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Abstract

In this paper, we study the set Sκ = {(x, y) ∈ G × Rn : yj = xκ
j , j = 1, . . . , n}, where κ > 1

and the ground set G is a nonempty polytope contained in [0, 1]n. This nonconvex set is closely
related to separable standard quadratic programming and appears as a substructure in potential-
based network flow problems from gas and water networks. Our aim is to obtain the convex hull
of Sκ or its tight outer-approximation for the special case when the ground set G is the standard
simplex. We propose power cone, second-order cone and semidefinite programming relaxations for
this purpose, which are further strengthened by the Reformulation-Linearization Technique and the
Reformulation-Perspectification Technique. For κ = 2, we obtain the convex hull of Sκ in the low-
dimensional setting. For general κ, we give approximation guarantees for the power cone representable
relaxation, the weakest relaxation we consider. We prove that this weakest relaxation is tight with
probability one as n → ∞ when a uniformly generated linear objective is optimized over it. Finally,
we provide the results of our extensive computational experiments comparing the empirical strength
of several conic programming relaxations that we propose.

Keywords: convexification, conic programming, power cone, semidefinite programming, reformulation-
linearization technique, reformulation-perspectification technique

1 Introduction

Consider the set
Sκ = {(x, y) ∈ G × Rn : yj = xκ

j , j = 1, . . . , n},

where κ > 1 and the ground set G is the following nonempty polytope

G = {x ∈ [0, 1]n : Ax = b, Cx ≤ d}.

Here, A ∈ Rm×n, b ∈ Rm, C ∈ Rk×n and d ∈ Rk. Notice that this set is closely related to the
convexification of the separable function

∑n
j=1(αjxj + βjx

κ
j ) over a polyhedral ground set G and the

optimization problem min(x,y)∈Sκ{
∑n

j=1(αjxj + βjyj)}. This substructure appears in many applications
and we provide two motivating examples to study the set Sκ below.

The first example arises from a special case of the well-studied standard quadratic programming
problem [6, 8, 22, 16, 15, 19], called the separable standard quadratic programming [7], which is an
optimization problem of the form

min
x∈∆n


n∑

j=1

(αjxj + βjx
2
j )

 , (1)
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where α ∈ Rn, β ∈ Rn and the set ∆n :=
{
x ∈ Rn

+ :
∑n

j=1 xj = 1
}
is the standard simplex in Rn. In our

notation, problem (1) is equivalent to min(x,y)∈S2{αTx+ βT y}, with the ground set G = ∆n. Therefore,
the set we study is a generalization of the extended formulation of the feasible region of an important
problem.

The second example arises from potential-based flow networks (e.g., gas and water networks [17, 27,
20, 13, 25, 21, 9]). Let us consider a “node-based” substructure, where we have a node set {0, 1, . . . , n}
and an edge set {(1, 0), . . . , (n, 0)}; see Figure 1 for an illustration with n = 4 (we also refer the reader
to [12] for a similar substructure studied in the context of power systems).

0

p0 = 0 1 p12p2

3p3 4 p4

f1f2

f3 f4

Figure 1: An example node-based structure with n = 4 adjacent edges to node 0.

We will think of node 0 as a demand node with a positive demand δ and the others as supply nodes.
Each node j has a nonnegative potential, denoted by pj , 0 = 1, . . . , n, and we will assume that the
demand node 0 has zero potential, i.e., p0 = 0. Each edge has a nonnegative flow, denoted by fj , which
is upper bounded by f̄j , j = 1, . . . , n. The relationship between the potential differences and the flow
value is governed by the law of physics and is of the form pj − p0 = χjf

κ
j , where χj is a positive number

representing a certain physical characteristic of edge j. In addition, the relation
∑n

j=1 fj = δ models the

demand constraint. By defining xj =
fj
f̄j

and yj =
pj

χj f̄κ
j
, we can model this situation in the form of Sκ,

where the ground set is G = {x ∈ [0, 1]n :
∑n

j=1 f̄jxj = δ}. Note that in the special case where we have

χj = f̄j = δ = 1 for j = 1, . . . , n, the ground set is again the standard simplex, that is, G = ∆n. As
opposed to our illustration above, the directions of flows on the edges are typically not fixed in general.
However, the analysis of the set Sκ is still useful as one can deal with a more general case in which the
flow directions are variables via a disjunctive formulation that involves several sets of the form Sκ.

In this study, our aim is to find conv(Sκ) or a close outer-approximation of conv(Sκ) in the space of
x and y variables or in an extended space. Although the convexification of functions is an active research
area (see, e.g., [30, 26, 28, 31, 4, 24, 3, 2, 32, 1, 18, 33]), the specific substructure we are interested in
is less explored. Arguably, references [10], [7] and [15] are most closely related to our study although
they only consider the case where the exponent is κ = 2. For instance, the results in [10] imply that
conv(S2) can be obtained as a completely positive cone representable set although this representation is
not tractable in general. It is proven in [7] that the optimizing a linear function over S2 can be done is
polynomial-time although an explicit convex hull description is not provided. In [15], it is shown that
optimizing a linear function over S2 can be performed by solving a doubly nonnegative relaxation when
β vector is either nonnegative or nonpositive.

In this paper, we provide several conic representable outer-approximations for the set Sκ or equiv-
alently conic programming relaxations for the optimization problem min(x,y)∈Sκ{

∑n
j=1(αjxj + βjyj)}.

In particular, we propose a power cone relaxation (hereafter abbreviated as the P relaxation) obtained
as a single row relaxation, that is, the nonconvex relation yj = xκ

j over xj ∈ [0, 1] is simply relaxed as
xκ
j ≤ yj ≤ xj . We also construct stronger relaxations using reformulation-linearization technique (RLT),

second-order cone programming and semidefinite programming. Then, we specialize our analysis to the
important special case when the ground set is the standard simplex. For this setting, we provide convex
hull results in low-dimension for κ = 2, and approximation guarantees and a probabilistic tightness analy-
sis for general κ. We further improve our relaxations using the reformulation-perspectification technique
(RPT). Finally, we run an extensive set of computational experiments focusing on the case when the
ground set is the standard simplex and provide empirical evidence of the comparative strength of the
nine relaxations we propose.
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Below, we list our main contributions and key results from each section:

• In Section 2, we prove that optimizing a linear function over Sκ is NP-hard in Proposition 1 and
propose several conic programming relaxations.

• In Section 3, we analyze the case where the ground set is the standard simplex.

– For the special case κ = 2, we provide two convex hull results in low-dimensional setting
(Theorem 1 for n = 2 and Corollary 2 for n = 3) and give some sufficient conditions under
which a doubly nonnegative relaxation of the problem min(x,y)∈Sκ{

∑n
j=1(αjxj + βjyj)} is

exact (Theorem 3) for general n.

– For general κ, we provide both distance-based (Propositions 8 and 9) and objective-function
based (Proposition 12) approximation results for the P relaxation. Interestingly, this weakest
relaxation we consider is tight with high probability when the dimension n is sufficiently large,
as proven in Theorem 4.

• In Section 4, we report the results of our computational experiments and verify several key obser-
vations from the previous sections empirically.

Notation: Throughout the paper, Rn, Rn
+, Sn, Sn+, CP

n are respectively the set of n-dimensional real
vectors, the set of n-dimensional nonnegative real vectors, the set of n× n real symmetric matrices, the
set of n×n real positive semidefinite matrices, the set of n×n completely positive matrices, and e is the
all-ones vector of appropriate dimension. Also, let ej be the j-th standard unit vector. Given a square
matrix X, we denote the vector of diagonal of X by diag(X). For a set S ⊆ Rn, we denote its convex
hull and the set of extreme points as conv(S) and extr(S), respectively.

2 General Ground Sets

In this section, we focus on a general ground set G. We first prove that it is NP-Hard to optimize a
linear function over the set Sκ in Section 2.1. Then, we propose several conic relaxations for the set Sκ

in Section 2.2.

2.1 Complexity

Proposition 1. Optimizing a linear function over Sκ is NP-Hard for κ > 1.

Proof. Consider the SUBSET-SUM Problem, which is known to be NP-Hard [14]: Given a ∈ Zn
+ and

b ∈ Z+, does there exist J ⊆ {1, . . . , n} such that
∑

j∈J aj = b?
Consider the following problem, which minimizes a linear function over the set Sκ:

(Q) : min
x∈[0,1]n,y∈Rn


n∑

j=1

(xj − yj) : a
Tx = b, yj = xκ

j , j = 1, . . . , n

 .

