Branching with a pre-specified finite list of k-sparse split sets for binary MILPs

Santanu S. Dey *1, Diego Morán^{†2}, and Jingye Xu ^{‡1}

¹School of Industrial and Systems Engineering, Georgia Institute of Technology ²Department of Industrial and Systems Engineering, Rensselaer Polytechnic Institute

August 13, 2024

Abstract

When branching for binary mixed integer linear programs with disjunctions of sparsity level 2, we observe that there exists a finite list of 2-sparse disjunctions, such that any other 2-sparse disjunction is dominated by one disjunction in this finite list. For sparsity level greater than 2, we show that a finite list of disjunctions with this property cannot exist. This leads to the definition of covering number for a list of splits disjunctions. Given a finite list of split sets \mathcal{F} of k-sparsity, and a given k-sparse split set S, let $\mathcal{F}(S)$ be the minimum number of split sets from the list \mathcal{F} , whose union contains $S \cap [0, 1]^n$. Let the covering number of \mathcal{F} be the maximum value of $\mathcal{F}(S)$ over all k-sparse split sets S. We show that the covering number for any finite list of k-sparse split sets is at least $\lfloor k/2 \rfloor$ for $k \geq 4$. We also show that the covering number of the family of k-sparse split sets with coefficients in $\{-1,0,1\}$ is upper bounded by k-1 for $k \leq 4$.

1 Introduction

Land and Doig [19] invented the branch-and-bound procedure to solve mixed integer linear programs (MILP). Today, all state-of-the-art MILP solvers use the branch-and-bound procedure at its core. An important decision in formalizing a branch-and-bound algorithm is to decide the method to partition the feasible region of the linear program corresponding to a node in the branch-and-bound tree. Given $\pi \in \mathbb{Z}^n$ and $\eta \in \mathbb{Z}$, a general way to partition a feasible region where all variables are binary is to the use the following disjunction for $x \in \{0,1\}^n$: $(\pi^{\top}x \leq \eta) \vee (\pi^{\top}x \geq \eta + 1)$, in order to create two child nodes. The open set

$$S(\pi, \eta) := \left\{ x \in \mathbb{R}^n \, | \, \eta < \pi^\top x < \eta + 1 \right\},\,$$

is called *split set* and the associated disjunction is called *split disjunction*. We say a split set $S(\pi, \eta)$ is k-sparse if the number of non-zero entries of π , denoted by $\|\pi\|_0$, is at most k, that is, $\|\pi\|_0 \leq k$.

Most state-of-the-art MILP solvers are based on branch-and-bound trees built using 1-sparse split disjunctions; such branch-and-bound trees are called simple branch-and-bound trees [11]. One rationale for using 1-sparse split disjunctions is to maintain the sparsity of linear programs solved at child nodes; see discussion in [12, 13]. Recently, [10, 5] showed that on random

^{*}santanu.dey@isye.gatech.edu

[†]morand@rpi.edu

[‡]jxu673@gatech.edu

instances, using 1-sparse split disjunctions is sufficient to obtain a polynomial size branch-and-bound tree when the number of constraints are fixed. However, several papers have shown the power of constructing branch-and-bound trees with dense disjunctions. See, for example, the papers [24, 1, 20, 22, 18, 7, 21, 26, 23] which present several evidences of dramatic reduction in the number of nodes in a branch-and-bound tree when using dense disjunctions in comparison to branch-and-bound trees based on 1-sparse disjunctions. Moreover, the papers [17, 6] present examples of MILPs where every 1-sparse branching scheme leads to exponential size branch-and-bound trees, although these instances can be solved using polynomial-size branch-and-bound trees when using denser inequalities see [26, 4]. While the worst-case size of a branch-and-tree may be exponential even when using dense disjunctions [8, 11, 14, 16], the papers [25, 4] present other compelling theoretical evidence on the importance of branching using dense disjunctions.

The papers [24, 20, 22, 26] show significant improvement in the size of the branch-and-bound tree by using split disjunctions of a specified sparsity level together which having the coefficients of the associated split sets being in $\{-1,0,1\}$. One perspective to view this line of work, is that they explore the paradigm of expanding the list of disjunctions used to build the branch-and-bound tree, from the typically used 1-sparse disjunctions, to a finite list of pre-specified denser disjunctions. In this paper, we explore a geometric problem motivated by the use of such pre-specified finite lists of dense disjunctions to solve binary MILPs.

2 Main results

2.1 Dominance result for 2-sparse disjunctions

Consider two split sets $S(\pi^1, \eta^1)$ and $S(\pi^0, \eta^0)$ in \mathbb{R}^n . We say that $S(\pi^1, \eta^1)$ dominates $S(\pi^0, \eta^0)$ if

$$S(\pi^1, \eta^1) \cap [0, 1]^n \supseteq S(\pi^0, \eta^0) \cap [0, 1]^n. \tag{1}$$

If (1) holds, then in any branch-and-bound tree that solves a binary MILP using the disjunction corresponding to $S(\pi^0, \eta^0)$, we may replace this disjunction by the disjunction corresponding to $S(\pi^1, \eta^1)$, resulting in a branch-and-bound tree that cannot increase in size in comparison to the original branch-and-bound tree.

Let \mathcal{F}_k be the finite list of k-sparse split sets, such that $S(\pi, \eta) \in \mathcal{F}_k$ if $\pi \in \{-1, 0, 1\}^n$, $\|\pi\|_0 \leq k$, and $\eta \in \{-k, \ldots, -1, 0, 1, \ldots, k\}$. If we only use 1-sparse disjunctions, then clearly there are only n possible split sets in \mathcal{F}_1 , none of which dominate each other. Next let us consider the case of 2-sparse disjunctions.

