
Branching with a pre-specified finite list of k-sparse split sets for

binary MILPs

Santanu S. Dey ∗1, Diego Morán†2, and Jingye Xu ‡1

1School of Industrial and Systems Engineering, Georgia Institute of Technology
2Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute

August 13, 2024

Abstract

When branching for binary mixed integer linear programs with disjunctions of sparsity level
2, we observe that there exists a finite list of 2-sparse disjunctions, such that any other 2-sparse
disjunction is dominated by one disjunction in this finite list. For sparsity level greater than
2, we show that a finite list of disjunctions with this property cannot exist. This leads to the
definition of covering number for a list of splits disjunctions. Given a finite list of split sets F of
k-sparsity, and a given k-sparse split set S, let F(S) be the minimum number of split sets from
the list F , whose union contains S ∩ [0, 1]n. Let the covering number of F be the maximum
value of F(S) over all k-sparse split sets S. We show that the covering number for any finite list
of k-sparse split sets is at least ⌊k/2⌋ for k ≥ 4. We also show that the covering number of the
family of k-sparse split sets with coefficients in {−1, 0, 1} is upper bounded by k − 1 for k ≤ 4.

1 Introduction

Land and Doig [19] invented the branch-and-bound procedure to solve mixed integer linear
programs (MILP). Today, all state-of-the-art MILP solvers use the branch-and-bound procedure
at its core. An important decision in formalizing a branch-and-bound algorithm is to decide
the method to partition the feasible region of the linear program corresponding to a node in
the branch-and-bound tree. Given π ∈ Zn and η ∈ Z, a general way to partition a feasible
region where all variables are binary is to the use the following disjunction for x ∈ {0, 1}n:(
π⊤x ≤ η

)
∨
(
π⊤x ≥ η + 1

)
, in order to create two child nodes. The open set

S(π, η) :=
{
x ∈ Rn | η < π⊤x < η + 1

}
,

is called split set and the associated disjunction is called split disjunction. We say a split set
S(π, η) is k-sparse if the number of non-zero entries of π, denoted by ∥π∥0, is at most k, that
is, ∥π∥0 ≤ k.

Most state-of-the-art MILP solvers are based on branch-and-bound trees built using 1-sparse
split disjunctions; such branch-and-bound trees are called simple branch-and-bound trees [11].
One rationale for using 1-sparse split disjunctions is to maintain the sparsity of linear programs
solved at child nodes; see discussion in [12, 13]. Recently, [10, 5] showed that on random

∗santanu.dey@isye.gatech.edu
†morand@rpi.edu
‡jxu673@gatech.edu

1

instances, using 1-sparse split disjunctions is sufficient to obtain a polynomial size branch-and-
bound tree when the number of constraints are fixed. However, several papers have shown the
power of constructing branch-and-bound trees with dense disjunctions. See, for example, the
papers [24, 1, 20, 22, 18, 7, 21, 26, 23] which present several evidences of dramatic reduction in
the number of nodes in a branch-and-bound tree when using dense disjunctions in comparison
to branch-and-bound trees based on 1-sparse disjunctions. Moreover, the papers [17, 6] present
examples of MILPs where every 1-sparse branching scheme leads to exponential size branch-and-
bound trees, although these instances can be solved using polynomial-size branch-and-bound
trees when using denser inequalities see [26, 4]. While the worst-case size of a branch-and-tree
may be exponential even when using dense disjunctions [8, 11, 14, 16], the papers [25, 4] present
other compelling theoretical evidence on the importance of branching using dense disjunctions.

The papers [24, 20, 22, 26] show significant improvement in the size of the branch-and-bound
tree by using split disjunctions of a specified sparsity level together which having the coefficients
of the associated split sets being in {−1, 0, 1}. One perspective to view this line of work, is
that they explore the paradigm of expanding the list of disjunctions used to build the branch-
and-bound tree, from the typically used 1-sparse disjunctions, to a finite list of pre-specified
denser disjunctions. In this paper, we explore a geometric problem motivated by the use of such
pre-specified finite lists of dense disjunctions to solve binary MILPs.

2 Main results

2.1 Dominance result for 2-sparse disjunctions

Consider two split sets S(π1, η1) and S(π0, η0) in Rn. We say that S(π1, η1) dominates S(π0, η0)
if

S(π1, η1) ∩ [0, 1]n ⊇ S(π0, η0) ∩ [0, 1]n. (1)

If (1) holds, then in any branch-and-bound tree that solves a binary MILP using the disjunc-
tion corresponding to S(π0, η0), we may replace this disjunction by the disjunction corresponding
to S(π1, η1), resulting in a branch-and-bound tree that cannot increase in size in comparison to
the original branch-and-bound tree.