Notice that a SUBSET-SUM instance is feasible if and only if the optimal value of (Q) is zero. Hence,
the result follows.

Although optimizing a linear function over the set Sκ is NP-Hard in general, there is a known poly-
nomially solvable case due to [7] when κ = 2 and (a, b) = (e, 1), that is, G = ∆n. We note that the
algorithm proposed in this reference can be adapted to any κ > 1.
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2.2 Relaxations

In this section, we propose several conic relaxations for the set Sκ. We start with a definition.

Definition 1 (Power cone). The power cone in R3 parameterized with γ ∈ (0, 1) is defined as

Cγ := {x ∈ R2
+ × R : xγ

1x
1−γ
2 ≥ |x3|}.

For example, the set defined by inequalities y ≥ xκ, y ≥ 0 is equivalent to (y, 1, x) ∈ C1/κ for κ > 1. In
the special case with κ = 2, C1/2 is the rotated second-order cone in R3.

The simplest relaxation we construct for the set Sκ involves applying a single row relaxation for
each nonconvex constraint separately and it utilizes the power cone as defined above to convexify each
constraint. We will call this relaxation as the power cone relaxation (or the P relaxation, in short) and
define it as below:

Sκ
P = {(x, y) ∈ G × Rn : xj ≥ yj ≥ xκ

j , j = 1, . . . , n}.

The P relaxation can be further strengthened using other approaches once a lifted matrix variable X =
xxT ∈ Sn is used. Below, we will introduce three of them.

The first approach to strengthen the P relaxation utilizes RLT [29]. For this purpose, let us consider
the following set of constraints obtained by using the first level in the RLT hierarchy

max{xi + xj − 1, 0} ≤ Xij ≤ min{xi, xj} 1 ≤ i ≤ j ≤ n (2a)

AX − bxT = 0, AxeT −AX − beT + bxT = 0 (2b)

CX − dxT ≤ 0, CxeT − CX − deT + dxT ≤ 0 (2c)

AXAT −AxbT − bxTAT + bbT = 0 (2d)

CXCT − CxdT − dxTCT + ddT ≥ 0 (2e)

AXCT −AxdT − bxTCT + bdT = 0. (2f)

The second approach to strengthen the P relaxation utilizes semidefinite programming and involves
the following constraints:

X ≥ 0,

X x

xT 1

 ⪰ 0. (3)

The third approach to strengthen the P relaxation utilizes second-order cone programming and in-

volves adding the positive semidefinite conditions for the 2× 2 minors of the matrix

X x

xT 1

 only. For

this purpose, we consider the constraints

X ≥ 0, x2
j ≤ Xj ≤ xj , j = 1, . . . , n, X2

ij ≤ XiiXjj , 1 ≤ i < j ≤ n. (4)

In order to make the connection between the P relaxation and the three sets of constraints defined
above (i.e., constraints (2), (3) and (4)) stronger, we make a simple observation: Note that we have

Xjj = x2
j and yj = xκ

j , implying that Xjj = y
2/κ
j . This observation allows us to relate yj variables with

Xjj variables through the following constraints:
yj ≥ Xjj ≥ y

2/κ
j , j = 1, . . . , n if κ < 2

Xjj = yj , j = 1, . . . , n if κ = 2

Xjj ≥ yj ≥ X
κ/2
jj , j = 1, . . . , n if κ > 2

. (5)

We are ready to formally introduce the six relaxations we define for the set Sκ:

• The P relaxation: Sκ
P
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• The PR relaxation: Sκ
P,R := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (2), (5)}

• The PS relaxation: Sκ
P,S := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (3), (5)}

• The Ps relaxation: Sκ
P,s := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (4), (5)}

• The PRS relaxation: Sκ
P,R,S := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (2), (3), (5)}

• The PRs relaxation: Sκ
P,R,s := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (2), (4), (5)}

Let us now discuss some basic properties of these relaxations. The lemma below characterizes the
extreme points of the P relaxation:

Lemma 1. Let (x̂, ŷ) ∈ extr(Sκ
P ). Then, we have ŷj ∈ {x̂j , x̂

κ
j }, j = 1, . . . , n.

Interestingly, adding the SDP constraint (3) to the P relaxation does not further strengthen this
relaxation as proven below.

Proposition 2. Let κ > 1. Then, Sκ
P = Sκ

P,S.

Proof. Note that Sκ
P ⊇ Sκ

P,S . Suppose that (x̂, ŷ) ∈ extr(Sκ
P ). In order to prove the assertion of the

proposition, it suffices to show that (x̂, ŷ) ∈ Sκ
P,S . Due to Lemma 1, we know that ŷj ∈ {x̂j , x̂

κ
j },

j = 1, . . . , n. Now, consider the matrix X̂ := x̂x̂T +D, where D ∈ Sn is a diagonal matrix with entries

Djj =


0 if ŷj = x̂κ

j

ŷj − x̂2
j if ŷj = x̂j and κ ≤ 2

ŷ
2/κ
j − x̂2

j if ŷj = x̂j and κ > 2

.

Observe that both x̂x̂T and D are doubly nonnegative matrices and (x̂, ŷ, X̂) satisfies (5). Hence, the
result follows.

Corollary 1. Let κ > 1. Then, Sκ
P = Sκ

P,s.

Due to Proposition 2 and Corollary 1, we will not study the PS relaxation and the Ps relaxation.
Unlike the SDP constraint (3), adding the RLT constraints (2) strengthens the P relaxation. Perhaps

more interestingly, the addition of the SDP constraint (3) and the RLT constraints (2) together further
strengthens the PR relaxation. The proposition below formalizes this statement.

Proposition 3. We have Sκ
P ⊇ Sκ

P,R ⊇ Sκ
P,R,s ⊇ Sκ

P,R,S, and all the set containment relations can be
strict.

We prove this proposition in Section 3.1 with suitable examples with G = ∆n and κ = 2.

3 The Standard Simplex as the Ground Set

Let T be a relaxation of the nonconvex set Sκ. We will use two metrics to measure the quality of the
relaxation T for the nonconvex set Sκ:

• Distance-based:
DSκ,T := max

(x̂,ŷ)∈T
min

(x,y)∈Sκ
∥(x− x̂, y − ŷ)∥.

This measure quantifies the distance of the farthest point in T from Sκ.

• Objective function-based: Let (α, β) ∈ Rn × Rn.

OSκ,T (α, β) := min
(x,y)∈Sκ

{αTx+ βT y} − min
(x,y)∈T

{αTx+ βT y}.

This measure quantifies the additive gap between optimizing over T and Sκ.
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Remark 1. Notice that if OSκ,T (α, β) = 0 for all (α, β), then we conclude that T = conv(Sκ).

A simple result that we will frequently use in the rest of the paper is the following proposition.

Proposition 4. min(x,y)∈Sκ
P
{αTx+ βT y} = minx∈G{

∑
j:βj>0(αjxj + βjx

κ
j ) +

∑
j:βj≤0(αj + βj)xj}.

Note that the proof of Proposition 4 immediately follows from the extreme point description of the
set extr(Sκ

P ) (the feasible region of the P relaxation) given in Lemma 1.
The remainder of this section is organized as follows. In Section 3.1, we prove Proposition 3 for

the case G = ∆n. Section 3.2 presents several cases where the exact convex hull can be obtained when
κ = 2. In Section 3.3, we establish results that assess the strength of Sκ

P in approximating Sκ, with our
main result showing that Sκ

P provides an increasingly tight relaxation as n → ∞. Section 3.4 introduces
another class of conic-representable inequalities for Sκ, derived using RPT.

3.1 Set containment examples

We now prove the strict set inclusion relations stated in Proposition 3. We start with a lemma, which
simplifies the RLT constraints when the ground set is the standard simplex.

Lemma 2. Let G = ∆n. Then,

{x ∈ ∆n, X ∈ Sn : (2)} = {x ∈ ∆n, X ∈ Sn : (6)},

where
X ≥ 0, Xe = x. (6)

Moreover, if n ≤ 3 and κ = 2, we have

Sκ
P,R =

(x, y) ∈ Sκ
P : xj − yj ≤

∑
i ̸=j

(xi − yi), j = 1, . . . , n

 .

Proof. For G = ∆n, we have A = eT , b = 1 and C = d = 0.
In order to prove the first result, notice that equations (2b) give the equation Xe = x. Together

with the condition x ∈ ∆n, we observe that the McCormick envelopes given in (2a) are redundant except
X ≥ 0. Therefore, the first result follows.