Proposition 1. Consider any arbitrary 2-sparse split set $S(\pi, \eta) \subseteq \mathbb{R}^n$, that is, $\pi \in \mathbb{Z}^n$ and $\|\pi\|_0 \leq 2$. Then there exists a split set in \mathcal{F}_2 that dominates $S(\pi, \eta)$.

Proposition 1 shows that if one decides to branch using 2-sparse disjunctions only for solving binary MILPs, there is no reason to use general 2-sparse split disjunctions – in particular, one may restrict the use of disjunctions to the finite list described in Proposition 1. Indeed, the paper [26] shows the importance of branching using 2-sparse disjunctions by employing exactly the split sets described in Proposition 1 and shows significant improvement over sizes of tree constructed using the 1-sparse disjunctions. See Section 4 for a proof of Proposition 1.

Generalizing the result of Proposition 1, we would like to fix the level of sparsity k of the split disjunctions used to build branch-and-bound tree and ask the question: Does there exist a finite list of k-sparse disjunctions, such that it is sufficient to restrict attention to this finite list in order to get the full power of branching with k-sparse disjunctions. Unfortunately, as shown in the next result, such finite lists do not exist for k-sparse disjunctions with $k \geq 3$.

Theorem 2. Let $k \geq 3$. There does not exist any finite list \mathcal{F} of k-sparse split sets such that any arbitrary k-sparse split set is dominated by exactly one of the split sets from \mathcal{F} .

This negative result in the context of the use of split disjuctions in branch-and-bound is in striking contrast to the case of cutting planes computed using split sets: for any rational polyhedral there exists a finite list of split sets such that cutting planes derived from an arbitrary split set are dominated by cutting planes derived using one split set from this finite list [2, 3, 9]. See Section 5 for a proof of Theorem 2.

2.2 Lower bound on covering number for general finite list of dense disjunctions with k > 4

Given the negative result of Theorem 2, the next natural question to ask is if there exists finite list of k-sparse split sets, such that any other arbitrary k-sparse split set is a subset of an union of a small number of split sets from the list. Formally, given split sets $\{S(\pi^i, \eta^i)\}_{i=0}^p \subseteq \mathbb{R}^n$, we say that $\{S(\pi^i, \eta^i)\}_{i=1}^p$ dominates $S(\pi^0, \eta^0)$ if:

$$\left(\bigcup_{i=1}^{p} S(\pi^{i}, \eta^{i})\right) \cap [0, 1]^{n} \supseteq S(\pi, \eta) \cap [0, 1]^{n}. \tag{2}$$

If (2) holds, then in any branch-and-bound tree that solves a binary MILP using the disjunction corresponding to $S(\pi^0, \eta^0)$, we may replace this disjunction by the disjunctions corresponding to $\{S(\pi^i, \eta^i)\}_{i=0}^p$ resulting in a branch-and-bound tree whose size is no more than 2^{p-1} times the original branch-and-bound tree.

Definition 1 (Covering number for a finite list of k-sparse split sets). Let \mathcal{F} be a finite list of k-sparse split sets. Given an arbitrary k-sparse split set S, let $\mathcal{F}(S)$ be the smallest number of split sets from \mathcal{F} that dominates S. We define the covering number of \mathcal{F} , denoted as $C(\mathcal{F})$, as:

$$C(\mathcal{F}) := \max\{\mathcal{F}(S) \mid S \text{ is a } k\text{-sparse split set}\}.$$

If one can show that a finite list of k-sparse disjunctions has a small covering number, then it could be considered a theoretical justification for using just this finite list of pre-specified k-sparse disjunctions instead of general k-sparse disjunctions.

The covering number of \mathcal{F}_1 is k, since, for example, in order to dominate the split set $\{x \in \mathbb{R}^k \mid k-1 < \sum_{i=1}^k x_i < k\}$ we require all the k disjunctions $0 < x_i < 1$ for $i \in \{1, \ldots, k\}$. Unfortunately, the next result indicates that it is not possible to find a finite list of disjunctions with significantly smaller covering number.

Theorem 3. Let \mathcal{F} be any finite list of k-sparse split sets. Then $C(\mathcal{F}) \geq \lfloor \frac{k}{2} \rfloor$.

See Section 6 for a proof of Theorem 3.

2.3 Covering number of $\{-1,0,1\}$ -disjunctions

Finally, since a number of papers have successfully employed the very natural list of disjunctions with coefficients only in $\{-1,0,1\}$, we explore the covering number of such finite list of disjunctions for sparsity level less or equal than 4.

Proposition 4. For k = 2, 3, 4 we have that $C(\mathcal{F}_k) \leq k - 1$.

See Section 7 for a proof of Proposition 4.

3 Conclusions

The results of this paper justify the use of pre-specified list of disjunctions with coefficients in $\{-1,0,1\}$ for low levels of sparsity. For k=2, Proposition 1 provides this justification. For a branch-and-bound tree using 3-sparse disjunctions, Theorem 3 and Proposition 4 imply that any finite list has a covering number of at least 2 and \mathcal{F}_3 also has a covering number of 2. Thus with respect to covering number, it is optimal to limit the use of disjunctions from \mathcal{F}_3 . It is an open question if \mathcal{F}_k is optimal for higher values of k with respect to covering number. In order

to answer this question, results of both Theorem 3 and Proposition 4 may need to be tightened and generalized.

