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Abstract: This paper studies the finite element (FE) model updating of an 18-story experimental structure. FE model 

updating requires solving optimization problems that are generally non-convex and have unknown number of local 

optima. For such problems, neither randomized local optimization algorithms nor stochastic search algorithms can 

guarantee global optimality. To obtain the global optimum and improve the accuracy of FE model updating, this paper 

proposes the branch-and-bound (B&B) algorithm for solving non-convex optimization problems in FE model updating. 

The paper focuses on the modal property difference formulation that minimizes the difference between experimental 

and simulated eigenvalues and eigenvectors. We propose a reformulation of the modal property difference approach 

using epsilon-constraint, in order to enable the application of the B&B algorithm in FE model updating. The proposed 

approach is first investigated in simulation and compared with the interior-point method and the genetic algorithm. 

The model updating results using the B&B algorithm are next validated by the shaking table test data of an 18-story 

steel frame structure. 
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1 Introduction 

With increasingly available experimental data from as-built structures, techniques for finite element (FE) model 

updating have been developed and widely adopted over the past few decades. FE model updating refers to the fine-

tuning of the parameter values in an FE model to better match the behavior of an as-built structure. Two broad 

categories in FE model updating are the deterministic and probabilistic approaches, while this research focuses on the 

deterministic approach in frequency-domain [1-3].  The deterministic model updating approach seeks an optimal 

solution by solving optimization problems based on experimentally extracted modal properties of as-built structures. 

One common method in frequency-domain deterministic model updating is the modal property difference formulation, 

which directly minimizes the difference between experimental and simulated modal properties. Early researchers have 

attempted to minimize the difference of eigenvalues/frequencies in FE model updating, and realized that considering 

only the eigenvalue difference may not lead to accurate model updating results [4]. Later researchers attempted to 

include other modal properties in the optimization objective, such as the modal assurance criterion (MAC) values [1, 

5], eigenvectors [6, 7], and modal flexibilities [8]. Another formulation widely used in frequency-domain deterministic 

model updating is the modal dynamic residual formulation, which minimizes the residuals of eigenvalue equations 

from structural dynamics [9-11]. On the other hand, uncertainties exist in FE model updating due to the imperfection 

of FE models and the nature of experimental measurements. To this end, probabilistic model updating finds multiple 

solutions in a probabilistic framework and quantifies uncertainties in the updated parameters [12, 13]. The effect and 

treatment of uncertainties on FE model updating have been investigated by researchers [14, 15]. 

In general, optimization problems in FE model updating are non-convex with unknown number of local 

optima [16]. For such problems, depending on the search starting points, off-the-shelf local optimization algorithms 

may be trapped at local optima that are far away from the global optimum. In the context of FE model updating, such 

local optima may lead to approximate models that are unable to accurately describe the response of as-built structures. 

Researchers in FE model updating have attempted to seek a better solution through either randomized local search or 

stochastic global search. One commonly used gradient-based local optimization algorithm is the interior-point method 

which can deal with nonlinear objective function and constraints [17]. Randomized search from numerous starting 

points is reported to find better local optima when coupled with a local optimizer [18, 19]. In addition, stochastic 

search algorithms have been widely investigated in FE model updating, such as genetic algorithm, simulated annealing, 
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evolutionary algorithm, and the artificial bee colony algorithm [20-22]. These stochastic search algorithms are less 

likely to be trapped in local optima but none can guarantee global optimality of the solution.  

In contrast to both randomized local search and stochastic global search approaches, some recent 

development in deterministic global optimization algorithms shows promising performance by taking advantage of 

the mathematical structure of the problem and guarantees global optimality of the solution. Li et al [23] applied the 

sum of squares (SOS) deterministic global optimization algorithm on the modal dynamic residual formulation, owing 

to the polynomial nature of the objective function and constraints. While general global optimization algorithms are 

computationally expensive, the computational efficiency of the SOS algorithms has been improved utilizing the 

sparsity of structural matrices [24] and facial reduction technique [25]. Nevertheless, the SOS algorithms cannot be 

applied to optimization problems other than polynomial optimization problems with more variables in the objective 

function than in the constraints, which have limited engineering applications.  Current validation studies have also 

been limited to problems with very small size. 

Another deterministic global optimization algorithm widely used in many engineering fields is the branch-

and-bound (B&B) algorithm [26, 27]. The B&B algorithm computes the lower and upper bounds of the global 

optimum of the objective function over partitioned subregions of the entire feasible region. Here, “branch” refers to 

the successive subdivision of the feasible region and “bound” refers to the computation of lower and upper bounds for 

the global optimum. When the difference between the upper and lower bounds of the global optimum is within a 

specified tolerance, the algorithm terminates at the solution that is guaranteed to be within the tolerance of the global 

optimum. The main feature of the B&B algorithm is its capability to efficiently prune the feasible region that does not 

contain the global optimum. Over the decades, the B&B algorithm has been one of the most well-known methods for 

solving non-convex optimization problems in many engineering fields [28] such as the pooling problem [27], process 

design [29], path planning [30], sensor placement [31], control design [32], structural design [33], and so on. However, 

the application of the B&B algorithm on FE model updating has been scarce. Kurata et al [5]  heuristically incorporated 

the pruning technique of the B&B algorithm into the Bayesian model updating to efficiently reduce the feasible region. 

The modal dynamic residual formulation in FE model updating has been used as an example to evaluate the 

performance of the novel B&B algorithm in simulation. The algorithm successfully found the global optimum [34]. 

However, experimental validation of FE model updating using the B&B algorithm has not been made yet. 
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To obtain the global optimum and improve the accuracy of FE model updating, this research investigates the 

B&B algorithm to solve the non-convex optimization problems in FE model updating. Unlike the modal dynamic 

residual formulation previously used for the SOS global optimization algorithm [23-25], this research focuses on the 

modal property difference formulation that minimizes the difference between experimental and simulated modal 

properties. To make the B&B algorithm applicable, this paper proposes the reformulation of the modal property 

difference formulation utilizing the epsilon-constraint method. The proposed method is first compared in simulation 

with a randomized local optimization algorithm and a stochastic global search algorithm.  The method is finally 

validated using the shaking table test data of an 18-story steel frame structure.  

The rest of the paper is organized as follows. Section 2 introduces the modal property difference formulation 

with the epsilon-constraint method. Section 3 reviews the B&B algorithm procedure to solve non-convex optimization 

problems. Section 4 presents the simulation study and the experimental validation of the proposed method by the 

shaking table test data of an 18-story steel frame structure. In the end, Section 5 provides conclusions and future work. 

2 Model updating formulations 

FE model updating attempts to identify the suitable structural parameter values such as stiffness and mass. Note that 

if all the stiffness and mass parameters are updated simultaneously, frequency-domain FE model updating suffers 

from non-uniqueness of the solution [35]. Like most studies, for brevity, we assume accurate mass information and 

update the stiffness parameters of a proportionally damped FE model. In addition, no support/foundation springs have 

been allocated in a model used in this study. The stiffness matrix of an 𝑁-degrees of freedom (DOFs) linear FE model 

can be represented by: 

𝐊(𝛂) = 𝐊0 + ∑ 𝛼𝑗𝐊𝑗

𝑛𝛂

𝑗=1

 (1) 

where 𝐊0 ∈ ℝ𝑁×𝑁 is the initial (nominal) stiffness matrix; 𝑛𝛂 is the number of stiffness updating variables; 𝛼𝑗 is the 

j-th entry of the updating vector variable 𝛂 ∈ ℝ𝑛𝛂, which represents the relative change of a stiffness parameter from 

the initial value; 𝐊𝑗 ∈ ℝ𝑁×𝑁  is the influence matrix corresponding to 𝛼𝑗.  

