2

(
γ2bcτ − γ2bc

)
ñ2
c , ∀b ∈ B∩, τ ∈ T

ẽ2bτ :=
∑
c∈B1

(
γ1bcτ − γ1bc

)
ñ1
c , ∀b ∈ B∩, τ ∈ T

g̃klτ :=
∑
b∈Bk

(δlbτ − δlb) ñkb +
∑
b∈B∩

[
(δlbτ − δlb) w̃kb + δlbτ ẽ

k
bτ

]
∀k ∈ {1, 2}, l ∈ Lk, τ ∈ T

15



Converting gklτ to a constant causes the vast majority of Equations (11) to become redundant.
Indeed, it is sufficient to enforce only the following set of constraints:

−Fl −
(

min
τ∈T

g̃klτ

)
︸ ︷︷ ︸

g̃kl,min

≤ fkl ≤ Fl −
(

max
τ∈T

g̃klτ

)
︸ ︷︷ ︸

g̃kl,max

(12)

for every k ∈ {1, 2} and l ∈ Lk. Equation (12) can be seen as a robust version of Equation
(9e).

Given these modifications, our proposed solution method is the following. At the end of
each ADMM iteration, each zone computes and shares with each other the ẽkbτ values. Unlike
network flows, these values reveal very little private information. Upon receiving the updated
ẽkbτ values, each zone computes g̃kl,min and g̃kl,max for each transmission line and updates the
bounds of Equation (12). The subproblems are then reoptimized, and the procedure repeats
until the solutions converge.

5 Computational performance

The computational performance of the proposed formulation was evaluated on the Security-
Constrained Unit Commitment Problem (SCUC), a challenging NP-hard problem used, for
example, to clear the day-ahead electricity markets. Besides transmission and N-1 security,
other enforced constraints included (i) maximum and minimum generation limits, (ii) ramp-
ing restrictions and (iii) minimum uptime and downtime. In our experiments, the decentral-
ized phase-angle formulation from Subsection 2.3 was used as a baseline. Both formulations
were implemented in Julia 1.2 and JuMP 0.19, and shared the same ADMM code. The pack-
age IBM ILOG CPLEX 12.8 was used as MIQP and QP solver. Experiments were run on
a single node of the Bebop cluster at Argonne National Laboratory (Intel Xeon E5-2695v4,
36 cores, 128GBDDR4). A single instance was solved at a time, with one process per zone.
Inter-process communication was performed via MPI. A wallclock time limit of 3600s was
imposed over the entire optimization process.

5.1 Instances

Seven instances from MATPOWER [19], corresponding to realistic, large-scale European test
systems, were selected to evaluate the formulations. Table 1 presents their main character-
istics, including number of buses, generators and transmission lines. Some generator data,
such as ramping rates, was missing from the original instances, and was artificially generated
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based on real data distributions. To split each instance into two zones, an auxiliary MILP
was solved, as described in Appendix A. No attempt was made to keep the number of gen-
erators in different zones balanced, although the auxiliary problem could be easily modified
to achieve this, if desired. The number of buses, lines and units within each zone is also
described in Table 1.

Table 1: Size of selected instances.

Total Zone 1 Zone 2

Instance Buses Units Lines Buses Units Lines Buses Units Lines

case1888rte 1,888 297 2,531 1,113 211 1,498 784 86 1,033

case1951rte 1,951 391 2,596 1,037 119 1,415 923 272 1,181

case2848rte 2,848 547 3,776 1,481 226 1,957 1375 321 1,819

case3012wp 3,012 502 3,572 1,637 322 1,938 1,388 180 1,634

case3375wp 3,374 596 4,161 1,649 334 2,007 1,696 262 2,154

case6468rte 6,468 1,295 9,000 2,896 544 4,049 3,588 751 4,951

case6515rte 6,515 1,388 9,037 3,536 800 4,831 2,994 588 4,206

5.2 Revised release-and-fix heuristic

We recall that the ADMM procedure described in Subsection 2.1 is not guaranteed to con-
verge in the presence of binary decision variables, since the resulting optimization problem
is no longer convex. When solved through ADMM, decentralized MILPs often present an
oscillating behavior, where the values of the binary or integral variables flip back and forth
between different discrete values, with little change to objective value, and no progress to-
wards global feasibility. Even if such oscillating behavior is not present in particular instances,
it may still not be desirable, for performance reasons alone, to repeatedly solve MIQP sub-
problems at each ADMM iteration.

Based on these observations, Feizollahi et al [8] proposed a release-and-fix procedure,
where the continuous relaxation of the problem is solved first, to obtain an initial lower
bound, then the procedure alternates between solving the original MIQP (the release cycle),
and a restricted MIQP which has some (or all) binary variables fixed to particular values
(the fix cycle), until either the solution becomes globally feasible, or a time limit is reached.