More generally, Theorem 3 may also be an indication that the use of pre-specified list of disjunctions may not be the best way to generate small branch-and-bound trees. While using disjunctions in \mathcal{F}_k already produces smaller branch-and-bound trees than those produced using 1-sparse disjunctions [24, 22, 15, 26], in order to truly obtain significantly smaller branch-and-bound trees, one may need to further develop and expand on methods to select problem-specific dense disjunctions that are not pre-specified [1, 20, 18, 7, 21, 26, 23].

4 Proof of Proposition 1

In order to prove Proposition 1 (k=2) and Proposition 4 (k=3,4) in Section 7, we have to show that for any given arbitrary split set $S = \{x \in \mathbb{R}^k \mid \eta < \pi^\top x < \eta + 1\}$ at most k-1 split sets from \mathcal{F}_k are needed to dominate it. Without loss of generality, we may assume that $0 \le \pi_1 \le \pi_2 \le \ldots \le \pi_k$. This is because, if $\pi_i < 0$ we can change x_i to $1-x_i$, and then permute the order of the variables. Note that this is fine because \mathcal{F}_k is closed under taking the same operations.

Proof for k = 2. We assume $\|\pi\|_0 = 2$, since otherwise the result is trivial. Let $x \in S \cap [0,1]^2$. We consider the following cases.

- $0 \le \eta < \eta + 1 \le \pi_1$: For $x \in S$, we have $x_1 + x_2 \le x_1 + \frac{\pi_2}{\pi_1} x_2 = \frac{\pi_1 x_1 + \pi_2 x_2}{\pi_1} < \frac{\eta + 1}{\pi_1} \le 1$. Since $(0,0) \notin S$, we obtain $S \cap [0,1]^2 \subseteq \{x \in [0,1]^2 \mid 0 < x_1 + x_2 < 1\}$.
- $0 \le \pi_1 \le \eta$; $\eta + 1 \le \pi_2$: We have $0 \le \frac{\eta \pi_1}{\pi_2} \le \frac{\eta \pi_1 x_1}{\pi_2} < x_2$ for $x \in S$. On the other hand, for $x \in S$ we have $x_2 \le \frac{\pi_1}{\pi_2} x_1 + x_2 < \frac{\eta + 1}{\pi_2} \le 1$. Thus, $S \cap [0, 1]^2 \subseteq \{x \in [0, 1]^2 \mid 0 < x_2 < 1\}$.
- $0 \le \pi_1 \le \eta$; $0 \le \pi_2 \le \eta$: We have $1 < \frac{\pi_1}{\eta} x_1 + \frac{\pi_2}{\eta} x_2 \le x_1 + x_2$ for $x \in S$. Since $(1,1) \notin S$, we obtain $S \cap [0,1]^2 \subseteq \{x \in [0,1]^2 \mid 1 < x_1 + x_2 < 2\}$.

5 Proof of Theorem 2

We will prove Theorem 2 for k = 3. A similar proof can be given for $k \ge 4$, but the result in this case is implied by Theorem 3 so we do not consider it in this section.

Proof of Theorem 2. In order to prove Theorem 2, we show that for the infinite family of split sets

$$S_{\gamma} = \{ x \in \mathbb{R}^3 \mid \gamma < x_1 + \gamma x_2 + (\gamma + 1)x_3 < \gamma + 1 \},$$

where $\gamma \in \mathbb{Z}_+$, $\gamma \geq 1$, there is no split set in \mathbb{R}^3 that contains $S_{\gamma} \cap [0,1]^3$ for infinitely many values of γ . Assume for a contradiction that there exists an split set $S = \{x \in \mathbb{R}^3 \mid \eta < \pi^T x < \eta + 1\}$, where $\pi \in (\pi_1, \pi_2, \pi_3) \in \mathbb{Z}^3$, $\eta \in \mathbb{Z}$, such that S dominates S_{γ} for infinitely many $\gamma \in \mathbb{Z}_+$, that is,

$$S_{\gamma} \cap [0,1]^{3} \subseteq S \cap [0,1]^{3} \ \forall \gamma \in \Gamma \quad (\Rightarrow \overline{S}_{\gamma} \cap [0,1]^{3} \subseteq \overline{S} \cap [0,1]^{3}, \ \forall \gamma \in \Gamma), \tag{3}$$

where \overline{S}_{γ} and \overline{S} are closure of S_{γ} and S respectively, and $\Gamma \subseteq \mathbb{Z}_{+}$ is an infinite set. We first show that:

$$H^{0} := \{ x \in [0,1]^{3} \mid \pi^{T} x \le \eta \} \subseteq \{ x \in [0,1]^{3} \mid x_{1} + \gamma x_{2} + (\gamma + 1)x_{3} \le \gamma \} =: H^{0}_{\gamma}, \tag{4}$$

$$H^1 := \{ x \in [0,1]^3 \mid \pi^T x \ge \eta + 1 \} \subseteq \{ x \in [0,1]^3 \mid x_1 + \gamma x_2 + (\gamma + 1)x_3 \ge \gamma + 1 \} =: H^1_{\gamma}.$$
 (5)

Notice that we must have $H^j_\gamma\cap\{0,1\}^3\neq\emptyset$ for all $j\in\{0,1\}$; otherwise if, for instance $H^0_\gamma\cap\{0,1\}^3=\emptyset$, then we would have $\{0,1\}^3\subseteq H^1_\gamma$ which implies $[0,1]^3\subseteq H^1_\gamma$, a contradiction with the fact $S_\gamma\cap[0,1]^3\neq\emptyset$. On the other hand, observe that S_γ being dominated by S is

equivalent to: for all $i \in \{0,1\}$ there exists $j \in \{0,1\}$ such that $H^i \subseteq H^j_{\gamma}$. Since $(H^0 \cup H^1) \cap \{0,1\}^3 = \{0,1\}^3$, we conclude that it cannot happen that $H^0 \subseteq H^j_{\gamma}$ and $H^1 \subseteq H^j_{\gamma}$ for the same j since $H^i_{\gamma} \cap \{0,1\}^3 \neq \emptyset$ for $i \neq j$. Therefore, (4) and (5) hold (we may assume that we have $H^i \subseteq H^i_{\gamma}$ for $i = \{0,1\}$ by considering S to be defined by $\hat{\pi} = -\pi$ and $\hat{\eta} = -\eta - 1$ if necessary).