 The formulation considered in this research is based on the generalized eigenvalue problem in structural 

dynamics: 
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                        [𝐊(𝛂) − 𝜆𝑖𝐌]{𝛙𝑖} = 𝟎,      𝑖 = 1 … 𝑛modes (2) 

where 𝐌 ∈ ℝ𝑁×𝑁 denotes the mass matrix; 𝜆𝑖 ∈ ℝ and 𝛙𝑖 ∈ ℝ𝑁 are the i-th eigenvalue and eigenvector, respectively; 

𝑛modes denotes the number of modes. Note that 𝜆𝑖 and 𝛙𝑖 implicitly depend on 𝛂, and thus can be denoted as 𝜆𝑖(𝛂) 

and 𝛙𝑖(𝛂). In general, eigenvectors obtained through field testing are limited to the DOFs measured by sensors. To 

reflect the measured DOFs, we assume the DOFs are rearranged properly and define 𝛙𝑖(𝛂) = [𝛙𝑖
ℳ(𝛂), 𝛙𝑖

𝒰(𝛂)], 

where 𝛙𝑖
ℳ(𝛂) ∈ ℝ𝑛ℳ  represents the eigenvector entries corresponding to the measured DOFs and 𝛙𝑖

𝒰 ∈ ℝ𝑛𝒰  

corresponds to the unmeasured DOFs. Note that 𝑛ℳ + 𝑛𝒰 = 𝑁 , the total number of DOFs. In this paper, 

experimentally obtained eigenvalues and eigenvectors are denoted as 𝜆𝑖
EXP  and 𝛙𝑖

EXP,ℳ
(at measured DOFs), 

respectively. 

 Modal property difference formulation: eigenvector difference approach 

The modal property difference formulation with eigenvector difference approach attempts to minimize the difference 

between experimental and simulated eigenvalues and eigenvectors [7]: 

minimize
𝛂

∑ {‖
𝜆𝑖

EXP − 𝜆𝑖(𝛂)

𝜆𝑖
EXP ∙ 𝑤𝜆𝑖

‖ + ‖{𝛙−𝑞𝑖,𝑖
EXP,ℳ − 𝛙−𝑞𝑖,𝑖

ℳ (𝛂)} ∙ 𝑤𝛙𝑖
‖}

𝑛modes

𝑖=1

 

                     subject to    𝐋𝛂 ≤ 𝛂 ≤ 𝐔𝛂 

(3) 

where ‖∙‖ denotes the norm of a vector; 𝑤𝜆𝑖
 represents the weighting factor of the i-th eigenvalue difference; 𝑤𝛙𝑖

 

represents the weighting factor of the i-th eigenvector difference; 𝐋𝛂 and 𝐔𝛂 ∈ ℝ𝑛𝛂 denote the lower and upper bounds 

for the variable 𝛂, respectively. The experimental eigenvector at the measured DOFs 𝛙𝑖
EXP,ℳ

 is normalized so that 

the entry with the largest absolute value of 𝛙𝑖
EXP,ℳ

, denoted as the 𝑞𝑖-th entry, equals to 1.  Accordingly, the simulated 

eigenvector at the measured DOFs 𝛙𝑖
ℳ(𝛂)  is also normalized so that the 𝑞𝑖 -th entry equals to 1. 𝛙−𝑞𝑖,𝑖

EXP,ℳ
 and 

𝛙−𝑞𝑖,𝑖
ℳ (𝛂)  ∈ ℝ𝑛ℳ−1 represent the eigenvectors at the measured DOFs with the 𝑞𝑖-th entry removed.  

At every iteration of an optimization gradient search, the generalized eigenvalue problem in Eq. (2) is solved 

using values of 𝛂 at the current iteration, which produces simulated eigenvalues 𝜆𝑖(𝛂) and eigenvectors 𝛙𝑖(𝛂). This 

process determines that with implicit functions 𝜆𝑖(𝛂) and 𝛙𝑖(𝛂), the objective function in Eq. (3) is implicit on 𝛂. 

For the 𝛂 value at current iteration, a gradient search algorithm evaluates the objective function value in Eq. (3) and 
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calculates Jacobian derivative to find next search gradient. The iteration continues until convergence criteria are 

satisfied. Besides having an implicit objective function, the eigenvector difference approach provides a non-convex 

optimization problem for which the global optimality of the solution cannot be guaranteed using gradient search 

algorithms.  

 Epsilon-constraint method for modal property difference formulation 

To apply the B&B algorithm, the optimization problem in Eq. (3) first needs to be reformulated to an explicit form on 

the optimization variables. For this purpose, we apply the epsilon-constraint method widely used in multi-objective 

optimization problems where one of the objective functions is converted into constraints using a constant value 𝜀 [36]. 

For convenience, we introduce notation 𝟏 as a vector with all entries equal to 1 and with compatible length.  In this 

research, we use the epsilon-constraint method to convert the implicit constraints of eigenvalue equations (Eq. (2)) to 

be explicit: 

minimize
𝛂, 𝛌,𝛙

∑ {‖
𝜆𝑖

EXP − 𝜆𝑖

𝜆𝑖
EXP ∙ 𝑤𝜆𝑖

‖ + ‖{𝛙−𝑞𝑖, 𝑖
EXP,ℳ − 𝛙−𝑞𝑖, 𝑖

ℳ } ∙ 𝑤𝛙𝑖
‖}

𝑛modes

𝑖=1

 

                            subject to    −𝜀 ∙ 𝟏 ≤ [𝐊(𝛂) − 𝜆𝑖𝐌]{𝛙𝑖} ≤ 𝜀 ∙ 𝟏      𝑖 = 1, … , 𝑛modes 

𝐋𝛂 ≤ 𝛂 ≤ 𝐔𝛂 

𝐿𝜆𝑖
≤ 𝜆𝑖 ≤ 𝑈𝜆𝑖

,       𝑖 = 1, … , 𝑛modes 

𝐋𝛙𝑖
≤ 𝛙𝑖 ≤ 𝐔𝛙𝑖

,       𝑖 = 1, … , 𝑛modes                                                     

(4) 

where ‖∙‖ denotes the norm of a vector; 𝜀 is a small (pre-specified) constant value; 𝜆𝑖 ∈ ℝ and 𝛙𝑖 = [𝛙𝑖
ℳ , 𝛙𝑖

𝒰]  ∈

ℝ𝑁 are the optimization variables corresponding to the 𝑖-th eigenvalue and eigenvectors, respectively. Recall the 𝐊(𝛂) 

defined in Eq. (1) is explicit and affine on 𝛂. Contrary to the implicit function of 𝜆𝑖(𝛂) and 𝛙𝑖(𝛂) in Eq. (3), Eq. (4) 

adopts 𝜆𝑖 and 𝛙𝑖 as optimization variables so that the formulation becomes explicit in terms of optimization variables 

𝛂, 𝛌, and 𝛙. The formulation is non-convex due to the bilinear terms 𝐊(𝛂){𝛙𝑖} and 𝜆𝑖{𝛙𝑖} in the constraints. In Eq. 

(4), 𝜀 value governs the extent to which the generalized eigenvalue equation is satisfied. A small 𝜀 value ensures to 

nearly satisfy the eigenvalue equation in the constraints, making Eq. (4) more equivalent to Eq. (3). However, a small 

𝜀 value also dictates a more restricted feasible region for which optimization algorithms may have difficulty in finding 

a feasible solution. On the other hand, a larger 𝜀 value may result in an optimal solution that does not satisfy the 
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eigenvalue equation (Eq. (2)) to a desirable accuracy. Therefore, trial-and-error is necessary in determining an 

appropriate value for 𝜀. 