In order to prove the second result for n = 2, observe that we have

S2
P,R = {(x, y) ∈ S2

P : ∃X ∈ S2 : X ≥ 0, Xe = x, diag(X) = y}
= {(x, y) ∈ S2

P : ∃X ∈ S2 : X ≥ 0, y1 +X12 = x1, X12 + x2 = y2}
= {(x, y) ∈ S2

P : x1 − y1 = x2 − y2}.

In order to prove the second result for n = 3, observe that we have

S2
P,R = {(x, y) ∈ S2

P : ∃X ∈ S3 : X ≥ 0, Xe = x, diag(X) = y}
= {(x, y) ∈ S2

P : ∃X ∈ S3 : X ≥ 0, y1 +X12 +X13 = x1,

X12 + y2 +X23 = x2, X13 +X23 + y3 = x3}
= {(x, y) ∈ S2

P : (x3 − y3)− (x1 − y1)− (x2 − y2) ≤ 0,

(x2 − y2)− (x1 − y1)− (x3 − y3) ≤ 0,

(x1 − y1)− (x2 − y2)− (x3 − y3) ≤ 0},

where the last equality follows from the fact that the values X12, X13 and X23 are uniquely determined
given x and y.
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Remark 2. By virtue of the first result in Lemma 2, we can replace the generic RLT constraints (2) with
constraints (6) when G = ∆n for PR, PRS and PRs relaxations. More precisely, we have the following:

• Sκ
P,R := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (6), (5)}

• Sκ
P,R,S := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (6), (3), (5)}

• Sκ
P,R,s := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (6), (4), (5)}
The following result shows that the PR relaxation can be strictly stronger than the P relaxation.

Proposition 5. The relation Sκ
P ⊇ Sκ

P,R can be strict.

Proof. Let κ = 2 and consider G = ∆2. Consider the point (x̂, ŷ), where

x̂ =

1/2
1/2

 and ŷ =

1/2
1/4

 .

Due to Lemma 2, we deduce that (x̂, ŷ) ∈ Sκ
P but (x̂, ŷ) ̸∈ Sκ

P,R.

The following result shows that the PRs relaxation can be strictly stronger than the PR relaxation.

Proposition 6. The relation Sκ
P,R ⊇ Sκ

P,R,s can be strict.

Proof. Let κ = 2 and consider G = ∆3. Consider the point (x̂, ŷ), where

x̂ =


1/3

1/3

1/3

 and ŷ =


1/9

1/9

1/3

 .

Due to Lemma 2, we deduce that this point belongs to Sκ
P,R with the following unique selection of X̂:

X̂ =


1/9 2/9 0

2/9 1/9 0

0 0 1/3

 .

However, (x̂, ŷ) ̸∈ Sκ
P,R,s since the inequality X11X22 ≥ X2

12 is violated.

The following result shows that the PRS relaxation can be strictly stronger than the PRs relaxation.

Proposition 7. The relation Sκ
P,R,s ⊇ Sκ

P,R,S can be strict.

Proof. Let κ = 2 and consider G = ∆3. Consider the point (x̂, ŷ), where

x̂ =


1/2

1/3

1/6

 and ŷ =


1/4

1/8

1/30

 .

Due to Lemma 2, we deduce that this point belongs to Sκ
P,R with the following unique selection of X̂:

X̂ =
1

240


60 39 21

39 30 11

21 11 8

 .

In addition, its principal 2 × 2 minors, which are 279
2402 ,

39
2402 ,

119
2402 , are all nonnegative, hence, (x̂, ŷ) ∈

Sκ
P,R,s. However, its determinant is − 1

2402 < 0, hence, X̂ is not positive semidefinite. Therefore, (x̂, ŷ) ̸∈
Sκ
P,R,S .
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3.2 Exactness Results for κ = 2

We now provide some exactness results for κ = 2. Theorem 1 states that the convex hull of Sκ is
second-order cone representable for n = 2, which is obtained from the PR relaxation.

Theorem 1. Let G = ∆2 and κ = 2. Then, conv(Sκ) = Sκ
P,R.

Proof. It suffices to show that conv(Sκ) ⊇ Sκ
P,R. Let (x̂, ŷ) ∈ Sκ

P,R. Then, we have e
T x̂ = 1, x̂j ≥ ŷj ≥ x̂2

j

and x̂1 − ŷ1 = x̂2 − ŷ2, where the last equality follows from Lemma 2.
Case 1: ŷ1 = 0. In this case, we conclude that

ŷ1 = 0 =⇒ x̂1 = 0 =⇒ x̂2 = 1 =⇒ ŷ2 = 1.

Notice that (x̂, ŷ) ∈ Sκ, hence, (x̂, ŷ) ∈ conv(Sκ).
Case 2: ŷ1 > 0. In this case, we also have x̂1 > 0. We claim that

x̂1

x̂2

ŷ1

ŷ2

 = (1− λ)


0

1

0

1

+ λ


x̃1

x̃2

ỹ1

ỹ2

 ,

for some (x̃, ỹ) ∈ Sκ with λ =
x̂2
1

ŷ1
∈ (0, 1). In fact, we have ỹ1 =

ŷ2
1

x̂2
1
, ỹ2 = (ŷ1−x̂1)

2

x̂2
1

, x̃1 = ŷ1

x̂1
and

x̃2 = x̂1−ŷ1

x̂1
. Then, it is straightforward to check that (x̃, ỹ) ∈ Sκ, hence, we conclude that (x̃, ỹ) ∈

conv(Sκ).

For n > 2, the convex hull of Sκ is harder to characterize. The following fact provides the convex hull
using the intractable completely positive cone due to [10].

Theorem 2. Let G = ∆n and κ = 2. Then, we have

conv(Sκ) =

(x, y) ∈ ∆n × Rn : ∃X ∈ Sn :

X x

xT 1

 ∈ CPn+1, (6)

 .

In our paper, we look for tractable relaxations, for example, the PRS relaxation, which is a doubly
nonnegative relaxation. Since we analyze the case where G = ∆n and κ = 2 in this part, observe that
optimizing a linear function αTx+βT y over the PRS relaxation is equivalent to the following optimization
problem, which we call as the PRS’ relaxation:

min
x∈∆n,X∈Sn

αTx+ βT diag(X) :

X x

xT 1

 ∈ Sn+1
+ , (6)

 .

The following corollary is a consequence of Theorem 2.

Corollary 2. The following hold true:

(i) Let G = ∆3 and κ = 2. Then, conv(Sκ) = Sκ
P,R,S.

(ii) Consider an optimal solution (x̂, X̂) to the PRS’ relaxation and assume that the matrix

 X̂ x̂

x̂T 1

 ∈

CPn+1. Then, OSκ,Sκ
P,R,S

(α, β) = 0.
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Note that part (i) of Corollary 2 follows from the fact that up to 4× 4 matrices, doubly non-negative
matrices are also completely positive [23]. By the same token, we have G = ∆2 and κ = 2, then
conv(Sκ) = Sκ

P,R,S . Theorem 1 is a strengthening, since it says that we do not need the PSD constraints
to obtain the convex hull when n = 2.

Next, in Theorem 3, we present three sufficient conditions on β so that we obtain OSκ,Sκ
P,R,S

(α, β) = 0.

Theorem 3. Let G = ∆n and κ = 2. Then, we have OSκ,Sκ
P,R,S

(α, β) = 0 under any of the following
cases:

• Case 1: |{j = 1, . . . , n : βj ≤ 0}| = n.

• Case 2: |{j = 1, . . . , n : βj ≥ 0}| = n.

• Case 3: |{j = 1, . . . , n : βj > 0}| = 1.

Proof. Consider an optimal solution (x̂, X̂) to the PRS’ relaxation. The assertion of the theorem follows
if the set J< = {j : X̂jj > x̂2

j} = ∅ since in this case X̂ = x̂x̂T . In the rest of the proof, let us assume
that J< ̸= ∅ for every optimal solution to the PRS’ relaxation.

We first prove two preliminary results:

Claim 1. For i ̸∈ J<, we have X̂ij = x̂ix̂j for any j = 1, . . . , n.

Proof. Consider positive semidefinite matrix X̂ − x̂x̂. Note that if a diagonal entry of this matrix is
zero, i.e., X̂ii − x̂2

i = 0 for some i, then we have that the off-diagonal entries X̂ij − x̂ix̂j = 0 for every
j = 1, . . . , n. Hence, the result follows.