Since (0,1,0) satisfies the equation $x_1+\gamma x_2+(\gamma+1)x_3=\gamma$ and by (4) we have $H^0\cap\{0,1\}^3=H^0_\gamma\cap\{0,1\}^3$, we must have that (0,1,0) satisfies the inequality $\pi^Tx\leq\eta$. We now show that (0,1,0) must satisfy $\pi^Tx=\eta$. Assume for a contradiction that it satisfies $\pi^Tx<\eta$. Let $x_0\in S_\gamma\cap[0,1]^3$ be an arbitrary point. For $\lambda>0$ small enough we have that the point $x_\lambda=(0,1,0)+\lambda(x_0-(0,1,0))$ satisfies $\pi^Tx_\lambda<\eta$ and, by convexity of $\overline{S}_\gamma\cap[0,1]^3$, that $x_\lambda\in S_\gamma\cap[0,1]^3$. Since $S_\gamma\cap[0,1]^3\subseteq S\cap[0,1]^3$, it follows that $x_\lambda\in S\cap[0,1]^3$, a contradiction with the fact that $\pi^Tx_\lambda<\eta$. Thus, we must have that $\pi_2=\eta$. By a similar argument, since (1,1,0) and (0,0,1) satisfy $x_1+\gamma x_2+(\gamma+1)x_3=\gamma+1$, it follows from (5) that we must have that these points satisfy $\pi^Tx=\eta+1$, and therefore $\pi_1+\pi_2=\eta+1$ and $\pi_3=\eta+1$. Therefore, we obtain that $\pi_1=1$, $\pi_2=\eta$ and $\pi_3=\eta+1$.

Since $(1,0,\gamma/(\gamma+1)) \in \overline{S}_{\gamma} \cap [0,1]^3$, by (3) we obtain $1+(\eta+1)\frac{\gamma}{\gamma+1} \leq \eta+1 \Leftrightarrow 1 \leq \frac{\eta+1}{\gamma+1}$. Since this inequality holds for any $\gamma \in \Gamma$, we obtain $1 \leq 0$, a contradiction.

6 Proof of Theorem 3

We first prove the result when the sparsity level is an even positive integer 2k. Consider the following family of split sets parameterized by a positive integer θ :

$$S^{\theta} = \left\{ (x, y) \in \mathbb{R}^k \times \mathbb{R}^k \mid \sum_{i=1}^k \theta^i < \sum_{i=1}^k \theta^i (x_i + y_i) < 1 + \sum_{i=1}^k \theta^i \right\}.$$

In order to prove Theorem 3 it is sufficient to prove the following result:

Lemma 1. For every finite collection of split sets \mathcal{F} , there exists $\theta \in \mathbb{Z}_+$ with $\theta \geq 1$, such that one needs at least an union of k split sets from \mathcal{F} to dominate $S^{\theta} \cap [0,1]^{2k}$.

Before presenting the proof of Lemma 1, we introduce some notation. Consider a list of split sets $A^{(i)} := \{(x,y) \mid c^{(i)} < a^{(i)}x + b^{(i)}y^{(i)} < c^{(i)} + 1\}$, for $i=1,\ldots,p$. For each i, we denote the two connected components of the complement set to $A^{(i)}$ by

$$A_0^{(i)} := \left\{ (x,y) \, | \, a^{(i)}x + b^{(i)}y^{(i)} \leq c^{(i)} \right\} \quad \text{and} \quad A_1^{(i)} := \left\{ (x,y) \, | \, a^{(i)}x + b^{(i)}y^{(i)} \geq c^{(i)} + 1 \right\}.$$

Given a binary vector $u \in \{0,1\}^p$, we further define $A_u = \bigcap_{i=1}^p A_{u_i}^{(i)}$. Note that the fact that $\bigcup_{i=1}^p A^{(i)}$ dominates S^{θ} can be written as:

$$S^{\theta} \cap [0,1]^{2k} \subseteq \left(\bigcup_{i \in [g]} A^{(i)}\right) \cap [0,1]^{2k} \iff [0,1]^{2k} \setminus S^{\theta} \supseteq [0,1]^{2k} \setminus \left(\bigcup_{i \in [g]} A^{(i)}\right).$$

So dominance of the given list of split sets is equivalent to:

$$\forall u \in \{0,1\}^p, \text{ either } A_u \cap [0,1]^{2k} \subseteq S_0^\theta \cap [0,1]^{2k} \text{ or } A_u \cap [0,1]^{2k} \subseteq S_1^\theta \cap [0,1]^{2k}.$$
 (6)

Now we present a proof of Lemma 1.