3 Branch-and-Bound algorithm 

This paper proposes the branch-and-bound (B&B) algorithm to solve the non-convex optimization problem in Eq. (4). 

To describe the B&B algorithm, consider a general non-convex optimization problem (P): 

                                              (P) :             minimize
𝐱

      𝑓(𝐱) 

                                                     subject to      𝑔𝑖(𝐱) ≤ 0,   𝑖 = 1, … , 𝑛𝑔 

                      ℎ𝑗(𝐱) = 0,   𝑗 = 1, … , 𝑛ℎ 

    𝐋𝐱 ≤ 𝐱 ≤ 𝐔𝐱 

(5) 

where 𝑓: ℝ𝑛𝐱 → ℝ, 𝑔𝑖: ℝ𝑛𝐱 → ℝ, and ℎ𝑗: ℝ𝑛𝐱 → ℝ are the functions for the optimization vector variable 𝐱 ∈ ℝ𝑛𝐱. 𝐋𝐱 

and 𝐔𝐱 denote the lower and upper bounds of the optimization vector variable 𝐱, respectively. The feasible region of 

the problem (P) is defined as 𝒳 = {𝐱|𝐋𝐱 ≤ 𝐱 ≤ 𝐔𝐱, 𝑔𝑖(𝐱) ≤ 0 , ℎ𝑗(𝐱) = 0,   𝑖 = 1, … , 𝑛𝑔, 𝑗 = 1, … , 𝑛ℎ}. 

  Figure 1 illustrates the concept behind the B&B algorithm.  The illustration shows a univariate non-convex 

function 𝑓(𝑥): ℝ → ℝ with two local minima within the feasible region 𝒳.  We denote the global minimum of the 

objective function value as 𝑓∗  and the corresponding optimal solution as 𝑥∗ , i.e. 𝑥∗ ∈ 𝒳 and 𝑓∗ = 𝑓(𝑥∗).  At the 

initialization iteration step 𝑘 = 0, the B&B algorithm performs the convex relaxation of the original problem. This 

step is called “bounding”, shown as Step 1 in Figure 1.  The relaxed problem is convex and thus can be easily solved.  

The minimum value of the relaxed problem, denoted as 𝐿𝐵(0), provides the lower bound for 𝑓∗, the global minimum 

of the original problem.  Any feasible solution of the original optimization problem apparently provides an upper 

bound of 𝑓∗, denoted as 𝑈𝐵(0) at iteration 𝑘 = 0.  Hence, in Step 2 of Figure 1, 𝑈𝐵(0) can be obtained using a local 

optimization algorithm (e.g. gradient search) or other heuristics approaches. Notice that 𝑈𝐵(0) is one local minimum 

and is not guaranteed to be the global minimum at this stage. Now, the global optimal value 𝑓∗ is guaranteed to be 

between 𝐿𝐵(0) and 𝑈𝐵(0). If |𝑈𝐵(0) − 𝐿𝐵(0)| is within a specified tolerance 𝜉, the algorithm terminates. Otherwise, 

the iteration proceeds to 𝑘 = 1; the feasible region is subdivided into subregions, ℛ1, and ℛ2 such that 𝒳 = ℛ1 ∪ ℛ2, 

following a “branching rule”. Note that the branching at the local minimum in Figure 1 is simply for illustration. 
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Detailed branching techniques can be found in references such as [27] (Step 3).  For each subregion, the corresponding 

convex relaxation problem is again constructed and solved. The lower bound is denoted as 𝐿𝐵1 for the subregion ℛ1, 

and as 𝐿𝐵2 for the subregion ℛ2 (Step 4). Next, for the subregions ℛ𝑖  where 𝐿𝐵𝑖 < 𝑈𝐵(0) holds, a feasible upper 

bound solution is found as 𝑈𝐵𝑖.  In this illustration, since 𝐿𝐵2 < 𝑈𝐵(0), the upper bound 𝑈𝐵2 for the subregion ℛ2 is 

obtained; there is no need to search for the upper bound in the subregion ℛ1 since 𝐿𝐵1 > 𝑈𝐵(0), i.e. the upper bound 

in the subregion ℛ1 is guaranteed to be worse (larger) than 𝑈𝐵(0) (Step 5).  At this point, the global optimal value 𝑓∗ 

is guaranteed to be between 𝐿𝐵(1) and 𝑈𝐵(1), where 𝑈𝐵(1) = min(𝑈𝐵(0), 𝑈𝐵2) and 𝐿𝐵(1) = min(𝐿𝐵1 , 𝐿𝐵2) (Step 6). 

Notice that taking advantage of the reducing subregions, the new relaxation problems provide tighter lower bounds 

than 𝐿𝐵(0) of the previous relaxation problem, i.e. 𝐿𝐵(1) is closer to 𝑓∗ than 𝐿𝐵(0).  In addition, since 𝐿𝐵1 > 𝑈𝐵(1) in 

this example, the subregion ℛ1 cannot contain the global optimal solution 𝑥∗. Hence, the B&B algorithm will no 

longer search the subregion ℛ1 and instead only search the subregion ℛ2 in the next iterations. This step is called 

“pruning” (Step 7). The process repeats until the lower and upper bounds, 𝐿𝐵(𝑘) and 𝑈𝐵(𝑘), are within a specified 

  
Figure 1.  Illustration of the branch-and-bound algorithm 
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tolerance 𝜉.  After the algorithm converges, the upper bound solution found by the B&B algorithm is guaranteed to 

be within the tolerance from 𝑓∗, the globally optimal value. 

Figure 2 shows the pseudo code of a typical B&B algorithm [37]. The set for the active feasible subregions 

is denoted as 𝒮, which refers to the set of subregions whose union belongs to 𝒳. At every iteration, the B&B algorithm 

renumbers all the subregions in 𝒮 and selects a subregion from 𝒮 for branching.  Specifically, when the first while-

loop starts, 𝑘 ≔ 1, 𝒮 = {𝒳}, and the algorithm selects 𝒳 renamed as ℛ1 for branching. At the 𝑘-th iteration, after 

selecting the subregion for branching, all the subregions in 𝒮 are renumbered such that 𝒮 = {ℛ1, ℛ2, … , ℛ𝑛𝑠
} where 

the last subregion ℛ𝑛𝑠
 is the selection for branching.  The algorithm then partitions ℛ𝑛𝑠

 into 𝑛𝑏 number of branched 

subregions. (While the illustration in Figure 1 shows only two subregions, the “branching” in general can produce 

𝑛𝑏 ≥ 2 number of subregions.) Accordingly, ℛ𝑛𝑠
 in the set 𝒮  is replaced with the new set of subregions such that 

Pseudo code for the branch-and-bound algorithm 

𝑘 = 0;  

Let 𝒮 = {𝒳} the set of active feasible region(s); 

Lower bound: obtain 𝐿𝐵(0) by solving the convex relaxation of the original problem;  

Upper bound: find 𝑈𝐵(0), any feasible solution of the original problem; 

 

while |𝑈𝐵(𝑘) − 𝐿𝐵(𝑘)| > 𝜉 { 

 𝑘 ≔ 𝑘 + 1;  

Node selection: according to a node selection rule, renumber all the subregions in 𝑆 such 

that 𝑆 = {ℛ1, ℛ2, … , ℛ𝑛𝑠
} where the last subregion ℛ𝑛𝑠

 is the selection for branching;  