In this subsection, we present a revised version of this release-and-fix procedure. The
entire process is described in Figure 3. At the beginning, we repeatedly solve the original
MIQP subproblems and update the ADMM multipliers, according to Algorithm 1. During
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Fig. 3: Revised fix-and-release procedure for Mixed-Integer ADMM.

this release cycle, we monitor the changes to the objective value. If, at the end of any ADMM
iteration, the global objective value has not changed significantly when compared to the
previous iteration, we fix all binary variables to their current optimal values. Then, we switch
to the fix cycle, where we repeatedly solve restricted these QP subproblems and update the
ADMM multipliers. In the fix cycle, ADMM is guaranteed to converge to a globally feasible
solution, since the problem is convex, unless such a solution does not exist. Assuming that
the original instance is feasible, this would indicate that variable fixing performed earlier
was not adequate. In this case, the procedure releases all binary variables and returns to
the release cycle. The procedure repeats until either a globally feasible solution is found,
or a time limit is reached. Compared to the method described in [8], the revised procedure
presented in this subsection mainly differs in the rules used to switch between release to
fix cycles. Here, we propose switches based on changes to objective value and infeasibility,
while, in the original method, the switch is made after observing no changes in binary values
over the course of 15 iterations, or simply after a fixed number of iterations. The proposed
method also differs in its stop criterion. Here, we stop when a globally feasible solution is
obtained, whereas in the original method, the search continues even after such a solution is
found.

5.3 Computational Results

First, we present the computational results for the transmission-constrained version of the
problem, which enforces only pre-contingency DC power flow constraints, and no N-1 con-
tingency constraints. Table 2 shows the average running times (in seconds) required to solve
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Table 2: Benchmark on the Transmission-Constrained Unit Commitment Problem.

Proposed Phase-Angle

Instance Time (s) Infeas. Iter. Gap (%) Time (s) Infeas. Iter. Gap (%)

case1888rte-2z 100.0 4.991e-03 52.0 0.04 3605.6 4.537e+01 305.0 —

case1951rte-2z 194.3 9.861e-03 52.0 0.11 3605.8 7.204e+01 140.0 —

case2848rte-2z 153.7 8.633e-03 47.0 0.31 3606.8 3.569e+01 560.0 —

case3012wp-2z 214.7 7.267e-03 47.0 0.38 3605.5 3.968e+03 9.0 —

case3375wp-2z 264.1 3.263e-03 52.0 0.04 3614.4 2.096e+04 4.0 —

case6468rte-2z 1153.0 5.779e-03 67.0 0.05 3605.9 3.026e+02 64.0 —

case6515rte-2z 898.0 7.663e-03 45.0 0.06 3606.2 9.783e+01 118.0 —

Average 425.4 6.780e-03 51.7 0.14 3607.2 3.640e+03 171.4 —

Fig. 4: Infeasibility over time (instance case1888rte-2z).
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the seven instances considered, using either the proposed formulation, or the decentralized
phase-angle presented in Subsection 2.3. For each formulation, the table also shows the pri-
mal residual, the number of iterations, and the gap when compared to the optimal solution
obtained centrally.

Using the proposed formulation, the revised release-and-fix procedure described in Sub-
section 5.2 was able to solve all instances well within the 1-hour time limit. In all cases,
the procedure ended with a globally feasible solution, with primal residuals within the tol-
erance. The optimality gaps, when compared to a centralized method, were also relatively
small. On average, the method required 425 seconds, 41 iterations, and produced decentral-
ized solutions which were 0.14% worse than the optimal central solution. Obtaining globally
feasible solutions using the decentralized phase-angle formulation, on the other hand, proved
very challenging. For all instances, the method exceeded the 1-hour time limit, and termi-
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nated without producing any globally feasible solutions. Even for the smallest instances, the
primal residuals were still significantly high, indicating that the partial solutions were not
compatible enough for the production schedule to be implementable. With the phase-angle
formulation, CPLEX also faced several numerical issues when solving the associated QPs.
To mitigate these problems, we used relaxed convergence tolerances for the barrier method
(CPX_PARAM_BAREPCOMP was set to 10−3). No such issues were present with the proposed
formulation.

Figures 4 and 5 show the progress towards primal feasibility over time, for instances
case1888rte-2z and case6515rte-2z, for both formulations. The longer steps in the chart
correspond to the MIQP iterations, whereas the smoother areas correspond to the QP it-
erations. From these figures, it is clear that each MIQP iteration takes significantly longer
when using the phase-angle formulation. In fact, for both instances, solving the very first
phase-angle MIQP iteration took roughly the same time as performing the entire ADMM
procedure using the proposed formulation.