Proof. We argue by contradiction. Suppose one needs at most k-1 split sets from \mathcal{F} to dominate S^{θ} for all θ . Since \mathcal{F} is finite, but there are infinitely many choices of S^{θ} , there must exist p split sets from \mathcal{F} , where $p \leq k-1$, and an infinite set $\Theta \subseteq \mathbb{Z}_+$ such that those p split sets dominate $S^{\theta} \cap [0,1]^{2k}$ for all $\theta \in \Theta$. We denote those split sets by

$$A^{(i)} := \left\{ (x,y) \, | \, c^{(i)} < a^{(i)}x + b^{(i)}y^{(i)} < c^{(i)} + 1 \right\}, \text{ for } i = 1, \dots, p.$$

We will show that (6) fails for sufficiently large $\theta \in \Theta$. Our main idea is to construct a certain point $z \in [0,1]^{2k}$ such that $z \in A_u \cap [0,1]^{2k}$ for some u but z violates (6).

Consider the following linear system:

$$a^{(i)}x + b^{(i)}y = 0$$
 for $i = 1, ..., p$ (7)

$$y_i = 0 \quad \text{for } i = 1, \dots, k. \tag{8}$$

This linear system has 2k variables and k+p constraints. Since k+p < 2k it has at least one non-zero solution (x^*, y^*) . Without loss of generality, we may assume that $\|(x^*, y^*)\|_2 = 1$ and $x_i^* > 0$ where j is the largest index $i = 1, \ldots, k$ such that $x_i^* \neq 0$.

By (8) and for sufficiently large $\theta \in \Theta$ we have that

$$\sum_{i=1}^{k} \theta^{i}(x_{i}^{*} + y_{i}^{*}) = \sum_{i=1}^{j} \theta^{i} x_{i}^{*} > 0.$$
(9)

We now construct a binary vector $(s,t) \in \{0,1\}^{2k}$ in the following way:

$$s_i = 0, t_i = 1 \text{ if } x_i^* \ge 0 \text{ and } s_i = 1, t_i = 0 \text{ if } x_i^* < 0.$$

Notice that since (s,t) is a integer vector, it must belong to either $A_0^{(i)}$ or $A_1^{(i)}$ for all $i=1,\ldots,p$ and therefore $(s,t)\in A_{u^*}\cap [0,1]^{2k}$ for some u^* .

We now verify that $(s,t) + \lambda(x^*,y^*) \in A_{u^*} \cap [0,1]^{2k}$ for some sufficiently small $\lambda > 0$. Indeed, $(s,t) + \lambda(x^*,y^*)$ stays in A_{u^*} for any $\lambda > 0$ because of (7). On the other hand, $(s,t) + \lambda(x^*,y^*)$ stays in $[0,1]^{2k}$ for sufficiently small $\lambda > 0$ because $t_i + \lambda y_i^*$ does not change due to (8), components associated to $s_i = 1$ decrease a little and components associated to $s_i = 0$ increase a little.

Now observe that $\sum_{i \in [k]} \theta^i(s_i + t_i) = \sum_{i \in [k]} \theta^i$ and $\sum_{i \in [n]} \theta^i(x_i^* + y_i^*) > 0$ by (9), hence we obtain that

$$\sum_{i=1}^{k} \theta^{i} < \sum_{i=1}^{k} \theta^{i} (s_{i} + \lambda x_{i}^{*} + t_{i} + \lambda y_{i}^{*}) < 1 + \sum_{i=1}^{k} \theta^{i},$$

for sufficiently small $\lambda > 0$. In other words, for sufficiently small $\lambda > 0$ and large enough $\theta \in \Theta$ we have that $(s,t) + \lambda(x^*,y^*) \in S^{\theta} \cap (A_{u^*} \cap [0,1]^{2k})$. We conclude that (6) is not satisfied for the point $(s,t) + \lambda(x^*,y^*)$, a contradiction.

In order to prove Theorem 3 for odd sparsity levels of split disjunctions, a similar proof can be presented using the family of split sets:

$$S^{\theta} := \left\{ (x, y) \in \mathbb{R}^k \times \mathbb{R}^{k+1} : \sum_{i=1}^k \theta^i < \sum_{i=1}^k \theta^i (x_i + y_i) + y_{k+1} < 1 + \sum_{i=1}^k \theta^i \right\}.$$

7 Proof of Proposition 4

The case k=2 is proven in Proposition 1. We now consider the cases k=3,4.

Proof for k = 3. Let $S = \{x \in \mathbb{R}^3 \mid \eta < \pi^\top x < \eta + 1\}$, recall that we may assume that $0 \le \pi_1 \le \pi_2 \le \pi_3$ (see Section 4). We have to show that at most 2 split sets from \mathcal{F}_3 are needed to dominate it. There are three cases:

• $\pi_3 \ge \eta + 1$: In this case, observe that $x \in S$, implies that $x_3 < 1$. By Proposition 1, we know there exist 1 split set of sparsity 2 (or lesser) from \mathcal{F}_3 whose union contains the set $\{x \in [0,1]^3 \mid x \in S, x_3 = 0\}$. The set of points in $\{x \in [0,1]^3 \mid x \in S, 0 < x_3 < 1\}$ is contained in the split set $0 < x_3 < 1$.