Branching: partition ℛ𝑛𝑠
 into 𝑛𝑏 number of branched subregions; replace ℛ𝑛𝑠

 in 𝒮 with the 

new set of subregions such that 𝑆 = {ℛ1, ℛ2, … , ℛ𝑛𝑠+𝑛𝑏−1}; 

for  𝑖 = 𝑛𝑠 ∶  𝑛𝑠 + 𝑛𝑏 − 1 { 

Lower bound: Obtain 𝐿𝐵𝑖 by solving the convex relaxation of the subproblem in ℛ𝑖; 

if 𝐿𝐵𝑖 < 𝑈𝐵(𝑘−1) { 

Upper bound: find 𝑈𝐵𝑖, any feasible solution of the subproblem in ℛ𝑖; 

} 

} 

       Global bounding: 𝑈𝐵(𝑘) ≔ smallest upper bound among 𝑈𝐵(𝑘−1) and 𝑈𝐵𝑖  , 𝑖 = 𝑛𝑠 ∶  𝑛𝑠 + 𝑛𝑏 − 1; 

𝐿𝐵(𝑘) ≔ smallest lower bound among 𝐿𝐵𝑖 , 𝑖 = 1 ∶  𝑛𝑠 + 𝑛𝑏 − 1; 

       Pruning: remove ℛ𝑖 from 𝒮 for all 𝑖 that 𝐿𝐵𝑖 ≥ 𝑈𝐵(𝑘) holds; 

}  

Figure 2.  Pseudo code for the branch-and-bound algorithm  
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𝒮 = {ℛ1, ℛ2, … , ℛ𝑛𝑠+𝑛𝑏−1}.  The B&B algorithm next obtains the lower bound 𝐿𝐵𝑖  and upper bound 𝑈𝐵𝑖  of the each 

subproblem corresponding to subregion ℛ𝑖 , 𝑖 = 𝑛𝑠, … , 𝑛𝑠 + 𝑛𝑏 − 1 (“bounding”). The lower bound 𝐿𝐵𝑖  is obtained 

by solving a convex relaxation of the subproblem in ℛ𝑖 while the upper bound 𝑈𝐵𝑖  is obtained by finding a feasible 

solution of the subproblem in ℛ𝑖. Hence, at the 𝑘-th iteration, the global optimal value 𝑓∗ is guaranteed to be between 

𝐿𝐵(𝑘) and 𝑈𝐵(𝑘)  where 𝑈𝐵(𝑘) is the smallest upper bound among 𝑈𝐵(𝑘−1) and 𝑈𝐵𝑖  , 𝑖 = 𝑛𝑠, … , 𝑛𝑠 + 𝑛𝑏 − 1, and 

𝐿𝐵(𝑘)  is the smallest lower bound among 𝐿𝐵𝑖 , 𝑖 = 1, … , 𝑛𝑠 + 𝑛𝑏 − 1.  Finally, for all i that 𝐿𝐵𝑖 ≥ 𝑈𝐵(𝑘)  holds, 

“pruning” takes place by removing the corresponding subregion ℛ𝑖 from the active set 𝒮, since such ℛ𝑖 cannot contain 

the optimal solution 𝑥∗.  Over the iterations, as the gap between the upper and lower bounds reduces and approaches 

𝜉, the solution corresponding to 𝐿𝐵(𝑘) continues to converge toward the global optimum 𝑓∗; final difference between 

𝐿𝐵(𝑘) and 𝑓∗ is guaranteed to be no larger than the final gap |𝑈𝐵(𝑘) − 𝐿𝐵(𝑘)|.  

The key and challenge in the B&B algorithm are to obtain gradually tighter lower bounds of 𝑓∗  by 

formulating and solving the relaxed and convex subproblems. Remember that the non-convexity of Eq. (4) arises from 

the bilinear terms 𝐊(𝛂){𝛙𝑖} and 𝜆𝑖{𝛙𝑖}. For the construction of the convex relaxation of bilinear terms in the B&B 

algorithm, McCormick envelopes [38] can be utilized. To illustrate the McCormick envelope, consider one example 

of a scalar bilinear term 𝑥1𝑥2 of two optimization variables 𝑥1 ∈ [𝐿𝑥1
, 𝑈𝑥1

] and 𝑥2 ∈ [𝐿𝑥2
, 𝑈𝑥2

]. Using McCormick 

envelopes, the bilinear term 𝑥1𝑥2 is bounded by the four affine functions as: 

  𝑥1𝑥2 ≥ 𝑈𝑥1
𝑥2 + 𝑥1𝑈𝑥2

− 𝑈𝑥1
𝑈𝑥2

 

𝑥1𝑥2 ≥ 𝐿𝑥1
𝑥2 + 𝑥1𝐿𝑥2

− 𝐿𝑥1
𝐿𝑥2

 

𝑥1𝑥2 ≤ 𝑈𝑥1
𝑥2 + 𝑥1𝐿𝑥2

− 𝑈𝑥1
𝐿𝑥2

 

𝑥1𝑥2 ≤ 𝑥1𝑈𝑥2
+ 𝐿𝑥1

𝑥2 − 𝐿𝑥1
𝑈𝑥2

 

(6) 

Applying the McCormick envelopes on each bilinear term in Eq. (4), the convex relaxation of the bilinear optimization 

problem in Eq. (4) can be constructed and the B&B algorithm can be applied. 

4 Validation example 

This section presents the model updating results validating the proposed B&B method, in comparison with a few 

conventionally adopted methods.  The validation starts with data generated from the simulation model of an 18-story 

steel frame structure.  Finally, experimental data from shaking table tests is used toward updating the model. 
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 18-story steel frame structure 

To validate the proposed approach, the model updating of an 18-story steel frame structure is conducted using 

simulated and experimental data. A one-third scale specimen of the 18-story steel frame was constructed and tested 

on the shaking table at the E-Defense in Japan [39]. Figure 3 shows the elevation view, floor plan with the location of 

accelerometers, and front view of the specimen. On every floor, two accelerometers were placed diagonally as shown 

in Figure 3(b), each measuring horizontal acceleration in both x and y directions. With a steel moment-resisting-frame, 

the specimen represents the behavior of typical steel high-rise buildings constructed in 1980s to 1990s in Japan. The 

total height of the specimen is 25.35 m. The dimension of the plan is 6 m by 5 m.  

 

  

(b) Floor plan and accelerometer location 

  

(a) Elevation view (c) Front view 

Figure 3.  18-story steel frame specimen (unit: mm)  

 

Considering the symmetric rectangular shape of the plan, the effect of eccentricity is neglected in this 

preliminary study. Therefore, this research adopts an 18-DOF shear model to represent the structural behavior of the 

specimen. Figure 4 shows the 18-DOF shear model with its properties presented in Table 1. In this paper, the mass 

information of the specimen is assumed to be accurate. Hence, the inter-story stiffness is to be updated for the 
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proportionally damped model. The initial inter-story stiffness was obtained from the pushover analysis of a 3D finite 

element model. While the acceleration responses of all modeled DOFs were measured during testing, instrumentation 

on every floor is not commonly practical in realistic high-rise applications. Therefore, considering the limitation of 

sensors in practice, we only consider measurements at the DOF #3, #6, #9, #12, #15, and #18 for model updating, i.e. 

𝑛ℳ = 6. The downsized measurement scheme makes the situation more realistic and the model updating problem 

more challenging. 