Now we focus our attention to the security-constrained version of the problem, where N-1
security constraints are enforced using the strategy presented in Section 4. Similarly to the
previous table, Table 3 shows, for each instance, the average running time (in seconds), the
primal infeasibility, the number of iterations and the optimality gap when compared to the
central optimal solution. Here, we do not show the results for the phase-angle formulation,
since this formulation, in its original form, would require one copy of the θ variables for each
N-1 contingency scenario, resulting in an intractable optimization problem.

Enforcing N-1 security constraints, using the proposed solution method, did not make
the subproblems significantly harder to solve. For all instances, the method was still able
to find globally feasible solutions within the 1-hour time limit. On average, the method
required 987 seconds, 49.6 iterations to produce solutions that were 0.06% worse than the
centrally-obtained ones. The increase in running time came mostly from recomputing the g̃klτ
and ẽkbτ values at the end of each ADMM iteration, as described in Section 4, not specifically
from reoptimizing the subproblems. There was also no indication that enforcing N-1 security
constraints caused any increase in the number of ADMM iterations.

6 Conclusion

In this paper, we presented a novel formulation of DC power flows that is specially well-
suited for decentralized power systems optimization. Assuming that the transmission net-
work can be separated into zones sharing a small number of tie lines, we proved that it is
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Fig. 5: Infeasibility over time (instance case6515rte-2z).
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Table 3: Benchmark on the Security-Constrained Unit Commitment Problem.

Proposed

Instance Time (s) Infeas. Iter. Gap (%)

case1888rte-2z 129.4 8.316e-02 47.0 0.03

case1951rte-2z 206.6 6.245e-02 47.0 0.09

case2848rte-2z 243.8 3.704e-02 42.0 0.21

case3012wp-2z 755.9 9.917e-02 42.0 0.04

case3375wp-2z 1183.4 6.869e-02 56.0 0.07

case6468rte-2z 1240.2 8.808e-02 36.0 0.00

case6515rte-2z 3146.9 6.668e-02 77.0 0.00

Average 986.6 7.218e-02 49.6 0.06

possible to sparsify the traditional injection shift factor formulation by adding a small num-
ber of auxiliary constraints. The obtained formulation presents a block-diagonal structure,
which lends itself naturally to decomposition methods. We also described how to enforce
N-1 security constraints without requiring multiple copies of the decision variables. Com-
putational experiments on a large set of realistic Security-Constrained Unit Commitment
instances demonstrated that the proposed formulation performs significantly better than the
decentralized phase angle formulation used in previous studies. Although we only presented
computational results for SCUC, we stress that this formulation is applicable to any power
systems optimization problems that employ DC power flows. We are currently investigating
its application to other families of problems. Another open question is how to optimally sub-
divide a large transmission network into multiple smaller zones, for improved computational
performance.
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Appendix

The original benchmark instances considered in our benchmarks had no zonal information. To
separate the buses into two zones, an auxiliary Mixed-Integer Linear Optimization (MILP)
problem was solved. The problem has one binary variable xb for each bus b ∈ B, indicating
whether b is a boundary bus, and one binary variable yl for each l ∈ L, indicating whether
line l belongs to zone 1. The MILP tries to minimize the number of boundary buses, while
keeping the number of lines in each zone roughly balanced:

minimize
∑
b∈B

xb (13a)

subject to yq + (1− ym) ≤ 1 + xb ∀b ∈ B, q ∈ L(b), l ∈ L(b), l 6= q, (13b)

(1− yq) + ym ≤ 1 + xb ∀b ∈ B, q ∈ L(b), l ∈ L(b), l 6= q, (13c)∑
l∈L

yl ≤ |L|
(

1

2
+ η

)
, (13d)

∑
l∈L

(1− yl) ≤ |L|
(

1

2
+ η

)
, (13e)

xb ∈ {0, 1} ∀b ∈ B (13f)

yl ∈ {0, 1} ∀l ∈ L (13g)

where L(b) indicates the set of lines incident to b and η is a constant which controls the
unbalance tolerance. Equations (13b) and (13c) guarantee that, if b is not a boundary bus,
then all transmission lines directly connected to it must belong to the same zone. Equations
(13d) and (13e) enfore that the zones have roughly the same number of transmission lines.
Since an optimal solution was not strictly required, a large relative MILP gap tolerance was
used to solve this problem. Note that no attempt was made to keep the number of generators
in different zones balanced. The auxiliary Problem (13) can be easily modified to achieve
this, if desired. This problem can also be used recursively to subdivide each zone into smaller
subzones.
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