- $\pi_1 + \pi_2 \leq \eta$: In this case, observe that $x \in S$, implies that $x_3 > 0$. By Proposition 1, we know there exist 1 split set of sparsity 2 (or lesser) from \mathcal{F}_3 whose union contains the set $\{x \in [0,1]^3 \mid x \in S, x_3 = 1\}$. The set of points in $\{x \in [0,1]^3 \mid x \in S, 0 < x_3 < 1\}$ is contained in the split set $0 < x_3 < 1$.
- $\pi_3 \leq \eta$ and $\pi_1 + \pi_2 \geq \eta + 1$: Since $\pi_1 \leq \pi_2 \leq \pi_3 \leq \eta$, if $\sum_{j=1}^3 x_j \leq 1$, then $\sum_{j=1}^3 \pi_j x_j \leq \eta$. Thus, $x \in S$ implies that $\sum_{j=1}^3 x_j > 1$. Moreover, if $\sum_{j=1}^3 x_j \geq 2$, then $\sum_{j=1}^3 \pi_j x_j \geq 1$ and $\pi_1 + \pi_2 \geq \eta + 1$. Thus $x \in S$ implies that $\sum_{j=1}^3 x_j < 2$. Therefore, S is dominated by the split set $\{x \in \mathbb{R}^3 \mid 1 < \sum_{j=1}^3 x_j < 2\}$.

Proof for k = 4. Let $S = \{x \in \mathbb{R}^4 \mid \eta < \pi^\top x < \eta + 1\}$ with $0 \le \pi_1 \le \pi_2 \le \pi_3 \le \pi_4$. There are ten cases:

- $\pi_4 \ge \eta + 1$: In this case, observe that $x \in S$, implies that $x_4 < 1$. By Proposition 4 for k = 3 case, we know there at most 2 split set of sparsity 3 (or lesser) from \mathcal{F}_4 whose union contains the set $\{x \in [0,1]^4 \mid x \in S, x_4 = 0\}$. The set of points in $\{x \in [0,1]^4 \mid x \in S, 0 < x_4 < 1\}$ is contained in the split set $0 < x_4 < 1$.
- $\pi_1 + \pi_2 + \pi_3 \le \eta$: In this case, observe that $x \in S$, implies that $x_4 > 0$. By Proposition 4 for k = 3, we know there at most 2 split set of sparsity 3 (or lesser) from \mathcal{F}_4 whose union contains the set $\{x \in [0,1]^4 \mid x \in S, x_4 = 1\}$. The set of points in $\{x \in [0,1]^4 \mid x \in S, 0 < x_4 < 1\}$ is contained in the split set $0 < x_4 < 1$.
- $\pi_1 + \pi_2 \ge \eta + 1$: We may assume that $\pi_4 \le \eta$. Thus, we have $x \in S$ implies $1 < x_1 + x_2 + x_3 + x_4$. On the other hand, we also must have $x_1 + x_2 + x_3 + x_4 < 2$, since otherwise, $\sum_{j=1}^4 \pi_j x_j \ge \pi_1 + \pi_2 \ge \eta + 1$. Thus $S \cap [0,1]^4$ is contained in $1 < x_1 + x_2 + x_3 + x_4 < 2$.
- $\pi_1 + \pi_3 \ge \eta + 1$: We may assume $\pi_4 \le \eta$ and $\pi_1 + \pi_2 \le \eta$. We claim that S is contained in the union of $1 < x_1 + x_2 + x_3 + x_4 < 2$ and $0 < x_3 + x_4 < 1$. Consider the following cases for $x \in S$:
 - If $x_1 + x_2 \le 1$: We claim that that $x_1 + x_2 + x_3 + x_4 < 2$. Assume by contradiction $x_1 + x_2 + x_3 + x_4 \ge 2$. Then we have $x_3 + x_4 \ge 1$ and thus $\sum_{j=1}^4 \pi_j x_j \ge \pi_1 \cdot \min\{1, 2 x_3 x_4\} + \pi_3 \cdot \max\{1, x_3 + x_4\} \ge \pi_1 + \pi_3 \ge \eta + 1$. On the other hand, since $\pi_4 \le \eta$, we have $1 < x_1 + x_2 + x_3 + x_4$. Thus, in this case x belongs to $1 < x_1 + x_2 + x_3 + x_4 < 2$.
 - If $x_1+x_2>1$: Then note that $x_3+x_4<1$, since otherwise $\sum_{j=1}^4\pi_jx_j\geq\pi_1+\pi_3\geq\eta+1$. Also note that if $x_3+x_4=0$, then $\sum_{j=1}^4\pi_jx_j\leq\pi_1+\pi_2\leq\eta$. Thus, in this case we have that x belongs $0< x_3+x_4<1$.
- $\pi_3 + \pi_4 \le \eta$: We assume that $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$. First, note that S is contained in $x_1 + x_2 + x_3 + x_4 > 2$. Also, since $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$, we have that S is contained in $x_1 + x_2 + x_3 + x_4 < 3$. Thus, S is contained in $2 < x_1 + x_2 + x_3 + x_4 < 3$.
- $\pi_2 + \pi_4 \le \eta$: We may assume $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$ and $\pi_3 + \pi_4 \ge \eta + 1$. We claim that S is contained in the union of $2 < x_1 + x_2 + x_3 + x_4 < 3$ and $1 < x_3 + x_4 < 2$. Consider the following cases for $x \in S$:
 - If $x_3 + x_4 \le 1$: We claim that that $x_1 + x_2 + x_3 + x_4 > 2$. Assume by contradiction $x_1 + x_2 + x_3 + x_4 \le 2$. Thus, $\sum_{j=1}^4 \pi_j x_j \le \pi_2 \cdot \max\{1, 2 x_3 x_4\} + \pi_4 \cdot \min\{1, x_3 + x_4\} \le \pi_2 + \pi_4 \le \eta$. On the other hand, since $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$, we have $3 > x_1 + x_2 + x_3 + x_4$. Thus, in this case x belongs to $2 < x_1 + x_2 + x_3 + x_4 < 3$.
 - Also note that $x_3 + x_4 = 2$ is not possible, since then $\sum_j \pi_j x_j \ge \pi_3 + \pi_4 \ge \eta + 1$.