Claim 2. If there exist i, j ∈ J< such that βi + βj < 0, then X̂ij = 0.

Proof. Suppose not. Then, we can construct a new solution X̃ that agrees with X̂ on each entry except:X̃ii X̃ij

X̃ij X̃jj

 =

X̂ii X̂ij

X̂ij X̂jj

+

 X̂ij −X̂ij

−X̂ij X̂ij

 .

Notice that X̃ is obtained from X̂ by a diagonally dominant shift, hence, it is positive semidefinite. In
addition, it maintains the row sums being the same as X̂. Therefore, it is a feasible solution. However,
the objective function difference between (x̂, X̂) and (x̂, X̃) is (βiX̂ii + βjX̂jj) − (βiX̃ii + βjX̃jj) =

−(βi + βj)X̂ij > 0. However, this is a contradiction to (x̂, X̂) being an optimal solution.

In the remainder of the proof, we will assume that X̂ij = 0 for i, j such that βi + βj ≤ 0 (notice that
if βi + βj = 0, we can find a solution that satisfies this property).

Now, we will prove each of the three sufficient conditions separately.

• Case 1: Due to Claim 2, we have that X̂ij = 0 for i ̸= j, implying that X̂jj = x̂j . Then, observe
that we have

(x̂, X̂) =
∑
j∈J<

x̂j(e
j , (ej)(ej)T ).

In other words, (X̂, x̂) is a convex combination of |J<| many feasible solutions. Therefore, at least
one of these solutions must have an objective function value at least as good as (X̂, x̂), which is a
contradiction.

• Case 2: Let us consider a new feasible solution (x̂, x̂x̂T ) to the PRS’ relaxation. Observe that the
objective function difference between (x̂, X̂) and (x̂, x̂x̂T ) is

∑
i∈J<

βi(X̂ii − x̂2
i ) ≥ 0. This implies

that (x̂, X̃) is also an optimal solution, which is a contradiction.

9



• Case 3: Let J−
< := {j ∈ J< : X̂jj > x̂2

j , βj ≤ 0}, J−
= := {j : X̂jj = x̂2

j > 0, βj ≤ 0}, J−
0 := {j :

X̂jj = x̂2
j = 0, βj ≤ 0}. If J−

< = ∅, then the statement is trivially true as we reduce to Case 2 with
a single variable having a positive βj coefficient. Suppose, without loss of generality, that βn > 0,
J−
< = {1, . . . , k}, J−

= = {k + 1, . . . , k′} and J−
0 = {k′ + 1, . . . , n − 1}. In the rest of the proof, we

will consider the following submatrix of

 X̂ x̂

x̂T 1

, which is obtained by deleting the identically zero

rows and columns in J−
0 : 

X̂11 X̂1n x̂1

. . .
...

...

X̂k′,k′ X̂k′,n x̂k′

X̂1n · · · X̂k′,n X̂nn x̂n

x̂1 · · · x̂k′ x̂n 1


. (7)

Notice that the Schur complement of this matrix with respect to the first k′ rows and columns is
obtained as

0 ⪯

X̂nn −
∑k′

j=1

X̂2
jn

X̂jj
x̂n −

∑k′

j=1
x̂jX̂jn

X̂jj

x̂n −
∑k′

j=1
x̂jX̂jn

X̂jj
1−

∑k′

j=1

x̂2
j

X̂jj

 =

(
1−

k′∑
j=1

x̂2
j

X̂jj

)1 1

1 1

 ,

where the equality follows as a consequence of X̂e = x̂. Since we have 1 −
∑k′

j=1

x̂2
j

X̂jj
≥ 0, we

conclude that |J−
= | ≤ 1. Now, we have two subcases:

– |J−
= | = 1. In this case, we must have k = 0 and k′ = 1, meaning that J−

< = ∅. In this situation,
we again reduce to Case 2 with a single variable having a positive βj coefficient.

– |J−
= | = 0. In this case, we must have k = k′. Since we have 1 −

∑k
j=1

x̂2
j

X̂jj
≥ 0, we can write

an explicit completely positive decomposition of the solution matrix in equation (7) as (recall
Corollary 2)

k∑
j=1

x̂2
j

X̂jj

(
X̂j

x̂j

)(
X̂j

x̂j

)T

+

(
1−

k∑
j=1

x̂2
j

X̂jj

)
(en + en+1)(en + en+1)T ,

where X̄j is the j-th column of matrix X̄. Notice that the solution matrix on the left-hand
side is a convex combination of k + 1 many feasible solutions. Therefore, at least one of
these solutions must have an objective function value at least as good as (X̂, x̂), which is a
contradiction.

We note that results similar to those of Cases 1 and 2 in Theorem 3 have also been shown in [15]
utilizing conic duality whereas our approach uses only the primal problem.

Motivated by the insights derived from Theorem 3 and our extensive computational experiments
reported in Section 4.2 (see, in particular, Figure 5 with κ = 2), we have come up with the following
conjecture:

Conjecture 1. Let G = ∆n and κ = 2. Then, OSκ,Sκ
P,R,S

(α, β) = 0 for all α, β ∈ Rn × Rn, implying

that conv(Sκ) = Sκ
P,R,S.

10



3.3 Approximation results for general κ

We now switch our attention from exactness results to approximation guarantees for general κ.

3.3.1 Distance-based approximation results

Our first distance-based approximation result below gives an upper bound on the worst-case distance
between the nonconvex set Sκ and the set Sκ

P (i.e., the feasible region of the P relaxation), which
increases with both the exponent κ and the dimension n.

Proposition 8. Let n ≥ 2, G = ∆n and κ > 1. Then, we have

DSκ,Sκ
P
:= max

(x̂,ŷ)∈Sκ
P

min
(x,y)∈Sκ

∥(x− x̂, y − ŷ)∥1 ≤ 1− n1−κ.

Proof. Since we want to establish an upper bound to DSκ,Sκ
P
, we can upper bound the inner minimization

problem. This can be done in the inner optimization problem by just substituting a feasible solution. In
particular, we will substitute, xi := x̂i and yi := x̂κ

i for all i = 1, . . . , n, where
∑n

i=1 x̂i = 1. Then, we
have

min
(x,y)∈Sκ

∥x− x̂∥1 + ∥y − ŷ∥1 ≤
n∑

i=1

|ŷi − x̂κ
i |.

Therefore, we are left with solving:

max(x̂,ŷ)∈∆n×Rn {
∑n

i=1 |ŷi − x̂κ
i | : x̂κ

i ≤ ŷi ≤ x̂i, i = 1, . . . , n} .

Since ŷi ≥ x̂κ
i for points in Sκ

P , we obtain

max
(x̂,ŷ)∈Sκ

P

n∑
i=1

|ŷi − x̂κ
i | = max

(x̂,ŷ)∈Sκ
P

n∑
i=1

(ŷi − x̂κ
i ) = max

x̂∈∆n

n∑
i=1

(x̂i − x̂κ
i )

= n

(
1

n
− 1

nκ

)
= 1− n1−κ,

which completes the proof.

Notice that 1 − n1−κ converges to 0 and 1 as κ → 1+ and κ → ∞, respectively, and it is equal to
1− 1

n for κ = 2.
How good is the upper bound presented in the above result? Our second distance-based approximation

result in Proposition 9 gives a matching lower bound on the worst-case distance between the nonconvex
set Sκ and its convex hull, which increases with the exponent κ and dimension n. This lower bound
shows that P is indeed a “reasonable” convex relaxation, since even Sκ and its convex hull have distances
of similar order between them. To prove Proposition 9, we need a technical lemma:

Lemma 3. Consider the function f(x) =
∣∣x− 1

n

∣∣+ ∣∣xκ − 1
n

∣∣+x. If n ≥ 2 and κ > 1, then the minimizer
of this function is achieved at x = 1

n .

Proof. We may write the function as:

f(x) =


2
n − xκ, x ∈ [0, 1

n ]

2x− xκ, x ∈
[
1
n ,
(
1
n

) 1
κ

]
− 2

n + 2x+ xκ, x ∈
[(

1
n

) 1
κ ,∞

)
We see that the function is continuous, is decreasing in the interval [0, 1

n ], concave in the interval
[
1
n ,
(
1
n

) 1
κ

]
and increasing in the interval

[(
1
n

) 1
κ ,∞

)
. Therefore, the only possible optimal solutions are

{
1
n ,
(
1
n

) 1
κ

}
.
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To complete the proof, we need to show that f( 1n ) ≤ f(
(
1
n

) 1
κ ) or equivalently:

2

n
−
(
1

n

)κ

≤ 2

(
1

n

) 1
κ

− 1

n
⇔ 1

n
≤ 2

3

(
1

n

) 1
κ

+
1

3

(
1

n

)κ

. (8)

Note that for κ = 1, (8) holds. The proof will be complete by showing that the function g(κ) :=
2
3

(
1
n

) 1
κ + 1

3

(
1
n

)κ
is non-decreasing in κ for κ ≥ 1 and n ≥ 2.