Let Fk be the finite list of k-sparse split sets, such that S(π, η) ∈ Fk if π ∈ {−1, 0, 1}n,
∥π∥0 ≤ k, and η ∈ {−k, . . . ,−1, 0, 1, . . . , k}. If we only use 1-sparse disjunctions, then clearly
there are only n possible split sets in F1, none of which dominate each other. Next let us
consider the case of 2-sparse disjunctions.

Proposition 1. Consider any arbitrary 2-sparse split set S(π, η) ⊆ Rn, that is, π ∈ Zn and
∥π∥0 ≤ 2. Then there exists a split set in F2 that dominates S(π, η).

Proposition 1 shows that if one decides to branch using 2-sparse disjunctions only for solving
binary MILPs, there is no reason to use general 2-sparse split disjunctions – in particular, one
may restrict the use of disjunctions to the finite list described in Proposition 1. Indeed, the
paper [26] shows the importance of branching using 2-sparse disjunctions by employing exactly
the split sets described in Proposition 1 and shows significant improvement over sizes of tree
constructed using the 1-sparse disjunctions. See Section 4 for a proof of Proposition 1.

Generalizing the result of Proposition 1, we would like to fix the level of sparsity k of the
split disjunctions used to build branch-and-bound tree and ask the question: Does there exist a
finite list of k-sparse disjunctions, such that it is sufficient to restrict attention to this finite list
in order to get the full power of branching with k-sparse disjunctions. Unfortunately, as shown
in the next result, such finite lists do not exist for k-sparse disjunctions with k ≥ 3.

Theorem 2. Let k ≥ 3. There does not exist any finite list F of k-sparse split sets such that
any arbitrary k-sparse split set is dominated by exactly one of the split sets from F .

This negative result in the context of the use of split disjuctions in branch-and-bound is
in striking contrast to the case of cutting planes computed using split sets: for any rational

2

polyhedral there exists a finite list of split sets such that cutting planes derived from an arbitrary
split set are dominated by cutting planes derived using one split set from this finite list [2, 3, 9].
See Section 5 for a proof of Theorem 2.

2.2 Lower bound on covering number for general finite list of dense
disjunctions with k ≥ 4

Given the negative result of Theorem 2, the next natural question to ask is if there exists finite
list of k-sparse split sets, such that any other arbitrary k-sparse split set is a subset of an union
of a small number of split sets from the list. Formally, given split sets {S(πi, ηi)}pi=0 ⊆ Rn, we
say that {S(πi, ηi)}pi=1 dominates S(π0, η0) if:(

p⋃
i=1

S(πi, ηi)

)
∩ [0, 1]n ⊇ S(π, η) ∩ [0, 1]n. (2)

If (2) holds, then in any branch-and-bound tree that solves a binary MILP using the disjunction
corresponding to S(π0, η0), we may replace this disjunction by the disjunctions corresponding
to {S(πi, ηi)}pi=0 resulting in a branch-and-bound tree whose size is no more than 2p−1 times
the original branch-and-bound tree.

Definition 1 (Covering number for a finite list of k-sparse split sets). Let F be a finite list of
k-sparse split sets. Given an arbitrary k-sparse split set S, let F(S) be the smallest number of
split sets from F that dominates S. We define the covering number of F , denoted as C(F), as:

C(F) := max{F(S) |S is a k-sparse split set}.

If one can show that a finite list of k-sparse disjunctions has a small covering number, then
it could be considered a theoretical justification for using just this finite list of pre-specified
k-sparse disjunctions instead of general k-sparse disjunctions.

The covering number of F1 is k, since, for example, in order to dominate the split set
{x ∈ Rk | k − 1 <

∑k
i=1 xi < k} we require all the k disjunctions 0 < xi < 1 for i ∈ {1, . . . , k}.

Unfortunately, the next result indicates that it is not possible to find a finite list of disjunctions
with significantly smaller covering number.

Theorem 3. Let F be any finite list of k-sparse split sets. Then C(F) ≥
⌊
k
2

⌋
.

See Section 6 for a proof of Theorem 3.

2.3 Covering number of {−1, 0, 1}-disjunctions
Finally, since a number of papers have successfully employed the very natural list of disjunc-
tions with coefficients only in {−1, 0, 1}, we explore the covering number of such finite list of
disjunctions for sparsity level less or equal than 4.

Proposition 4. For k = 2, 3, 4 we have that C(Fk) ≤ k − 1.

See Section 7 for a proof of Proposition 4.