 

    

 

 

Figure 4.  18-DOF 

shear model 

 Table 1.  Properties of the 18-DOF shear model 

 

DOF 
Weight 

(kN) 

Height 

(m) 

Initial inter-

story stiffness 

(kN/m) 

“Actual” stiffness 

updating 

variable 𝛼𝑗
act 

“Actual” 

stiffness 

(kN/m) 

   18* 202 1.35 36,300  0.20 43,560 

 17 206 1.35 49,100  0.20 58,920 

 16 206 1.35 56,200  0.10 61,820 

   15* 206 1.35 61,900 -0.15 52,615 

 14 206 1.35 66,000  0.05 69,300 

 13 206 1.35 71,200 -0.15 60,520 

   12* 206 1.35 78,800  0.25 98,500 

 11 208 1.35 82,400  0.30 107,120 

 10 208 1.35 84,000  0.20 100,800 

   9* 208 1.35 87,600 -0.10 78,840 

 8 208 1.35 93,800  0.25 117,250 

 7 208 1.35 96,300  0.15 110,745 

   6* 208 1.35 99,000 -0.15 84,150 

 5 208 1.35 102,800  0.10 113,080 

 4 208 1.35 102,800 -0.10 92,520 

   3* 208 1.35 107,300 -0.05 101,930 

 2 208 1.35 109,200  0.05 114,660 

 1 208 1.70 115,500  0.05 121,275 

 Note: (* measured/instrumented DOFs) 

 

 

 Numerical simulation 

4.2.1 Problem definition and optimization procedures 

To investigate the proposed epsilon-constraint formulation with the B&B algorithm, a simulation study is first 

conducted. The “actual” structure in this simulation corresponds to the assigned stiffness updating variable 𝛼𝑗
act for 

each modeled DOF in Table 1, which is to be identified through model updating. The “experimental” eigenvalues 

𝜆𝑖
EXP and eigenvectors 𝛙𝑖

EXP are calculated using the weights and the “actual” stiffness values in Table 1. The number 
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of “experimental” modes available in this simulation is set as four (𝑛modes = 4). The effect of different norms for the 

objective function in Eq. (4) is considered using ℒ1-norm and ℒ2-norm. In general, ℒ1-norm is better at avoiding 

overfit caused by noisy/outlier data, while ℒ2-norm is more prone to overfit due to the minimization of the difference 

squares. On the other hand, ℒ1-norm provides a non-smooth objective function while ℒ2-norm provides a smooth 

objective function.  Since analytical Jacobians can be derived for the latter, ℒ2-norm is usually more suitable for 

gradient-based algorithms. To consider the effect of 𝜀 value in Eq. (4), we first define the maximum magnitude in 

initial stiffness matrix 𝐊0  as 𝑘max = max
𝑖.𝑗

|(𝐊0)𝑖,𝑗| , which equals 224,700kN/m.  The several different 𝜀  values 

considered are 10−4𝑘max, 10−6𝑘max, and 10−8𝑘max.  The upper and lower bounds for stiffness updating variable are 

set as 𝛂 ∈ [−0.3 ∙ 𝟏, 0.3 ∙ 𝟏] . Therefore, each entry 𝛼𝑗 ∈ [−0.3, 0.3]  effectively restricts every stiffness updating 

parameter to change within ±30% of the initial/nominal value.  Bounds of the eigenvalues and eigenvectors are set as 

𝜆𝑖 ∈ [−0.8𝜆𝑖
EXP , 1.2𝜆𝑖

EXP]  and 𝛙𝑖 ∈ [−2 ∙ 𝟏, 2 ∙ 𝟏] , respectively.  Recall that the largest absolute value of the 

experimental eigenvector 𝛙𝑖
EXP,ℳ

 is normalized to 1. The weightings are set as 𝑤𝜆𝑖
= 1 and 𝑤𝛙𝑖

= 1. 

To solve the optimization problem in Eq. (4) with the B&B algorithm, a commercial optimization solver 

BARON [40] is adopted. Other than the basic steps of the B&B algorithm explained in Figure 1, BARON utilizes a 

range reduction technique that can efficiently narrow the feasible region. The detail of the B&B algorithm in BARON 

including the range reduction technique, node selection rule, branching rule, and convex relaxation methods can be 

found in [27, 41]. The B&B algorithm is set to converge when the absolute difference between the upper bound and 

lower bound of the global optimum (i.e., 𝑈𝐵(𝑘)  and 𝐿𝐵(𝑘) at the 𝑘-th iteration)  is within 10−6 , i.e. 𝜉 = 10−6  in 

Figure 1 . When converged, the solution from BARON is guaranteed to be within the tolerance of the global optimum. 

As shown below, the ℒ1-norm formulation of Eq. (4) is rewritten using slack variables 𝛿𝜆𝑖
 ∈ ℝ for eigenvalues and 

𝛅𝛙𝑖
 ∈ ℝ𝑛ℳ−1 for eigenvectors. The rewritten problem definition provides an equivalent format that can be readily 

solved in BARON.  Due to their complete mathematical equivalency, for consistency and simplicity in the results 

presentation, we refer to Eq. (7) as Eq. (4) hereinafter. 
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                                      minimize
𝛂, 𝛌,𝛙,𝛅𝛌,𝛅𝛙

∑ (𝛿𝜆𝑖
+ ∑ 𝛅𝛙𝑖,𝑗

𝑛ℳ−1

𝑗=1

)

𝑛modes

𝑖=1

 

subject to      − 𝛿𝜆𝑖
≤

𝜆𝑖
EXP − 𝜆𝑖

𝜆𝑖
EXP ∙ 𝑤𝜆𝑖

≤ 𝛿𝜆𝑖
,       𝑖 = 1 … 𝑛modes  

−𝛅𝛙𝑖
≤ {𝛙−𝑞𝑖,  𝑖

EXP,ℳ − 𝛙−𝑞𝑖,  𝑖
ℳ } ∙ 𝑤𝛙𝑖

≤ 𝛅𝛙𝑖
,        𝑖 = 1 … 𝑛modes 

−𝜀 ∙ 𝟏 ≤ [𝐊(𝛂) − 𝜆𝑖𝐌 ]{𝛙𝑖} ≤ 𝜀 ∙ 𝟏,       𝑖 = 1 … 𝑛modes  

𝐋𝛂 ≤ 𝛂 ≤ 𝐔𝛂  

𝐿𝜆𝑖
≤ 𝜆𝑖 ≤ 𝑈𝜆𝑖

,       𝑖 = 1, … , 𝑛modes 

𝐋𝛙𝑖
≤ 𝛙𝑖 ≤ 𝐔𝛙𝑖

,       𝑖 = 1, … , 𝑛modes         

(7) 

 

Recall that Eq. (4) is an approximation of Eq. (3).  Eq. (3) is the more ideal/accurate modal property difference 

formulation for model updating, and therefore should be used when possible.  Toward performance comparison with 

the proposed B&B algorithm, we use the ideal Eq. (3) with conventional local optimization algorithms.  A number of 

common conventional algorithms have been implemented in SMU, an-open source MATLAB package for structural 

model updating developed by authors [42]. SMU supports Eq. (3) with two optimization solvers, lsqnonlin and 

fmincon, in MATLAB optimization toolbox [43]. In this research, the interior-point method from fmincon is utilized. 

The interior-point method approximates the original problem using a logarithmic barrier function. The algorithm seeks 

a local optimum through searching the interior feasible region [44]. In order to increase the chance of finding a better 

local minimum, randomly generated 1,000 starting points are used to solve the problem in Eq. (3). The analytical 

Jacobian of the ℒ2-norm objective function in Eq. (3) has been implemented in SMU and hence used for improving 

computational efficiency and accuracy. For ℒ1-norm, the default numerical gradient is utilized. 

To compare the B&B algorithm with a stochastic global search algorithm, Eq. (3) is also solved by the genetic 

algorithm available in MATLAB global optimization toolbox [45]. Genetic algorithm is a derivative-free optimization 

algorithm. At each step, the algorithm randomly selects individuals from the current population and use them as 

parents to produce the children for the next generation. Over successive generations, the population may evolve and 

yield a better solution [46]. Since genetic algorithm also cannot provide any guarantee of global optimality, 1000 

random searches are conducted, for consistency with the randomized interior-point optimization in SMU.  For both 
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the interior-point method and the genetic algorithm, variable bounds and weightings in Eq. (3) are set as 𝛂 ∈

[−0.3 ∙ 𝟏, 0.3 ∙ 𝟏], 𝑤𝜆𝑖
= 1, and 𝑤𝛙𝑖

= 1. For all results reported in this paper, we use a Microsoft Windows PC with 

Intel® Core™ i7-9700 (3.00 GHz) and 8GB RAM memory. 