Observe that g′(κ) = 2
3 n

−1/κ ln(n)
κ2 − 1

3 (ln(n))n
−κ = ln(n)

3

(
2n−1/κ

κ2 − n−κ
)
. Since n ≥ 2 implies

ln(n) > 0, it suffices to show 2n−1/κ

κ2 ≥ n−κ. Taking logarithms, this inequality is equivalent to showing
ln(2)− 2ln(κ) + (ln(n))

(
κ− 1

κ

)
≥ 0. Since n ≥ 2 and κ− 1

κ > 0 for κ > 1, it is sufficient to prove that

h(κ) := ln(2)− 2 lnκ+ (ln(2))

(
κ− 1

κ

)
≥ 0, for all κ ≥ 1.

Observe that h′(κ) = − 2
κ + (ln(2))

(
1 + 1

κ2

)
and h′′(κ) = 2

κ3 (κ − ln(2)). Since κ ≥ 1 > ln(2), we have
that h′′(κ) > 0 and thus h(κ) is convex in the domain [1,∞). Therefore, h achieves its global minimum
at κ∗ satisfying, h′(κ∗) = 0, i.e., κ∗ satisfies κ∗ + 1

κ∗ = 2
ln(2) . The only value of κ∗ greater than 1 is

1
ln(2) +

√
( 1
ln(2) )

2 − 1. Plugging this value into h gives a value of ln(2) − 2ln
(

1
ln(2) +

√
( 1
ln(2) )

2 − 1
)
+

ln(2)(
√
( 2
ln(2) )

2 − 4) ≈ 0.3161 > 0. Thus, h(κ) > 0 for all κ > 1, completing the proof.

Proposition 9. Let n ≥ 2, G = ∆n and κ > 1. Then, we have

DSκ,conv(Sκ) := max
(x̂,ŷ)∈conv(Sκ)

min
(x,y)∈Sκ

∥(x− x̂, y − ŷ)∥1 ≥ 1− n1−κ.

Proof. We just fix x̂i = ŷi =
1
n for the outer optimization problem. We note that the following is a lower

bound:

min
(x,y)∈Sκ

n∑
i=1

∣∣∣∣xi −
1

n

∣∣∣∣+ m∑
i=1

∣∣∣∣yi − 1

n

∣∣∣∣ = min
x∈∆n

n∑
i=1

∣∣∣∣xi −
1

n

∣∣∣∣+ n∑
i=1

∣∣∣∣xκ
i − 1

n

∣∣∣∣
≥ min

x∈Rn
+

n∑
i=1

∣∣∣∣xi −
1

n

∣∣∣∣+ n∑
i=1

∣∣∣∣xκ
i − 1

n

∣∣∣∣+ n∑
i=1

xi − 1,

where the last inequality follows by taking a particular Lagrangian relaxation. Due to Lemma 3, we know
that the minimizer of the single variable function

f(xi) =

n∑
i=1

∣∣∣∣xi −
1

n

∣∣∣∣+ n∑
i=1

∣∣∣∣xκ
i − 1

n

∣∣∣∣+ xi

is achieved at xi =
1
n . Thus, we obtain

min
x∈Rn

+

n∑
i=1

∣∣∣∣xi −
1

n

∣∣∣∣+ n∑
i=1

∣∣∣∣xκ
i − 1

n

∣∣∣∣+ n∑
i=1

xi − 1 = n

(
1

n
−
(
1

n

)κ)
= 1− n1−κ,

completing the proof.

Figure 2 illustrates the comparison of bounds derived in Propositions 8 and 9. As expected, bounds
converge to 1 as n increases and the convergence is faster with larger κ.
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Figure 2: Bounds derived in Propositions 8 and 9 for different κ and n values.
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3.3.2 Objective function-based approximation results

Our first objective function-based approximation result below characterizes the cases under which the P
relaxation is exact.

Proposition 10. Let G = ∆n and κ > 1. Then, we have OSκ,Sκ
P
(α, β) = 0 under any of the following

cases:

• Case 1: J+ := {j : βj > 0} = {1, . . . , n}.

• Case 2: J− := {j : βj ≤ 0} = {1, . . . , n}.

• Case 3: J+ ̸= ∅, J− ̸= ∅ and either of the following holds, where Ĵ := {j ∈ J+ : αj − µ < 0} with
µ := min{(αj + βj) : j ∈ J−}.

– Subcase 3a: Ĵ = ∅.

– Subcase 3b: Ĵ ̸= ∅ and
∑

j∈Ĵ

(
µ−αj

κβj

) 1
κ−1 ≥ 1.

Proof. Consider problems z(α, β) := min
{
αTx+ βT y : (x, y) ∈ Sκ

}
and

zP (α, β) := min
{
αTx+ βT y : (x, y) ∈ Sκ

P

}
. (9)

Let us split the indices as J+ := {j : βj > 0} and J− := {j : βj ≤ 0}. Observe that when optimizing over
Sκ
P , there exists an optimal solution with the following structure (see Proposition 4): yj = xκ

j for j ∈ J+,
and yj = xj for j ∈ J−. Therefore, the value of zP (α, β) defined in (9) is equivalent to the following:

min

∑
j∈J+

(αjxj + βjx
κ
j ) +

∑
j∈J−

(αj + βj)xj :
∑
j∈J+

xj +
∑
j∈J−

xj = 1, x ≥ 0

 .

• Case 1: J+ = {1, . . . , n}. In this case, problem (9) is exact since yj = xκ
j for each j, that is, we

have zP (α, β) = z(α, β).

• Case 2: J− = {1, . . . , n}. In this case, problem (9) can be solved as a linear program and the optimal
solution is at an extreme point of the simplex. Therefore, we have xj′ = 1 for j′ = argmin{(αj+βj)},
and xj = 0 for j ̸= j′. Hence, yj = xκ

j for each j and the relaxation is exact, that is, we have
zP (α, β) = z(α, β).

• Case 3: J+ ̸= ∅ and J− ̸= ∅. Let j′ = argmin{(αj + βj) : j ∈ J−} and set µ = min{(αj + βj) : j ∈
J−}. Notice that we must have xj′ = 1−

∑
j∈J+ and xj = 0 for j ∈ J−\{j′} in an optimal solution.
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With this simplification, we obtain the following equivalent problem for the value of zP (α, β):

min

∑
j∈J+

(αjxj + βjx
κ
j ) + µ(1−

∑
j∈J+

xj) :
∑
j∈J+

xj ≤ 1, xj ≥ 0, j ∈ J+


=µ+min

∑
j∈J+

[(αj − µ)xj + βjx
κ
j ] :

∑
j∈J+

xj ≤ 1, xj ≥ 0, j ∈ J+


=µ+min

∑
j∈Ĵ

[(αj − µ)xj + βjx
κ
j ] :

∑
j∈Ĵ

xj ≤ 1, xj ≥ 0, j ∈ Ĵ

 ,

where Ĵ := {j ∈ J+ : αj − µ < 0} (note that, in an optimal solution, xj = 0 for j ∈ J+ \ Ĵ). In
this case, the relaxation is exact if

∑
j∈Ĵ xj ∈ {0, 1}. Let us look at subcases:

– Subcase 3a: Ĵ = ∅. In this case, the relaxation is exact as xj′ = yj′ = 1 and xj = yj = 0 for
j ̸= j′, that is, we have zP (α, β) = z(α, β).

– Subcase 3b: Ĵ ̸= ∅ and
∑

j∈Ĵ

(
µ−αj

κβj

) 1
κ−1 ≥ 1. In this case, the relaxation is exact as∑

j∈Ĵ xj = 1. In this case, although we do not have a closed form expression of zP (α, β),

we know that zP (α, β) = z(α, β).

Notice that when J+ ̸= ∅ and J− ̸= ∅, Ĵ ̸= ∅ and
∑

j∈Ĵ

(
µ−αj

κβj

) 1
κ−1

< 1, the P relaxation is inexact

as
∑

j∈Ĵ xj ∈ (0, 1), that is, we have zP (α, β) < z(α, β). However, note that in this case we know the

value of zP (α, β) = µ+ (1− κ)
∑

j∈Ĵ βj

(
µ−αj

κβj

) κ
κ−1

, but not z(α, β).