3 Conclusions

The results of this paper justify the use of pre-specified list of disjunctions with coefficients in
{−1, 0, 1} for low levels of sparsity. For k = 2, Proposition 1 provides this justification. For
a branch-and-bound tree using 3-sparse disjunctions, Theorem 3 and Proposition 4 imply that
any finite list has a covering number of at least 2 and F3 also has a covering number of 2. Thus
with respect to covering number, it is optimal to limit the use of disjunctions from F3. It is an
open question if Fk is optimal for higher values of k with respect to covering number. In order

3

to answer this question, results of both Theorem 3 and Proposition 4 may need to be tightened
and generalized.

More generally, Theorem 3 may also be an indication that the use of pre-specified list of
disjunctions may not be the best way to generate small branch-and-bound trees. While using
disjunctions in Fk already produces smaller branch-and-bound trees than those produced using
1-sparse disjunctions [24, 22, 15, 26], in order to truly obtain significantly smaller branch-and-
bound trees, one may need to further develop and expand on methods to select problem-specific
dense disjunctions that are not pre-specified [1, 20, 18, 7, 21, 26, 23].

4 Proof of Proposition 1

In order to prove Proposition 1 (k = 2) and Proposition 4 (k = 3, 4) in Section 7, we have to
show that for any given arbitrary split set S = {x ∈ Rk | η < π⊤x < η + 1} at most k − 1
split sets from Fk are needed to dominate it. Without loss of generality, we may assume that
0 ≤ π1 ≤ π2 ≤ . . . ≤ πk. This is because, if πi < 0 we can change xi to 1−xi, and then permute
the order of the variables. Note that this is fine because Fk is closed under taking the same
operations.

Proof for k = 2. We assume ∥π∥0 = 2, since otherwise the result is trivial. Let x ∈ S ∩ [0, 1]2.
We consider the following cases.

• 0 ≤ η < η + 1 ≤ π1: For x ∈ S, we have x1 + x2 ≤ x1 +
π2

π1
x2 = π1x1+π2x2

π1
< η+1

π1
≤ 1.

Since (0, 0) /∈ S, we obtain S ∩ [0, 1]2 ⊆ {x ∈ [0, 1]2 | 0 < x1 + x2 < 1}.
• 0 ≤ π1 ≤ η; η + 1 ≤ π2: We have 0 ≤ η−π1

π2
≤ η−π1x1

π2
< x2 for x ∈ S. On the other hand,

for x ∈ S we have x2 ≤ π1

π2
x1+x2 < η+1

π2
≤ 1. Thus, S ∩ [0, 1]2 ⊆ {x ∈ [0, 1]2 | 0 < x2 < 1}.

• 0 ≤ π1 ≤ η; 0 ≤ π2 ≤ η: We have 1 < π1

η x1 +
π2

η x2 ≤ x1 + x2 for x ∈ S. Since (1, 1) /∈ S,

we obtain S ∩ [0, 1]2 ⊆ {x ∈ [0, 1]2 | 1 < x1 + x2 < 2}.

5 Proof of Theorem 2

We will prove Theorem 2 for k = 3. A similar proof can be given for k ≥ 4, but the result in
this case is implied by Theorem 3 so we do not consider it in this section.

Proof of Theorem 2. In order to prove Theorem 2, we show that for the infinite family of split
sets

Sγ = {x ∈ R3 | γ < x1 + γx2 + (γ + 1)x3 < γ + 1},

where γ ∈ Z+, γ ≥ 1, there is no split set in R3 that contains Sγ∩[0, 1]3 for infinitely many values
of γ. Assume for a contradiction that there exists an split set S = {x ∈ R3 | η < πTx < η + 1},
where π ∈ (π1, π2, π3) ∈ Z3, η ∈ Z, such that S dominates Sγ for infinitely many γ ∈ Z+, that
is,

Sγ ∩ [0, 1]3 ⊆ S ∩ [0, 1]3 ∀γ ∈ Γ (⇒ Sγ ∩ [0, 1]3 ⊆ S ∩ [0, 1]3, ∀γ ∈ Γ), (3)

where Sγ and S are closure of Sγ and S respectively, and Γ ⊆ Z+ is an infinite set.
We first show that:

H0 := {x ∈ [0, 1]3 |πTx ≤ η} ⊆ {x ∈ [0, 1]3 |x1 + γx2 + (γ + 1)x3 ≤ γ} =: H0
γ , (4)

H1 := {x ∈ [0, 1]3 |πTx ≥ η + 1} ⊆ {x ∈ [0, 1]3 |x1 + γx2 + (γ + 1)x3 ≥ γ + 1} =: H1
γ . (5)

Notice that we must have Hj
γ ∩ {0, 1}3 ̸= ∅ for all j ∈ {0, 1}; otherwise if, for instance

H0
γ ∩ {0, 1}3 = ∅, then we would have {0, 1}3 ⊆ H1

γ which implies [0, 1]3 ⊆ H1
γ , a contradiction

with the fact Sγ ∩ [0, 1]3 ̸= ∅. On the other hand, observe that Sγ being dominated by S is