Thus, $S \cap [0,1]^4$ is contained in the union of $2 < x_1 + x_2 + x_3 + x_4 < 3$ and $1 < x_3 + x_4 < 2$.

• $\pi_2 + \pi_3 \ge \eta + 1$ and $\pi_1 + \pi_4 \ge \eta + 1$: We may assume $\pi_4 \le \eta$ and $\pi_1 + \pi_3 \le \eta$. We claim that S is contained in the union of $1 < x_2 + x_3 + x_4 < 2$, $0 < x_1 < 1$ and $0 < x_4 < 1$. Consider the following cases:

- $x_1 = 0$: In this case, note that because of $\pi_2 + \pi_3 \ge \eta + 1$ and $\pi_4 \le \eta$, we have that x belongs to $1 < x_2 + x_3 + x_4 < 2$.
- $-0 < x_1 < 1$: In this case, note that x belongs to $0 < x_1 < 1$.
- $x_1 = 1$: Clearly, due to $\pi_2 + \pi_3 \ge \eta + 1$ we have that $x_2 + x_3 + x_4 < 2$. If $1 < x_2 + x_3 + x_4$, then x belongs to $1 < x_2 + x_3 + x_4 < 2$.
 - Otherwise suppose, $x_2 + x_3 + x_4 \le 1$. We claim that $0 < x_4 < 1$. By contradiction, if $x_4 = 0$, then note that $\sum_j \pi_j x_j \le \pi_1 + \pi_3 \le \eta$. If $x_4 = 1$, then note that $\sum_j \pi_j x_j \ge \pi_1 + \pi_4 \ge \eta + 1$.
- $\pi_2 + \pi_3 \le \eta$ and $\pi_1 + \pi_4 \le \eta$: We may assume $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$ and $\pi_2 + \pi_4 \ge \eta + 1$. We claim that S is contained in the union of $0 < x_2 + x_3 < 1$, $2 < x_1 + x_2 + x_3 < 3$ and $0 < x_4 < 1$. Consider the following cases:
 - $x_4 = 0$: In case, note that due to $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$, we have that $x_1 + x_2 + x_3 < 3$. Also, since $\pi_2 + \pi_3 \le \eta$, we have that $x_1 + x_2 + x_3 > 2$. Thus, x is contained in $2 < x_1 + x_2 + x_3 < 3$.
 - $-0 < x_4 < 1$: In this case, note that x belongs to $0 < x_4 < 1$.
 - $x_4 = 1$: In this case note that $x_2 + x_3 \ge 1$ is not possible, since $\sum_j \pi_j x_j \ge \pi_2 + \pi_4 \ge \eta + 1$. Also note that $x_2 + x_3 = 0$ is not possible, since that $\sum_j \pi_j x_j \le \pi_1 + \pi_4 \le \eta$. Thus, in this case, x belongs to $0 < x_2 + x_3 < 1$.
- $\pi_2 + \pi_3 \ge \eta + 1$ and $\pi_1 + \pi_4 \le \eta$: We may assume $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$, $\pi_1 + \pi_3 \le \eta$ and $\pi_4 \le \eta$. We claim that S is contained in the union of $1 < x_2 + x_3 + x_4 < 2$, $0 < x_1 < 1$, and $0 < x_2 + x_3 < 1$. Consider the following cases:
 - $-x_1 = 0$: In this case, note that because of $\pi_2 + \pi_3 \ge \eta + 1$ and $\pi_4 \le \eta$, we have that x belongs to $1 < x_2 + x_3 + x_4 < 2$.
 - $-0 < x_1 < 1$: In this case, note that x belongs to $0 < x_1 < 1$.
 - $x_1 = 1$: Clearly, due to $\pi_2 + \pi_3 \ge \eta + 1$ we have that $x_2 + x_3 + x_4 < 2$. If $1 < x_2 + x_3 + x_4$, then x belongs to $1 < x_2 + x_3 + x_4 < 2$.
 - Otherwise suppose, $x_2+x_3+x_4 \le 1$. In this case, note that $x_2+x_3=1$ is not possible, since that $x_4=0$ and we have $\sum_j \pi_j x_j \le \pi_1+\pi_3 \le \eta$. Also note that $x_2+x_3=0$ is not possible, since that $\sum_j \pi_j x_j \le \pi_1+\pi_4 \le \eta$. Thus, in this case, x belongs to $0 < x_2+x_3 < 1$.
- $\pi_2 + \pi_3 \le \eta$ and $\pi_1 + \pi_4 \ge \eta + 1$: We may assume $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$ and $\pi_4 \le \eta$. We claim that S is contained in the union of $1 < x_1 + x_2 + x_3 + x_4 < 2$, $2 < x_1 + x_2 + x_3 < 3$ and $0 < x_4 < 1$. Consider the following cases:
 - $x_4 = 0$: In case, note that due to $\pi_1 + \pi_2 + \pi_3 \ge \eta + 1$, we have that $x_1 + x_2 + x_3 < 3$. Also, since $\pi_2 + \pi_3 \le \eta$, we have that $x_1 + x_2 + x_3 > 2$. Thus, x is contained in $2 < x_1 + x_2 + x_3 < 3$.
 - $-0 < x_4 < 1$: In this case, note that x belongs to $0 < x_4 < 1$.
 - $x_4 = 1$: In this case note that since $\pi_1 + \pi_4 \ge \eta + 1$, we have that $x_1 + x_2 + x_3 + x_4 < 2$. Also note that since $\pi_4 \le \eta$, we have that $x_1 + x_2 + x_3 + x_4 > 1$. Thus, in this case, x belongs to $1 < x_1 + x_2 + x_3 + x_4 < 2$.