Proposition 10 allows us to estimate the probability that the P relaxation is exact when G = ∆n.
For this purpose, we generate 106 random (α, β) vectors and count the number of times the condition
OSκ,Sκ

P
(α, β) = 0 is satisfied. We report the results of this simulation in Tables 1 and 2 for two different

distributions.

κ\n 2 4 8 16 32 64

1.25 0.9154 0.8696 0.8937 0.9550 0.9940 0.9999

1.5 0.9064 0.8607 0.8896 0.9540 0.9940 0.9999

1.75 0.8990 0.8551 0.8877 0.9542 0.9939 0.9999

2 0.8933 0.8518 0.8882 0.9540 0.9940 0.9999

2.5 0.8857 0.8490 0.8894 0.9554 0.9942 0.9999

3 0.8804 0.8508 0.8925 0.9571 0.9943 0.9999

Table 1: The estimated probability of the P relaxation being exact via simulation when G = ∆n and the
objective function coefficients (α, β) are iid sampled from the Unif(−1, 1) distribution.
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κ\n 2 4 8 16 32 64 128 256 512

1.25 0.9212 0.8792 0.8788 0.9021 0.9306 0.9551 0.9726 0.9843 0.9913

1.5 0.9123 0.8698 0.8712 0.8960 0.9268 0.9532 0.9721 0.9840 0.9912

1.75 0.9055 0.8630 0.8662 0.8929 0.9254 0.9522 0.9712 0.9835 0.9907

2 0.9001 0.8577 0.8634 0.8910 0.9242 0.9512 0.9708 0.9833 0.9907

2.5 0.8911 0.8539 0.8611 0.8890 0.9220 0.9504 0.9703 0.9829 0.9906

3 0.8848 0.8519 0.8604 0.8896 0.9214 0.9497 0.9697 0.9826 0.9905

Table 2: The estimated probability of the P relaxation being exact via simulation when G = ∆n and the
objective function coefficients (α, β) are iid sampled from the standard normal distribution.

Interestingly, the probability of Case 3a, which is independent of the value κ, is quite large in the
simulation results and it seems to converge to 1 as n increases. This has motivated us to explore whether
this probability can be computed analytically and shown to converge to 1. Below, we carry out this
analysis for the uniform distribution.

Proposition 11. Suppose that (α, β) are iid Unif(−1, 1) distributed. Then,

Pr(Case 3a) = 2−n
n−1∑
m=1

(
n

m

)(
1−m2−m

(
Im +

22(m−n)

2n−m

))
,

where Im :=
∫ 0

−1

[
1
4 − 1

2z
]n−m

(1− z)m−1dz for m = 1, . . . , n− 1.

Proof. Let Em be the event in which |J+| = m and |J−| = n − m, m = 0, . . . , n. Note that Pr(Em) =(
n
m

)
2−n. Then, Case 1 and Case 2 are respectively the events En and E0, which happen with probability

2−n each. Now, let us understand the event Em, m = 1, . . . , n− 1.
Let F (z) := Pr(αj+βj ≥ z|βj ≤ 0). Using Bayes’s rule and the fact that the density of the Unif(−1, 1)

distribution is 1
2 over [−1, 1], we deduce that

F (z) =


1− 1

4 (z + 2)2 z ∈ [−2,−1]
1
4 − 1

2z z ∈ [−1, 0]
1
4 (z − 1)2 z ∈ [0, 1]

.

Now, let us derive the right-tail probability of µ = min{αj + βj : j ∈ J−} given the event Em. Due to
the independence of the random variables involved, we have

Gm(z) := Pr(µ ≥ z|Em) = [F (z)]n−m,

Next, we derive the CDF of ν := min{αj : j ∈ J+} given the event Em. In fact,

Hm(z) := Pr(ν ≤ z|Em) = 1− Pr(ν ≥ z|Em) = 1−
(
1− z

2

)m

= 1− 2−m(1− z)m,

from which we obtain the PDF of ν given the event Em as hm(z) = m2−m(1− z)m−1.
We are now ready to compute the probability of Case 3a given the event Em as

Pr(Case 3a|Em) = Pr(ν ≥ µ|Em)

= 1− Pr(µ ≥ ν|Em) = 1−
∫ 1

−1

Gm(z)hm(z)dz

= 1−
∫ 0

−1

Gm(z)hm(z)dz −
∫ 1

0

Gm(z)hm(z)dz.

(10)
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Note that the second integral in the last line of equation (10) is easy to compute as∫ 1

0

Gm(z)hm(z)dz =

∫ 1

0

[
1

4
(z − 1)2

]n−m

m2−m(1− z)m−1dz

= m2m−2n

∫ 1

0

(1− z)2n−m−1dz

= m2m−2n

[
− (1− z)2n−m

2n−m

]1
z=0

=
m2m−2n

2n−m
.

The computation of the first integral in the last line of equation (10) is more convoluted. Observe that∫ 0

−1

Gm(z)hm(z)dz =

∫ 0

−1

[
1

4
− 1

2
z

]n−m

m2−m(1− z)m−1dz

= m2−m

∫ 0

−1

[
1

4
− 1

2
z

]n−m

(1− z)m−1dz = m2−mIm.

(11)

It is straightforward to obtain that I1 =
∫ 0

−1

[
1
4 − 1

2z
]n−1

dz =
[
(−2)

( 1
4−

1
2 z)

n

n

]0
z=−1

= (−2)
( 1
4 )

n−( 3
4 )

n

n .

Now, if m ≥ 2, using integration by parts, we obtain the relation

Im =

[
(−2)(1− z)m−1 (

1
4 − 1

2z)
n−m+1

n−m+ 1

]0
z=−1

− 2(m− 1)

n−m+ 1

∫ 0

−1

[
1

4
− 1

2
z

]n−m+1

(1− z)m−2dz

= (−2)
( 14 )

n−m+1 − 2m−1( 34 )
n−m+1

n−m+ 1
− 2(m− 1)

n−m+ 1
Im−1.

(12)

Since we have already computed I1, any Im with m = 2, . . . , n− 1 can be obtained recursively using the
relation above.

Finally, we conclude that the probability of Case 3a is computed as

Pr(Case 3a) =

n−1∑
m=1

Pr(Case 3a|Em) Pr(Em) = 2−n
n−1∑
m=1

(
n

m

)
Pr(Case 3a|Em)

= 2−n
n−1∑
m=1

(
n

m

)(
1−m2−m

(
Im +

22(m−n)

2n−m

))
.

The above analysis enables us to compute the exact probability of the P relaxation being exact when
G = ∆n and the objective function coefficients (α, β) are iid Unif(−1, 1) distributed. These probabilities
are reported in Table 3.

n 2 4 8 16 32 64

Pr(Case 3a) 0.3541 0.6434 0.8242 0.9409 0.9930 0.9999

Table 3: The probability of the P relaxation being exact when G = ∆n and the objective function
coefficients (α, β) are iid Unif(−1, 1) distributed.

Now, we are ready to prove that the P relaxation is exact with high probability for large n when the
objective function coefficients are uniformly distributed.
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Theorem 4. Suppose that (α, β) are iid Unif(−1, 1) distributed. Then,

Pr(Case 3a) → 1 as n → ∞.

Hence, Pr(OSκ,Sκ
P
(α, β) = 0) → 1 as n → ∞.

Proof. In virtue of Proposition 11, it suffices to show the following:

(i) 2−n
∑n−1

m=1

(
n
m

)
→ 1 as n → ∞.

(ii) 2−n
∑n−1

m=1

(
n
m

)
m2−mIm → 0 as n → ∞.

(iii) 2−n
∑n−1

m=1

(
n
m

)
m2−m 22(m−n)

2n−m → 0 as n → ∞.

In the proof, we use the binomial identity (x+ y)n =
∑n

j=0

(
n
j

)
xjyn−j repeatedly.

To prove (i), observe that

2−n
n−1∑
m=1

(
n

m

)
= 2−n

(
n∑

m=0

(
n

m

)
−
(
n

0

)
−
(
n

n

))
= 1− 2× 2−n → 1

as n → ∞.
To prove (ii), we first note that Im ≥ 0 as m2−mIm is a probability (see equation (11)). From

equation (12), we obtain Im ≤ 2m( 3
4 )

n−m+1

n−m+1 . Then, we have

2−n
n−1∑
m=1

(
n

m

)
m2−mIm ≤2−n

n−1∑
m=1

n!