4

equivalent to: for all i ∈ {0, 1} there exists j ∈ {0, 1} such that Hi ⊆ Hj
γ . Since (H0 ∪H1) ∩

{0, 1}3 = {0, 1}3, we conclude that it cannot happen that H0 ⊆ Hj
γ and H1 ⊆ Hj

γ for the same

j since Hi
γ ∩ {0, 1}3 ̸= ∅ for i ̸= j. Therefore, (4) and (5) hold (we may assume that we have

Hi ⊆ Hi
γ for i =∈ {0, 1} by considering S to be defined by π̂ = −π and η̂ = −η−1 if necessary).

Since (0, 1, 0) satisfies the equation x1+γx2+(γ+1)x3 = γ and by (4) we have H0∩{0, 1}3 =
H0

γ ∩ {0, 1}3, we must have that (0, 1, 0) satisfies the inequality πTx ≤ η. We now show that

(0, 1, 0) must satisfy πTx = η. Assume for a contradiction that it satisfies πTx < η. Let
x0 ∈ Sγ ∩ [0, 1]3 be an arbitrary point. For λ > 0 small enough we have that the point
xλ = (0, 1, 0) + λ(x0 − (0, 1, 0)) satisfies πTxλ < η and, by convexity of Sγ ∩ [0, 1]3, that
xλ ∈ Sγ ∩ [0, 1]3. Since Sγ ∩ [0, 1]3 ⊆ S ∩ [0, 1]3, it follows that xλ ∈ S ∩ [0, 1]3, a contradiction
with the fact that πTxλ < η. Thus, we must have that π2 = η. By a similar argument, since
(1, 1, 0) and (0, 0, 1) satisfy x1 + γx2 + (γ + 1)x3 = γ + 1, it follows from (5) that we must have
that these points satisfy πTx = η+1, and therefore π1 + π2 = η+1 and π3 = η+1. Therefore,
we obtain that π1 = 1, π2 = η and π3 = η + 1.

Since (1, 0, γ/(γ + 1)) ∈ Sγ ∩ [0, 1]3, by (3) we obtain 1 + (η + 1) γ
γ+1 ≤ η + 1 ⇔ 1 ≤ η+1

γ+1 .
Since this inequality holds for any γ ∈ Γ, we obtain 1 ≤ 0, a contradiction.

6 Proof of Theorem 3

We first prove the result when the sparsity level is an even positive integer 2k.
Consider the following family of split sets parameterized by a positive integer θ:

Sθ =

{
(x, y) ∈ Rk × Rk

∣∣∣∣ k∑
i=1

θi <
k∑

i=1

θi(xi + yi) < 1 +
k∑

i=1

θi
}
.

In order to prove Theorem 3 it is sufficient to prove the following result:

Lemma 1. For every finite collection of split sets F , there exists θ ∈ Z+ with θ ≥ 1, such that
one needs at least an union of k split sets from F to dominate Sθ ∩ [0, 1]2k.

Before presenting the proof of Lemma 1, we introduce some notation. Consider a list of split
sets A(i) :=

{
(x, y) | c(i) < a(i)x+ b(i)y(i) < c(i) + 1

}
, for i = 1, . . . , p. For each i, we denote the

two connected components of the complement set to A(i) by

A
(i)
0 :=

{
(x, y) | a(i)x+ b(i)y(i) ≤ c(i)

}
and A

(i)
1 :=

{
(x, y) | a(i)x+ b(i)y(i) ≥ c(i) + 1

}
.

Given a binary vector u ∈ {0, 1}p, we further define Au =
⋂p

i=1 A
(i)
ui . Note that the fact that⋃p

i=1 A
(i) dominates Sθ can be written as:

Sθ ∩ [0, 1]2k ⊆

⋃
i∈[g]

A(i)

 ∩ [0, 1]2k ⇔ [0, 1]2k \ Sθ ⊇ [0, 1]2k \

⋃
i∈[g]

A(i)

 .

So dominance of the given list of split sets is equivalent to:

∀u ∈ {0, 1}p, either Au ∩ [0, 1]2k ⊆ Sθ
0 ∩ [0, 1]2k or Au ∩ [0, 1]2k ⊆ Sθ

1 ∩ [0, 1]2k. (6)

Now we present a proof of Lemma 1.

Proof. We argue by contradiction. Suppose one needs at most k−1 split sets from F to dominate
Sθ for all θ. Since F is finite, but there are infinitely many choices of Sθ, there must exist p split
sets from F , where p ≤ k − 1, and an infinite set Θ ⊆ Z+ such that those p split sets dominate
Sθ ∩ [0, 1]2k for all θ ∈ Θ. We denote those split sets by

A(i) :=
{
(x, y) | c(i) < a(i)x+ b(i)y(i) < c(i) + 1

}
, for i = 1, . . . , p.