 

4.2.2 Model updating results in simulation 

The interior-point method and the genetic algorithm are first applied to solve Eq. (3) using both ℒ1-norm and ℒ2-norm, 

respectively. One thousand uniformly distributed 𝛂 vectors within the specified bounds are generated as the starting 

points for the interior-point method.  Recalling the model updating problem described in Section 4.2.1, these 𝛂 vectors 

correspond to one thousand sets of inter-story stiffness values, each within the ±30% range of the corresponding initial 

value listed in Table 1.   Figure 5(a) shows the objective function values in ℒ1-norm from the 1,000 random searches 

of the interior-point method, and Figure 5(b) shows the same results from the genetic algorithm.  Overall, searches by 

the genetic algorithm ended in a wide range of scattered performance, while the interior-point method achieved more 

uniformly smaller objective function values. 

 

  

(a) interior-point method (b) genetic algorithm 

Figure 5.  Objective function values from the 1,000 random searches using Eq. (3) with ℒ1-norm 

 

Figure 6(a) shows the objective function values in ℒ2-norm from the 1,000 random searches of the interior-point 

method, and Figure 6(b) shows the same results from the genetic algorithm.  Similar to Figure 5, with ℒ2-norm the 

interior-point method generally achieved better objective function values than the genetic algorithm.  In addition, the 

interior-point method converged to solutions in a close cluster, but the genetic algorithm converged at a large variation 

of solutions with scattered performance. 
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(a) interior-point method (b) genetic algorithm 

Figure 6.  Objective function values from the 1,000 random searches using Eq. (3) with ℒ2-norm 

 

Among 1,000 sets of the optimum parameter set 𝛂∗ for each norm and each algorithm, the best parameter set 

is chosen as the one corresponding to the minimum objective function value. To measure the accuracy of the updating 

results, relative error of stiffness updating variables is calculated as: 

𝑒𝑖 =
|𝛼𝑖

∗ − 𝛼𝑖
act|

1 + 𝛼𝑖
act × 100 (%), 𝑖 = 1 ⋯ 𝑛𝛂 

(8) 

where 𝛼𝑖
∗ is the optimal solution of the i-th parameter and 𝛼𝑖

act is the actual value as listed in Table 1.  The average 

relative error among all stiffness variables is calculated as: 

𝑒avg =
1

𝑛𝛂

∑ 𝑒𝑖

𝑛𝛂

𝑖=1

 (9) 

Table 2 summarizes the model updating results for the three algorithms using simulated data. Compared with the 

genetic algorithm, the random search with interior-point method achieves better performance both in computational 

cost and accuracy. The interior-point method especially works better using ℒ2-norm, owing to the implementation of 

analytical Jacobian in SMU. 

Similar to the interior-point method or the genetic algorithm, the performance using both ℒ1 and ℒ2-norm is 

studied for the B&B algorithm. Using either norm for the B&B algorithm, the effect of different 𝜀 values – ranging 

from 10−4𝑘maxto 10−8𝑘max  – is also investigated.  For both norms, the table shows when a smaller 𝜀 value is chosen, 

the algorithm achieves more accurate updating results than when a larger 𝜀 value is chosen; this is expected since a 

larger 𝜀 value implies the eigenvalue equations in Eq. (2) are satisfied with larger error.  Among all cases considered 

by the B&B algorithm, 𝜀 value equal to 10−8𝑘max using ℒ1-norm achieves the best accuracy (𝑒avg = 0.004%).  It 

was also observed that 𝜀 values smaller than 10−8𝑘max do not further improve accuracy.  Between using ℒ1 and ℒ2-
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norm with the B&B algorithm, the objective function in ℒ1-norm achieves better computational efficiency than ℒ2-

norm by the order of 10 times; ℒ1-norm also generally provides accurate stiffness updating variables (smaller 𝑒avg) 

compared to ℒ2-norm.  

Overall, compared with the interior-point method and the B&B algorithm, the genetic algorithm requires 

considerable computational time but provides relatively low accuracy.  The interior-point method works better when 

ℒ2-norm is used instead of  ℒ1-norm, providing a solution with 𝑒avg = 0.03%.  Among all the computational cases in 

Table 2, the single search by the B&B algorithm using ℒ1-norm and 𝜀 = 10−8𝑘max finds the best solution with 𝑒avg =

0.004%. Furthermore, note that the B&B solution is guaranteed to be within a tolerance (𝜉 = 10−6) from the global 

optimum, while this tolerance certificate is not available by either interior-point method, or genetic algorithm, or other 

randomized/stochastic search algorithms in general. 

Finally, this simulation study shows that using a sufficiently small 𝜀 value in the proposed formulation in Eq. 

(4) leads to accurate updating results that can be as good as the conventional formulation in Eq. (3).  To reiterate, 

when applicable, formulation in Eq. (3) is more ideal/accurate for model updating.  However, Eq. (4) – a rewritten 

explicit form attempting to approximate Eq. (3) – is necessary for adopting the B&B algorithm.  Therefore, being less 

ideal and an approximation of Eq. (3), Eq. (4) poses a less advantageous position for the B&B algorithm.  Nevertheless, 

Table 2.  Optimization results in simulation with different algorithms, formulations, norms, and 𝜀 constraint values 

 Problem setup Optimization results 

Algorithm Formulation Norm and 𝜀 values # of searches 
Computational 

time 
𝑒avg 

Interior-

point 
Eq. (3) 

ℒ1-norm 1,000 2,040 sec 3.51% 

ℒ2-norm 1,000 1,634 sec 0.03% 

Genetic 

algorithm 
Eq. (3) 

ℒ1-norm 1,000 36,488 sec 3.70% 

ℒ2-norm 1,000 11,438 sec 5.14% 

B&B Eq. (4) 

ℒ1-norm 𝜀 

10−4𝑘max 1 0.06 sec 3.00% 

10−6𝑘max 1 0.09 sec 0.17% 

10−8𝑘max 1 0.30 sec 0.004% 

ℒ2-norm 𝜀 

10−4𝑘max 1 5.08 sec 4.30% 

10−6𝑘max 1 2.41sec 3.52% 

10−8𝑘max 1 4.16 sec 2.45% 
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based on the simulation results and our general experience that the B&B algorithm implemented in BARON does not 

work as well with ℒ2-norm, we will choose ℒ1-norm and 𝜀 = 10−8𝑘max for the B&B algorithm in the remainder of 

this study.  In addition, both ℒ1-norm and ℒ2-norm are adopted for the interior-point method so that the best between 

the two norms by interior-point method is readily available for comparison with the B&B algorithm. 

 

 Experimental validation 

The proposed approach is next verified using the experimental data of the 18-story structure. A uniaxial ground 

movement was applied along the Y-direction in Figure 3. A long-period long-duration artificial ground motion was 

used.  Figure 7 shows the acceleration time history of the input ground motion, which was scaled so that the maximum 

pseudo velocity response spectra is equal to 0.4 m/s. Under this excitation, the specimen remained in elastic range that 

was confirmed by strain gauges installed on the columns and beam-ends [39]. 