(n−m)!m!
m2−m 2m( 34 )

n−m+1

n−m+ 1

=

(
3

8

)n n−1∑
m=1

n!

(n−m+ 1)!(m− 1)!

(
4

3

)m−1

=

(
3

8

)n n−1∑
m=1

(
n

m− 1

)(
4

3

)m−1

1n−m+1

≤
(
3

8

)n(
4

3
+ 1

)n

=

(
3

8

)n(
7

3

)n

=

(
7

8

)n

→ 0

as n → ∞ (here, the second inequality follows from the binomial identity).
To prove (iii), observe that

2−n
n−1∑
m=1

(
n

m

)
m2−m 22(m−n)

2n−m
= 2−3n

n−1∑
m=1

(
n

m

)
2m

m

2n−m

≤ 2−3n
n−1∑
m=1

(
n

m

)
2m = 2−3n

n−1∑
m=1

(
n

m

)
2m1n−m ≤ 2−3n3n =

(
3

8

)n

→ 0

as n → ∞ (here, the first inequality follows since m
2n−m ≤ 1 and the second inequality follows from the

binomial identity).

Our last objective function-based approximation result below gives an upper bound on the largest
difference between the optimal objective function values when the same linear function is minimized over
the nonconvex set Sκ and the set Sκ

P .

Proposition 12. Let G = ∆n and κ > 1. Then, we have

OSκ,Sκ
P
(α, β) ≤ (−βj′)

(
κ

1
1−κ − κ

κ
1−κ

)
,

where j′ = argmin{(αj + βj) : βj ≤ 0}.
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Proof. Due to Proposition 4, problem min(x,y)∈Sκ
P
{αTx+ βT y} is equivalent to

min
x∈Rn

+

 ∑
j:βj>0

(αjxj + βjx
κ
j ) +

∑
j:βj≤0

(αj + βj)xj :
∑

j:βj>0

xj +
∑

j:βj≤0

xj = 1

 .

Since the objective function is linear in xj variables with βj ≤ 0 and they have identical coefficients in the
constraint, at most one of them, in particular, the one with the smallest αj + βj value, can take nonzero
value in an optimal solution. Note that the largest possible error is calculated as maxx∈[0,1]{x − xκ} =

κ
1

1−κ − κ
κ

1−κ . Hence, the result follows.

Notice that κ
1

1−κ − κ
κ

1−κ converges to 0 and 1 as κ → 1+ and κ → ∞, respectively, and it is equal to
1
4 for κ = 2.

3.4 Valid inequalities obtained via RPT

In this section, we use RPT [35, 5, 11] to derive power cone representable valid inequalities for Sκ.
Adapting the convention 0

0 = 0, the specific application of this technique to our setting yields

1 =

n∑
j=1

xj ⇒ xκ
i =

n∑
j=1

xjx
κ
i ⇒ xκ

i =

n∑
j=1

xκ
j x

κ
i

xκ−1
j

⇒ yi =

n∑
j=1

Xκ
ij

xκ−1
j

⇒ yi ≥
n∑

j=1

Xκ
ij

xκ−1
j

,

where we claim that the last inequality is power cone representable for i = 1, . . . , n.
To formalize the above derivation, let us first define the RPT set Sκ

V = {(x, y) ∈ ∆n × Rn : ∃X ∈
Sn, w ∈ Rm×n : (13)}, where

X ≥ 0, w ≥ 0, yi ≥
n∑

j=1

wij , i = 1, . . . , n, (wij , xj , Xij) ∈ C1/κ, i, j = 1, . . . , n. (13)

We now show that the RPT set is an outer-approximation of the nonconvex set Sκ, which is given for
completeness below.

Proposition 13. For G = ∆n, we have Sκ ⊆ Sκ
V .

Proof. Let (x, y) ∈ Sκ. For i, j = 1, . . . , n, define

Xij = xixj and wij =


Xκ

ij

xκ−1
j

if xj > 0

0 if xj = 0
.

We will now show that constraints in the definition of the set Sκ
V are satisfied. Firstly, the constraint

yi ≥
∑n

j=1 wij is satisfied since we have

yi = xκ
i = xκ

i

n∑
j=1

xj = xκ
i

n∑
j=1:xj>0

xκ
j

xκ−1
j

=

n∑
j=1:xj>0

Xκ
ij

xκ−1
j

=

n∑
j=1:xj>0

wij =

n∑
j=1

wij .

Secondly, we consider the constraint (wij , xj , Xij) ∈ C1/κ, which is trivially satisfied if xi = 0 or xj = 0.
Now, let us assume that xi > 0 and xj > 0, and observe that

w
1/κ
ij x

1−1/κ
j =

(
Xκ

ij

xκ−1
j

)1/κ

x
1−1/κ
j =

Xij

x
1−1/κ
j

x
1−1/κ
j = Xij .

Hence, we prove that (x, y) ∈ Sκ
V and the result follows.
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Remark 3. Although Proposition 13 is given for G = ∆n, it can easily be extended to a more general
ground set G = {x ∈ [0, 1]n : Ax = b} with A ∈ Rm×n

+ and b ∈ Rm
+ . In this case, the RPT set is obtained

as Sκ
V = {(x, y) ∈ G × Rn : ∃X ∈ Sn, w ∈ Rm×n : (14)}, where

X ≥ 0, w ≥ 0, bιyi ≥
n∑

j=1

Aιjwij , ι = 1, . . . ,m, i = 1, . . . , n,

(wij , xj , Xij) ∈ C1/κ, i, j = 1, . . . , n.

(14)

4 Computational Experiments

In this section, we present the results of our computational experiments, where the ground set G is chosen
as the standard simplex ∆n.

4.1 Computational setting

We use a 64-bit workstation with two Intel(R) Xeon(R) Gold 6248R CPU (3.00GHz) processors (256
GB RAM) and the Python programming language in our computational study. We utilize BARON
25.7.29 [34] to solve the nonconvex problems via Pyomo 6.4.0, and MOSEK 10.0.40 to solve the conic
programming relaxations via CVXPY 1.5.2 with the default settings.

We compare the strength of the following nine relaxations against the nonconvex program defined
over the set Sκ, which we will refer to as the NON model:

• The P relaxation, defined over Sκ
P

• The PR relaxation, defined over Sκ
P,R

• The PRs relaxation, defined over Sκ
P,R,s

• The PRs3 relaxation, defined over Sκ
P,s3 := {(x, y) ∈ Sκ

P : ∃X ∈ Sn : (6), (15), (5)}, where

X ≥ 0,


Xii Xij xi

Xij Xjj xj

xi xj 1

 ⪰ 0, 1 ≤ i < j ≤ n. (15)

Note that this relaxation only requires a subset of all 3× 3 principal minors to be positive semidef-
inite.

• The PRS relaxation, defined over Sκ
P,R,S

• The PRV relaxation, obtained by adding RPT constraints (13) to the PR relaxation

• The PRsV relaxation, obtained by adding RPT constraints (13) to the PRs relaxation

• The PRs3V relaxation, obtained by adding RPT constraints (13) to the PRs3 relaxation

• The PRSV relaxation, obtained by adding RPT constraints (13) to the PRS relaxation

We run an extensive set of experiments parametrized by three key components:

• The distribution of objective function coefficients D: We choose the objective function coefficients
randomly with respect to two different distributions: i) Unif(−1, 1), ii) standard normal.

• The value of exponent κ: We choose six different κ values given by the following set: {1.25, 1.5, 1.75, 2, 2.5, 3}.

• The value of dimension n: We choose nine different n values given by the following set: {2, 3, . . . , 10}.
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We will call a triplet of (D, κ, n) a setting (notice that we have 2×6×9 = 108 settings in total). For each
setting given by the triplet (D, κ, n), we repeat the experiment 1000 times, and solve the NON model
by BARON and the nine relaxations listed above by MOSEK. Therefore, in total, 108000 instances are
created and each instance is solved ten times. MOSEK has given an UNKNOWN status for four instances
for at least one relaxation, which are excluded from the analysis below.

We record the objective function value of each optimization problem solved as zMD,κ,n,r and the times

it takes to solve it as tMD,κ,n,r, where r stands for the replication index in the setting (D, κ, n) and M is
the model solved (either the NON model or any of the nine relaxations listed above). Then, for each
instance and model, we compute the absolute dual gap as zNON

D,κ,n,r − zMD,κ,n,r, and define the cumulative
absolute gap of a setting (D, κ, n) for model M as

Cumulative GapMD,κ,n =

1000∑
r=1

(
zNON
D,κ,n,r − zMD,κ,n,r

)
.