5

We will show that (6) fails for sufficiently large θ ∈ Θ. Our main idea is to construct a
certain point z ∈ [0, 1]2k such that z ∈ Au ∩ [0, 1]2k for some u but z violates (6).

Consider the following linear system:

a(i)x+ b(i)y = 0 for i = 1, . . . , p (7)

yi = 0 for i = 1, . . . , k. (8)

This linear system has 2k variables and k + p constraints. Since k + p < 2k it has at least
one non-zero solution (x∗, y∗). Without loss of generality, we may assume that ∥(x∗, y∗)∥2 = 1
and x∗

j > 0 where j is the largest index i = 1, . . . , k such that x∗
i ̸= 0.

By (8) and for sufficiently large θ ∈ Θ we have that

k∑
i=1

θi(x∗
i + y∗i) =

j∑
i=1

θix∗
i > 0. (9)

We now construct a binary vector (s, t) ∈ {0, 1}2k in the following way:

si = 0, ti = 1 if x∗
i ≥ 0 and si = 1, ti = 0 if x∗

i < 0.

Notice that since (s, t) is a integer vector, it must belong to either A
(i)
0 or A

(i)
1 for all

i = 1, . . . , p and therefore (s, t) ∈ Au∗ ∩ [0, 1]2k for some u∗.
We now verify that (s, t) + λ(x∗, y∗) ∈ Au∗ ∩ [0, 1]2k for some sufficiently small λ > 0.

Indeed, (s, t) + λ(x∗, y∗) stays in Au∗ for any λ > 0 because of (7). On the other hand,
(s, t)+λ(x∗, y∗) stays in [0, 1]2k for sufficiently small λ > 0 because ti+λy∗i does not change due
to (8), components associated to si = 1 decrease a little and components associated to si = 0
increase a little.

Now observe that
∑
i∈[k]

θi(si + ti) =
∑
i∈[k]

θi and
∑

i∈[n]

θi(x∗
i + y∗i) > 0 by (9), hence we obtain

that

k∑
i=1

θi <

k∑
i=1

θi(si + λx∗
i + ti + λy∗i) < 1 +

k∑
i=1

θi,

for sufficiently small λ > 0. In other words, for sufficiently small λ > 0 and large enough θ ∈ Θ
we have that (s, t) + λ(x∗, y∗) ∈ Sθ ∩ (Au∗ ∩ [0, 1]2k). We conclude that (6) is not satisfied for
the point (s, t) + λ(x∗, y∗), a contradiction.

In order to prove Theorem 3 for odd sparsity levels of split disjunctions, a similar proof can
be presented using the family of split sets:

Sθ :=

{
(x, y) ∈ Rk × Rk+1 :

k∑
i=1

θi <
k∑

i=1

θi(xi + yi) + yk+1 < 1 +
k∑

i=1

θi
}
.

7 Proof of Proposition 4

The case k = 2 is proven in Proposition 1. We now consider the cases k = 3, 4.

Proof for k = 3. Let S = {x ∈ R3 | η < π⊤x < η + 1}, recall that we may assume that 0 ≤
π1 ≤ π2 ≤ π3 (see Section 4). We have to show that at most 2 split sets from F3 are needed to
dominate it. There are three cases:

• π3 ≥ η + 1: In this case, observe that x ∈ S, implies that x3 < 1. By Proposition 1,
we know there exist 1 split set of sparsity 2 (or lesser) from F3 whose union contains the
set {x ∈ [0, 1]3 |x ∈ S, x3 = 0}. The set of points in {x ∈ [0, 1]3 |x ∈ S, 0 < x3 < 1} is
contained in the split set 0 < x3 < 1.

6

• π1 + π2 ≤ η: In this case, observe that x ∈ S, implies that x3 > 0. By Proposition 1,
we know there exist 1 split set of sparsity 2 (or lesser) from F3 whose union contains the
set {x ∈ [0, 1]3 |x ∈ S, x3 = 1}. The set of points in {x ∈ [0, 1]3 |x ∈ S, 0 < x3 < 1} is
contained in the split set 0 < x3 < 1.

• π3 ≤ η and π1+π2 ≥ η+1: Since π1 ≤ π2 ≤ π3 ≤ η, if
∑3

j=1 xj ≤ 1, then
∑3

j=1 πjxj ≤ η.