 

As same with the numerical study, the number of measured DOF is six (𝑛ℳ = 6)  at the DOF #3, #6, #9, 

#12, #15, and #18. The average of the two acceleration responses along the Y-direction at each floor in Figure 3(b) is 

taken as the acceleration response for each DOF. A system identification algorithm, Numerical Algorithms for 

Subspace State Space System Identification (N4SID) [47], was applied on the acceleration responses to extract the 

modal properties of the specimen.  Under the long-period ground excitation, the first two modes are extracted with 

high confidence from the structural response.   Table 3 and Figure 8 summarize the corresponding identified natural 

frequencies, modal damping ratio, and mode shapes. 

  

 

Figure 7.   Long-period long-duration ground motion 
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Table 3.  Modal frequencies and damping ratios obtained by system identification 

Mode 𝑖 Natural frequency 𝑓𝑖
EXP Damping ratio 

1st  0.865 Hz 0.0116 

2nd  2.687 Hz 0.0043 

 

 
Figure 8.  Eigenvectors/mode shapes (𝛙𝑖

EXP,ℳ
 at measured DOFs only) obtained by system identification 

 

4.3.1 Optimization procedures and conditions 

For model updating of the 18-DOF shear model, the B&B algorithm is first applied to solve the epsilon-constraint 

formulation in Eq. (4) using ℒ1-norm and 𝜀 = 10−8𝑘max  based on the findings from the simulation study. To improve 

the computational efficiency of the B&B algorithm, we change the setting of the range reduction technique 

implemented in BARON. The range reduction technique efficiently reduces the feasible region, which helps obtain 

tighter lower bounds of the global optimum. The number of variables that BARON applies the range reduction 

technique is changed from the default automatic selection by BARON to all variables.  A single search with the time 

limitation of 600 seconds is conducted. For comparison with the B&B method, the interior-point method is applied to 

solve Eq. (3) using ℒ1-norm and ℒ2-norm. Randomly generated 1,000 starting points are used for the interior-point 

method. 

 For practiced model updating using experimental data, the variable bounds in Eq. (3) and Eq. (4) need to be 

carefully set to ensure the physical meaning of the updated model. Considering the elastic behavior of the specimen 

during loading and the relatively low material variance in steel members, the lower and upper bounds of stiffness 

updating variable 𝛂 is set as 𝛂 ∈ [−0.3 ∙ 𝟏, 0.3 ∙ 𝟏], i.e., allowing 30% difference from the initial inter-story stiffness 

values in Table 1. For the optimization variables of eigenvalue 𝜆𝑖  and eigenvector 𝛙𝑖  in Eq. (4), relatively large 
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variance is allowed, such as 𝜆𝑖 ∈ [−0.8𝜆𝑖
EXP , 1.2𝜆𝑖

EXP] and 𝛙𝑖 ∈ [−2 ∙ 𝟏, 2 ∙ 𝟏], to avoid an infeasible problem in Eq. 

(4). Other parameters that must be carefully chosen are the weightings 𝑤𝜆𝑖
 and 𝑤𝛙𝑖

. In general, eigenvalues are 

identified with much better accuracy compared to eigenvectors. Hence, this research puts more emphasis on 

eigenvalues by setting 𝑤𝜆𝑖
= 100 and 𝑤𝛙𝑖

= 1. A more systematic method for assigning weightings can be made 

considering the Pareto optimal [3] of the eigenvalue and eigenvector difference in Eq. (3) and Eq. (4), but it is out of 

the scope of this paper. Furthermore, if multiple excitation records and system identification results are available, 

statistical properties of identified results, such as standard deviation, can be reflected in weightings 𝑤𝜆𝑖
 and 𝑤𝛙𝑖

 to 

take into account uncertainties in measurements and system identification results. Such weighting changes do not 

affect the non-convexity of the optimization problems, nor do they change the capability of the B&B algorithm in 

guaranteeing the tolerance certificate when solving the problems. 

 

4.3.2 Model updating results in experiment 

The B&B algorithm is first applied to solve Eq. (4) with ℒ1-norm using the first two modes. Figure 9 shows the 

convergence history of the upper bound and the lower bound of the global optimum for the time duration of 600 

seconds. The initial model provides the objective function value of 25.32. During the preprocessing local searches, 

the B&B algorithm found a feasible solution with the objective function value equal to 0.4993. This feasible solution 

provides the upper bound of the global optimum. As the optimization iteration continues, the lower bound of the global 

optimum has increased from 0 to 0.1168 within the time limit. The gap between the upper and lower bounds of the 

global optimum ended at 0.3825. However, as mentioned in [48], the B&B algorithm often finds a possible global 

optimum as an upper bound solution after a small number of iterations, and the remainder of the algorithm is devoted 

to tightening the lower bound to ensure the global optimality. The upper bound solution found by the B&B algorithm 

provides a smaller objective function value compared to the initial model and is used as an updating solution in this 

paper.  
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(a) Convergence history with the objective function 

value of the initial model 

(b) Convergence history (Zoomed in) 

Figure 9.  Convergence history of the B&B algorithm 

 

The updated model by the B&B algorithm is next used to simulate the acceleration responses subject to the 

input ground motion. The initial condition of the model is considered as at rest.  For simplicity, classical Rayleigh 

damping is utilized and its coefficients are calculated using the first two damping ratios and frequencies listed in Table 

3. Figure 10 plots the acceleration time history responses of the DOF-18 subject to the input ground motion. For 

consistency, the same time history record is used both for system identification and for the validation of time history 

responses. Compared to the initial model, the B&B solution successfully provides accurate time history responses in 

terms of phase and amplitude.  

  

(a) Initial model 

  

(b) Updated model by the B&B algorithm 

Figure 10.  Acceleration response of the updated model at the DOF-18 by the B&B algorithm 

 

0.3825
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Figure 11 compares the maximum acceleration magnitude at each DOF from experimental measurements, together 

with the simulated values from the initial model and from the updated model, respectively. Overall, the updated model 

matches better with experimental data than the initial model. While the B&B solver ended with the tolerance of 0.3825 

from the lower bound of the global optimum, the upper bound solution found by the B&B solver successfully provides 

an acceptable updated model. 

 

Figure 11.  Maximum acceleration magnitude at all modeled DOFs 

 

Next, the interior-point method is applied to solve Eq. (3). Figure 12(a) plots the objective function values of 

Eq. (3) using ℒ1-norm and ℒ2-norm obtained from the 1,000 random searches (because of the different formulations 

in Eq. (3) and Eq. (4), note that the numerical values in the vertical axis of Figure 12 is not directly comparable with 

Figure 9). For both norms, several optimization searches end with local optima that have large objective function 

values. Among the 1000 solutions, the best solution is taken as the one corresponding to the minimum objective 

function value (0.5676 for ℒ1 -norm and 0.0425 for ℒ2 -norm). In Figure 12(b) for ℒ2 -norm, the solution “A” 

corresponds to one of the local optima while the “Best” solution corresponds to the minimum objective function equal 

to 0.0425. In order to visualize the non-convexity of the optimization problem in Eq. (3), a hyperline is defined in ℝ18 

space with the objective function in Eq. (3) with ℒ2-norm denoted by 𝑓(𝐱), updating variable 𝐱 ∈ ℝ18, and scalar 𝜃 

as: 

𝑔(𝜃) = 𝑓(𝐱(𝜃)) = 𝑓(𝐱A + 𝜃(𝐱Best − 𝐱A)) 
(10) 

where 𝐱A and 𝐱Best are the optimization variables at the solution A and the best solution, respectively. If  𝑓(𝐱): ℝ18 →

ℝ is convex on 𝐱, then 𝑔(𝜃): ℝ → ℝ should also be convex on 𝜃 [49]. Figure 12(c) displays a walk from the solution 

A (𝜃 = 0) to the best solution (𝜃 = 1). Clearly, there are two valleys along the hyperline near to 𝜃 = 0 and 𝜃 = 1, 
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respectively. Therefore, the optimization problem is confirmed to be non-convex, and the solution obtained by local 

optimization algorithms cannot guarantee global optimality. 