Note that, by construction, Cumulative GapNON
D,κ,n = 0 for every setting. The cumulative time of a setting

(D, κ, n) for model M is computed as

Cumulative TimeMD,κ,n =

1000∑
r=1

tMD,κ,n,r.

Finally, we will say that a relaxation is exact for an instance if the gap is less than 10−4 and we record
the number of times a model M is exact in the setting (D, κ, n) as

#ExactMD,κ,n =

1000∑
r=1

1
(
zNON
D,κ,n,r − zMD,κ,n,r ≤ 10−4

)
,

where 1(·) is the indicator function. These three metrics, Cumulative GapMD,κ,n, Cumulative TimeMD,κ,n

and #ExactMD,κ,n, will be our main performance criteria in the following discussion.

4.2 Results

We now provide the details of our computational study. We note that each statistic given below is
averaged over the settings considered.

4.2.1 Aggregate Results

We first provide the most aggregate results when all the 108 settings are considered together in Figure 3.
We observe that the P relaxation, which is the weakest one, can solve 888 instances on the average
and the average cumulative gap is 3.607 while it only takes 34.429 seconds to solve. The addition of
the RLT constraints has the largest marginal effect, increasing the average number of exact instances to
924 and reducing the average cumulative gap to 1.160 in the PR relaxation by the increase of a mere
4 seconds. The PRS relaxation further increases the average number of exact instances to 941 and
reduces the average cumulative gap to 0.672 while only taking 6 seconds longer than the PR relaxation.
Interestingly, the average cumulative gaps reported by the PRs and PRs3 relaxations are very close to
the PRS relaxation, albeit the computational cost of these weaker relaxations are relatively high. The
addition of the RPT constraints (13) further improves the strength of the relaxations. Relaxations PRV
and PRSV are almost indistinguishable as the number of exact instances (959 vs. 960), the gaps (0.405
vs. 0.398) and the times (121.177 vs. 129.492) are all very close to each other. We again observe that
weaker relaxations PRsV and PRs3V take more time than the PRSV relaxation.

The comparison of PRS and PRV relaxations leads to interesting observations. As proven in The-
orem 1, both relaxations are exact when n = 2 and κ = 2. The PRS relaxation is also exact for n ≥ 3
and κ = 2 in our experiments whereas the average cumulative gap of the PRV relaxation is 0.023 and
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the average number of exact instances is 992 across these 16 settings. In the remaining 90 settings where
κ ̸= 2, the PRV relaxation is more successful with an average cumulative gap of 0.482 and average
number of exact instances of 952 whereas the PRS relaxation has an average cumulative gap of 0.806
and average number of exact instances of 929. We note that these relaxations are not comparable in
general as there exist instances in which the bound given by the PRS relaxation is stronger than that of
the PRV relaxation and vice versa.

To summarize, we can say that in circumstances in which the time budget is limited, PR and PRS
relaxations offer reasonable alternatives to theNONmodel solved by BARON.When more computational
budget is available, the addition of RPT constraints (13) can further improve the relaxation quality, with
the PRV relaxation in particular being an effective option.

Figure 3: Average Cumulative Gap vs. Average Cumulative Time with respect to all settings considered.
The average number of exact instances is given in parenthesis.
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We again note that the strengths of PRs and PRs3 relaxations are very close to the PRS relaxation,
and this observation remains valid with the addition of the RPT constraints (13). Related to the PRs3

relaxation, we have the following conjecture:

Conjecture 2. We have Sκ
P,R,s3 = Sκ

P,R,S.

Although it might be interesting to pursue exploring this observation in the future theoretically,
from a computational standpoint, PRs, PRs3, PRsV and PRs3V relaxations are simply too expensive
alternatives and dominated by stronger relaxations in terms of computational effort. Therefore, we omit
them from the discussion below.

4.2.2 The effect of distribution D

We now analyze the effect of the distribution of objective function coefficients D on the results, which are
reported in Figure 4. Although Unif(−1, 1) and standard normal both have mean zero, their variances
are 1 and 1/6, respectively. This is reflected on the outcomes as the average cumulative gap values for the
standard normal are higher than those of the uniform distribution. We also note that these observations
are consistent with the simulation results that we have conducted in Section 3.3.2 (see Tables 1 and 2).
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Figure 4: Average Cumulative Gap vs. Average Cumulative Time with respect to different distributions
for the objective function coefficients.
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In terms of computational cost, the choice of the distribution does not seem to make a significant
difference.

4.2.3 The effect of exponent κ

We next analyze the effect of exponent κ on the results, which are reported in Figure 5. We observe
that the average cumulative gap of the P relaxation increases with κ, which is an expected outcome
due to Proposition 12. Interestingly, the average cumulative gap of other relaxations first increases, then
decreases with respect to κ. As stated in Conjecture 1, the PRS relaxation is exact when κ = 2 in all
our experiments. We also note that all relaxations are quite strong around κ = 2, which suggests that
the effect of the RLT constraints is most influential around this value.

Figure 5: Average Cumulative Gap vs. Average Cumulative Time with respect to different κ values.
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In terms of computational cost, we do not observe a significant difference or a consistent trend for
different values of κ.

4.2.4 The effect of dimension n

Finally, we analyze the effect of dimension n on the results, which are reported in Figure 6. The most
interesting observation here is that the average cumulative gap of the P relaxation is highest when n = 3.
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We also note that the average cumulative gap gradually decreases with higher values of n, which is in
agreement with the simulation results that we have reported in Section 3.3.2 (see Tables 1 and 2) and
Theorem 4. The other relaxations give similar average cumulative gaps for small values of n whereas
their gaps are getting more different with larger values of n.

Figure 6: Average Cumulative Gap vs. Average Cumulative Time with respect to different n values.
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n = 5
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n = 6

0 45 90 135 180 225 270
0

1

2

3

4

5

(1000)

(887)

(920)

(940)

(963)(962)

n = 7

0 45 90 135 180 225 270
0

1

2

3

4

5

(1000)

(893)

(925)

(944)

(963)(961)

Average Cumulative Time (s)

A
ve
ra
ge

C
u
m
u
la
ti
ve

G
ap

n = 8
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n = 9
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In terms of computational cost, we observe a slight increase in the solution of the NON model with n
whereas the times of P, PR and PRS relaxations increase moderately. We note that the times of PRV
and PRSV relaxations are most sensitive to the dimension n and they become even more expensive to
solve than theNONmodel for n = 10. Combined with the fact that the effect of the RPT constraints (13)
diminishes with dimension, it is not advisable to use them in higher dimensions.

5 Conclusion

In this paper, we studied the nonconvex set Sκ, which is directly related to separable standard quadratic
programming and appears as a substructure in potential-based flow networks. We proposed several conic
relaxations for this nonconvex set, and compared these relaxations both theoretically and via extensive
computational experiments. Our main conclusions are as follows. The P relaxation, which is the weakest
relaxation among those considered, provides quite strong bounds when a linear function is optimized over
it. In particular, we derived worst-case bounds on the distance between the P relaxation and Sκ, and
performed a probabilistic analysis which demonstrates that this relaxation is exact with high probability
in higher dimensions. Beyond P, our results highlight that the RLT relaxation is very important. In
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particular, the exact convex hull in low-dimensions for κ = 2 is obtained using the PR relaxation.
Computationally, we see that PR gives significantly better bounds in comparison to P. Interestingly, we
proved that addition of PSD constraints do not add any value on top on P, while when these are added
to PR can produce non-trivial improvement to bounds. Finally, PRS and PRV are incomparable to
each other, both produce improvements over PR, with PRS being more efficient to solve, but giving
slightly worse bounds than PRV on average.

We would like to note that although the separable function
∑n

j=1(αjxj + βjx
κ
j ) we consider in this

study may seem special at first glance, most of our results extend to the more general case where we
replace each function αjxj + βjx

κ
j with a general convex function of xj that is non-decreasing on the

ground set.
There are several future research avenues we would like to explore. For instance, resolving Conjec-

ture 1, which states that the PRS relaxation is exact for κ = 2, and Conjecture 2, which states that
PRS3 and PRS relaxations are equivalent, are two immediate directions for further theoretical analysis.
Moreover, analyzing the cases with a separable function with multiple exponents, exponents where κ < 1
and different ground sets from both theoretical and empirical aspects are also promising.
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