Acknowledgements

We would like to thank Diego Cifuentes, Amitabh Basu, Antoine Deza, and Lionel Pournin for various discussions. We would also like to thank the support from AFOSR grant # F9550-22-1-0052 and from the ANID grant Fondecyt # 1210348 .

References

- [1] Karen Aardal and Arjen K Lenstra. Hard equality constrained integer knapsacks. *Mathematics of operations research*, 29(3):724–738, 2004.
- [2] Kent Andersen, Gérard Cornuéjols, and Yanjun Li. Split closure and intersection cuts. *Mathematical programming*, 102(3):457–493, 2005.
- [3] Gennadiy Averkov. On finitely generated closures in the theory of cutting planes. *Discrete Optimization*, 9(4):209–215, 2012.
- [4] Amitabh Basu, Michele Conforti, Marco Di Summa, and Hongyi Jiang. Complexity of branch-and-bound and cutting planes in mixed-integer optimization-ii. In *International Conference on Integer Programming and Combinatorial Optimization*, pages 383–398. Springer, 2021.
- [5] Sander Borst, Daniel Dadush, Sophie Huiberts, and Samarth Tiwari. On the integrality gap of binary integer programs with gaussian data. *Mathematical Programming*, 197(2):1221–1263, 2023.
- [6] Vasek Chvátal. Hard knapsack problems. Operations Research, 28(6):1402–1411, 1980.
- [7] Gerard Cornuéjols, Leo Liberti, and Giacomo Nannicini. Improved strategies for branching on general disjunctions. *Mathematical Programming*, 130(2):225–247, 2011.
- [8] Daniel Dadush and Samarth Tiwari. On the complexity of branching proofs. In *Proceedings* of the 35th Computational Complexity Conference, pages 1–35, 2020.
- [9] Sanjeeb Dash, Oktay Günlük, and Diego A. Morán R. On the polyhedrality of closures of multibranch split sets and other polyhedra with bounded max-facet-width. *SIAM Journal on Optimization*, 27(3):1340–1361, 2017.
- [10] Santanu S Dey, Yatharth Dubey, and Marco Molinaro. Branch-and-bound solves random binary ips in polytime. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete* Algorithms (SODA), pages 579–591. SIAM, 2021.
- [11] Santanu S Dey, Yatharth Dubey, and Marco Molinaro. Lower bounds on the size of general branch-and-bound trees. *Mathematical Programming*, 198(1):539–559, 2023.
- [12] Santanu S Dey, Marco Molinaro, and Qianyi Wang. Approximating polyhedra with sparse inequalities. *Mathematical Programming*, 154(1):329–352, 2015.
- [13] Santanu S Dey, Marco Molinaro, and Qianyi Wang. Analysis of sparse cutting planes for sparse milps with applications to stochastic milps. *Mathematics of Operations Research*, 43(1):304–332, 2018.
- [14] Santanu S Dey and Prachi Shah. Lower bound on size of branch-and-bound trees for solving lot-sizing problem. *Operations Research Letters*, 50(5):430–433, 2022.
- [15] Ricardo Fukasawa, Laurent Poirrier, and Shenghao Yang. Split cuts from sparse disjunctions. *Mathematical Programming Computation*, 12:295–335, 2020.
- [16] Max Gläser and Marc E Pfetsch. Sub-exponential lower bounds for branch-and-bound with general disjunctions via interpolation. In *Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 3747–3764. SIAM, 2024.
- [17] Robert G Jeroslow. Trivial integer programs unsolvable by branch-and-bound. *Mathematical Programming*, 6(1):105–109, 1974.
- [18] Miroslav Karamanov and Gérard Cornuéjols. Branching on general disjunctions. *Mathematical Programming*, 128(1-2):403–436, 2011.
- [19] Alisa H Land and Alison G Doig. An automatic method of solving discrete programming problems. *Econometrica*, 28:497–520, 1960.
- [20] Ashutosh Mahajan and Theodore K Ralphs. Experiments with branching using general disjunctions. In *Operations Research and Cyber-Infrastructure*, pages 101–118. 2009.

- [21] Hanan Mahmoud and John W Chinneck. Achieving milp feasibility quickly using general disjunctions. Computers & operations research, 40(8):2094–2102, 2013.
- [22] Sanjay Mehrotra and Zhifeng Li. Branching on hyperplane methods for mixed integer linear and convex programming using adjoint lattices. *Journal of Global Optimization*, 49(4):623–649, 2011.
- [23] Gonzalo Muñoz, Joseph Paat, and Álinson S Xavier. Compressing branch-and-bound trees. In *International Conference on Integer Programming and Combinatorial Optimization*, pages 348–362. Springer, 2023.
- [24] Jonathan H Owen and Sanjay Mehrotra. Experimental results on using general disjunctions in branch-and-bound for general-integer linear programs. *Computational optimization and applications*, 20(2):159–170, 2001.
- [25] Gábor Pataki, Mustafa Tural, and Erick B Wong. Basis reduction and the complexity of branch-and-bound. In Proceedings of the twenty-first annual ACM-SIAM symposium on discrete algorithms, pages 1254–1261. SIAM, 2010.
- [26] Yu Yang, Natashia Boland, and Martin Savelsbergh. Multivariable branching: A 0-1 knap-sack problem case study. *INFORMS Journal on Computing*, 2021.