Thus, x ∈ S implies that
∑3

j=1 xj > 1. Moreover, if
∑3

j=1 xj ≥ 2, then
∑3

j=1 πjxj ≥
π1 + π2 ≥ η + 1. Thus x ∈ S implies that

∑3
j=1 xj < 2. Therefore, S is dominated by the

split set {x ∈ R3 | 1 <
∑3

j=1 xj < 2}.

Proof for k = 4. Let S = {x ∈ R4 | η < π⊤x < η + 1} with 0 ≤ π1 ≤ π2 ≤ π3 ≤ π4. There are
ten cases:

• π4 ≥ η+1: In this case, observe that x ∈ S, implies that x4 < 1. By Proposition 4 for k = 3
case, we know there at most 2 split set of sparsity 3 (or lesser) from F4 whose union contains
the set {x ∈ [0, 1]4 |x ∈ S, x4 = 0}. The set of points in {x ∈ [0, 1]4 |x ∈ S, 0 < x4 < 1} is
contained in the split set 0 < x4 < 1.

• π1 + π2 + π3 ≤ η: In this case, observe that x ∈ S, implies that x4 > 0. By Proposition 4
for k = 3, we know there at most 2 split set of sparsity 3 (or lesser) from F4 whose union
contains the set {x ∈ [0, 1]4 |x ∈ S, x4 = 1}. The set of points in {x ∈ [0, 1]4 |x ∈ S, 0 <
x4 < 1} is contained in the split set 0 < x4 < 1.

• π1 + π2 ≥ η + 1: We may assume that π4 ≤ η. Thus, we have x ∈ S implies 1 <
x1+x2+x3+x4. On the other hand, we also must have x1+x2+x3+x4 < 2, since otherwise,∑4

j=1 πjxj ≥ π1+π2 ≥ η+1. Thus S∩ [0, 1]4 is contained in 1 < x1+x2+x2+x3+x4 < 2.

• π1 + π3 ≥ η + 1: We may assume π4 ≤ η and π1 + π2 ≤ η. We claim that S is contained
in the union of 1 < x1 + x2 + x3 + x4 < 2 and 0 < x3 + x4 < 1. Consider the following
cases for x ∈ S:

– If x1 + x2 ≤ 1: We claim that that x1 + x2 + x3 + x4 < 2. Assume by contradiction
x1+x2+x3+x4 ≥ 2. Then we have x3+x4 ≥ 1 and thus

∑4
j=1 πjxj ≥ π1 ·min{1, 2−

x3−x4}+π3 ·max{1, x3+x4} ≥ π1+π3 ≥ η+1. On the other hand, since π4 ≤ η, we
have 1 < x1+x2+x3+x4. Thus, in this case x belongs to 1 < x1+x2+x2+x3+x4 < 2.

– If x1+x2 > 1: Then note that x3+x4 < 1, since otherwise
∑4

j=1 πjxj ≥ π1+π3 ≥ η+1.

Also note that if x3 + x4 = 0, then
∑4

j=1 πjxj ≤ π1 + π2 ≤ η. Thus, in this case we
have that x belongs 0 < x3 + x4 < 1.

• π3 + π4 ≤ η: We assume that π1 + π2 + π3 ≥ η + 1. First, note that S is contained in
x1 + x2 + x3 + x4 > 2. Also, since π1 + π2 + π3 ≥ η + 1, we have that S is contained in
x1 + x2 + x3 + x4 < 3. Thus, S is contained in 2 < x1 + x2 + x3 + x4 < 3.

• π2 + π4 ≤ η: We may assume π1 + π2 + π3 ≥ η + 1 and π3 + π4 ≥ η + 1. We claim that S
is contained in the union of 2 < x1 + x2 + x3 + x4 < 3 and 1 < x3 + x4 < 2. Consider the
following cases for x ∈ S:

– If x3 + x4 ≤ 1: We claim that that x1 + x2 + x3 + x4 > 2. Assume by contradiction
x1+x2+x3+x4 ≤ 2. Thus,

∑4
j=1 πjxj ≤ π2 ·max{1, 2−x3−x4}+π4 ·min{1, x3+x4} ≤

π2+π4 ≤ η. On the other hand, since π1+π2+π3 ≥ η+1, we have 3 > x1+x2+x3+x4.
Thus, in this case x belongs to 2 < x1 + x2 + x2 + x3 + x4 < 3.

– Also note that x3 + x4 = 2 is not possible, since then
∑

j πjxj ≥ π3 + π4 ≥ η + 1.

Thus, S∩ [0, 1]4 is contained in the union of 2 < x1+x2+x3+x4 < 3 and 1 < x3+x4 < 2.