    

(a) Objective function values from the 1,000 random 

searches using ℒ1-norm 

(b) Objective function values from the 1,000 random 

searches using ℒ2-norm 

 

(c) Hyperline walk between the solutions A and the best solution for ℒ2-norm 

Figure 12.  Optimization results by the interior-point method 

To further investigate the optimality of each solution, the cross validation is next conducted. Table 4 summarizes the 

objective function values calculated using each solution obtained by the B&B algorithm and the interior-point method. 

Clearly, the interior-point solution using Eq. (3) with ℒ1-norm is a local optimum, i.e. the solution obtained by the 

B&B algorithm achieves smaller objective function in Eq. (3) with ℒ1-norm (0.4998 by the B&B algorithm vs 0.5676 

by the interior-point method). This cross validation again highlights the drawback of local search methods which 

cannot guarantee the global optimality of the solution.  

Table 4.  Cross validation of each updated result 

 Objective function 

Optimal solution Eq. (4) with ℒ1-norm Eq. (3) with ℒ1-norm Eq. (3) with ℒ2-norm 

B&B, Eq. (4) with ℒ1-norm 0.4993 0.4998 0.0430 

Interior-point, Eq. (3) with ℒ1-norm 0.5676 0.5676 0.0584 

Interior-point, Eq. (3) with ℒ2-norm 0.5275 0.5275 0.0425 
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Using the updated results, the eigenvalues/natural frequencies and eigenvectors/mode shapes of the updated 

models are calculated. The modal assurance criterion (MAC) is defined as: 

                                            MAC𝑖 =
((𝛙𝑖

EXP,ℳ
)

T
𝛙𝑖

ℳ
)

2

‖𝛙𝑖
EXP,ℳ

‖
2

2
‖𝛙𝑖

ℳ
‖

2

2
, 𝑖 = 1… 𝑛modes 

(11) 

The MAC value represents the similarity between two vectors, i.e., the 𝑖-th experimental eigenvector 𝛙𝑖
EXP,ℳ

 

and 𝑖-th simulated eigenvector 𝛙𝑖
ℳ at the measured DOFs. The root-mean-square (RMS) error of the acceleration 

responses of all DOFs between the experimental measurements and updated models is also calculated. Table 5 

summarizes the comparison of the updated results. Although the interior-point method shows good computational 

efficiency in this example, note that the method cannot provide any knowledge about how close the solution is to 

global optimality.  On the other hand, the B&B algorithm provides a certificate that its solution is guaranteed to be no 

more than 0.3825 away from the global optimum of the objective function value.  Compared to the initial model, the 

solution obtained by the B&B algorithm and the best solutions obtained by the interior-point method achieve more 

accurate natural frequencies and lower RMS errors. MAC values showed good consistency between the B&B solution 

and the ℒ2-norm best solution by the interior-point method.  On the other hand, the local optimum solution A by the 

interior-point method provides a larger RMS error, while the ℒ1-norm solution and the local solution A by the interior-

point method show worse MAC values than the B&B algorithm. 

Table 5.  Updated results obtained by different algorithms 

 
Initial 

model 
B&B algorithm Interior-point method 

Equation  Eq. (4) Eq. (3) 

Norm  ℒ1-norm ℒ1-norm ℒ2-norm 

Solution  
Upper bound 

solution 
Best solution Solution A Best solution 

Computational time - 
600 sec for one 

search (time-out) 

1,071 sec for 

1000 searches 
505 sec for 1,000 searches 

Natural frequency 𝑓𝑖 

(relative diff. from 𝑓𝑖
EXP 

in Table 3) 

𝑖 = 1 
 0.909Hz 

(5.09%) 

0.865Hz 

(0.00%) 

0.865Hz 

(0.00%) 

0.868Hz 

(0.35%) 

0.865Hz 

(0.00%) 

𝑖 = 2 
   2.486Hz   

(-7.48 %) 

2.687Hz 

(0.00 %) 

2.687Hz 

(0.00 %) 

2.680Hz       

(-0.26 %) 

2.687Hz 

(0.00 %) 

MAC value (with𝛙𝑖
EXP,ℳ

 

in Figure 8) 

𝑖 = 1 0.9998 0.9962 0.9957 0.9951 0.9963 

𝑖 = 2 0.9898 0.9930 0.9896 0.9895 0.9931 

RMS error in acc. response 12.30 m/s2 4.27 m/s2 4.31 m/s2 5.86 m/s2 4.31 m/s2 
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Figure 13 shows the stiffness updating variables for each updated result. The stiffness updating variables are nearly 

consistent among the B&B solution and the ℒ2-norm best solution by the interior-point method. On the other hand, 

the ℒ1-norm solution and the local solution A by the interior-point method provide different values from the other 

results, especially at the DOF-3, DOF-4, and DOF-10. This observation highlights the importance of finding global 

optimum in model updating for accurately identifying the updating parameters. In this respect, the B&B algorithm 

provided reliable model updating results with a tolerance certificate from the global optimum, i.e. the solution is 

guaranteed to be within a certain tolerance of the global optimum. 

    
(a) Upper bound solution 

by the B&B algorithm 

with ℒ1-norm 

(b)  Best solution by the 

interior-point method with 

ℒ1-norm 

(c)  Solution A by the 

interior-point method with 

ℒ2-norm 

(d) Best solution by the 

interior-point method 

with ℒ2-norm 

Figure 13.  Stiffness updating variables obtained by different algorithms 

 

5 Summary and future work 

This paper investigates the branch-and-bound (B&B) algorithm toward solving the non-convex optimization problem 

in finite element model updating. Using the epsilon-constraint technique, Eq. (4) first proposes a reformulation of the 

conventional modal property difference formulation in Eq. (3). The reformed formulation is explicit in terms of 

optimization variables, which enables the application of the B&B algorithm. A simulation study is first conducted 

using the 18-DOF shear model. The simulation study shows that a small 𝜀 value in the proposed epsilon-constrain 

formulation can provide accurate updating results.  

The proposed model updating approach is next validated by the shaking table test of an 18-story steel frame 

structure and compared with a randomized gradient search algorithm. Using the first two modes in model updating, 

the upper bound solution found by the B&B algorithm provides the reliable updated model in terms of the natural 
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frequencies, mode shapes, and time history responses. The performance is similar to the updated model by the 

randomized gradient search algorithm. Since such randomized local optimization algorithms may or may not yield a 

good solution even with thousands of searches, there is a need for algorithms such as the B&B algorithm that can 

guarantee the tolerance of a solution from the global minimum.  

Although this study validates the feasibility of the B&B algorithm for solving non-convex optimization 

problems in finite element model updating, future research is needed to further reduce the tolerance/gap between the 

lower and upper bounds.  When using experimental data, the B&B algorithm showed slower convergence; the 

computational efficiency could be improved in future work.  In particular, better efficiency may be achieved by 

implementing binary expansion techniques [50], which can transform the bilinear optimization problem in Eq. (4) into 

mixed integer linear programming. A novel relaxation and branching scheme could also lead to a better computational 

efficiency [34].  

Finally, while this study focuses on deterministic model updating, future research may apply the B&B 

algorithm on probabilistic model updating problems that allow uncertainty quantification.  Since commonly adopted 

optimization formulations usually use implicit functions of the optimization variables, the first challenge would be 

recasting them into explicit forms (by a process similar to e.g. Eq. (4) or [13]).  Such explicit forms with additional 

variables are expected to increase computational difficulty for the B&B algorithm, which is another challenge that is 

yet to be overcome in the future. 
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