• π2 + π3 ≥ η + 1 and π1 + π4 ≥ η + 1: We may assume π4 ≤ η and π1 + π3 ≤ η. We claim
that S is contained in the union of 1 < x2 + x3 + x4 < 2, 0 < x1 < 1 and 0 < x4 < 1.
Consider the following cases:

7

– x1 = 0: In this case, note that because of π2 + π3 ≥ η + 1 and π4 ≤ η, we have that
x belongs to 1 < x2 + x3 + x4 < 2.

– 0 < x1 < 1: In this case, note that x belongs to 0 < x1 < 1.

– x1 = 1: Clearly, due to π2+π3 ≥ η+1 we have that x2+x3+x4 < 2. If 1 < x2+x3+x4,
then x belongs to 1 < x2 + x3 + x4 < 2.
Otherwise suppose, x2 + x3 + x4 ≤ 1. We claim that 0 < x4 < 1. By contradiction,
if x4 = 0, then note that

∑
j πjxj ≤ π1 + π3 ≤ η. If x4 = 1, then note that∑

j πjxj ≥ π1 + π4 ≥ η + 1.

• π2 + π3 ≤ η and π1 + π4 ≤ η: We may assume π1 + π2 + π3 ≥ η + 1 and π2 + π4 ≥ η + 1.
We claim that S is contained in the union of 0 < x2 + x3 < 1, 2 < x1 + x2 + x3 < 3 and
0 < x4 < 1. Consider the following cases:

– x4 = 0: In case, note that due to π1+π2+π3 ≥ η+1, we have that x1+x2+x3 < 3.
Also, since π2 + π3 ≤ η, we have that x1 + x2 + x3 > 2. Thus, x is contained in
2 < x1 + x2 + x3 < 3.

– 0 < x4 < 1: In this case, note that x belongs to 0 < x4 < 1.

– x4 = 1: In this case note that x2 + x3 ≥ 1 is not possible, since
∑

j πjxj ≥ π2 + π4 ≥
η + 1. Also note that x2 + x3 = 0 is not possible, since that

∑
j πjxj ≤ π1 + π4 ≤ η.

Thus, in this case, x belongs to 0 < x2 + x3 < 1.

• π2 + π3 ≥ η + 1 and π1 + π4 ≤ η: We may assume π1 + π2 + π3 ≥ η + 1, π1 + π3 ≤ η and
π4 ≤ η. We claim that S is contained in the union of 1 < x2 + x3 + x4 < 2, 0 < x1 < 1,
and 0 < x2 + x3 < 1. Consider the following cases:

– x1 = 0: In this case, note that because of π2 + π3 ≥ η + 1 and π4 ≤ η, we have that
x belongs to 1 < x2 + x3 + x4 < 2.

– 0 < x1 < 1: In this case, note that x belongs to 0 < x1 < 1.

– x1 = 1: Clearly, due to π2+π3 ≥ η+1 we have that x2+x3+x4 < 2. If 1 < x2+x3+x4,
then x belongs to 1 < x2 + x3 + x4 < 2.
Otherwise suppose, x2+x3+x4 ≤ 1. In this case, note that x2+x3 = 1 is not possible,
since that x4 = 0 and we have

∑
j πjxj ≤ π1 + π3 ≤ η. Also note that x2 + x3 = 0

is not possible, since that
∑

j πjxj ≤ π1 + π4 ≤ η. Thus, in this case, x belongs to
0 < x2 + x3 < 1.

• π2 + π3 ≤ η and π1 + π4 ≥ η + 1: We may assume π1 + π2 + π3 ≥ η + 1 and π4 ≤ η. We
claim that S is contained in the union of 1 < x1 + x2 + x3 + x4 < 2, 2 < x1 + x2 + x3 < 3
and 0 < x4 < 1. Consider the following cases:

– x4 = 0: In case, note that due to π1+π2+π3 ≥ η+1, we have that x1+x2+x3 < 3.
Also, since π2 + π3 ≤ η, we have that x1 + x2 + x3 > 2. Thus, x is contained in
2 < x1 + x2 + x3 < 3.

– 0 < x4 < 1: In this case, note that x belongs to 0 < x4 < 1.

– x4 = 1: In this case note that since π1+π4 ≥ η+1, we have that x1+x2+x3+x4 < 2.
Also note that since π4 ≤ η, we have that x1 + x2 + x3 + x4 > 1. Thus, in this case,
x belongs to 1 < x1 + x2 + x3 + x4 < 2.

Acknowledgements

We would like to thank Diego Cifuentes, Amitabh Basu, Antoine Deza, and Lionel Pournin for
various discussions. We would also like to thank the support from AFOSR grant # F9550-22-
1-0052 and from the ANID grant Fondecyt # 1210348 .

8

References

[1] Karen Aardal and Arjen K Lenstra. Hard equality constrained integer knapsacks. Mathe-
matics of operations research, 29(3):724–738, 2004.

[2] Kent Andersen, Gérard Cornuéjols, and Yanjun Li. Split closure and intersection cuts.
Mathematical programming, 102(3):457–493, 2005.

[3] Gennadiy Averkov. On finitely generated closures in the theory of cutting planes. Discrete
Optimization, 9(4):209–215, 2012.

[4] Amitabh Basu, Michele Conforti, Marco Di Summa, and Hongyi Jiang. Complexity
of branch-and-bound and cutting planes in mixed-integer optimization-ii. In Interna-
tional Conference on Integer Programming and Combinatorial Optimization, pages 383–
398. Springer, 2021.

[5] Sander Borst, Daniel Dadush, Sophie Huiberts, and Samarth Tiwari. On the integrality gap
of binary integer programs with gaussian data. Mathematical Programming, 197(2):1221–
1263, 2023.

[6] Vasek Chvátal. Hard knapsack problems. Operations Research, 28(6):1402–1411, 1980.

[7] Gerard Cornuéjols, Leo Liberti, and Giacomo Nannicini. Improved strategies for branching
on general disjunctions. Mathematical Programming, 130(2):225–247, 2011.

[8] Daniel Dadush and Samarth Tiwari. On the complexity of branching proofs. In Proceedings
of the 35th Computational Complexity Conference, pages 1–35, 2020.

[9] Sanjeeb Dash, Oktay Günlük, and Diego A. Morán R. On the polyhedrality of closures of
multibranch split sets and other polyhedra with bounded max-facet-width. SIAM Journal
on Optimization, 27(3):1340–1361, 2017.

[10] Santanu S Dey, Yatharth Dubey, and Marco Molinaro. Branch-and-bound solves random
binary ips in polytime. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 579–591. SIAM, 2021.

[11] Santanu S Dey, Yatharth Dubey, and Marco Molinaro. Lower bounds on the size of general
branch-and-bound trees. Mathematical Programming, 198(1):539–559, 2023.

[12] Santanu S Dey, Marco Molinaro, and Qianyi Wang. Approximating polyhedra with sparse
inequalities. Mathematical Programming, 154(1):329–352, 2015.

[13] Santanu S Dey, Marco Molinaro, and Qianyi Wang. Analysis of sparse cutting planes for
sparse milps with applications to stochastic milps. Mathematics of Operations Research,
43(1):304–332, 2018.

[14] Santanu S Dey and Prachi Shah. Lower bound on size of branch-and-bound trees for solving
lot-sizing problem. Operations Research Letters, 50(5):430–433, 2022.

[15] Ricardo Fukasawa, Laurent Poirrier, and Shenghao Yang. Split cuts from sparse disjunc-
tions. Mathematical Programming Computation, 12:295–335, 2020.

[16] Max Gläser and Marc E Pfetsch. Sub-exponential lower bounds for branch-and-bound
with general disjunctions via interpolation. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3747–3764. SIAM, 2024.

[17] Robert G Jeroslow. Trivial integer programs unsolvable by branch-and-bound. Mathemat-
ical Programming, 6(1):105–109, 1974.

[18] Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions. Mathe-
matical Programming, 128(1-2):403–436, 2011.

[19] Alisa H Land and Alison G Doig. An automatic method of solving discrete programming
problems. Econometrica, 28:497–520, 1960.

[20] Ashutosh Mahajan and Theodore K Ralphs. Experiments with branching using general
disjunctions. In Operations Research and Cyber-Infrastructure, pages 101–118. 2009.

9

[21] Hanan Mahmoud and John W Chinneck. Achieving milp feasibility quickly using general
disjunctions. Computers & operations research, 40(8):2094–2102, 2013.

[22] Sanjay Mehrotra and Zhifeng Li. Branching on hyperplane methods for mixed integer
linear and convex programming using adjoint lattices. Journal of Global Optimization,
49(4):623–649, 2011.

[23] Gonzalo Muñoz, Joseph Paat, and Álinson S Xavier. Compressing branch-and-bound
trees. In International Conference on Integer Programming and Combinatorial Optimiza-
tion, pages 348–362. Springer, 2023.

[24] Jonathan H Owen and Sanjay Mehrotra. Experimental results on using general disjunctions
in branch-and-bound for general-integer linear programs. Computational optimization and
applications, 20(2):159–170, 2001.

[25] Gábor Pataki, Mustafa Tural, and Erick B Wong. Basis reduction and the complexity of
branch-and-bound. In Proceedings of the twenty-first annual ACM-SIAM symposium on
discrete algorithms, pages 1254–1261. SIAM, 2010.

[26] Yu Yang, Natashia Boland, and Martin Savelsbergh. Multivariable branching: A 0-1 knap-
sack problem case study. INFORMS Journal on Computing, 2021.

10

